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Abstract 
 
Background: Statin-associated muscle symptoms (SAMS) are the main side effects of 
statins. Currently, there are no effective biomarkers for accurate clinical diagnosis. 
Urine is not subject to homeostatic control and therefore accumulates early changes, 
making it an ideal biomarker source. We therefore examined urine proteome changes 
associated with SAMS in an animal model. 
Methods: Here, we established a SAMS rat model by intragastric intubation with 
simvastatin (80 mg/kg). Biochemical analyses and hematoxylin and eosin (H&E) 
staining were used to evaluate the degree of muscle injury. The urine proteome on days 
3, 6, 9 and 14 was profiled using liquid chromatography coupled with tandem mass 
spectrometry (LC-MS/MS) with the data-independent acquisition (DIA) method. 
Results: Differential proteins on day 14 of SAMS were mainly associated with 
glycolysis/gluconeogenesis, pyruvate metabolism, metabolism of reactive oxygen 
species and apoptosis, all of which were reported to be associated with the pathological 
mechanism of SAMS. Among the 14 differentially expressed proteins on day 3, FIBG, 
OSTP and CRP were associated with muscle damage, while EHD1, CUBN and FINC 
were associated with the pathogenic mechanisms of SAMS. MYG and PRVA increased 
dramatically compared with CK elevation in serum on day 14 of SAMS. 
Conclusions: Our preliminary results indicated that the urine proteome can reflect early 
changes in the SAMS rat model, providing the potential for monitoring drug side effects 
in future clinical research. 
Keywords: Urine proteome, statin-associated muscle symptoms, animal model, 
biomarkers 
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Introduction 
Statin-associated muscle symptoms (SAMS), which are the main side effects of 

statins, are reported in 10% to 25% of patients receiving statin therapy. The defined 
syndromes included symmetrical muscle pain, weakness and/or accompanying creatine 
kinase (CK) elevations >3× the upper limit of normal (ULN)[1]. According to muscle 
damage severity, SAMS is usually divided into myalgia, myopathy, myositis and 
rhabdomyolysis[2]. The clinical diagnosis of SAMS usually involves the combination 
of clinical assessment and biochemical indicator detection, such as the patient’s self-
description of muscle symptoms[1], the evaluation of muscle symptoms after 
suspended statin administration[3], the measurement of creatine kinase (CK) levels 
after statin administration, the assessment of the statin myalgia clinical index (SMCI)[1] 
and the evaluation of skeletal muscle by 31-phosphorus magnetic resonance 
spectroscopy[4]. Although there are currently many ways to potentially diagnose 
SAMS, it is still very difficult to perform an accurate clinical diagnosis of SAMS. The 
first reason is that the diagnosis of SAMS is subjective to some extent and may be 
associated with the patients’ own health, their self-assessment or other drugs[5]. It is 
essential for clinicians to distinguish SAMS from other types of muscle pain[6]. Second, 
it is time-consuming to evaluate whether muscle symptoms will be relieved by ceasing 
statin therapy, which may also increase the heart burden of patients. Finally, effective 
biomarkers to diagnose SAMS are still lacking. CK levels are not specific enough, as 
they can still increase after regular exercise[7]. In addition, skeletal troponin I (sTnI), 
myosin light chain 3 (Myl3), creatine kinase M isoform (Ckm), and fatty acid binding 
protein 3 (Fabp3) were reported to be valuable for the diagnosis of drug-induced 
skeletal muscle injury; however, as muscle injury was induced by various drugs, the 
specificity and clinical transformation values of these proteins are still under 
assessment[8]. Therefore, there is an urgent need to find novel biomarkers that can 
detect SAMS early and sensitively, which can not only save time for the assessment of 
statin intolerance but can also provide important support for the adjustment of 
appropriate medications in time. 

As a rapidly developed analytical tool, mass spectrometry-based urinary 
proteomics is designed to establish a novel, noninvasive liquid biopsy diagnostic 
method, which is used in the detection of various clinical diseases[9,10]. However, as 
urine is easily affected by various external factors, such as sex, diet, age and 
medications[11], it is still challenging to find direct associations with related diseases. 
Animal models are an effective way to solve this problem, as they can not only 
minimize these external factors but also allow for the ability to monitor the whole 
process of disease development, making it possible to detect early changes even before 
pathology changes and clinical manifestations are present. In fact, the urine proteome 
of animal models has already been used to detect early biomarkers before any related 
pathological changes occur in tumor models such as lung tumors[12], liver tumors[13], 
and brain tumors[14]; organ fibrosis models such as liver fibrosis[15] and lung 
fibrosis[16]; and organ inflammation models such as chronic pancreatitis[17] and 
autoimmune myocarditis[18]. Urine has also been reported to be a sensitive biomarker 
source, as it is more sensitive than blood[19] and can reflect related changes even with 
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limited tumor cells[20]. Despite these valuable merits of the urine proteome, however, 
the urine proteome has not been applied in predicting the side effects of drugs. In this 
research, we aimed to determine whether the urine proteome can reflect changes 
associated with SAMS. 

It has been reported that simvastatin is the formulation most frequently associated 
with adverse muscle effects in the clinical setting[21]. In addition, simvastatin is also 
the most commonly used statin in rodent models of SAMS[2,22]. In this study, the 
SAMS rat model was established by intragastric intubation with simvastatin using a 
stainless curved feeding needle lasting for 14 days, as reported previously[23]. Urine 
samples were collected on days 3, 6, 9, and 14. Biochemical analyses and hematoxylin 
and eosin (H&E) staining were used to evaluate the degree of skeletal muscle injury. 
The dynamic urinary proteomes were profiled using liquid chromatography coupled 
with tandem mass spectrometry (LC-MS/MS) with the data-independent acquisition 
(DIA) method. This study was designed to identify early urine proteome changes 
associated with SAMS. The study design flowchart is presented in Figure 1. 
 
