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Abstract 
Environmentally favorable conditions the sustainability of spermatogenesis is brought about by a balance 

between two types of division, the self-renewal division for the maintenance of the stem cell pool and the 

differentiation division for continuous production of spermatozoa. The production of gametes under 

unfavorable, stressful conditions can decrease or even be interrupted, compromising fertility parameters. 

Thus, the survival of spermatogonial stem cells (SSCs) is crucial for the recovery of spermatogenesis after 

stressful situations (e.g. high temperature). Here, we show that the Notch pathway protects the 

spermatogonial stem cells against thermal stress, ensuring reproductive success after normal conditions 

are restored. First, presenilin enhancer-2 (pen-2), the catalytic subunit of γ-secretase complex, was 

localized in SSCs of the medaka testis. The exposure of adult males to thermal stress condition induced 

apoptosis in all spermatogenics cells, with the exception of SSCs. Concomitantly, the Notch pathways was 

up-regulated, including the pen-2, its ligands (dll4, jag1-2) and its receptors (notch1a-3); pen-2 expression 

was restricted to the SSCs during thermal stress. The importance of this pathway was further supported by 

an ex vivo approach, in which the inhibition of Notch activity induced a loss of SSCs. Overall, this study 

demonstrates that the Notch pathways activity is necessary for the protection of SSCs under chronic 

thermal stress.
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Introduction 
Spermatogenesis is a cellular process necessary for 

the formation of male gametes from spermatogonial 

stem cells (SSCs), which proliferate synchronically 

and differentiate into millions of spermatozoa (SZ) or 

are constantly self-renewed asynchronically, like 

other stem cells [1, 2]. To maintain continuous 

spermatogenesis throughout the male reproductive 

life, SSCs reside in the “niche”, a specialized 

microenvironment of the testes, which regulates 

their properties of self-renewal, pluripotency, 

quiescence, size, and their ability to differentiate and 

proliferate [3–6]. This ability of the niche to maintain 

SSCs homeostasis is what allows them to survive 

under adverse conditions.


Temperature is one of the most relevant 

environmental factors that have a strong effect on 

reproduction. This is due to the fact that it affects 

both the early development of the testes, as well as 

in adult stages the quality and quantity of gametes, 

thus compromis ing spermatogenes is and 

reproductive success [7–12]. In various groups of 

vertebrates, it has been studied how hyperthermia 

deteriorates the different types of germ cells [13], 

mainly due to apoptosis [14]. In several vertebrates 

and particularly in fish, it has been observed that 

under high temperatures only SSCs remain as a 

remnant, which have the ability to regain the germ 

line [15, 16]. This reversible characteristic that allows 

the germ line to overcome a stress factor, and the 

interaction of SSCs in the niche, made us 

hypothesize that the protection of germ cells must 

occur by a direct signaling between the niche and 

germ cells, which regulate this process.


In this sense, despite countless studies, it is still 

difficult to characterize the somatic stem niche in 

vertebrates [17] . Recent studies in ear ly 

development of mice have been able to show a 

possible somatic stem niche [18], and much 

progress has also been made in other model 

organisms, like flies [5, 6]. In both cases, it was 

observed that one of the main signaling pathways 

involved is the Notch pathway. This is a highly 

conserved juxtacrine signaling pathway well 

characterized in other processes in mammals, 

mainly proliferative, and is composed of four 

receptors (Notch1-4) that interact with their ligands 

or others with similar structure, delta 1, 3-4, 

jagged1-2 [19, 20]. After binding to the ligand, in the 

canonical Notch signal pathway, the receptor is 

activated by the γ-secretase complex, mainly by the 

presenilin enhancer-2 (Pen-2) catalytic subunit, 

where proteolysis occurs within the transmembrane 

domain that releases the intracellular domain (Notch 

intracellular domain, Nicd) [21–23]. After cleavage, 

Nicd is translocated to the nucleus and associates 

with DNA-binding proteins, such as CSL (later 

CBF1), to activate transcription of cis target genes, 

such as hes1 and hes5 [24], that in general inhibit 

the expression of other genes [25]. Moreover, the 

participation of Notch signal, particularly Notch1, in 

the regulation of gonocytes quiescence has been 

well characterized in Sertoli cells [26]. Despite the 

numerous studies on the Notch pathway in the 

regulation of cell proliferation, little is known about 

its participation in the regulation of the proliferation 

of germ cells under an environmental stressor, such 

as temperature.


