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Abstract  

Understanding how consciousness arises from neural activity remains one of the biggest 

challenges for neuroscience. Numerous theories have been proposed in recent years, each 

gaining independent empirical support. Currently, there is no comprehensive, quantitative and 

theory-neutral overview of the field that enables an evaluation of how theoretical frameworks 

interact with empirical research. We provide a bird’s eye view on studies that interpreted their 

findings in light of at least one of four leading neuroscientific theories of consciousness (N=412 

experiments), asking how methodological choices of the researchers might affect the final 

conclusions. We found that supporting a specific theory can be predicted solely from 

methodological choices, irrespective of findings. Furthermore, most studies interpret their 

findings post-hoc, rather than a-priori testing critical predictions of the theories. Our results 

highlight challenges for the field and provide researchers with a unique, open-access website 

to further analyze trends in the neuroscience of consciousness.   
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Main 

Within about three decades, the scientific study of consciousness has transitioned from an 

emerging field, trying to establish its legitimacy, to a flourishing source of empirical studies 

and theoretical accounts. Concomitant with the empirical quest towards finding the neural 

correlates of consciousness1,2, the field has seen a steep growth in the number of scientific 

theories, each offering a different explanation of the neural basis of consciousness3–6. 

Accordingly, the field has not yet converged around an accepted account, and disagreements 

abound even with respect to the neural correlates themselves 7–10. Existing reviews of the state-

of-the-art of the field are typically written by proponents of the different theories11–13, with 

findings described predominantly through the lens of a given theoretical framework, yielding 

dramatically different pictures.  

Converging onto a unified account is even harder given the wide range of experimental 

paradigms used to study consciousness, which might systematically differ in studies supporting 

the different theories. Among other methods, common experimental procedures include 

Masking 14, Bistable perception 15,16, Inattentional Blindness17, Change Blindness 18, Stimulus 

Degradation 19, Sleep 20,  Anesthesia 21, Direct Stimulation (e.g., by TMS22, intracranial 

stimulation 23, etc.). Similarly, different measures of consciousness exist (e.g., report vs. no-

report paradigms24). These different procedures probe somewhat different processes3, 

sometimes yielding different results25–27. Thus, if there is a systematic bias in methodological 

choices, this could explain how conflicting theories appear to be supported by empirical data, 

despite the proclaimed goal to test and account for the very same phenomenon3. Critically, the 

choice of paradigm or analysis approach might affect the conclusions one draws. For example, 

in the recent debate around the role of prefrontal cortex in consciousness, both sides suggested 

the conclusions of their opponents were based on problematic methodological choices9,28 (for 

other debates, see 24,29 or 30,31).  

Here, we present an unbiased, theory-neutral, quantitative and systematic review of 

empirical findings around leading theories of consciousness, providing a bird’s eye view of the 

field and looking for potential biases in interpreting empirical findings. We focus on four 

theories that have evoked substantial empirical and theoretical interest 3,4,8: Global Neuronal 

Workspace12,32 (GNW), Higher-order thought13,33 (HOT), Integrated Information Theory34,35 

(IIT), and Recurrent Processing Theory36,37 (RPT) (listed in alphabetical order). The theories 

differ in their core principles, suggested mechanisms, and predictions they make about neural 

activity associated with consciousness3. In a nutshell (for a more detailed description see 
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Supplementary Box A), GNW claims that conscious processing emerges when information is 

globally broadcasted by a frontoparietal network12,38, while HOT ascribes consciousness to 

higher-order representations in dorsolateral prefrontal cortex, that accompany first-order 

representations elsewhere13. IIT, conversely, equates consciousness with a maximum of 

irreducible intrinsic cause–effect power, as determined from the intrinsic perspective of the 

system, and claims that a local maximum of such power likely resides in a posterior cortical 

“hot zone”34,39,40. Finally, RPT asserts that horizontal connections and recurrent loops between 

lower and higher-level brain areas, involving plastic changes mediated by NMDA-dependent 

feedback activations, underlie conscious processing11,36,37. 

As a first step towards building a robust dataset of relevant empirical findings, we collected 

papers that interpreted their results as supporting or challenging GNW, HOT, IIT, or RPT. All 

collected papers were classified according to various parameters of interest, including, among 

others, the experimental paradigms, stimuli, neuroscientific techniques, empirical findings, and 

theoretical interpretations (see Supplementary Table S1 for the full parameter list). Using these 

parameters, we provide a descriptive overview of the field, in addition to a data-driven 

statistical analysis, aimed to uncover trends, biases, blind spots, and limitations regarding how 

the theories and the empirical studies interact. 

To reveal such biases, we conducted an epistemic, meta-experimental examination of the 

field, asking how findings are interpreted and to what extent supporting a theory depends on 

methodological decisions made by researchers. Rather than conducting a standard meta-

analysis aimed at identifying consistent effects and providing consolidated estimates of such 

effects, we focused on the way these findings are collected and interpreted. Thus, we took the 

reported findings at face value, with no attempt to re-interpret or test the statistical reliability 

of the findings, or to critically assess the strength of the experimental design. This allowed us 

to identify what claims are being made and what types of findings and paradigms these claims 

are based on. Sticking to the original interpretations of the authors also allowed us to keep this 

review objective and uncontaminated by subjective judgments of methodological quality or the 

correct interpretation of the findings. An additional objective was to provide the scientific 

community with an interactive, open-access online tool to gauge the state of the field and the 

status of the leading theories. This rich database encompasses 412 experiments reported in 365 

studies published between April 2001 and October 2019.  
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Results 

The database was created following predefined criteria (see methods) in line with the PRISMA 

2009 guidelines41 (Figure  1). Our search strategy looked for papers between the years 2001 

and 2019 (up until the search date of October 22), relying on (a) Topic search, including papers 

in which the name of each of the four theories appears as part of the topic / abstract / keywords; 

and (b) Citation search, where we first identified three key papers for each theory 

(Supplementary Table S1), and then, collected all empirical papers citing one or more of these 

twelve key papers.  