Materials and Methods 

1. Animals and treatment protocols 
Female Wistar rats (n=40, 200 ± 20 g) were purchased from Beijing Vital River 

Laboratory Animal Technology Co., Ltd. All animals were housed with a standard 
laboratory diet under controlled indoor temperature (21 ± 2°C), humidity (65–70%) and 
12-h/12-h light–dark cycle conditions. The experiment was approved by the ethics and 
animal welfare committee of Beijing Normal University (Approval ID: CLS-EAW-
2020-032). All experiments were performed in accordance with relevant guidelines and 
regulations of the National Health Commission and the Ministry of Science and 
Technology. 

Simvastatin was purchased from Merck, Sharp and Dohme (West Point, PA, USA) 
as 40-mg tablets. Forty rats were randomly divided into two groups: the control group 
(n=8) and the simvastatin-treated group (n=32). The simvastatin-induced muscle injury 
rat model was established as previously described. In the simvastatin-treated group, rats 
received simvastatin (80 mg/kg per day in saline, 2 ml) by intragastric intubation using 
a stainless curved feeding needle for 14 days. In the control group, rats received an 
equal volume of NS. 
 
2. Histopathology 

Four rats in the simvastatin-treated group in the control group were randomly 
sacrificed on days 3, 6, 9 and 14 using an overdose of sodium pentobarbital anesthetic. 
The control group were all sacrificed on day 14. Muscle tissues, including the 
gastrocnemius (GAS) and soleus (SOL), were quickly fixed in 10% formalin. Then, the 
samples were embedded in paraffin, sectioned, and evaluated with hematoxylin and 
eosin (H&E) staining. 
 
3. Biochemical analyses 
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Blood samples were collected from the abdominal vena cava on days 3, 6, 9 and 
14 in the simvastatin-treated group. The blood samples in control group were collected 
on day 14. Then, serum was separated at 3000 rpm for 10 min within 2 h of collection 
and stored at −20°C for analysis within one week. The serum concentrations of alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), 
cholesterol (CHO), triglyceride (TG), high-density lipoprotein (HDL), low-density 
lipoprotein (LDL) and creatine kinase (CK) were measured to assess the degree of liver 
damage, kidney damage and skeletal muscle damage. 
 
4. Urine sample preparation 

Before urine collection, all rats were housed in metabolic cages for 2–3 days. 
Urine samples were collected from the control group and the simvastatin-treated group 
on days 3, 6, 9 and 14. All rats were placed in metabolic cages individually for 12 h to 
collect urine without any treatment (at least 6 mL). After collection, the urine samples 
were centrifuged at 3000 × g for 30 min at 4°C and then stored at -80°C. 

For urinary protein extraction, the urine samples were first centrifuged at 12,000 
× g for 30 min at 4°C. Then, 4 mL of urine from each sample was precipitated with 
three volumes of ethanol at -20°C overnight. The pellets were dissolved in lysis buffer 
(8 mol/L urea, 2 mol/L thiourea, 50 mmol/L Tris, and 25 mmol/L DTT). Finally, the 
supernatants were quantified by the Bradford assay. 

A total of 100 µg of protein was digested with trypsin (Trypsin Gold, Mass Spec 
Grade, Promega, Fitchburg, WI, USA) using FASP methods [24]. The protein in each 
sample was loaded into a 10-kDa filter device (Pall, Port Washington, NY, USA). After 
washing two times with urea buffer (UA, 8 mol/L urea, 0.1 mol/L Tris-HCl, pH 8.5) 
and 25 mmol/L NH4HCO3 solutions, the protein samples were reduced with 20 mmol/L 
dithiothreitol (DTT, Sigma) at 37°C for 1 h and alkylated with 50 mmol/L 
iodoacetamide (IAA, Sigma) for 45 min in the dark. The samples were then washed 
with UA and NH4HCO3 and digested with trypsin (enzyme-to-protein ratio of 1:50) at 
37°C for 14 h. The digested peptides were desalted using Oasis HLB cartridges (Waters, 
Milford, MA, USA) and then dried by vacuum evaporation (Thermo Fisher Scientific, 
Bremen, Germany). 
 
5. Spin column separation 

The digested peptides were dissolved in 0.1% formic acid and diluted to a 
concentration of 0.5 µg/µL. To generate the spectral library, a pooled sample (2 µg of 
each sample) was loaded onto an equilibrated, high-pH, reversed-phase fractionation 
spin column (84868, Thermo Fisher Scientific). A step gradient of 8 increasing 
acetonitrile concentrations (5, 7.5, 10, 12.5, 15, 17.5, 20 and 50% acetonitrile) in a 
volatile high-pH elution solution was then added to the columns to elute the peptides 
as eight different gradient fractions. The fractionated samples were then evaporated 
using vacuum evaporation and resuspended in 20 µL of 0.1% formic acid. Two 
microliters of each fraction was loaded for LC-DDA-MS/MS analysis. 
 
6. LC-MS/MS analysis 
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The iRT reagent (Biognosys, Switzerland) was added at a ratio of 1:10 v/v to all 
peptide samples to calibrate the retention time of the extracted peptide peaks. For 
analysis, 1 µg of peptide from each sample was loaded into a trap column (75 µm * 2 
cm, 3 µm, C18, 100 Å) at a flow rate of 0.4 µL/min and then separated with a reversed-
phase analytical column (75 µm * 250 mm, 2 µm, C18, 100 Å). Peptides were eluted 
with a gradient of 4%-35% buffer B (0.1% formic acid in 80% acetonitrile) for 90 min 
and then analyzed with an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo 
Fisher Scientific, Waltham, MA, USA). The LC settings were the same for both the 
DDA-MS and DIA-MS modes to maintain a stable retention time. 

For the generation of the spectral library, the eight fractions obtained from the spin 
column separation was analyzed with mass spectrometry in DDA mode. The MS data 
were acquired in high-sensitivity mode. A full MS scan was acquired within a 350-
1,500 m/z range with the resolution set to 120,000. The MS/MS scan was acquired in 
Orbitrap mode with a resolution of 30,000. The HCD collision energy was set to 30%. 
The AGC target was set to 5e4, and the maximum injection time was 45 ms. 

The individual samples were analyzed in DIA-MS mode. The variable isolation 
window of the DIA method with 39 windows was used for DIA acquisition (Table S1). 
The full scan was obtained at a resolution of 60,000 with a m/z range from 350 to 1,400, 
and the DIA scan was obtained at a resolution of 30,000. The AGC target was 1e6, and 
the maximum injection time was 50 ms. The HCD collision energy was set to 32%. A 
single DIA analysis of pooled peptides was performed after every eight samples as the 
quality control. 
 
