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Abstract7

Purpose: Network analysis methods can potentially quantify cancer distur-8

bances in gene networks without introducing fitted parameters or variable se-9

lection. A new network curvature-based method is introduced to provide an10

integrated measure of variability within cancer gene networks. The method is11

applied to high grade serous ovarian cancers (HGSOCs) to predict response to12

immune checkpoint inhibitors (ICIs), and to rank key genes associated with13

prognosis.14

Methods: Copy number alterations (CNAs) from targeted and whole exome15

sequencing data were extracted for HGSOC patients (n = 45) treated with16

ICIs. CNAs at a gene level were represented on a protein-protein interaction17

network to define patient-specific networks with a fixed topology. A version of18

Ollivier-Ricci curvature was used to identify genes that play a potentially key19

role in response to immunotherapy and further to stratify patients at high risk20

of mortality. Overall survival (OS) was defined as the time from the start of21
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ICI treatment to either death or last follow-up. Kaplan-Meier analysis with22

log-rank test was performed to assess OS between the high and low curvature23

classified groups.24

Results: The network curvature analysis stratified patients at high risk of25

mortality with p=0.00047 in Kaplan-Meier analysis. Genes with high curvature26

were in accordance with CNAs relevant to ovarian cancer.27

Conclusion: Network curvature using CNAs has the potential to be a novel28

predictor for OS in HGSOC patients treated with immunotherapy.29

1 Introduction30

Facilitated by advances in genomic sequencing techniques and the ongoing de-31

velopment of highly curated protein-protein interactome (PPI) databases (e.g.,32

Human Reference Protein Database (HPRD, [1, 2]), The Human Reference In-33

teractome (HuRI, [3]), Search Tool for the Retrieval of Interacting Genes/ Pro-34

teins (STRING, [4])), we adopt a network approach to investigate biological35

features pertaining to overall survival (OS) in ovarian cancer (OC) based on36

copy number alterations (CNAs) in tumor tissues. The past decade has seen37

a large rise in the development of methods for analyzing large, complex net-38

works, as exhibited by the rapidly growing literature. We draw on geometric39

notions to inform about the network structure, defined by evidence-based inter-40

actions provided by the PPI. Our network analysis methodology is unsupervised41

without fitting parameters or feature selection and is not constrained to the un-42

derlying topology alone. Indeed, since cancer has been demonstrated to exhibit43

functional robustness in connection to geometric properties of its network repre-44

sentation [5], we utilize Ollivier’s discrete notion of Ricci curvature on weighted45

graphs, referred to as Ollivier-Ricci (OR) curvature [6].46

This focus of this paper is to introduce a geometric network method for can-47

cer with the key application to high grade serous ovarian cancer (HGSOC).48

Biomarkers of response to immune checkpoint blockade in HGSOC remain49

largely unknown. Unlike non-small cell lung cancers and melanomas that ex-50

hibit increased immunogenicity due to high tumor mutational burden (TMB)51

[7, 8, 9, 10, 11], HGSOCs exhibit low TMB [12]. In virtually all cases, HGSOCs52

are a disorder of loss of function gene mutations (TP53) leading to CNAs, and53

subsequently resulting in over-expressed copy number in multiple genes includ-54

ing oncogenes (e.g., K-RAS, c-MYC, cyclin E and AKT protein kinase) com-55

monly due to aneuploidy [13, 14]. The impact of these alterations on response to56

immunotherapy is unknown; furthermore, it is unlikely that individual pathway57

alterations would be strongly predictive. This manuscript develops a mathe-58

matical method that constructs a network of these gene pathways where each59

node (gene) is quantitated by CNAs and for each tumor, the changes in the ar-60

chitecture or connectivity of the network are measured by a parameter termed61

curvature of the edges of the network. Curvature measures the connectivity62

in the sense of feedback loops, and the copy number measures the abundance of63

each node and its projected impact upon the changes in the network architec-64
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ture. (More rigorous details about this will be given in the Methods Section.)65

Nodal curvature may exhibit more variation than the CNAs, reflecting the in-66

tegration of the gene copy numbers and the local impact of their alteration on67

the network. Thus, curvature has the potential to di↵erentiate responders from68

non-responders in patients treated with immune checkpoint inhibitors (ICIs)69

that could not be predicted from a single gene alone.70

Curvature is a local measure of how a geometric object (e.g., curve, surface,71

space) deviates from being flat in the Euclidean sense. While the physical inter-72

pretation of curvature in 3-dimensional Euclidean space is a familiar concept,73

intuition for curvature as a rigorous mathematical concept is often elusive, as74

the mathematical theory is not bound by the same physical constraints. This75

allows for curvature to be generalized to continuous spaces of higher dimensions76