Out of 6938 records identified in the initial database searching, 6054 were filtered out 

due to predefined constraints (for a full list, see again methods). The remaining 884 unique 

papers were assessed for eligibility by a close inspection of their full-text, removing papers 

that: (1) did not directly relate to consciousness (n = 232; see Supplementary Figure S1 and 

Supplementary Table S2 for the distribution of excluded papers into main fields of research); 

(2) did not interpret their results in light of an NCC prediction of one or more of the theories 

(n = 190); (3) Reviews (n = 89); (4) Meta-analyses (n = 5); and (5) Behavioral studies (n = 3). 

This process yielded the final database, which included 365 papers, reporting 412 experiments, 

all of which were classified according to our predefined parameters of interest (see 

Supplementary Table S3).  
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Figure 1. Panel a: Flow diagram outlining the process of article selection41. Panel b: 

Cumulative distribution of the papers found for each of the theories pre-screening, 

according to the different search strategies. Panel c: Cumulative distribution of the 

final papers post-screening. For panels b & c, each bar depicts the number of unique 

papers in that category. Gray bars represent all papers found for each theory across 

the different search strategies. Red bars denote papers that mention the theory in their 

title, abstract, or keywords. Green, blue, and orange bars denote papers citing the first, 

second, and third key papers for each theory (see Supplementary Table S1 for the key 

theory papers).  
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Division of experiments with respect to the theories 

The most prominent finding was the non-uniform distribution of experiments 

mentioning each of the four theories (Figure 2a; note that this might be explained – at least in 

part – by the different ‘age’ of the theories, see again Supplementary Table S1). Namely, in 

this database, GNW is most widely discussed (N=224), followed by RPT (N=140), IIT (N= 

101), and HOT (N=12; note that for HOT, our initial search yielded a much larger number of 

papers (N= 532), but most of them did not survive the screening process as they were either 

not empirical, or did not include neuroscientific results; see Methods). Notably, the distribution 

is also highly skewed with respect to confirmatory (experiments supporting the theories) vs. 

disconfirmatory experiments (experiments challenging the theories), the latter constituting 

only 15% of all experiments. As evident in Figure 2a, this skewed pattern was observed for 

GNW (𝜒2(1) = 90.02, 𝑝 <  .0001), RPT (𝜒2(1) = 77.26, 𝑝 <  .0001) and IIT(𝜒2(1) =

78.43, 𝑝 <  .0001), but not for HOT (𝜒2(1) = 0.33, 𝑝 =  .60; note again the low 

representation of HOT in our database). An inspection of the distribution over time suggests 

that all theories have been increasingly studied (Figure 2b) and have gained support (Figure 

2c) through the years. Interestingly, there does seem to be some rise in challenging experiments 

in the last decade (especially for GNW), that might reflect a gradual maturation of the field 

(Figure 2d). However, visually inspecting the trends over time suggests that the increasing 

support of each theory is unaffected by the changing support of other theories, demonstrating 

a parallel progression of leading theories. That is, the number of experiments referring to the 

theories keeps growing, as opposed to a replacement model, where the growing success of one 

theory leads to a gradual reduction of support for the other (e.g., 42, when one theory reductively 

replaces the other), which would translate into a plateau-like trend, where no new studies are 

added.  
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Figure 2; Panel a: Distribution of experiments across theories. Each bar 

represents the number of experiments interpreted as supporting the 

theory (blue) or challenging it (red). The label above each bar indicates 

the proportion of papers supporting each theory. Panel b: Cumulative 

distribution over time of experiments studying/discussing each of the 

theories (either challenging or supporting them). Panel c: Cumulative 

distribution over time of the experiments supporting the theories.  Panel 

d: Cumulative distribution over time of the experiments challenging the 

theories. 

Notably, only about a third (35%) of the experiments were presented as explicitly testing theory 

predictions, as opposed to 41% of the experiments that interpreted their findings in light of the 

theories post-hoc, in the discussion section (the remaining 24% generally mentioned a theory 

in the introduction, without formulating clear hypotheses about it and without interpreting the 

evidence post-hoc). Importantly, only 7% tested predictions of more than one theory, trying to 

pit them against each other. Another important observation was that theory-driven experiments, 

post-hoc-interpreted experiments, and experiments that only mentioned the theories in the 

introduction differed in their likelihood to challenge a theory (note that in this analysis, papers 

were classified as challenging a theory if at least one theory was challenged, even if another 
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theory was supported, while the rest were classified as 'not challenging') (𝜒2(2) = 68.79, 𝑝 <

 .0001; Figure 3). Theory-driven experiments challenged the theories more frequently than 

expected under the null hypothesis (𝑍 =  6.14, 𝑝 <  .001) and the post-hoc-

interpreting/theory-mentioning papers challenged them less frequently than expected (𝑍 =

−4.07, 𝑝 <   .001 and marginally 𝑍 = −2.05 , 𝑝 =  .06, respectively).  