7. Label-free DIA quantification 

To generate a spectral library, ten DDA raw files were first searched by Proteome 
Discoverer (version 2.1; Thermo Scientific) with SEQUEST HT against the Swiss-Prot 
rat database (released in May 2019, containing 8,086 sequences). The iRT sequence 
was also added to the rat database. The search allowed two missed cleavage sites in 
trypsin digestion. Carbamidomethyl (C) was specified as the fixed modification. 
Oxidation (M) was specified as the variable modification. The parent ion mass 
tolerances were set to 10 ppm, and the fragment ion mass tolerance was set to 0.02 Da. 
The Q value (FDR) cutoff at the precursor and protein levels was 1%. Then, the search 
results were imported to Spectronaut Pulsar (Biognosys AG, Switzerland) software to 
generate the spectral library [25]. 

The QC and individual acquisition DIA files were imported into Spectronaut 
Pulsar with default settings. The peptide retention time was calibrated according to the 
iRT data. Cross-run normalization was performed to calibrate the systematic variance 
of the LC-MS performance, and local normalization based on local regression was 
used[26]. Protein inference was performed using the implemented IDPicker algorithm 
to generate the protein groups[27]. All results were then filtered according to a Q value 
less than 0.01 (corresponding to an FDR of 1%). The peptide intensity was calculated 
by summing the peak areas of the respective fragment ions for MS2. The protein 
intensity was calculated by summing the respective peptide intensity. 
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8. Statistical analysis 
To analyze the proteomic data, we first used the sequential-KNN method to impute 

the missing value of QC samples[28]. The QC samples were used as technical replicates 
to evaluate the stability of mass spectrometry. Then, we required the proteins to be 
removed if the coefficient of variation (CV) value in the QC samples was larger than 
0.3. The missing values in the remaining proteins of all the individual acquisition 
samples were then imputed using the sequential-KNN method. 

Statistical analysis comparing three or four time points was performed by one-way 
ANOVA. The proteins identified on days 3, 6, 9 and 14 were compared with the control 
samples at the corresponding time points. The differential proteins were screened with 
the following criteria: proteins with at least two unique peptides were allowed; fold 
change ≥2 or ≤0.5; and P < 0.05 by independent sample t-test. Group differences 
resulting in P < 0.05 were identified as statistically significant. The P-values of group 
differences were also adjusted by the Benjamini and Hochberg method[29]. All results 
are expressed as the mean ± standard deviation. 
 
9. Bioinformatics analysis 

The differential proteins were analyzed by Gene Ontology (GO) based on 
biological processes, cellular components, and molecular functions using DAVID [30]. 
Protein interaction network analysis was performed using the STRING database 
(https://string-db.org/cgi/input.pl) and visualized by Cytoscape (V.3.7.1) [31] and 
OmicsBean workbench (http://www.omicsbean.cn). Biological pathway analysis and 
disease/biofunction analysis were performed by IPA software (Ingenuity Systems, 
Mountain View, CA, USA). The bubble figures of the three groups were visualized by 
the Wu Kong platform (https://www.omicsolution.org/wkomics/main/). 
 

Results 

1. Characterization of simvastatin-induced rats 

A total of 32 rats were subjected to simvastatin intragastric administration. The 
body weight of each rat was recorded for 14 days. Interestingly, we found that the 
simvastatin-treated rats exhibited different clinical manifestations. Some rats lost 
weight rapidly, while some of them seemed to have no change in body weight. Details 
of these 32 rats during the 14 days are presented in Table S2. Finally, nine rats survived 
for 14 days, five of whom lost weight significantly on day 4, while four of them did not 
show significant changes compared with the control group. In addition, another seven 
rats did not survive for 14 days due to excessive body weight loss (Figure 2A). 
Therefore, we divided these simvastatin-treated rats into three groups, namely, SAMS-
non, SAMS and SAMS-severe. 

The pathological changes in the simvastatin-treated rats at four time points are 
presented in Figure 2B, 2C. The gastrocnemius muscle and soleus muscle exhibited 
similar pathological progression during the 14 days. The interstitium of myocytes was 
enlarged, while the tissue morphology was normal on day 3. On day 6, a small number 
of inflammatory cells exhibited infiltration and hyperemia, and the tissue morphology 
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remained normal. On day 9, the muscle fibers were clearly broken with obvious 
hyperemia and inflammatory cell infiltration, and some muscle fibers were lysed. On 
day 14, the muscle cells swelled with a large number of vacuoles, and the muscle fibers 
ruptured and dissolved severely. A large number of inflammatory cells exhibited 
infiltration and hyperemia with partial necrosis, which is very similar to 
rhabdomyolysis in humans. Overall, our research mimics the whole pathogenesis 
process of SAMS. 

The biochemical parameter results are presented in Table 1. The concentrations of 
ALT, AST and CK were significantly elevated on day 3 but did not reach the 3× ULN. 
The concentration of BUN was significantly elevated on day 14, indicating possible 
kidney injury. The concentrations of CHO, TG, HDL, and LDL decreased on day 14. 

The pathological changes and biochemical index parameter result of the remaining 
four SAMS-non and seven SAMS-severe rats are presented in Figure S1. For the 
SAMS-non group, the nuclei of the muscle cells remained normal, and there was no 
muscle fiber destruction and vacuole formation and no vascular congestion or 
inflammatory cell infiltration in the gastrocnemius and soleus muscles, which was very 
similar to the control group. For the SAMS-severe group, the pathological changes were 
very similar to those of the SAMS group on day 14. According to these above results, 
we believed that day 3 was the early time point of SAMS. 
 

Table 1. Biochemical index changes in the SAMS rat model. 