(classically, Riemannian manifolds), and even to discrete spaces (Figure 1).77

The mathematical construct, however, is not solely of abstract, theoretical78

value. The archetypical example is the curvature of space-time which was inte-79

gral to Einstein’s theory of general relativity. Although perhaps less intuitive,80

the geometric insight that curvature provides is applicable to other physical phe-81

nomena. In particular, change in OR curvature [6] has a strong mathematical82

connection to changes in robustness via change in entropy. Note that we are83

using change in curvature in the sense as a di↵erence in curvature � between84

networks. This is a remarkable result facilitated by the theory of optimal mass85

transport (OMT) attributed to Sturm, Lott, and Villani [15, 16]. The change86

in OR curvature has previously been used as an e↵ective quantitative proxy87

for the qualitative notion of changes in robustness in various types of networks88

[5, 17]. In the present work, we employ curvature to predict patient survival and89

investigate primary components of functional robustness as well as to identify90

key genes contributing to functional dysregulation in HGSOC.91

Various biomarkers including PD-L1 and the spatial distribution and com-92

position of the immune microenvironment are being investigated in the context93

of response to ICI [12], but the present work focuses on extracting information94

from gene level information. It is becoming more apparent that the use of ge-95

nomic data (e.g., mutations, gene expression, CNAs) with the corresponding96

functional network representation can provide more insights into understanding97

the underlying biology of cancer. Thus, graph-based tools may be more powerful98

for investigating complex genomic networks than methods that aim to analyze99

and quantify the data independently.100

Genomic networks have a topology (i.e., a connectivity structure), but they101

also have a geometry, i.e., curvature, which gives a measure of their functional102

robustness. Graph curvature is intimately related to the number of invariant103

triangles, i.e., feedback loops at a given vertex, and the curvature between two104

vertices describes the degree of overlap between their respective neighborhoods105

[18]. Informally, graphs with positive curvature characteristically contain many106

triangles (redundant feedback loops), contributing to its functional robustness107

with respect to a damaged or deleted edge. The more neighbors two given nodes108

have in common (i.e., triangles), the easier it is for information to flow between109

them. By weighing the ease with which information can be transferred from one110
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node to another against the ground distance between them, curvature provides111

a local measure of functional connectivity compared to ordinary measures of112

connectivity which identify hubs based on degree. We show not only that the113

total curvature of a network can be used to predict overall patient survival in114

OC, but it is also more e↵ective than standard clinical parameters such as TMB.115

Typically, the curvature is computed on a network using the standard hop116

distance (where every edge in a path connecting two nodes is treated as a hop)117

with node weights that are continuous in nature (e.g., gene expression). Here,118

we use a weighted hop distance derived from the data as the underlying graph119

metric, so the distance between two nodes depends not only on the topology,120

but on the likelihood of interaction as well. Using node weights assigned by121

(discrete) CNAs, we show that curvature may also be informative in the dis-122

crete data setting. Furthermore, we show that the network topology without123

any additional information may be used as a reference to identify potential key124

players responsible for the functional robustness, even when limited data is avail-125

able, as demonstrated in this study. Top identified genes such as TP53, whose126

known aberrant functional behavior has been attributed as a leading influence127

in the development/progression of ovarian cancer [19], serve as validation for128

the proposed methodology.129

Specifically, we create a shared topology, but with sample-specific gene inter-130

action networks. The interactions are taken from the HPRD, where the protein131

interactions are assumed to serve as a proxy for the underlying gene interac-132

tions. We then supplement topology (i.e., connectivity) with sample-specific133

node weights taken to be the given copy number data. For each network, curva-134

ture is then computed at three scales: on edges, nodes, and the entire network.135

Analogous to Ricci curvature defined on tangent directions at a point on a Rie-136

mannian manifold and its contraction scalar curvature defined on the points of137

the manifold, the formulation of OR curvature is computed on all edges in the138

network and scalar curvature is computed on all nodes by contracting the OR139

(edge) curvature with the invariant distribution associated with the weighted140

network [6]. The total curvature of the network is then computed by contracting141

the scalar curvature to a single scalar. (See Eq. (9) for the precise definition.)142

2 Methods143

We start with a brief, informal discussion on curvature to build some intuition144

before introducing the formal description of curvature as it was used in this145

work (Figure 1).146

The remarkable property of Gaussian curvature is that it is intrinsic to147

the surface and therefore independent of how the surface is embedded in 3-148

dimensional space. For example, the Earth appears flat when looking into the149

horizon, yet we know that the Earth is round. Determining a surface’s curvature150

by visual inspection alone can be very misleading, as the curvature may appear151