 

 

Figure 3. Panel a: Distribution of experiments that did not challenge any 

theory (N=350) divided into “theory-driven” (i.e., explicitly testing at least one 

prediction of at least one theory; dark gray in the inner circle), “mentioning” 

at least one theory in their introduction (light gray), or “post-hoc” interpreting 

their results in light of at least one theory, without referring to it in the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447863doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447863
http://creativecommons.org/licenses/by-nc-nd/4.0/


introduction (white). The outer circle describes the distribution of experiments 

to specific theories. Panel b: Similar to Panel a, but for experiments interpreted 

as challenging at least one theory (N=62). Slices with less than five/three 

experiments (e.g., studies challenging HOT) were not included in Panel a and 

Panel b, respectively (hence the empty spaces in the outer circles). Panel c: a 

cumulative distribution of all experiments that are either theory-driven (black), 

mention the theories (dark gray) or interpret the findings post hoc (light gray) 

over time.  

Prediction of supported theory based on methodological parameters 

To assess the potential influence of methodological choices on the probability of a study 

supporting/challenging a specific theory, a random forest classifier was used. Specifically, we 

trained a classifier to predict whether each experiment will support GNW, IIT, RPT or any 

combination of these theories (HOT was not included due to insufficient number of 

experiments). The classifier used all methodological parameters in our database, excluding 

parameters showing multicollinearity 43 (for the list of included parameters, see Supplementary 

Table S5; for the results of the full model without exclusion, see Supplementary Figure S2a-b 

and Supplementary Table S6). A leave-one-out strategy was used to measure the accuracy of 

the classifier, which was 80.34%, 𝑡(411) = 10.99, 𝑝 < 0.001, with a chance level at 67.64% 

(chance level was determined based on the experiments’ marginal distributions to theories (see 

Methods), so the accuracy of the tested model is compared with a model which solely relies on 

the frequency of the outcome in our database, without taking into account any of the parameters 

(Figure 4a). This accordingly corrects for the different number of experiments for each theory). 

Our sensitivity analysis (see Methods) validated these results, showing stable and high 

classification accuracies across different random states of the classifier (M = 79.98%, SD = 

.42%, range: 78.64%-81.31%). Signal Detection Theory (SDT) analysis44 revealed that the 

classifier performed well for all three theories, with an area under the curve (AUC) of 0.7, 0.84, 

and 0.76 for GNW, IIT, and RPT respectively (Figure 4b). The individual importance of the 

features on which the classifier was trained was calculated using a permutation importance 

method (see Methods). Parameters whose average importance was higher than 95% of the 

distribution of importance scores of a random parameter were (in order of importance): (1) 

studying state vs. content consciousness; (2) using report vs. no-report paradigms; (3); using 

connectivity measures and (4) using subjective measures of consciousness (Supplementary 
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Table S5, Supplementary Figure S3). Below we elaborate on each of these factors, and include 

HOT for all descriptive statistics.  

   

Figure 4. Analysis of the classifier's performance in predicting support for each 

theory based on methodological choices. Panel a: classification accuracy for the 

three theories combined (gray), and for each theory: GNW (red), IIT (yellow), and 

RPT (green). Panel b: ROC curves for classification performance for each of the 

theories. Blue dashed lines in Panel a indicate chance level performance for each of 

the conditions, assessed based on the marginal distributions of the experiments to 

theories, and gray diagonal line in Panel b indicates the performance of a random 

classifier (see Methods). 

Out of the factors identified as important in classifying the supported theory, the most 

striking one is content vs. state studies (Figure 5a); experiments supporting IIT are mostly 

focused on state consciousness (79%), while the exact opposite pattern appears for GNW (73% 

focusing on content consciousness) and is even more extreme for HOT and RPT (100% and 

97% focus on content consciousness). Along the same lines, report paradigms are more 

prevalent for GNW, RPT, and HOT (58%, 80%, 100%, respectively; note that these numbers 

are calculated across state and content studies), while IIT gains more support from no-report 

paradigms (85%) (Figure 5b). Notably, this pattern is largely driven by experiments studying 

state consciousness, yet it is also observed – to a lesser degree – in studies of content 

consciousness (Figure 5c). Connectivity dependent measures are more frequently used in 

experiments supporting IIT (64%) and GNW (37%), compared with RPT (13%) (Figure 5d). 

Lastly, for the factor ‘measure of consciousness’, objective measures of consciousness (i.e., 

judgements that can either be correct or incorrect about the critical stimulus45) were generally 

more prevalent than subjective ones (i.e., reporting the degree to which the stimulus was 
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consciously experienced46,47; 50% vs. 44% overall, and 69% vs. 61% within content 

consciousness, respectively). This trend was mostly found for RPT and GNW (73% objective 

vs. 51% subjective for RPT, and 51% vs. 44% for GNW, and within experiments studying 

content (as opposed to state) consciousness 75% vs. 53%, 69% vs. 59%), which was not the 

case for IIT (11% vs. 16%, and within content consciousness 57% vs. 71%) (Figure 5e).   

 

 

Figure 5. Distribution of experiments supporting a certain theory according to 

specific methodological parameters: a: Consciousness type; b: Report vs. no-report 

paradigms; c: similar to Panel b, including only experiments that studied 'content' 

consciousness. d: Type of dependent measures. e. Measures of consciousness. 

Slices with less than 15 experiments were not included in panel d. Abbreviations: 

BOLD (Blood-oxygen-level-dependent), ERP (event-related potentials), BBC 

(brain-behavior correlation). Note that some experiments used more than one 

consciousness measure or reported more than one type of dependent measure, so 

they could appear in more than one slice in panels d and e. 