On these regards, in a previous study it was 

suggested that Pen-2 act as an anti-apoptotic gene, 

protecting germ cell gonocytes from temperature 

during testis differentiation in pejerrey fish [27]. This 

catalytic member of the γ-secretase complex has 

been shown to play an important function in the 

survival of cells, protecting them from apoptosis 

[28]. Selective knock-down of pen-2 in developing 

zebrafish embryos resulted in strong induction of the 

p53-dependent apoptosis cascade in whole animal 

[29]. Although the function of Pen-2 has been highly 

studied in brain, especially in Alzheimer´s disease 

[21, 30] and cancer [31], its participation on the 
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gonad has not been fully elucidated, especially 

during high temperature exposure. As in fish, it has 

also been established that mammalian germ cells 

experience apoptosis via the p53 cascade during 

exposure to high temperatures [32]; however, germ 

cells, such as other stem cells [33], have a 

protective mechanism to avoid the induced 

apoptosis damage by entering a transient state of 

cell-cycle quiescence. Therefore, the germ cells 

must retain the appropriate information and 

totipotency, recovering later the reproduction [34].


Based on these antecedents, we considered to 

evaluate whether this cell-to-cell communication is 

involved in the mechanism of protection of germ 

cells against thermal stress.


Materials and Methods 
Source of medaka  

All experiments were performed with adults of 

medaka Oryzias latipes from hi-medaka strain (ID: 

MT835) supplied by the National BioResource 

Project (NBRP). These fish were kept under 

controlled laboratory conditions for this species [35]. 

Briefly, fish were reared at 26 ° C +/- 1 under a 

photoperiod of 14 light hours 8 of darkness. For the 

temperature stress experiment, the temperature in 

10L fish tank was raised to 33 °C +/- 1 for 30 days. 

During the time that the experiment elapsed, the 

control group remained in the aforementioned initial 

conditions. Fish from each group had their testes 

removed for subsequent analysis at 3, 10, and 30 

days after the beginning of the experiment. The 

control group was kept under normal conditions of 

the rearing room 25° C +/- 1 (Figure 1E). Fish were 

handled in accordance with the Universities 

Federation for Animal Welfare Handbook on the 

Care and Management of Laboratory Animals 

(www.ufaw.org.uk) and internal institutional 

regulations.


Ex vivo experiments with DAPT 

To carry out ex vivo experiment with the testicular 

sections, the fish were anesthetized by freezing on 

ice and then euthanized. The testes were then 

dissected under the stereoscope, using forceps and 

sterile scissors. The gonads were removed and 

placed in 1 M phosphate buffer saline (PBS) with 1x 

streptomycin penicillin (Gibco). They were then 

rinsed and subsequently cut into pieces of about 

one millimeter. These were left overnight at 25° C, in 

L15 medium (Gibco) with antibiotic (Figure 4A). 

Then, 2 to 4 pieces of testis were placed in each 

well with 1 ml of medium with the DAPT drug 

(Selleckchem), a γ-secretase inhibitor and indirectly 

an inhibitor of Notch, at a concentration of 12.5 µM 

and 25 µM. As a control, the drug diluent was 

placed DMSO and incubated for 24 hours in a Fisher 

thermo stove.

Total RNA Extraction and Realtime-PCR 

Testes were removed from males for gene 

expression analysis. Total RNA extraction was 

carried out using 300 µL of TRIzol® Reagent 

(Invitrogen), according to the manufacturer's 

instructions. RNA from each sample (500 ng) was 

used to perform the cDNA synthesis using the 

SuperScript II enzyme (Invitrogen).