to change depending on one’s perspective. More generally, suppose we take our152

surface to be a sheet of paper lying flat on a desk. One would correctly guess153
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Figure 1: Curvature intuition on graphs. Curvature is an intrinsic property of
a surface, and therefore does not depend on how it is situated in space. For
example, (b) we know the Earth is curved, (a) even though it appears flat when
standing on its surface. Similarly, (c) a plane that is bent into an arc still has
zero curvature. The apparent curvature is merely due to how it is embedded in
space. Examples of canonical surfaces with zero, positive and negative curvature
are shown, respectively, in (c), (d) and (e). Geodesic triangles can be used to de-
termine the curvature of a surface without specifying its embedding. Compared
to (Euclidean) flat space (c), fat (d) and skinny (e) triangles are characteristic of
positive and negative curved spaces, respectively. Going from smooth surfaces
to graphs, (f) a grid is analogous to a surface with zero curvature while (g) many
triangles (indicative of redundancies or feedback mechanisms) are characteris-
tic of graphs with positive curvature and (h) tree-like topologies (indicative of
diverging paths) are characteristic of graphs with negative curvature. (i) On a
graph, curvature between two nodes j and k is characterized by the ratio of the
transport distance W1(µj , µk) between distributions µj and µk (defined respec-
tively on nodes j and k) and the underlying ground distance d(j, k) between
the two nodes. The transport distance (W1) comes from the theory of optimal
mass transport (OMT) and provides a functional distance between the nodes
that accounts for the shape of the distribution and amount of shared neigh-
bors. Curvature is positive (resp., negative) when the transport distance (i.e.,
information) between nodes is smaller (resp., larger) than the ground distance
between them, reflecting the ease with which information is shared between
nodes.
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that it has zero curvature. If the scenario is changed and the paper is bent154

into an arc, it may appear to have non-zero curvature. However, this apparent155

curvature is merely an e↵ect of its embedding in space and is not intrinsic to the156

surface itself. Thus, a plane and a cylindrical arc are all examples of surfaces157

with zero Gaussian curvature while a sphere and a hyperbolic disc are examples158

of surfaces with positive and negative Gaussian curvature, respectively [20].159

Rather than look at the surface as it is embedded in 3-dimensional space160

from the perspective of an outsider, the key is to treat the surface as the161

space itself. In that case, we can determine if the space is curved through162

the use of geodesics, the curves of (locally) shortest length between two points.163

(Geodesics generalize the straight line in Euclidean space.) One way to tell if the164

space is curved is to sum up the interior angles of a geodesic triangle. Geodesic165

triangles on a surface with positive (resp., negative) Gaussian curvature are fat166

(resp., skinny) compared to the triangle in Euclidean space. Loosely speaking,167

curvature can be inferred by the local behavior of geodesics – geodesics converge168

in regions of positive curvature and diverge in regions of negative curvature. On169

Riemannian manifolds, Ricci curvature is intimately related to the spread of170

geodesics emanating from the same point [20].171

While there are many ways to characterize the local behavior of Ricci cur-172

vature, we focus on Ollivier’s characterization that is relevant for our purposes:173

namely that in regions of positive (resp., negative) Ricci curvature, geodesic174

balls (on average) are closer (resp., farther) than their centers [20]. (A “geodesic175

ball” of radius ✏ centered at a given point p is defined as the image under the176

exponential map of the ball of radius ✏ on the tangent space at p). This is177

in contrast to Euclidean space where the distances between geodesic balls and178

their centers are the same. Ollivier’s characterization generalizes this notion of179

Ricci curvature applicable to graphs by replacing the geodesic balls with proba-180

bility measures µj [6]. In the Euclidean case, one may think of this as replacing181

points (delta functions), by small Gaussian balls (“fuzzified points”). The trans-182

portation distance between measures µj and µk, prescribed by the Wasserstein183

distance W1, is used in lieu of the average distance between geodesic balls. The184

Wasserstein distance accounts for the geometry of the space and the distance185

between distributions associated with two nodes is related to the overlap of their186

neighborhoods. The rigorous mathematical details will be given now.187

2.1 Wasserstein distance188

The Wasserstein distance is a particular instance of the optimal mass transport189

(OMT) problem. It is a natural candidate for comparing probability measures190

because it accounts for both the shape of the distributions (i.e., weighted values)191

and the distance on the underlying space. The OMT problem, originated by192

Gaspard Monge [21], seeks the optimal way to redistribute mass with minimal193

transportation cost. Leonid Kantorovich reformulated and relaxed the problem194

in the context of resource allocation [22]; for more details, see [23, 24, 25]. We195

consider the following discrete formulation. Since we will be applying the theory196

to weighted graphs, this will be su�cient.197
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Accordingly, let X denote a metric measure space equipped with distance198

d(·, ·). Given two (discrete) probability measures µ0 and µ1 on X , the Wasser-199

stein distance W1 between µ0 and µ1 is defined as200

W1(µ0, µ1) := inf
⇡2⇧(µ0,µ1)

X

x,y

⇡xydxy, (1)201

where ⇧(µ0, µ1) is the set of joint probabilities on X ⇥ X with marginals µ0202

and µ1. Here, ⇡xy may be interpreted as the amount of mass moved from x203

to y and the cost of transporting a unit of mass is taken to be the distance204

travelled (i.e., d). Thus, the Wasserstein distance (1) gives the minimal net205

cost of transporting mass distributed by µ0 to match the distribution of µ1.206

The OMT problem therefore seeks the optimal transference plan ⇡ 2 ⇧(µ0, µ1)207

found to be the infimal argument for which the Wasserstein distance is realized.208