 

Experimental procedures and techniques 

Beyond identifying potential methodological biases with respect to the theories, our 

database allows for inspection of trends in the field, with respect to preferred paradigms, 

techniques, and common practices. The most frequently used experimental paradigms (see 

Supplementary Figure S4a) across all experiments is stimulus degradation, where the strength 

of the stimulus is reduced (e.g., using contrast48, noise49 or coherence manipulation50) (22%) 
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followed by masking (18%) and direct stimulation (e.g., TMS, tDCS, tACS, intracranial 

stimulation; 17%). When dividing the experiments to studies focusing on content 

(Supplementary Figure S4b) or state (Supplementary Figure S4c) consciousness, two very 

different distributions emerge, as could be expected. A single exception for this pattern is the 

use of direct stimulation, which was prevalent in both distributions. Given the wide 

heterogeneity of methods in the field, and especially between state and content studies, we 

further conducted a post-hoc exploratory analysis, where we asked whether within each type 

(i.e., content vs. state consciousness), the choice of paradigm could predict support for different 

theories. We used the same random forest method on experiments investigating content or state 

consciousness separately, once relying on the paradigms, and again using the neuroscientific 

techniques (e.g., EEG, fMRI, intracranial recordings, MEG, TMS etc.) as factors (see 

Supplementary Figure S5, for the distribution of experiments according to neuroscientific 

techniques). RPT was excluded from the analysis of state consciousness and IIT was excluded 

from the analysis of content consciousness, due to not having sufficient number of papers. For 

both post-hoc analyses within studies focusing on state-consciousness, the accuracy of the 

classifier was not significantly above chance (see Supplementary Figure S6e-h).  For content 

consciousness studies, classification was above chance for the classifier that predicted theory 

support based on neuroscientific techniques (accuracy = 62.71%, 𝑡(290) = 2.96, 𝑝 =  0.007, 

with a chance level at 56.7%; see Supplementary Figure S6a-b) and did not survive correction 

for multiple comparisons for the classifier trained on experimental paradigms (accuracy = 61 

%, t(290) = 2.01, p = .061; see Supplementary Figure S6c-d). None of the factors in these 

analyses was identified as important, suggesting that it is the combination of factors, rather 

than any specific factor, that drove the classification (see Supplementary Tables 7 and 8; also 

confirmed by the aggregated results over all classifiers used for the sensitivity analysis of these 

models). This suggests that generally speaking, when inspecting content and state studies 

separately, the data does not indicate a strong methodological bias towards one of the theories, 

either because it does not exist, or due to insufficient amount of data to detect a bias.  

Neural correlates of consciousness and their interpretation in light of the theories 

Aggregating neural findings reported in the experiments in our database reveals a 

remarkable heterogeneity of findings, which by itself is not compatible with the predictions of 

any of the theories (that is, none of the theories would predict such a vast neural activation as 

a marker of consciousness). At the anatomical level, a map of all reported findings seems to 

suggest that almost the entire brain has been implicated in conscious perception (Figure 6a). 
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Yet when the experiments are divided according to the theory they support, four completely 

different patterns emerge, that by and large are well aligned with the predictions of each of the 

theories. This raises the concern for a bias, where each theory confirms itself, while ignoring 

other findings that are incompatible with its predictions.  

 

Figure 6. Spatial findings. Panel a: an overlay of fMRI findings reported in all 

experiments in the database (left) and all experiments focusing on content 

consciousness (right), using the AAL3 atlas51. Red, yellow, blue, and green activations 

represent experiments supporting GNW, IIT, HOT, and RPT, respectively. The 

intensity of the color of each activation indicates the relative frequency of experiments 

reporting activations in each brain area (see Supplementary Figures S7 for a similar 

figure, in which findings of all experiments in the database are overlaid irrespective of 

theory, and Supplementary Figure 8 for a figure comparing activations found in report 

and no-report paradigms, revealing interesting differences between the two). Panels b-

e: the same findings, separately presented for experiments supporting GNW, IIT, HOT 

and RPT respectively, using the same color coding. Panels b-c also depict findings 
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reported only in experiments focusing on content consciousness, presented below the 

maps for all experiments (in panels d-e, for HOT and RPT, all experiments focused on 

content consciousness to begin with). The color scales specify the number of 

experiments reporting activations in the same area, ranging from 0 to the maximal 

number of such experiments for each theory.  

In the temporal domain, a similar picture emerges; when all the data from experiments 

using EEG, iEEG or MEG are examined together, irrespective of the supported theory, the only 

clear pattern is the great variability of the data, with no clear-cut answer about the timing of 

the NCC (Figure 7a). But when divided to theories, the reported timings (e.g., latency, peak, 

or pre-defined time-window; for all the above we focused on the earliest time point reported) 

reveal later NCCs in experiments supporting GNW (M=290.26ms, SD=142.64; Figure 7b) 

compared with experiments supporting RPT (M=245.65 ms, SD=110.6; Figure 7c. t(178) = 

2.33, p = .034, comparing reported components). Interestingly, limiting the observations to 

theory-driven experiments only (i.e., excluding papers that interpret their findings post-hoc, or 

only mention the theories; Figure 7d-e) reveals a more dichotomous picture of NCC timing, 

strongly aligned with the predictions of the specific theory targeted by each study (GNW: 

M=340.17ms, SD=170.58; RPT: M=227.85, SD=75.38; t(55)= 3.1, p = .007). It appears as if 

experiments that only interpret their findings post-hoc in light of the theories find both early 

and late components, while researchers who set-out to test a prediction of a theory find evidence 

that fits well with the tested predictions. Another notable observation pertains to the variability 

of reported timings within a given EEG/MEG component, being most pronounced in post-hoc 

interpreted experiments. That is, the reported timing of the very same component (e.g., VAN 

52 or P3 53) substantially varies between studies, in the magnitude of hundreds of milliseconds 

(VAN range: 130-460 ms, M = 251.48 ms, SD = 67.88; P3 range: 130-908 ms, M = 446.39ms, 

SD = 108.1), which is not in line with the explicit predictions of the theories themselves3,54. 