  CON (n=4) Day 3 (n=4) Day 6 (n=4) Day 9 (n=4) Day 14 (n=4) SAMS-non (n=4) 

ALT (U/L) 25.33 ± 6.50 62.25 ± 20.18** 84.50 ± 33.57** 128.25 ± 86.70* 123 ± 108.10 35.67 ± 14.52 

AST (U/L) 58 ± 6.35 129 ± 38.54** 244 ± 68.94** 377.33 ± 372.50 415.55 ± 432.60 74.67 ± 10.34* 

BUN (mmol/L) 8.39 ± 1.43 6.8 ± 0.96 9.73 ± 2.78 9.36 ± 1.37 9.83 ± 3.01 8.60 ± 1.56 

CHO (mmol/L) 1.49 ± 0.15 1.16 ± 0.20* 1.56 ± 0.63 1.72 ± 0.04* 1.55 ± 0.60 1.54± 0.22 

TG (mmol/L) 0.40 ± 0.08 0.36 ± 0.06 0.55 ± 0.20 0.73 ± 0.33 0.43 ± 0.16 0.36 ± 0.07 

HDL (mmol/L) 1.26 ± 0.12 0.72 ± 0.23** 1.06 ± 0.50 1.30 ± 0.14 1.41 ± 0.50 1.34 ± 0.21 

LDL (mmol/L) 0.17 ± 0.03 0.22 ± 0.02* 0.20 ± 0.06 0.23 ± 0.03* 0.20 ± 0.09 0.17 ± 0.03 

CK (U/L) 184.33 ± 55.67 466.33 ± 135.95** 968.25 ± 414.97** 1926 ± 1783.33 1629.9 ± 2244.67 249 ± 35.69 

Footnote: Values are given as the mean ± SD. Comparison between two groups were conducted 
using two-sided, unpaired t-test. (P*<0.05, P**<0.01). 
 
2. Urine proteome changes in simvastatin-induced rats 

We first analyzed the urine proteome of the SAMS (n=44) and SAMS-non groups 
(n=40) using label-free DIA-LC-MS/MS quantitation. These two groups had the same 
control group. Then, we also analyzed the urine proteome of the SAMS-severe group 
(n=37). A total of 810 urinary proteins with at least 2 unique peptides were identified 
with <1% FDR at the protein level in the SAMS and SAMS-non groups, while a total 
of 972 urinary proteins with at least 2 unique peptides were identified in the SAMS-
severe group. 

We first evaluated the quality control of the proteomic data. The median technical 
CV in the QC samples of the SAMS and SAMS-non groups was 0.17, while in the 
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SAMS-severe group, the median technical CV was 0.16, indicating the great stability 
of mass spectrometry in our research (Figure S2A, S2B). In addition, the line 
correlation of the QC samples also indicates the great stability of mass spectrometry in 
this research (Figure S2C, S2D). 

After screening the proteins in the QC samples with a CV less than 0.3, a total of 
680 proteins were considered to be highly specific to the SAMS and SAMS-non groups, 
while a total of 825 proteins were considered to be highly specific to the SAMS-severe 
group. Then, the missing values of proteomic data biological samples in the SAMS, 
SAMS-non and SAMS-severe groups were imputed with the sequential-KNN method. 
Finally, 628 proteins were retained in the SAMS and SAMS-non groups, while 758 
proteins were retained in the SAMS-severe group for further differential urine protein 
selection. The distribution of quantified proteins in the SAMS-non group, SAMS group 
and SAMS-severe group at different time points is presented in Figure 2A-C. 

After using the screening criteria, 49, 42, 40 and 337 differential proteins were 
significantly changed in the SAMS group, while 27, 21, 19 and 13 differential proteins 
were significantly changed in the SAMS-non group on days 3, 6, 9, and 14, respectively. 
For the SAMS-severe group, 220, 153 and 165 differentially expressed proteins were 
significantly changed on days 3, 6, and 9 (fold change ≥2 or ≤ 0.5, P < 0.05, Table S3). 
The Venn diagram of these three groups is presented in Figure 2D-2E. Most of the 
differential proteins changed uniquely at these three or four time points, indicating that 
different biological changes may occur at different time points in SAMS pathogenesis. 
 
3. Functional analysis of the differential proteins in simvastatin-induced rats 

As the differential proteins in these three groups at different time points varied 
greatly, we supposed that the biological functions of these three groups at different time 
points were different. Therefore, we mainly focused on the biological processes, 
pathways and disease/biofunction changes on day 3 in these three groups. The 
functional annotation of the SAMS group on day 14 is also presented in this section. 

We noticed that the majority of the biological processes in the three groups were 
different starting on day 3 (Figure 4A). The SAMS-non group was more associated 
with the response to nutrient levels, phospholipid efflux, innate immune response in 
mucosa, leukocyte cell-cell adhesion, lipoprotein metabolic process, cholesterol efflux 
and gluconeogenesis. The SAMS group exhibited more association with the negative 
regulation of endopeptidase activity, acute-phase response, receptor-mediated 
endocytosis, cellular response to interleukin-6, complement activation (classical 
pathway), vitamin metabolic process, hemoglobin import and carbohydrate catabolic 
process. Interestingly, in the SAMS-severe group, differential proteins were more 
associated with cell adhesion, aging, glutathione metabolic process, complement 
activation (classical pathway), acute-phase response, blood coagulation, response to 
cytokines and oxidation-reduction process. We also found that for the pathways (Figure 
4B, 4C) and the disease/biofunctions (Figure 4D, 4E) on day 3, the SAMS-non group 
and the SAMS group exhibited associations with acute phase response signaling, the 
coagulation system, clathrin-mediated endocytosis signaling, glucocorticoid receptor 
signaling, degranulation of blood platelets, aggregation of cells, inflammation of organs, 
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adhesion of immune cells, metabolism of cellular proteins, chronic inflammatory 
disorders, coagulation of blood, glucose metabolism disorders and aggregation of blood 
platelets. Interestingly, we noticed that the production of nitric oxide and reactive 
oxygen species in macrophages, necrosis and bleeding were only present in the SAMS-
non group compared with the SAMS group. Some biological functions showed positive 
or negative regulation in the SAMS-severe group. For example, IL-15 production, NF-
κB signaling, IL-6 signaling, sirtuin signaling pathway, cell survival, adhesion of blood 
cells, cell movement of smooth muscle cells, adhesion of immune cells, and cell 
movement of muscle cells were upregulated, while the PPAR signaling, xenobiotic 
metabolism general signaling pathway, glutathione redox reactions I, bleeding, 
apoptosis, and necrosis were downregulated. 