2.2 Curvature209

The interplay between Ollivier-Ricci curvature, network entropy and functional210

robustness is linked by optimal mass transport (OMT), and is rich in theory.211

We outline this now, beginning with the Ollivier-Ricci curvature [6].212

Based on the work of von Renesse and Sturm [16], Ollivier extended the213

notion of Ricci curvature, defined on a Riemannian manifold, to discrete metric214

measure spaces [6]. Specifically, let X be a metric measure space equipped with215

a distance d such that for each x 2 X , one is given a probability measure µx.216

The probability measure µx can be thought of as fuzzifying or blurring the point217

x. For two points x, y 2 X , Ollivier-Ricci curvature is defined as218

OR(x, y) := 1� W1(µx, µy)

d(x, y)
, (2)219

where W1 is the Wasserstein distance.220

2.3 Curvature on graphs221

For our purposes, the metric measure space is taken to be a weighted graph222

G = (V,E) with nodes (vertices) V and edges E. G is assumed to be a simple,223

connected and undirected graph. Instead of points x in a metric space, we now224

consider nodes xj 2 V , denoted simply by its subscript j. In this work, the graph225

is constructed as follows. Each node j 2 V represents a gene; hereafter node and226

gene are used interchangeably. Edges e = (j, k) 2 E define known interactions227

between genes (nodes) at the protein level (here given by HPRD) and j ⇠ k228

denotes that k is a neighbor of j. We then incorporate copy number (CN) values229

as nodal weights, denoted wj . Note that for j 2 V , we take wj = (CN)j + 1;230

the a�ne translation is used to ensure all weights are positive.231

We treat the weighted graph as a Markov chain. In this context, the proba-232

bility measure µj attached to node j 2 V can be thought of as the probability233

of a 1-step random walk starting from node j. The 1-step transition probabil-234

ity pjk of going from j to k is expressed by the principle of mass action [26].235
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According to this principle, if there is a known connection between gene j and236

gene k (i.e., (j, k) 2 E), then the probability that they interact is proportional237

to the product of their CN values:238

pjk / wjwk. (3)239

Normalizing the mass action over all possible edges to ensure that pjk is a240

probability, i.e.,
P

j⇠k pjk = 1, we define the transition probabilities pjk of the241

stochastic matrix P = [pij ] associated with the Markov chain as follows:242

pjk =

(
wkP
j⇠l wl

, if j ⇠ k

0, otherwise.
(4)243

Accordingly, for each gene j, we associate a probability measure µj defined on244

the node set V with n associated nodes245

µj = [pj1, pj2, ..., pjn], j = 1, ..., n. (5)246

Alternatively, µj can be thought of as fuzzifying the node j over its 1-step247

neighborhood.248

2.3.1 Graph distance249

We have now specified the points (x) and measures (µx) needed to compute OR250

curvature in Eq. (2) on a graph. All that remains is the distance d(x, y). In251

lieu of the commonly used hop distance, i.e., the distance between two nodes252

j, k 2 V that is defined as the shortest path length over all paths connecting j253

and k, we take the corresponding graph distance djk to be the weighted hop254

distance (whop).255

More precisely, for fixed nodes j and k, let P
jk denote a path connecting256

them. Let {wjk
1 , . . . , w

jk
n } be the set of all the associated edge weights. Then257

we set258

`(P jk) :=
nX

i=1

1

w
jk
i

. (6)259

Denoting by P := {P jk
1 , . . . , P

jk
m }, the set of all possible paths connecting j and260

k, we define the weighted hop distance (whop) between j and k to be:261

djk := min
1um

`(P jk
u ). (7)262

Note that the edge weights wuv for all edges e = (u, v) 2 E are constructed as263

wuv :=
puv + pvu

2
. (8)264

This formulation was chosen so the distance between two nodes is inversely re-265

lated to the probability of their interaction. Thus, the higher (resp., lower) the266
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Figure 2: Weighted hop distances are shown for every edge in Zachary’s Karate
Club Graph [27] with all node weight values initialized equal to 1. The node
color indicates if the corresponding person is a club o�cer (purple) or mem-
ber (orange). The distance between edge-adjacent nodes is shown at the edge
midpoint.

probability of two nodes interacting, the smaller (resp., larger) the distance be-267

tween them should be. The average is taken merely so the distance is symmetric,268

i.e., djk = dkj .269

Using Zachary’s Karate Club graph [27] as an example, the resulting whop270

distance for all edges is shown in Figure 2. A more detailed comparison between271

the hop and whop distances, illustrated by heat maps of the corresponding272

distance matrices of all node pairs in the network, is shown in Figure 3.273

2.3.2 Edge curvature274

With the choice of graph distance in Eq. (7), the OR curvature in Eq. (2) can275

now be computed between any two nodes in the graph. Due to the large nature276

of the graphs of interest, we constrain the curvature computation to edges.277

Notice, from the curvature definition in Eq. (2), the ratio W1(µj ,µk)
djk

relates the278

transport cost of moving the distribution (i.e., fuzzy ball) associated with j to279

k to the ground distance. Informally, the more the neighborhoods of two nodes280

overlap, the lower the transportation cost between them and thus the higher281

the curvature associated with the edge. As such, curvature informs on the local282

functional relationship between neighborhoods.283
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Figure 3: Comparing graph metrics. The distances between every two nodes in
Zachary’s Karate Club Graph [27], with all node weight values initialized equal
to 1, are shown using (left) the hop distance and (right) weighted hop distance.