This raises the concern that researchers have a large degree of freedom when interpreting and 

reporting their findings.  
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Figure 7. Temporal findings of EEG, iEEG and MEG components that were reported in the 

experiments in the database. Findings are sorted based on the earliest reported timepoint for 

each component, and plotted together, with the y-axis referring to an arbitrary index number 

of the different experiments generated for each plot. Each horizontal line represents a specific 

component, colored according to its classification by the authors (see the legend), with darker 

colors indicating later components. Components for which only a single time point was 

reported (e.g., peak), are represented by dots. a: temporal findings across all experiments. b: 

temporal findings in experiments supporting GNW only. c: temporal findings in experiments 

supporting RPT. Panel d, e: Similar to Panels b and c, except that the experiments were filtered 

to include only theory-driven studies. 

 

Discussion 

Several key conclusions can be drawn from our analyses of these 412 experiments: First, the 

field seems highly skewed towards confirmatory, as opposed to disconfirmatory, evidence55, 

which might explain the failure to exclude theories and converge on an accepted, or at least 

widely favored, account. This effect is relatively stable over time. Second, theory-driven 

studies, aimed at testing the predictions of the theories, are rather scarce, and even rarer are 

studies testing more than one theory, or pitting theories against each other – only 7% of the 
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experiments directly compared two or more theories’ predictions. Though there seems to be an 

increasing number of experiments that test predictions a-priori in recent years, a large number 

of studies continue to interpret their findings post-hoc in light of the theories. Third, a close 

relation was found between methodological choices made by researchers and the theoretical 

interpretations of their findings56. That is, based only on some methodological choices of the 

researchers (e.g., using report vs. no-report paradigms, or studying content vs. state 

consciousness), we could predict if the experiment will end up supporting each of the theories. 

This might represent the different emphasis put by the different theories on different aspects of 

consciousness. These three key findings, taken together, help explain why theories of 

consciousness continue to co-evolve with little impact on each other, and highlight the need 

for more cross-talk between the theories and more inclusive choices of paradigms testing each 

one of them. Notably, all of our results can be regenerated in an open-access website 

(http://ContrastDB.tau.ac.il/) in which all parameters extracted from the studies in our database 

are available, together with online analytic tools. This unique database further allows 

researchers to query and analyze the data in novel ways, which might unravel additional trends 

in the study of consciousness. It also constitutes a powerful tool for finding relevant studies 

based on parameters of interest (e.g., all fMRI studies supporting GNW, or all studies with a 

patient population using EEG).  

Our analysis of the database highlights the way theories of consciousness have evolved 

so far: even when one theory gains accumulating support, opposing theories remain unaffected. 

On the contrary, all four theories seem to progress in parallel and continue to grow throughout 

the years. This observation is further strengthened by the relative scarcity of experiments that 

challenge a theory (15%). This potential confirmation bias is not unique to the field of 

consciousness; it has been documented decades ago57, and widely discussed since in various 

areas of psychological research55,58. This might be regarded as a part of the natural progression 

of an emerging field of research; it typically starts from a more bottom-up approach, mostly 

focusing on accumulation of evidence, and – as theories start to emerge – the data is interpreted 

in light of the theories. Only later on the competing theories are critically tested in a top-down 

manner. Based on our analysis, the field of consciousness studies seems to still be well within 

the initial state, as the predominance of supporting experiments over challenging ones is stable 

over time. Here, we suggest that with the maturation of the field – both theoretically3,4  and 

methodologically59  – the time has come for it to transition into a more critical phase of directly 

testing and possibly eliminating theories, as a necessary means for making progress60. This 
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could be achieved by identifying opposing predictions of two or more theories and using a 

design that experimentally pits them against each other61. 

This shift seems even more important when taking into account the gap between how 

the neural findings look when aggregated across all studies, as opposed to their patterns when 

divided based on the theories they support (Figures 6 & 7). Despite the heterogeneous pattern 

observed when all experiments are collapsed together, each theory seems to find evidence for 

its specific predictions. This might reflect a different focus on certain aspects of consciousness 

by each theory. Conversely, this might stem from emphasizing specific results that fit the 

predictions while overlooking others, or from refraining from testing alternative interpretations 

to begin with. In addition, our analyses highlight a substantial amount of flexibility in 

interpretation, e.g., the timing of NCC measured by EEG and MEG. This is yet another form 

of a confirmation bias, where findings are interpreted in light of the expectations of the 

experimenters62.   

Another clear trend we found relates to the strong focus on content consciousness. This 

accords with the general strategy of searching for the neural correlates of a specific phenomenal 

aspect of an experience as an effective means to neuroscientifically study consciousness 63. The 

strategy typically relies on contrasting between brain activity when subjects are conscious of 

certain content, and when they are unaware of the same content (or are aware of some other 

content) (e.g. 64, but see 59,65). In contrast, studies focusing on state consciousness target 

differences between conditions in which subjects are in an overall state of unconsciousness 

(e.g., dreamless sleep, anesthetized, suffering from a disorder of consciousness, etc.) as 

opposed to a conscious one (e.g., wakefulness, dreaming, recovery from a disorder of 

consciousness, etc.). Notably, both of these approaches have been criticized based on different 

grounds: studying content consciousness usually involves keeping the state of consciousness 

constant, thereby neglecting the neural processes necessary for being in that state to begin with 

66. Also, such studies typically assume that the contrast between perceived and not-perceived 

stimuli indeed distills the correlates of conscious perception, while often failing to account for 

confounding processes that either pertain to the prerequisites or the consequences of 

consciousness 59,67. On the other hand, studying state consciousness inherently implies a 

difference between experiencing some contents vs. experiencing no contents at all66. In 

addition, the contrast between different states of consciousness typically involves several 

uncontrolled, or difficult to control, confounding variables (e.g., overall arousal, attention, 

etc.). These complexities, in turn, limit the ability to detect mechanisms that are uniquely 
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correlated with consciousness per se 63. Thus, a refinement of predictions to address both 

content and state, along with development of novel ways to test existing predictions while 

avoiding confounding factors, will be necessary for achieving progress. These directions are 

important because all four theories make claims about both content and state consciousness 

4,32,63, and should indeed account for both aspects to provide a comprehensive explanation of 

consciousness4,32,66.  