Real-time PCR primers are listed in Table 

Supplement 1. Gene-specific qPCR was performed 

using the SYBR green master mix (Applied 

Biosystem). The amplification protocol consisted of 

an initial cycle of 1 min at 95°C, followed by 10 s at 

95°C and 30 s at 60°C for a total 40 cycles. The 

subsequent quantification method was performed 

using the 2-ΔΔCt method (threshold cycle; assets. 

thermofisher.com/TFS-Assets/LSG/manuals/

cms_040980.pdf) and normalized against reference 

gene values for ribosomal protein L7 (rpl7) [36].

Histology and immunofluorescence  

Samples for histology and IF were firstly fixed in 

Bouin’s solution. Then they were embedded in 
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paraffin and transversally sectioned on a Leica DM 

2125RT microtome at 4-5 µm thickness. 


For IF, sections were washed with 0.1 M PBS 

(pH 7.4) and blocked in 0.1 M PBS containing 0.5% 

bovine serum albumin (Sigma-Aldrich) and 0.5% 

Triton X100 for 60 min before overnight incubation at 

4º C with primary antibody, anti-pen-2 antibody 

(1:200, rabbit, LS-C135520, LSBio). A negative 

control was also run to see specificity without 

primary antibody. After incubation, the sections were 

washed twice in PBS and incubated at RT for 90 

min with Alexa Fluor 488-conjugated goat anti-

rabbit IgG (ThermoFisher Scientific, A-11008) 

secondary antibodies at a dilution of 1:2000 in PBS. 

After incubation, sections were rinsed twice with 

PBS and mounted with Fluoromount mounting 

medium (S igma-A ldr ich ) conta in ing 4 ' ,6-

diamidino-2-phenylindole (DAPI, 5 µg/ml, Life 

Technologies).

TUNEL assay 

The presence of apoptosis in gonad was detected 

through the In situ Cell Death Detection Kit, 

Fluorescein (Roche). Samples fixed in Bouin’s 

solution, embedded in paraffin and sagittal 

sectioned at 5 µm were treated according to the 

m a n u f a c t u re r ’s m a n u a l , w i t h a s t e p o f 

permeabilization with 0.1% Triton X-100, 0.1% 

sodium citrate in PBS 1X solution. Fluorescein was 

observed under a Nikon Eclipse E600 microscope.

RNA in situ hybridization 

ISH were performed as previously described [37]. 

Briefly, digoxigenin-labeled probes were synthesized 

from the full-length medaka cDNA of oct-4 (stem cell 

marker also known as pou5f1; [38]) using pGEM®-T 

Vector (Promega) linearized plasmid. Testicular 

explants from ex vivo treatment was fixed overnight 

in 4% RNAse-free paraformaldehyde (PFA) at 4°C, 

permeabilized using 20 µg/µl proteinase K at room 

temperature (RT), and hybridized at 68°C overnight 

with oct-4 digoxigenin (DIG)-labeled RNA probes. 

Hybridized probes were detected using an alkaline 

phosphatase–conjugated anti-digoxigenin antibody 

(1:2000; Roche) in the presence of nitro blue 

tetrazolium/5-bromo-4-chloro-3′-indolyphosphate 

substrates (Roche). Stained testicular explants were 

embedded in gelatin, cryostat sectioned at 14–16 

µm thickness and photographed.

Statistical analysis 

Values are presented as mean ± standard error of 

the mean (SEM) for continuous variables and as 

percentages for categorical variables. Fold change 

and statistical analysis of RT-qPCR quantifications 

were performed using FgStatistics software (http://

sites.google.com/site/fgStatistics/), based in the 

comparative gene expressions method [39]. 

Statistical analyses were performed by using Prism 

9 (GraphPad Software, San Diego, CA). Continuous 

variables were compared by one-way analysis of 

variance (ANOVA), followed by Tukey´s multiple 

comparisons test, for compare the mean of each 

column with the mean of every other column. All 

differences were considered statistically significant 

when p < 0.05.