2.3.3 Scalar and total curvature on graphs284

In order to obtain a node-level measure of curvature, we consider a contraction285

of the edge curvatures, analogous to scalar curvature defined on points of a286

manifold in Riemannian geometry [20]. In this work, we define the (nodal)287

scalar curvature of gene j to be the weighted sum of the curvatures on all288

edges incident to j:289

j := ⇡j

X

j⇠k

OR(j, k), (9)290

where the weight ⇡j is the j
th component of the stationary distribution ⇡ asso-291

ciated with the Markov chain P [26]:292

⇡ = ⇡P,

X

j

⇡j = 1. (10)293

The stationary distribution in this setting (connected graph) is also the limit-294

ing distribution of the Markov chain, known as the stationary or equilibrium295

distribution. Thus, the quantity ⇡j describes the relative importance of node296

j with respect to all other nodes. We therefore scale the nodal curvature by297

its component in the stationary distribution in order to correct for nodal bias.298

Furthermore, the stationary distribution has a closed form that may be easily299

computed as follows:300

⇡j =
1

Z
wj

X

j⇠k

wk (11)301
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where Z is the normalization factor. We note that unweighted and alternative302

weightings have been proposed [28, 29].303

Lastly, we define the total curvature G of a network to be the net scalar304

curvature, summed over all nodes in the graph305

G :=
X

j

j . (12)306

2.4 Curvature and robustness307

Sturm [16], Lott and Villani [15] related a lower bound on the Ricci curvature308

of a smooth Riemannian manifold to the entropy of densities along a constant-309

speed geodesic with the use of the Wasserstein distance. This laid the ground-310

work for the connection between curvature, entropy, and the Wasserstein metric,311

and led to the remarkable observation that changes in Ricci curvature �Ric312

are positively correlated with changes in (Boltzmann) entropy �S:313

�Ric ⇥�S � 0. (13)314

The positive correlation between changes in curvature �Ric and changes in315

robustness �R:316

�Ric ⇥�R (14)317

is realized by Eq. (13) and the fluctuation theorem [30] from large deviations318

theory indicates that changes in entropy are positively correlated with changes319

in robustness �R :320

�S ⇥�R. (15)321

Here, robustness refers to the ability of a system to recover or maintain its ability322

to function after it is perturbed in some way (e.g., stress signal).323

Curvature is a particularly attractive method for analyzing key nodes and324

interactions in large complex PPI networks primarily due to its intimate connec-325

tion to robustness. This connection is linked by entropy as shown in Eqs. (13,326

15), bridging this geometric analysis to an interesting perspective on the rela-327

tionship between the topological and functional properties of the weighted net-328

work. With this notion of the change in curvature as a proxy for the more qual-329

itative notion of functional robustness, we rank genes according to the change330

in curvature with respect to the topology and between sub-groups identified;331

see the following Results Section.332

2.5 Data description and processing333

In this section, we outline the data description and processing that we used in334

our HGSOC analysis. Further details about the data may be found in [12].335

First of all, TMB was calculated by dividing the number of non-synonymous336

mutations by the total size of the capture panel in megabases. Secondly, based337

on the CNAs by FACETS, the fraction of genome altered (FGA) was defined as338

the cumulative length of segments with log 2 or linear CNA value larger than 0.2339
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divided by the cumulative length of all segments measured. Large-scale state340

transition (LST) scores, defined as a chromosomal breakpoint resulting in allelic341

imbalance between adjacent regions of at least 10Mb, were determined, and a342

cut-o↵ � 15 was employed for LST-high cases.343

Next, regarding the data characteristics, we used DNA gene CNA data from344

a subset of 69 women with recurrent OC who received immunotherapy from345

a previously published series [12]. The subtypes of ovarian cancer are in fact346

quite di↵erent diseases, originating in di↵erent cell types and being caused by347

distinct mutations with diverse outcomes, and should therefore be analyzed348

separately [19]. Accordingly, we restrict our re-analysis to a subset of samples349

(n = 49) with HGSOC, which is the most common and lethal subtype. Four350

HGSOC patients had two samples, and the replicate samples were removed351

from the analysis. This resulted in a total of 45 tumor samples, 32 of which352

were metastases and 13 represented primary (adnexal) tumors, with 22 and 10353

deaths in each group, respectively, at the time the study group was analyzed.354

This forms a homogeneous group of cancers (Table 1). Tumor and normal355

samples from the 45 patients were profiled utilizing the FDA-cleared Memorial356

Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets357

(MSK-IMPACT) sequencing assay, their mean age was 58 years, and mean358

TMB was 5.9. Patient selection and clinical characteristics are displayed in359

Figure 4 and in Tables 1,2, respectively.360

Figure 4: Patient selection

Variables n = 45

Platinum status at ICI

Sensitive 6 (13%)
Resistant 39 (87%)