Our review was epistemic and descriptive in nature, taking a hands-off neutral 

approach, accepting the interpretations made by authors at face value. Future efforts could 

complement this database with a meta-analyses aimed at testing the reliability and validity of 

findings, and exploring in more detail potential differences between the results themselves and 

the authors’ interpretations of such results. Such meta-analyses could also include additional 

papers that were not the focus of the current study (e.g., NCC papers that refer to other theories, 

or not referring to any theory), explore other search strategies, and statistically examine the 

meta-analytic reliability of findings across studies. This was not our goal here (though, our 

open-access database and website could be used as a first step for doing so). The data extraction 

procedure in our case is solely based on the way the authors themselves interpreted their results, 

so that even if we found the interpretation inaccurate/erroneous (e.g., claiming that GNW is 

supported by very early activations, or that RPT is supported by frontal findings), the paper 

was still included in the analysis as is. We also took a neutral approach to how the theories 

have evolved over the years (e.g., IIT once suggested that frontal areas could interact with 

posterior ones to generate conscious perception68 but claims differently today28,40; and GNW 

once treated P300 as a clear marker for consciousness69,70 and is more hesitant in doing so 

today25,32). Thus, findings that were once taken as evidence in favor of a theory, might actually 

be taken today as evidence against it, and this would not be reflected in our analysis. Our review 

also calls for a better differentiation between core predictions made by a theory, and auxiliary 

ones that are less diagnostic for testing it (e.g., the change with respect to P300 described above 

is relevant for an auxiliary prediction by GNW, not to a core hypothesis). Since such a 

dissociation is not clear in existing literature – and in the papers we examined – we were unable 

to make that distinction in our database. We accordingly invite theory leaders, as well as the 

field as a whole, to explicitly pinpoint core and auxiliary hypotheses. This could then be 

integrated into our open database, propelling  further  insights  into  the  theories and the 

progression of the field as a whole.  
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To conclude, although the field of consciousness studies has been enjoying great 

proliferation in the last decades, the impressive body of literature accumulated has yet to 

converge into a widely-accepted theory. As the field matures, such a convergence is more 

likely, yet to reach that state, it seems that several key steps should be taken. First, future studies 

should focus more on testing theories of consciousness, rather than looking for confirmatory 

evidence, or relying on post-hoc interpretations that allows them to co-evolve without 

convergence and/or elimination of some theories. The confirmation biases we found across 

theories, as well as the relatively low number of studies that set-out a-priori to test the theories, 

highlight the need to do so. Second, it will be important to expand the type of experiments 

testing each theory66, for example examining both state and content consciousness, over 

different populations, measures, and tasks. Given that all theories make claims relevant to both 

content and state consciousness32,35,71,72, it would be advisable to avoid limiting investigations 

to one type. Similarly, all of the leading theories considered here attempt to explain the neural 

basis of consciousness broadly speaking and should therefore be testable using a wide-variety 

of neuroscientific measures, manipulations of consciousness, and report and no-report tasks. 

Despite some of the trends and potential biases uncovered by the analyses reported here, we 

remain optimistic that honest attempts for collaborations, and testing opposing predictions in 

an unbiased manner will ultimately lead to theory refinement, elimination, and convergence in 

the quest to understand consciousness from a neuroscientific perspective. 

 

 

Methods 

Creation of paper database. The database was created following predefined criteria, that are 

reported below in line with the PRISMA 2009 guidelines 41 concerning inclusion and exclusion 

criteria, search strategy, and data collection procedure.  

Inclusions and exclusion criteria. The database includes studies that conform with the 

following criteria: (C1) the study reports empirical results published in a peer-reviewed journal, 

written in English; (C2) the study pertains to the neural correlates of consciousness; (C3) at 

least some of the findings reported in the study were interpreted in light of one or more of an 

NCC prediction of the four theories of consciousness reviewed here (GNW, HOT, IIT, RPT); 

and (C4) the study was conducted using a neuroscientific technique. Papers that were first 

detected in the initial search sweep (see below) but did not meet the above criteria, were 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447863doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447863
http://creativecommons.org/licenses/by-nc-nd/4.0/


excluded. Screening of these papers in light of these criteria was done by I.Y., and papers for 

which there was a dilemma concerning one or more of the criteria, were further screened by 

L.Ma. 

Search strategy. Scopus electronic database (up to 22/10/2019) was searched using two 

separate search strategies: (1) Topic search, using the name of each of the four theories as part 

of the topic / abstract /  keywords of papers in the database; (2) Citation search, where we first 

identified three key papers for each theory (for a list of the key papers, see Supplementary 

Table S1). The key papers were chosen in a joint discussion between I.Y., L.Ma, L.Mb, and 

M.P. Then, all papers citing one or more of these twelve papers (three papers times four 

theories) were selected. 