Results  
Identification of Pen-2 in adult testis 

The presence of Pen-2 immuno-reactive cells were 

observed in the distal portion of the lobule of the 

testis, the same germinal region of type A 

spermatogonia (SGa), or spermatogonial stem cell 

(SSCs) (Figure 1A, B). To verify the co-localization 

of Pen-2 with SGa, an ISH with oct-4 riboprobe was 

per formed. I r-Pen-2 ce l ls were observed 

sorrounding SGa (oct-4 positive cells) (Figure 1C, 

D), establishing that Pen-2 is expressed in somatic 

cells.

Up-regulation of gonadal Pen-2 at high 

temperature  

Then, we analyzed the expression of Pen-2 /pen-2 

(protein and transcript) in an in vivo adult treatment, 

keeping adult males at normal (NT- 25º C) and high 
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temperature (HT – 33º C) for 30 days (Figure 1E). 

Firstly, we quantified the transcript abundance of 

Notch pathway related genes, such as pen-2 and 

hes-1 (a well know Notch effector [20]). Both genes 

are up-regulated at HT at 3 and 10 days of 

treatment, showing no differences at the end of the 

experiment (30 days) with NT (Figure 1F).


Additionally, we characterized the localization 

of the Pen-2 in testis of fish reared at high 

temperature. At the beginning of treatment (NT – 0 

days) Pen-2 showed an expression in somatic cells 

surrounding SGa of the distal portion of the lobule, 

and in the medullar region of the testis, probably 

somatic cells surrounding spermatids in the 

medullar region (Figure 1G, G´). Interestingly, under 

high temperature treatment the expression of Pen-2 

is restricted to the distal portion of the lobule, where 

are the SGa (Figure 1H-J, H´-J´).


Apoptosis of testis germ line at high 

temperature 

Is well know that increasing temperature induce the 

inhibition of spermatogenesis, with germ cell line 

loss. Here, high temperature during 3 days did not 

affect the germ line of adult males, observing 

spermatozoas (Sz) in the lumen of the testis (Figure 

2A). However, later, after 10 days of heat-treatment, 
5

Figure 1: Pen-2 is down-regulated during thermal treatment in male. Transversal sections of the distal portion of the testis 
lobule, observing Pen-2 (green, immunofluorescence, IF) and nuclei stained with DAPI (blue) (A, B). Co-localization of Pen-2 (green, 
IF) with oct-4 (blue, in situ hybridization) (C, D). Experimental design, in which adult males were reared at control (NT – 25º C, light 
grey) and high (HT – 33º C, dark grey) temperature (E). Notch pathway: Transcript abundance levels of pen-2 and hes1 in different 
treatment days of treatment, 0, 3, 10 and 30 days. (F). IF of Pen-2 (green) in testis of male reared at HT at 0 (G), 3 (H), 10 (I) and 30 
(J) days of thermal treatment, and nuclei stained with DAPI (blue). Magnification of each testis, doted orange line, at different sapling 
time of at 0 (G´), 3 (H´), 10 (I´) and 30 (J´) days of thermal treatment. SGa are indicate with arrowhead (G´-J´). Scale bar represents 20 
µm. Transcript abundance quantification was performed using the 2-ΔΔCt method and pen-2 and hes1 values were normalized to rpl7.  
p-values are indicated when transcript abundance between treatment at the same sampling day differ significantly (P<0.05). NS, not 
statistically significant. Relative gene expression levels were compared as described by Pfaffl [39]. 
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we observed shorter seminiferous tubules, 

apparently due loss of sperm production and a large 

number of spermatocytes, with enlargement of the 

lumen. Finally, at 30 days, we observe that germ line 

was altered, whit low or even absent of sperm 

number was observed, presenting fibrosis in the 

medullar region. However, throughout the treatment, 

a large number of SSCs was observed in the testis.