Lines of Treatment prior to ICI

Median (mean) 4 (4.6)
Range 1-10

Type of ICI Therapy

PD1/PDL1 25 (56%)
PD1/PDL1 + CTLA4 15 (33%)
PD1/PDL1 + Other 4 (9%)
CTLA4 1 (2%)

Table 1: Clinical characteristics of pa-
tients with recurrent high grade serous
ovarian cancer administered immune
checkpoint inhibitor (ICI) therapy.

CN segments were mapped to individual genes according to GRCh37 and361

for each sample, each gene was assigned the maximum CN value of all segments362

that mapped to it. After removing all genes with missing data and all genes363
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not in the HPRD network, we extracted the set of genes comprising the largest364

connected network (Supplementary Figure S7). This resulted in a CNA data365

matrix of size 3,489 (genes) ⇥ 45 (samples).366

The network topology was constructed as follows. Edges between genes were367

defined by the PPI obtained from HPRD [1, 2]. The network topology was then368

taken to be the largest connected component in the HPRD network restricted to369

the set of genes in our data set. This resulted in a network with 9,710 edges and370

3,489 nodes with an average degree of 5.57. The rationale is that the established371

interactions between gene products serve as a viable proxy for the functional372

connectivity at the gene level.373

Subject specific networks were created by assigning nodal weights wj pre-374

scribed by the CN value. Specifically, the CN data took on discrete integer375

values in the range [0, 38]. In order to ensure all weights were positive, we used376

the translation wj = xj+1 where xj is the CN value for gene j. For each subject,377

Markov chains were computed as defined in Eq. (4) followed by the associated378

stationary distribution in Eq. (11). Next, Ollivier-Ricci curvature using Eq. (2)379

was computed on each edge in the fixed network, scalar curvature defined in380

Eq. (9) was subsequently computed for each node and lastly, total curvature381

using Eq. (12) was computed for the network. A critical aspect of the curvature382

analysis is that it provides a relative quantity and it is the change in curvature383

that is of interest, indicative of changes in the network’s capacity for communi-384

cation. Thus, we would expect that patients whose samples have a lower total385

curvature (i.e., a relative net decrease in capacity) would be associated with a386

poorer prognosis than those with higher total curvature values.387

3 Results388

3.1 Survival analysis389

The prognostic value of the total curvature G in Eq. (12) and standard genomic390

parameters including TMB, FGA and LST (representing homologous recombi-391

nation deficiency [HRD] status) were assessed with respect to the HGS cohort392

(n = 45). For each parameter (TMB, LST, FGA, G), the cohort was stratified393

into two groups according to the 25th percentile (low vs. high) of individual val-394

ues. The cuto↵ was selected based on the location where the curve fitted to the395

sorted total curvature values starts slowly incrementing and is approximately396

linear (Supplementary Figure S3). An alternative cut point using maximally397

selected log-rank statistic [31, 32] was assessed as well and resulted in a com-398

parable split (Supplementary Figure S4). However, a larger cohort is needed399

for further validation. The e↵ectiveness of each parameter in terms of OS was400

evaluated using the Kaplan-Meier (KM) analysis [33].401

OS was defined from the start of immunotherapy treatment until either death402

or last follow-up [12]. Survival curves for each parameter were plotted according403

to the KM estimator, shown in Figure 5 along with the corresponding log-rank404

p-values (total curvature: p = 0.00047; TMB: p = 0.03153; LST: p = 0.42865;405

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.10.447889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447889


FGA: p = 0.19568). While both TMB and total curvature G were found to be406

significant factors in predicting patient survival, the p-value for total curvature407

was almost 2 orders of magnitude smaller as compared to TMB, whose p-value408

was just marginally significant. The e↵ective prognostic predictive power of the409

total curvature, particularly in comparison to the genomic parameters, is one410

of the major contributions of this work. See Supplementary Information for411

validation.412

In order to assess that the prediction is not independent of receiving im-413

munotherapy treatment, we repeated the curvature and survival analysis pipeline414

on IMPACT data from HGSOC samples that did not receive ICIs. It is inter-415

esting to note that total curvature was not predictive of survival in this setting416

(Supplementary Figure S5), highlighting that our findings may be immunotherapy-417

specific. However, it is also important to point out that OS was defined from the418

time of diagnosis for the analysis of this dataset, whereas in the analysis of 45419

HGSOC patients treated with ICIs, OS was defined from the start date of im-420

munotherapy, and all 45 patients had recurrent tumors with a substantial time421

gap between the time of first diagnosis and the start date of immunotherapy.422
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(a) total curvature (b) TMB