No constraints were enforced on the initial Topic and Citation searches. Then, the 

following filters were applied: (i) exclude non-English records; (ii) include only records with 

'document type' = 'Document'; (iii) include only records classified in the Scopus database as 

belonging to the categories: 'Neuroscience' / 'Psychology' / 'Multidisciplinary’ (for a detailed 

description of the distribution of papers in both included and excluded categories, see 

Supplementary Table S2). For each of the theories, the search was conducted using the query: 

TITLE-ABS-KEY ("X"), where "X" denotes the theory specific topic keywords. The same 

query was used for the citation searches to find the entry of each key paper, from which we 

collected the papers that cited them using the Scopus interface. Then, the above-mentioned 

filters were applied: (i) LIMIT-TO (LANGUAGE ,  "English")  ; (ii) LIMIT-TO (DOCTYPE 

,  "ar")  ; (iii) LIMIT-TO (SUBJAREA ,  "NEUR")  OR  LIMIT-TO (SUBJAREA ,  "PSYC")  

OR  LIMIT-TO (SUBJAREA ,  "MULT"). Lastly, papers that include one or more 

neuroscientific technique keywords (EEG, Imaging, fMRI, ERP, Neuroimaging, TMS, MEG, 

intracranial, PET, ECoG, Electrophysiology, single units, iEEG and multi-units) in their 

abstract were detected using an in-house script we developed.  

Figure 1a (see Results above) presents the process of article selection and screening, 

and Figure 1b-c describes the division of papers to search strategies, before the screening and 

following it. Out of 6938 records identified in the initial database searching, 2845 unique 

papers passed the first screening stage (constraints i – iii detailed above, screened serially on 

the database). 187 papers were excluded as they were not written in English (i); 2292 records 

 
a  Liad Mudrik 
b Lucia Melloni 
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were filtered out since they were not of the "Document" type (ii); and 947 did not belong to 

one of the predefined categories (iii). Enforcing the last constrain of using a neuroscientific 

technique resulted in excluding 1961 papers. The remaining 884c unique papers were assessed 

for eligibility by a close inspection of their full-text articles conducted by I.Y., with the 

supervision of L.Ma, and further discussion of unresolved issues with the collaborators L.Mb 

and M.P, until a consensus was reached.  In this process of close inspection, 519 papers were 

excluded due to the following reasons: (1) not relating to consciousness studies (n = 232). 

These papers focused on other phenomena, like working memory or intelligence or attention, 

and mentioned one or more of the theories concerning those phenomena, and not consciousness 

(see Supplementary Figure S1 and Supplementary Table S2 for the distribution of excluded 

papers into main fields of research); (2) mentioning one or more of the theories, but did not 

interpret their findings with respect to any of them (n = 190); (3) Reviews (n = 89); (4) Meta-

analyses (n = 5) ; (5) Behavioral studies that still mentioned a neuroscientific technique in their 

abstract, despite not using it (n = 3). This process yielded the final database, which included 

365 papers, reporting 412 experiments, all of which were classified according to our predefined 

parameters of interest. 

Data Collection. A custom data extraction sheet was developed. For each paper and nested 

experiments, we automatically extracted the following metadata using Scopus' web interface: 

title, DOI, authors, affiliations, author keywords, index keywords, source title, publisher, 

funding, references, abstract, and number of citations. Then, information about our predefined 

parameters of interest was extracted manually: main experimental paradigm, specific 

experimental paradigm, indicator whether the experiment used report / no-report paradigm, 

indicator whether the experiment studies content / state consciousness, sample type, total 

sample size, sample size of included subjects, task description, task type, stimuli categories, 

stimuli description, stimuli modality, stimuli duration, stimuli contrast, consciousness measure 

taken, consciousness measure type, consciousness measure description, neuroscientific 

technique, a summary of the findings, findings coded as tags, dependent measures taken, 

interpretation regarding each theory, two Boolean parameters indicating whether the 

experiment is an internal replication and whether it was theory-driven, and lastly the ALL3 

label for effects reported in fMRI studies (for a full description of the extraction sheet see 

Supplementary Table S4). The extraction of these parameters was done by I.Y. Any dilemma 

 
c The papers extraction procedure resulted in finding 885 unique papers, yet after manual inspection one 

duplicate was found. 
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concerning the classification of parameters or inference regarding the interpretations of the 

authors were resolved by L.Ma. 

Critically, the parameters of interest were extracted based on how they were presented in 

the original paper. That is, no attempt was made to re-interpret or test the statistical reliability 

of the original findings and consequent interpretations or to critically assess the strength of the 

experimental design. Choosing to take the reported findings and interpretations at face value 

was in line with the goals of this quantitative review; as opposed to a meta-analysis, where one 

wishes to assess the strength and reliability of certain effects 73, our goal was to characterize 

the field of consciousness studies: what claims are being made and based on what types of 

findings and paradigms. Moreover, sticking to the original interpretations of the authors 

allowed us to keep this review objective and uncontaminated by our subjective points of view. 

Neural Data Extraction. An AAL3 51 label was encoded for each candidate NCC brain area 

found in an fMRI experiment, according to the reported coordinates. A script74 (label4MNI) 

written in R was used to map MNI coordinates into the respective AAL labels. When Talaraich 

(TAL) coordinates were reported, they first were transformed to MNI coordinated using the 

MNI <-> TAL online converter75; based on the mapping reported in 76), and then AAL labels 

were extracted using the label4MNI script. In cases where no coordinates were reported 

whatsoever, which was the case in most experiments using functional localizers, Neurosynth 

77 was used to extract the MNI coordinates showing the greatest fit for the reported brain area 

according to the label used by the original authors. Then, for each of the theories, nii masks for 

specific brain areas were generated using Matlab, by uniting the masks of all AAL3 labels 

extracted from papers supporting the theory. The masks were processed to form a 3D model of 

the brain areas associated with each theory, using both ITK-SNAP 78 and Paraview 79, and 

following the procedure suggested by Madan80. The resulting 3D models were then overlaid 

on a 95% opaque AAL brain and colored according to the respective theory. The opacity and 

intensity of the color of each area were set according to the frequency of activations, normalized 

by the frequency of the most frequently reported area. Note that laterality was not encoded for 

the AAL3 labels. 