On day 14 in the SAMS group, we found that the LXR/RXR activation, RhoGDI 
signaling, urination disorder, anemia, adhesion of granulocytes and complement 
activation were upregulated, while the γ-glutamyl cycle, signaling by Rho family 
GTPases, agrin interactions at neuromuscular junctions, organization of cytoplasm, 
organization of cytoskeleton, migration of granulocytes, microtubule dynamics, cell 
movement of kidney cell lines and binding of leukemia cell lines were downregulated. 
In addition, we also noticed that pathways and disease/biofunctions such as 
complement system, clathrin-mediated endocytosis signaling, leukocyte extravasation 
signaling, coagulation system, gluconeogenesis I, vitamin-C transport, NRF2-mediated 
oxidative stress response, glycolysis I, cell movement of blood cells, inflammation of 
organ, inflammatory response, apoptosis, neuromuscular disease, glucose metabolism 
disorder, cell movement of smooth muscle cells, concentration of lipid, morphology of 
muscle and synthesis of lipid were also enriched on day 14 (Figure 4F, 4G). 

Differential proteins such as AGA, CTSB, F12, CLU, C4, SERPING1, PGM1, 
GAA, ADH1, GALM, PGAM2, DID, PGM1, ENO1, DIAT, MDH1, GCLM, GCLC 
and ANPEP were involved in KEGG pathways such as lysosome, complement and 
coagulation cascade, galactose metabolism, glycolysis/gluconeogenesis, pyruvate 
metabolism, citrate cycle (TCA cycle) and glutathione metabolism (Figure 4H). 
 
4. Potential biomarkers to predict muscle damage in different phases 

We compared the differential proteins on day 3 in these three groups and found 
that more than half of the DEPs were unique in these three groups, indicating different 
disease progression beginning on day 3 (Figure 5A). We then focused on the human 
homologous proteins on day 3 in the SAMS-non and SAMS groups. For the SAMS-
non group, the protein panel including AT1A1, S12A3, UFD1, NGAL, FETUB, 
UROM, GPDA, PGAM1, DEFB1, VDAC1, HMGB2, LYSC1, ITPA, VTDB, APOA4 
and HEP2 indicated the possibility that SAMS may not develop. For the SAMS group, 
the protein panel including PLBL1, S10AB, FIBG, CFAI, EHD1, OSTP, UBB, AMPE, 
HEXA, CUBN, FINC, CRP, ANTR1 and DHSO was able to indicate the early phase 
of SAMS before there was an increase in CK to three times the upper limit of normal. 
Among these 14 differential proteins, FIBG, OSTP and CRP were reported to be 
associated with skeletal muscle damage, while EHD1, CUBN and FINC were reported 
to be associated with the mechanism of SAMS (Table 2). 
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We also compared the differential proteins in the monitoring phase (day 6) of these 
three groups. For the SAMS group, 19 unique urinary proteins changed significantly 
on day 6 (Figure 5B). Details of 17 human homologous proteins are presented in Table 
3. Among these 17 differential proteins, APOC1 and LDLR were reported to be 
associated with skeletal muscle damage, while FINC and LDLR were reported to be 
associated with the mechanism of SAMS (Table 3). 

Notably, we also found that myoglobin (MYG) and parvalbumin alpha (PRVA) 
increased dramatically in the late phase on days 9 and 14 of the SAMS group and on 
day 9 of the SAMS-severe group (Figure 5B). As rhabdomyolysis is characterized by 
muscle necrosis, which causes the release of myoglobin into the bloodstream, we 
therefore suppose that these two proteins may combine with CK to predict the extent 
of muscle injury, as they are more sensitive than CK elevation. The downregulation of 
these two proteins may predict the recovery of muscle damage in the future. 
 

Table 2. Potential biomarkers to predict early muscle damage 

UniProt ID 
UniProt 
accession 

Human 
ortholog 

Protein name Trend P-value 
Fold 

change 
Related to muscle 

damage 
Related to SAMS 

mechanism 

PLBL1_RAT Q5U2V4 Q6P4A8 

Phospholipase 
B-like 1 

↑ 3.81E-02 8.58 - - 

S10AB_RAT Q6B345 P31949 

Protein S100-
A11 

↑ 1.36E-02 7.64 - - 

FIBG_RAT P02680 P02679 

Fibrinogen 
gamma chain 

↑ 2.57E-02 6.36 [32] - 

CFAI_RAT 
Q9WUW

3 
P05156 

Complement 
factor I 

↑ 2.89E-02 3.87 - - 

EHD1_RAT Q641Z6 Q9H4M9 

EH domain-
containing 
protein 1 

↑ 4.83E-03 2.48 - [33] 

OSTP_RAT P08721 P10451 Osteopontin ↑ 1.33E-02 2.35 [34] - 
UBB_RAT P0CG51 P0CG47 Polyubiquitin-B ↑ 4.75E-02 2.10 - - 

AMPE_RAT P50123 Q07075 

Glutamyl 
aminopeptidase 

↓ 2.22E-02 0.50 - - 

HEXA_RAT Q641X3 P06865 

Beta-
hexosaminidase 

subunit alpha 
↓ 4.49E-02 0.45 - - 

CUBN_RAT O70244 O60494 Cubilin ↓ 6.34E-03 0.43 - [35] 
FINC_RAT P04937 P02751 Fibronectin ↓ 1.77E-04 0.42 - [36] 

CRP_RAT P48199 P02741 

C-reactive 
protein 

↓ 3.35E-02 0.40 [37] - 

ANTR1_RAT Q0PMD2 Q9H6X2 

Anthrax toxin 
receptor 1 

↓ 2.83E-03 0.39 - - 

DHSO_RAT P27867 Q00796 

Sorbitol 
dehydrogenase 

↓ 4.66E-02 0.38 -  
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Table 3. Potential biomarkers to monitor muscle damage 