(c) LST (d) FGA

Figure 5: Survival curves for HGS samples (n = 45) stratified low and high
groups by the 25th percentile of total curvature and genomic parameters. P-
values were derived from the log-rank test.
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All Patients Low curvature High curvature

Characteristic (n=45) (n=12) (n=33) p
Age at diagnosis (years) 0.062

Mean ± SD 58.0 ± 9.3 62.3 ± 7.5 56.4 ± 9.4
Range 27.0–75.0 49.0–75.0 27.0–75.0
Median (IQR) 58.0 (52.0–64.0) 64.0 (58.8–65.5) 55.0 (51.0–61.0)

Age at start of ICI (years) 0.023
Mean ± SD 62.1 ± 8.7 67.1 ± 6.9 60.3 ± 8.7
Range 37.0–78.0 55.0–78.0 37.0–77.0
Median (IQR) 62.0 (56.0–69.0) 67.0 (63.3–70.3) 59.0 (55.0–66.0)

Stage at diagnosis 0.502
III 25 8 17
IV 20 4 16

Time from diagnosis to start of ICI (months) 0.581
Mean ± SD 50.9 ± 35.9 58.8 ± 43.1 48.1 ± 33.2
Range 5.3–166.0 17.4–166.0 5.3–123.1
Median (IQR) 49.4 (23.3–61.7) 44.5 (33.4–61.8) 49.4 (18.5–61.7)

Duration of ICI (weeks) 0.807
Mean ± SD 20.2 ± 23.6 14.3 ± 8.6 22.3 ± 27.0
Range 0.1–143.0 0.7–28.3 0.1–143.0
Median (IQR) 12.3 (7.7–23.1) 13.6 (7.8–20.3) 12.1 (7.7–23.1)

Overall survival (months) 0.007
Mean ± SD 16.7 ± 11.7 8.8 ± 7.2 19.6 ± 11.7
Range 0.4–44.8 0.4–27.4 0.4–44.8
Median (IQR) 15.3 (6.5–24.6) 7.4 (4.9–10.9) 20.3 (11.1–26.0)

Sample type 0.010
Metastasis 32.0 12 20
Primary 13.0 0 13

Status at last follow-up 0.134
Alive 13 1 12
Dead 32 11 21

TMB 0.959
Mean ± SD 3.7 ± 2.3 3.5 ± 1.9 3.8 ± 2.5
Range 1.0–9.7 1.1–6.7 1.0–9.7
Median (IQR) 3.3 (2.0–4.4) 2.6 (2.0–5.3) 3.3 (2.0–4.4)

FGA 0.005
Mean ± SD 0.4 ± 0.2 0.3 ± 0.2 0.5 ± 0.2
Range 0.005–0.871 0.005–0.629 0.092–0.871
Median (IQR) 0.4 (0.3–0.6) 0.2 (0.1–0.4) 0.5 (0.4–0.6)

LST 0.024
Mean ± SD 25.0 ± 10.3 19.3 ± 9.1 27.1 ± 10.0
Range 2.0–51.0 2.0–32.0 2.0–51.0
Median (IQR) 25.0 (20.0–29.0) 22.0 (13.5–25.8) 27.0 (22.0–34.0)

Table 2: HGS patient characteristics. Abbreviations: SD, standard deviation;
IQR, interquartile range. P -values were obtained using two-sided Wilcoxon-
Rank Sum test for continuous variables and Fisher-exact test for categorical
variables.
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3.2 Functional biomarkers423

Genes that exhibit large changes in scalar curvature are identified as the genes424

that potentially play a key role in altering the network robustness (i.e., func-425

tional connectivity). This requires a reference for comparison, typically using426

data collected at a reference time (e.g., after immunotherapy treatment) or data427

collected from a reference sample (e.g., normal tissue). Often no such reference428

data are available, as was the case here where CNA data from only one time429

point were provided. Considering the distinction in survival curves obtained via430

curvature, we therefore used the high and low risk groups (as previously defined431

by the 25th percentile of the total curvature and dichotomized into low and high432

curvature groups, respectively) for points of comparison. Genes were ranked by433

the di↵erence in average scalar curvature between the high and low risk groups434

(�risk). The change in curvature measures the relative gene implication in the435

stabilization (or de-stabilization) of local network robustness driving changes in436

feedback connectivity pertaining to survival. Since both increased and decreased437

functionality is of interest, the top 50 ranked genes that exhibited the largest438

positive (�risk > 0) and largest negative (�risk < 0) change in curvature,439

yielding 100 candidate genes associated with risk, are listed in Table 3).440

Similarly, we investigated the top genes ranked by the di↵erence in average441

scalar curvature between sub-groups based on available clinical data as an ex-442

ploratory analysis. Of ancillary interest were the top ranked candidate driver443