To evaluate whether the temperature treatment 

is causing the loss of germ line, we decided to 

evaluate apoptosis in the heat-treatment. The 

apoptotic pathway, quantified by p53 and bcl2 gene 

showed the same pattern of pen-2, with an up-

regulation in HT testis at 3 and 10 days in 

comparation to NT (Figure 2B), establishing that the 

heat-treatment induced apoptosis. Finally, to 

corroborate the loss of germ line by high 

temperature we quantified apoptosis by TUNEL 

assay. We observed that the loss of the germ line is 

caused by apoptosis for 10 days of treatment, 

6

Figure 2. High temperature induces apoptosis of testis germ line. Histology: Transversal sections of the testis staining with eosin 
and hematoxylin (E&H) (A) of adult male reared at HT during 0 (and control), 3, 10 and 30 days. germ cell line loss. Apoptotic 
pathway: Quantification of p53 and bcl2 transcript abundance at 0, 3, 10 and 30 days in testis of males reared at normal (NT – 25º C, 
light grey) and high (HT – 33º C, dark grey) temperature (B). Apoptotic cells: Quantification of apoptotic cells by TUNEL assay at 
different sampling time and thermal treatment (C). TUNEL assay: Transversal section of the testis with TUNEL assay showing 
apoptotic cells (green) and nuclei stained with DAPI (blue) at 0 (and control), 3, 10 and 30 days (D). Scale bar represents 20 µm. 
Transcript abundance quantification was performed using the 2-ΔΔCt method and p53 and bcl2 values were normalized to rpl7. p-
values are indicated when transcript abundance between treatment at the same sampling day differ significantly (P<0.05). NS, not 
statistically significant. Relative gene expression levels were compared as described by Pfaffl [39] to (B); Tukey’s multiple 
comparisons test per (C).
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showing an increased number of positive tunnel 

cells (Figure 2C, D). Moreover, at 30 days, the 

number of cells positive tunnel is higher compared 

to the control group. This greater number of 

apoptotic cells are found in the medullar region of 

the testis, whereas no apoptotic cells were observed 

in the peripheral region of the tubule, where oct4-

positive cells or SGa are observed (Figure 2D).


Activation of Notch pathway in testis 

under high temperature 

Taking into account the expression of Pen-2/pen-2 

and hes1, two key players in the Notch pathway, in 

testes kept at high temperature, we decided to 

measure the transcript levels of ligands and 

receptors of this pathway at 10 days of treatment 

(Figure 3A). The transcript abundance of the ligands 

dll4, jag1a, jag1b and jag2, as well as the receptor 

notch-1a were up-regulated at high temperature 

compared to the controls (Figure 3B). Otherwise, 

notch3 and jag2b did not show significant 

differences (Figure 3B).


Inhibition of Notch pathway in ex vivo 

testis explants at high temperature 

After observed an up-regulation of Notch pathway 

with restriction of Pen-2 in the SGa region of the 

distal lobule, our next step was inhibited this 

pathway under high temperature treatment. Given 

the complexity of the Notch pathway and how it 

affects the fate of many cell types in different 

tissues, we decided to use an ex vivo testis explants 

approach to analyze the protective role of this cell-

to-cell signaling. Initially, we detected that apoptosis 

was induced from 3 hours of exposure, observing 

the up-regulation of p53 (Figure Supplement 1A). 

Moreover, no differences were observed between 3, 

12 and 24 hours of high temperature exposure. 

Additionally, dose-response curve showed that 12.5 

(moderate down-regulation of hes1) and 25 µM (high 

inhibition of hes1) of the Notch inhibitor DAPT were 

the best condition to block the Notch action (Figure  

Supplement 1B).


7

Figure 3. Notch pathway is up-regulated in testis at 10 days of heat treatment. Presumptive Notch cell-to-cell signaling 
between type A spermatogonia and Sertoli cell under a high temperature input (modified from Henrique & Schweisguth [20]) (A). 
Quantification of different Notch pathway ligand (dll4, jag1a-b, jag2-2b) and receptors (notch1a, 3) transcript abundance at 10 days 
in testis of males reared at normal (NT – 25º C, light grey) and high (HT – 33º C, dark grey) temperature (B). Transcript abundance 
quantification was performed using the 2-ΔΔCt method and values were normalized to rpl7. p-values are indicated when transcript 
abundance between treatment at the same sampling day differ significantly (P<0.05). NS, not statistically significant. Relative gene 
expression levels were compared as described by Pfaffl [39].
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Then, we observed that hes1 was down-regulated in 

a dose-dependent manner, at both normal and high 

temperature when ex vivo testis explants were 

treated with DAPT (Figure 4B), showing that Notch 

pathway was inhibited. Interestingly, the expression 

of the stem state marker gene oct-4 was affected 

only by temperature treatment (Figure 4C), 

suggesting a reduction in the SGa and a necessary 

protective effect of Notch on germ cell fate under 

thermal stress.