UniProt ID 
UniProt 
accession 

Human 
ortholog 

Protein name Trend P-value 
Fold 

change 

Related to 
muscle 
damage 

Related to 
SAMS 

mechanism 

ACPH_RAT P13676 P13798 

Acylamino-acid-
releasing enzyme 

↑ 4.39E-03 5.35 - - 

MUCEN_RAT Q6AY82 Q9ULC0 Endomucin ↑ 4.65E-02 4.59 - - 
DPEP1_RAT P31430 P16444 Dipeptidase 1 ↑ 3.22E-02 4.22 - - 
ACY2_RAT Q9R1T5 P45381 Aspartoacylase ↑ 3.68E-02 3.13 - - 

ABHEB_RAT Q6DGG1 Q96IU4 

Protein 
ABHD14B 

↑ 1.32E-02 2.52 - - 

S10A6_RAT P05964 P06703 Protein S100-A6 ↑ 3.17E-02 2.42 - - 

GALM_RAT Q66HG4 Q96C23 

Aldose 1-
epimerase 

↑ 1.67E-02 2.01 - - 

FINC_RAT P04937 P02751 Fibronectin ↓ 2.15E-02 0.50 - [36] 

TKFC_RAT Q4KLZ6 Q3LXA3 

Triokinase/FMN 
cyclase 

↓ 4.61E-02 0.49 - - 

ATL4_RAT Q4FZU4 Q6UY14 

ADAMTS-like 
protein 4 

↓ 4.03E-02 0.37 - - 

AMBP_RAT Q64240 P02760 Protein AMBP ↓ 3.25E-02 0.32 - - 

APOC1_RAT P19939 P02654 

Apolipoprotein 
C-I 

↓ 1.16E-02 0.32 [38] - 

PPT1_RAT P45479 P50897 

Palmitoyl-protein 
thioesterase 1 

↓ 6.02E-06 0.30 - - 

CCN3_RAT Q9QZQ5 P48745 

CCN family 
member 3 

↓ 1.43E-02 0.27 - - 

NID2_RAT B5DFC9 Q14112 Nidogen-2 ↓ 4.22E-02 0.26 - - 

LDLR_RAT P35952 P01130 

Low-density 
lipoprotein 

receptor 
↓ 2.48E-02 0.25 [39] [40] 

VAS1_RAT O54715 Q15904 

V-type proton 
ATPase subunit 

S1 
↓ 6.30E-04 0.17 - - 

 
5. Protein-protein interaction network analysis 

To better understand the pathogenic mechanism of SAMS, the PPI network was 
generated by the STRING database based on differential proteins of the SAMS group 
on day 14. The PPI enrichment p-value was less than 1.0e-16, indicating that these 
DEPs have more interactions among themselves (Figure S3). Then, we used cytoHubba 
to predict the top 15 key hub proteins and generated the subnetwork based on the node 
degree. C3, APP, KNG1, APOE, FGG, P4HB, EGF, CST3, SPP1, AGT, GC, 
SPERIND1 and CDH2 exhibited strong associations with each other, indicating that 
these proteins may play an important role in the development of SAMS (Figure 6A). In 
addition, we also generated the protein-protein interactions involved in the important 
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GO terms (Figure 6B). Differential proteins such as ACE, LGMN, CRP, GCLC, CRK, 
B2M, PRDX3, C4BPA, GSN, C4BPB, CLU, ENO1, KNG1, P4HB, C4, CFD, C5, 
SOD1, MAP1, SERPING1, GGT1 and AGT were involved in biological processes 
such as proteolysis, metabolic processes, response to stress, response to reactive oxygen 
species, regulation of immune system processes, inflammatory response, catabolic 
processes and response to oxidative stress. 
 
Discussion 

The urine proteome has been applied in various aspects, such as early disease 
detection[41], phenotyping[42] and diagnosis[43,44]. However, the urine proteome has 
not been applied to investigate the possible side effects of drugs. In this study, we 
established a SAMS rat model to identify urine proteome changes associated with 
simvastatin-induced muscle damage. Three different clinical manifestations (SAMS-
non, SAMS and SAMS-severe) appeared throughout the entire course of this research. 
We therefore sought to detect different urine proteome changes in these three different 
clinical manifestations. Specifically, we focused on early urine proteome changes on 
day 3 in these three groups and urine proteome changes on day 14 in the SAMS group. 

We found that some biological functions on day 14 in the SAMS group were 
associated with the pathological mechanism of SAMS. For example, i) Rho family 
GTPase signaling was downregulated in the SAMS group on day 14. As Rho proteins 
are regarded as substrates for protein isoprenylation[45] and isoprenylation is a 
posttranslational modification requiring intermediates of the cholesterol biosynthesis 
pathway, we therefore suppose that downregulated Rho family GTPase signaling may 
inhibit the synthesis of cholesterol[46]. ii) Glycolysis/gluconeogenesis, citrate cycle 
(TCA cycle), pyruvate metabolism, glucose metabolism disorder and glycogen 
degradation III were all associated with mitochondrial dysfunction, while 
mitochondrial dysfunction has been reported to play an important role in the 
myotoxicity of statins in many studies[47-50]. iii) The NRF2-mediated oxidative stress 
response, production of nitric oxide and reactive oxygen species in macrophages, 
superoxide radical degradation and metabolism of reactive oxygen species were 
associated with oxidative stress. Mitochondria are the most important producers of 
reactive oxygen species (ROS) in cells[51], and simvastatin increases mitochondrial 
superoxide production in primary human skeletal muscle cells[49]. As hydrogen 
peroxide (H2O2) can be reduced to water by glutathione peroxidases, impairment in 
the antioxidative defense system could therefore be a susceptibility factor in patients 
developing statin-induced myotoxicity[52]. Interestingly, in our research, we also 
found that the γ-glutamyl cycle was downregulated in the SAMS group on day 14, 
while glutathione biosynthesis and glutathione metabolism were also enriched. iv) 
Finally, apoptosis was also enriched in the SAMS group. It has been reported that 
mitochondria play an important role in initiating the intrinsic pathway of apoptosis[53], 
and induction of apoptosis by statins has been demonstrated in human skeletal muscle 
cell lines[54] and in primary human myotubes[49]. These findings suggest that 
mitochondrial ROS production and apoptosis are closely linked. In addition to the 
above findings, we also found that the concentration of lipids and the synthesis of lipids 
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were enriched, which is consistent with statins being used as lipid-lowering agents. The 
coagulation system was downregulated slightly (z-score: -0.816), which is consistent 
with the pharmacological effect of statins[55]. Complement activation was upregulated, 
and the inflammatory response was also enriched, indicating that this may be associated 
with immune-mediated necrotizing myopathy (IMNM)[56]. 