Open access and online website. All analysis and pre-processing codes used in this paper are 

shared in OSF81 (https://osf.io/avz8b/). Also, we made our database publicly accessible in a 

website we developed using the Dash Plotly82 framework. In the website we enable free 

querying of the database, and provide interactive visualization tools. By exposing the database 
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to the community via an easy-to-use graphical interface we encourage researchers in the field 

to examine their meta-questions about the field, possibly leading to new lines of informed 

research about the theories of consciousness. Moreover, in addition to the dynamic querying 

interface which facilitates cutting the data according to flexible conditions, the website includes 

interactive graphs describing sociological information about the field and enables retrieving 

papers of interest according different cuts of the data.  

Data analysis. Data analysis was performed using R 83 and Python 84. It included descriptive 

reports of the distributions of the extracted parameters, as well as statistical analysis of the 

uniformity of these distributions. Importantly, the latter was performed including only theories 

supported by at least 20 experiments. Similarly, only parameters with 10 or more observations 

(e.g., methods reported in at least 10 experiments) were included.  

The uniformity of the distributions was either tested with a Chi-square test, or using 

random forest classifiers 85, trying to predict the outcome of an experiment based on the 

parameters. This was done under the assumption that above-chance classification reflects a 

non-uniform distribution of parameters (i.e., a specific combination of parameters is more 

likely to predict the support of specific theories). Random forest is a machine learning 

technique supporting multi-class classification by learning complex patterns in 

multidimensional data using multiple decision trees 86 and bootstrapping procedures. Here, 

random forest classifiers with a zero random state (acts as a seed for the random processes used 

to build random forest classifiers), leaving the remaining parameters at the default values of 

the scikit-learn python package87, were used to test whether specific methodological 

parameters reported in experiments studying consciousness can be used to predict the 

theoretical interpretation of its findings. The model included all extracted parameters, yet we 

excluded parameters due to multicollinearity (for a full list of extracted parameters, see all 

items on Supplementary Table S6 that are marked with an asterisk) 43. Specifically, we 

removed parameters with a variation inflation factor (VIF) of more than 588,89 from the full 

model. For completeness, we report the results of a full model, from which no parameter was 

excluded, in the supplementary material (Supplementary Figure S2, and Supplementary Table 

S6). 

The predictive power of the classifiers was assessed using a leave-one-out strategy: 

support/no-support for each one of the theories was iteratively predicted by the parameters of 

each specific experiment, yielding a 0/1 metric that was based on the success of the classifier 
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to predict the outcome for that experiment. To allow this binary outcome, experiments that 

found evidence against a theory or remained neutral regarding the theory were both considered 

as not supporting it, without differentiating between these two cases. Then, three analyses were 

conducted to quantitively assess the performance of the classifier: first, a t-test was used to 

compare the accuracy of the classifier with the accuracy of a 'chance-level' model which 

predicts the support of each theory without taking into account any of the parameters, solely 

based on the frequency of the outcome in our database (i.e., how often is a specific theory 

supported). Thus, the chance-level model should maximize prediction accuracy given the 

marginal distributions of the support of each theory. In this analysis, the dependent variable 

was the accuracy of the two models (chance level model vs. our model, using the parameters), 

defined as the averaged accuracy across all 412 iterations, where in each iteration accuracy was 

defined as the percentile of correct classifications (out of three, as support for each one of three 

theories was predicted). Second, to test the robustness of the results, and control for the 

randomness of the random forest classifiers fitting procedure, we conducted a sensitivity 

analysis. Specifically, we compared the results of our main analysis detailed above with 

classifiers trained and tested on the same data, yet with 1000 different random states. We then 

tested in how many of these iterations the same results are obtained. Third, an SDT44 was used 

to further assess classification performance for each theory. Specifically, a Receiver Operating 

Characteristic curve (ROC) was calculated for each theory, and the respective Area Under the 

Curve (AUC) was reported. AUC weights both true and false-positive predictions of a classifier 

and is unaffected by imbalances between positive and negative cases (which makes it especially 

suitable for this analysis, since the support for the different theories is unequally distributed). 

AUC of 0.5 indicates the classification performance of a random classifier.  

When the classifier showed significant performance, the importance of each feature in 

the model was assessed using a permutation-based importance assessment on the entire training 

data 90. This method provides a measure of how classification performance changes when the 

values of each parameter change (i.e., are permuted) and thus should indicate which specific 

parameters contributed to the observed classification performance. The Importance score for 

each parameter was calculated based on 5000 permutations of the values of each parameter in 

1000 iterations where the model was trained with an additional, newly sampled, random 

parameter. Then, they were compared with the importance of the random parameter added to 

the training data, to evaluate the reliability of the importance assessment result. Only features 

with an average importance score higher than the 95% quantile of the importance of a random 
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variable were considered important for classification. Akin to the sensitivity analysis of 

classifier accuracy, we ran a similar procedure for the importance scores. Here, we calculated 

importance scores for each of the 1000 classifiers, as described above, and aggregated the 

results of all classifiers together. Importance scores were calculated based on 5000 

permutations of each parameter in 100 iterations with newly sampled random parameter.  

All p-values reported throughout the manuscript were adjusted using false discovery 

rate (FDR), 91 to account for possible alpha inflation due to multiple comparisons. 
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