In the next step the protective effects of Notch 

pathway at high temperature exposure in avoiding 

the loss of SGa after 24 hours of incubation was 

analyzed. Since no apoptosis in SGa was observed 

in the in vivo temperature experiment (Figure 2A), 

we studied SGa quiescence by means of the levels 

of the Amh, a germ cell proliferation inhibitor [40]. 

We observed that the levels of amh increase 

significantly when the testes are subjected to 

heat stress (Figure 4D), suggesting that the 

increase in temperature promotes the 

quiescence of the germ cells through the 

activation of the Notch pathway.


Discussion 
In the last decades a decrease in the seminal 

parameters of men has been observed, mainly 

attributed to changes in behavior, as well as to 

increases in temperature [41, 42], which is a 

w e l l - k n o w n s t r e s s o r t h a t d i s r u p t s 

spermatogenesis even in fish. Once the stressful 

condition is overridden, the recovery of 

spermatogenesis is a necessary mechanism to 

ensure the continuity of reproduction of an 

individual. This can be achieved because 

spermatogonia, which are stem cells, shift to a 

quiescence state in order to protect themselves 

from the harmful environment [43]. Despite the 

reproductive importance of recovery of 

spermatogenesis after stress, the molecular 

regulators that protects these germ stem cells 

against an increase in temperature have not 

been fully elucidated. In the present study, we 

demonstrated that exposure to high temperature in 

adult medaka males induce the activation of the 

juxtracrine signaling system of Notch in somatic 

cells, presumably Sertoli cells [44], surrounding type 

A spermatogonia. The inhibition of this pathway 

under thermal stress produced a fast loss of germ 

stem cells, supporting that the activation of the 

Notch pathway is essential for the maintenance of 

the germ line, ensuring the re-establishment of 

spermatogenic cycle.


Although increasing temperature promotes 

spermatogenesis by differentiation of spermatogonia 

[45], prolonged persistence at high temperatures 

causes reduction in the spermatogenic cell line due 

to an increase in apoptosis in most cells [46, 47], 

8

Figure 4. Notch pathway protects type A spermatogonia to 
heat-induced loss. Experimental design of ex vivo approach, in 
which adult testis explants were incubated during 24 hours at 
control (NT – 25º C, light grey) and high (HT – 33º C, dark grey) 
temperature with DAPT (γ-secretase inhibitor; 12,5 and 25 µM) by 
triplicated (A). Transcript abundance levels of hes1 (B, Notch 
pathway cis target genes) and oct-4 (C, stem state marker gene) to 
different treatments. Transcript abundance of amh of testis explant 
incubated at NT and HT during 24 hours (D, germ cell proliferation 
inhibitor). Transcript abundance quantification was performed using 
the 2-ΔΔCt method and pen-2 and hes1 values were normalized to 
rpl7. p-values are indicated when transcript abundance between 
treatment at the same sampling day differ significantly (P<0.05). NS, 
not statistically significant. Relative gene expression levels were 
compared as described by Pfaffl [39].
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with the exception of type A spermatogonia [16, 47, 

48]. These stem cells are kept in a quiescent state, a 

strategy that protects them from stress by inhibiting 

differentiation-activating signals, either intrinsic or 

mediated by cell-to-cell interactions [49–51]. For this 

reason, the interpretation of the mechanism that 

allows these cells to persist during stress would 

have important implications for understanding the 

reduction of male fertility, or even infertility. In our 

experimental model medaka, thermal stress showed 

to induce the loss of spermatogenic line, from 

spermatocytes to spermatozoa. This apoptotic 

induction was earlier observed by the up-regulation 

of apoptotic-related genes, such as p53 and bcl2, 

indicating that both the apoptotic and anti-apoptotic 

pathways are active under temperature stress. 