Interestingly, we noticed that various biological functions on day 3 in the SAMS-
severe group were similar to those in the SAMS group on day 14. For example, 
glutathione redox reaction I and glutathione-mediated detoxification were also 
downregulated, and the oxidation-reduction process and glutathione metabolic process 
were also enriched. To our surprise, we found that the adhesion of blood platelets and 
the aggregation of blood platelets were upregulated in the SAMS-severe group, while 
the aggregation of blood platelets was downregulated in the SAMS group on day 3. As 
bleeding was also downregulated in the SAMS-severe group starting on day 3, we 
therefore suppose that this may be due to liver damage in the SAMS-severe group, but 
this damage did not appear in the SAMS group on day 3. When comparing biological 
functions between the SAMS and SAMS-non groups on day 3, we noticed that the 
complement system and the intrinsic prothrombin activation pathway were specifically 
enriched. In the SAMS-non group, the response to nutrient levels, phospholipid efflux, 
cholesterol efflux and lipoprotein metabolic processes were specifically enriched, 
which was associated with the pharmacological effect of statins as lipid-lowering 
agents. Taken together, we suppose that the SAMS-non group may be associated with 
the pharmacological effect of statins, that the SAMS group reflects the whole 
pathological process of SAMS, while the SAMS-severe group reflects muscle toxicity 
beginning on day 3 in this research. 

Three differential proteins in the SAMS group had been reported to be associated 
with muscle damage since day 3. For example, i) the fibrinogen gamma chain (FIBG) 
increased ≥10-fold after impact trauma in the muscle tissue of male Wistar rats[32]; ii) 
osteopontin (OSTP) was reported to be increased in patients with idiopathic 
inflammatory myopathies, both in muscle and in serum[34]; and iii) C-reactive protein 
(CRP) was reported to be elevated only in humans with high CK levels when 
undergoing muscle-damaging exercise [37]. In addition, five differential proteins were 
associated with the mechanism of SAMS. For example, i) EH domain-containing 
protein 1 (EHD1) was reported to be required for perinuclear localization of GLUT4, 
which is regarded as the glucose transporter in muscle tissues[33]. ii) It has been 
reported that the main circulating metabolite of vitamin D accumulates in skeletal 
muscle cells, which is mediated by muscle cell uptake of circulating vitamin D-binding 
protein (DBP) through a megalin-cubilin membrane transport process[35]. Therefore, 
downregulated cubilin (CUBN) may affect vitamin D synthesis in muscle cells. iii) Last, 
fibronectin (FINC) levels were substantially reduced in the aged stem cell niche in 
skeletal muscle, leading to detrimental consequences for the function and maintenance 
of muscle stem cells [36]. 

Nonetheless, several limitations of the study should be considered. First, our 
research ended on day 14, and it is unclear whether the SAMS-non group will develop 
SAMS at later stages. Second, given the relatively small number of investigated rats in 
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this preliminary study, we are well aware that our results still need clinical validation 
in future studies. A larger number of clinical urine samples is needed to validate the 
differential proteins in our research to validate their sensitivity and specificity. 
 
Conclusions 

In summary, we aimed to observe urine proteome changes associated with SAMS. 
Our results indicated that the urine proteome can reflect early changes in the SAMS rat 
model, providing the potential for monitoring drug side effects in clinical research. 
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Figure Legends 
Figure 1. Technical flowchart of urinary protein identification in statin-associated 
muscle injury rats. Urine samples were collected, extracted, digested, and identified 
by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 
identification. Functional analysis of differential proteins was performed by GO, IPA 
and PPI. Candidate biomarkers of muscle injury in different phases were also identified. 
Figure 2. Body weight and pathological changes in the SAMS rat model. (A) Body 
weight changes of three groups in the SAMS rat model. The results are shown as the 
mean ± SD for the control group, the SAMS-non group, and the SAMS-severe group 
(*P < 0.05). (B). Periodic changes in gastrocnemius muscle on days 3, 6, 9 and 14 in 
the SAMS group and the SAMS-non group on day 14. (C). Periodic changes in the 
soleus muscle on days 3, 6, 9 and 14 in the SAMS group and the SAMS-non group on 
day 14. 
Figure 3. Proteomic analysis of urine samples of the three groups. (A-C) The 
distribution of quantified proteins in the SAMS-non group, SAMS group and SAMS-
severe group. Error bars represent multiple independent samples. (D-E) Differential 
proteins at multiple time points in the SAMS-non group, SAMS group and SAMS-
severe group. 
Figure 4. Functional analysis of differential proteins in the SAMS-non, SAMS and 
SAMS-severe groups. (A) The top 10 biological processes of differentially expressed 
proteins in the SAMS-non, SAMS and SAMS-severe groups on day 3. (B and D) 
Representative pathways of differential proteins in the SAMS-non, SAMS and SAMS-
severe groups on day 3. The z-score algorithm was used to predict the activation state 
(either activated or inhibited) of the pathways. If the z-score ≤ −2, the pathway is 
predicted to be statistically significantly inhibited. (C and E) Representative disease 
and biofunction of differential proteins in the SAMS-non, SAMS and SAMS-severe 
groups on day 3. The z-score algorithm was used to predict the activation state (either 
activated or inhibited) of the disease and biofunction. If the z-score ≤ −2, the disease 
and biofunction list is predicted to be statistically significantly inhibited. (F) 
Representative pathways of differential proteins in the SAMS group on day 14. (G) 
Representative disease and biofunction of differential proteins in the SAMS group on 
day 14. (H) The interaction diagram of proteins of representative KEGG pathways. 
Green solid lines represent inhibition; red solid lines represent activation. The color bar 
from red to green represents the fold change of the protein level from increasing to 
decreasing. The significance of the pathways represented by −log(p-value) is shown by 
color scales with dark blue as the most significant. 
Figure 5. Potential biomarkers to predict the extent of muscle damage. (A) Venn diagram 
of differential proteins in the SAMS-non, SAMS and SAMS-severe groups on day 3. (B) Venn 
diagram of differential proteins in the SAMS-non, SAMS and SAMS-severe groups on day 6. 
(C) Scatter plot graphs showing two proteins that are potential biomarkers to predict severe 
muscle damage. The x-axis shows the different stages of muscle damage. The y-axis shows the 
log2 of the normalized abundance based on DIA quantification. The fold change was calculated 
based on the average group of normalized abundances. Data are presented as the mean ± SEM. 
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Figure 6. Interaction network analysis of differential proteins in the SAMS group 
on day 14. (A) The top 15 key hub protein interaction networks of differential proteins 
in the SAMS group on day 14. (B) The interaction diagram of proteins of representative 
GO terms. Green solid lines represent inhibition; red solid lines represent activation. 
The color bar from red to green represents the fold change of the protein level from 
increasing to decreasing. The significance of the GO terms represented by −log(p-value) 
is shown by color scales with dark blue as the most significant. 
 
Table 1. Biochemical index changes in the SAMS rat model. 
Table 2. Potential biomarkers to predict early muscle damage. 
Table 3. Potential biomarkers to monitor muscle damage. 
 
Supplemental Materials 
Table S1. The variable isolation window information of the DIA method with 36 
windows. (A) (B) 
Table S2. Details of the 32 rats during the 14-day treatment with simvastatin. 
Table S3. Differential proteins identified in the three groups. (A) Differential proteins 
identified on days 3, 6, 9, and 14 in the SAMS-non group. (B) Differential proteins 
identified on days 3, 6, 9, and 14 in the SAMS group. (C) Differential proteins identified 
on days 3, 6 and 9 in the SAMS-severe group. 
Figure S1. The pathological changes and biochemical index parameters of the 
remaining four SAMS-non and seven SAMS-severe rats. 
Figure S2. Quality control of the proteomic data. (A) CV distribution of the QC 
samples in the SAMS-non and SAMS groups. (B) CV distribution of the QC samples 
in the SAMS-severe group. (C) Linear correlation of the QC samples in the SAMS-non 
and SAMS groups. (D) Linear correlation of the QC samples in the SAMS-severe group. 
Figure S3. The PPI network of differential proteins identified on day 14 in the SAMS 
group. 
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Figure 1. Technical flowchart of urinary protein identification in statin-associated 
muscle injury rats. Urine samples were collected, extracted, digested, and identified 
by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 
identification. Functional analysis of differential proteins was performed by GO, IPA 
and PPI. Candidate biomarkers of muscle injury in different phases were also identified. 
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Figure 2. Body weight and pathological changes in the SAMS rat model. (A) Body 
weight changes of three groups in the SAMS rat model. The results are shown as the 
mean ± SD for the control group, the SAMS-non group, and the SAMS-severe group 
(*P < 0.05). (B). Periodic changes in gastrocnemius muscle on days 3, 6, 9 and 14 in 
the SAMS group and the SAMS-non group on day 14. (C). Periodic changes in the 
soleus muscle on days 3, 6, 9 and 14 in the SAMS group and the SAMS-non group on 
day 14. 
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Figure 3. Proteomic analysis of urine samples of the three groups. (A-C) The 
distribution of quantified proteins in the SAMS-non group, SAMS group and SAMS-
severe group. Error bars represent multiple independent samples. (D-E) Differential 
proteins at multiple time points in the SAMS-non group, SAMS group and SAMS-
severe group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447866doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447866


 
Figure 4. Functional analysis of differential proteins in the SAMS-non, SAMS and 
SAMS-severe groups. (A) The top 10 biological processes of differentially expressed 
proteins in the SAMS-non, SAMS and SAMS-severe groups on day 3. (B and C) 
Representative pathways of differential proteins in the SAMS-non, SAMS and SAMS-
severe groups on day 3. The z-score algorithm was used to predict the activation state 
(either activated or inhibited) of the pathways. If the z-score ≤ −2, the pathway is 
predicted to be statistically significantly inhibited. (D and E) Representative disease 
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and biofunction of differential proteins in the SAMS-non, SAMS and SAMS-severe 
groups on day 3. The z-score algorithm was used to predict the activation state (either 
activated or inhibited) of the disease and biofunction. If the z-score ≤ −2, the disease 
and biofunction list is predicted to be statistically significantly inhibited. (F) 
Representative pathways of differential proteins in the SAMS group on day 14. (G) 
Representative disease and biofunction of differential proteins in the SAMS group on 
day 14. (H) The interaction diagram of proteins of representative KEGG pathways. 
Green solid lines represent inhibition; red solid lines represent activation. The color bar 
from red to green represents the fold change of the protein level from increasing to 
decreasing. The significance of the pathways represented by −log(p-value) is shown by 
color scales with dark blue as the most significant. 
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Figure 5. Potential biomarkers to predict the extent of muscle damage. (A) Venn diagram 
of differential proteins in the SAMS-non, SAMS and SAMS-severe groups on day 3. (B) Venn 
diagram of differential proteins in the SAMS-non, SAMS and SAMS-severe groups on day 6. 
(C) Scatter plot graphs showing two proteins that are potential biomarkers to predict severe 
muscle damage. The x-axis shows the different stages of muscle damage. The y-axis shows the 
log2 of the normalized abundance based on DIA quantification. The fold change was calculated 
based on the average group of normalized abundances. Data are presented as the mean ± SEM. 
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Figure 6. Interaction network analysis of differential proteins in the SAMS group 
on day 14. (A) The top 15 key hub protein interaction networks of differential proteins 
in the SAMS group on day 14. (B) The interaction diagram of proteins of representative 
GO terms. Green solid lines represent inhibition; red solid lines represent activation. 
The color bar from red to green represents the fold change of the protein level from 
increasing to decreasing. The significance of the GO terms represented by −log(p-value) 
is shown by color scales with dark blue as the most significant. 
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