Apoptotic cells were observed in the medullary 

region of the testis, but not in the distal portion of 

the lobule, where spermatogonia are localized, 

establishing the protection of this cell type.


SSCs reside within the niche, a specialized 

microenvironment essential for their maintenance 

and self-renewal [2, 44, 52–54]. In medaka testis, the 

main components of the niche include SSCs directly 

surrounded by Sertoli cells that express sox9b [44, 

55]. In the present work we observed the expression 

of the Notch pathway member Pen-2, a protein of 

the γ-secretase complex that is essential for the 

correct cleavage and signal transduction inside the 

cell [23]. Pen-2 mRNAs were restricted to the distal 

portion of the lobule during a thermal stress in 

presumptive Sertoli cells surrounding SSCs. 

Interestingly, Notch pathway has been observed to 

protect different cells from apoptosis [56]. On this 

regard, our observation would establish a cell-to-cell 

communication that protects the SSC from high 

temperature-induced apoptosis, with the Notch 

pathway holding an important role in such protective 

mechanism.


Apart from germ cell protection, the Notch 

signaling has been related to the regulation of self-

renewing state and/or prevention of differentiation of 

SSCs through the negative regulation of glial cell 

line-derived neurotrophic factor (Gdnf), that is 

expressed in Sertoli cells [57, 58]. Gdnf has been 

implicated in the maintenance of the self-renewing 

state and/or prevention of differentiation of SSC 

thought the regulation of Nanos2, Stra8, Bcl6b, 

Cxcr4 and others in Aundiff spermatogonia [59–61]. 

Notch negative regulation of Gdnf occurs through 

the activation of germ cell-expressed Jag1 (jagged 

1) [53, 57, 58], a ligand that was highly expressed in 

our thermal treatment using medaka. In case of the 

receptor NOTCH1, it is expressed in undifferentiated 

germ cells and Sertoli cells of mouse testis whereas 

the ligand Dll4 is ubiquitously expressed in germ 

cells and in some Sertoli cells [62]. During 

embryogenesis, the constitutive activation of 

NOTCH1 signaling in Sertoli cells caused the exit of 

gonocyte from the quiescence status [26]. In flies, 

Notch signaling directly controls germline stem cell 

development and maintenance [5, 63], reinforcing 

the importance of cell-to-cell Notch signaling in the 

regulation of germ cell differentiation. Interestingly, 

although our results in medaka support the 

activation of the Notch pathway, including receptors, 

ligands, γ-secretase and the respective effectors of 

this pathway, the activation of Notch signals seems 

to work in the opposite direction to that described 

above, wherein the input signal (high temperature) 

seems to be sensed by SGa while the output seems 

to be in the somatic cells with a high expression of 

Pen-2, presumably Sertoli cells [44]. This differential 

activation by temperature in medaka would promote 

the protection through a state of quiescence and the 

concomitant inhibition of SGa differentiation.
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Figure Supplement 1. Time and doses optimization to ex vivo experiment. Time exposure curve of p53 transcript abundance in 
testis explants incubated at control (NT – 25º C, light grey) and high (HT – 33º C, dark grey) temperature and sampled at 0, 3, 12 and 
24 hours (A). DAPT doses response: Transcript abundance levels of hes1 (Notch pathway cis target genes) in adult testis explants 
incubated during 24 hours at 0, 6.25, 12.5, 25, 50 and 100 µM of DAPT (γ-secretase inhibitor) (B). Transcript abundance 
quantification was performed using the 2-ΔΔCt method and p53 and hes1 values were normalized to rpl7. p-values are indicated 
when transcript abundance between treatment at the same sampling day differ significantly (P<0.05). NS, not statistically significant. 
Relative gene expression levels were compared as described by Pfaffl [39]. 

Table Supplement 1. Primers sequences, ENSEMBL and NCBI accession numbers and respective references of each gene were 
added.
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