genes that demonstrate functional network response to ICI and their associ-444

ation to survival as exhibited by disparities in network robustness measured445

between those who were alive or deceased at last follow-up (�OS ; Supplemen-446

tary Table S1) and predominant changes in functional connectivity due to DNA447

level dysregulation that occurs between primary and metastatic tumors (�PM ;448

Supplementary Table S2).449

Lastly, we used the network topology itself as a frame of reference. Treating450

the fixed network topology as an unweighted graph (i.e., all node weights are451

uniformly set to 1), we computed the scalar curvature on this reference topol-452

ogy network in the same manner as detailed above. This provides a measure453

of discordance in functional connectivity between the HGSOC network and its454

underlying topological structure (�ref ; Supplementary Table S3). It is inter-455

esting to note that in all of the comparisons TP53 appeared at the top of all456

positive changes in curvature indicating its functional centrality in HGSOC.457

Substantial overlap in the top 50 (positive and negative) ranked genes was458

noted from all of the comparisons performed, resulting in 171 unique genes459

listed in Supplementary Table S4 (Supplementary Figures S8,S9). The choice460

of selecting the top 50 genes was largely arbitrary with the following rationale.461

The assertion that critical genes may be identified as those exhibiting larger462

changes in curvature is supported by the theory, but curvature is a continuous463

variable with no obvious cuto↵. Since there is also an exploratory component464

to this analysis, we opted for a cuto↵ that would yield a manageable set of465

genes that reasonably included the key influential players. Out of 3,489 genes466

in the network, this resulted in 50 (positive and negative) candidate genes. See467
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Supplementary Figure S6 for a further sub-curvature analysis on the association468

between the highlighted candidate genes and survival.469

3.3 Relationship between total curvature and genomic fea-470

tures471

Lastly, we explored the relationship between total curvature and genomic fea-472

tures (TMB, FGA, LST). Linear regression analysis with two-sided Wald test473

and Pearson correlation (r) analysis were used to assess the correlation be-474

tween total curvature and each of the clinical features (TMB: p = 0.9674; FGA:475

p = 0.0060; LST: p = 0.0868). This analysis suggests that total curvature is476

significantly correlated with FGA. This result is not entirely surprising con-477

sidering that FGA is a surrogate measure of CN changes and the curvature478

measures dysregulation of the CN-weighted network. However, total curvature479

yields high and low risk groups with a significant di↵erence in survival whereas480

FGA does not. The di↵erence is that total curvature accounts for an extra level481

of information, namely the connectivity, that is not evident from CNAs alone.482

We believe this is compelling evidence that network dysregulation, as measured483

by curvature, has the potential to provide critical insight for analyzing immune484

response. More samples are needed to verify this result but it is interesting to485

note that further investigation into FGA as a potential biomarker for survival486

in HGSOC has been proposed [12]. Linear regression plots on the HGS cohort487

(n=45) are shown in Figure 6.488
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Figure 6: Linear regression of total curvature onto clinical parameters using
HGS samples (n=45). The lower triangle includes the Pearson correlation (r)
and two-sided p-value for the hypothesis test with H0 : the slope is zero, using
Wald test with t-distribution of the test statistic and 95% confidence interval.
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rank gene �risk > 0 gene �risk < 0
0 TP53 0.208647 CREBBP -0.064223
1 ATXN1 0.102823 SHC1 -0.031456
2 EP300 0.044184 PTK2 -0.026202
3 SMAD2 0.042756 AR -0.025316
4 PIK3R1 0.037015 MYC -0.022608
5 SRC 0.033112 JUN -0.019546
6 SMAD4 0.032177 LYN -0.011148
7 RB1 0.031043 YWHAQ -0.010984
8 ESR1 0.027914 GSK3B -0.009017
9 PRKCA 0.027253 STAT1 -0.008248
10 CTNNB1 0.025121 CDK5 -0.007480
11 GRB2 0.016848 FN1 -0.006947
12 YWHAE 0.015125 COPS6 -0.006251
13 DLG4 0.014966 SMAD3 -0.006133
14 PRKCD 0.014742 PAK1 -0.006091
15 ACTB 0.013456 MYOC -0.005464
16 EWSR1 0.012300 SMURF1 -0.005438
17 TGFBR1 0.010799 SUMO1 -0.004455
18 RAC1 0.008937 PARP1 -0.004274
19 PLCG1 0.008423 CRMP1 -0.004271
20 CHD3 0.007997 HSF1 -0.004155
21 DVL2 0.007476 HIPK2 -0.004038
22 BCL2 0.007009 CDC42 -0.004017
23 RANBP9 0.006879 POU2F1 -0.003838
24 MAPK1 0.006630 ACVR1 -0.003651
25 POLR2A 0.006468 HTT -0.003537
26 CRK 0.006375 JAK1 -0.003520
27 APP 0.006256 PDPK1 -0.003497
28 PCNA 0.005935 PIK3R2 -0.003423
29 COIL 0.005350 FGFR1 -0.003352
30 MAPK14 0.005097 CDKN1A -0.003205
31 NR3C1 0.004981 MAGEA11 -0.003165
32 AKT1 0.004925 GNAI1 -0.003125
33 EGFR 0.004918 PRKCE -0.003090
34 RHOA 0.004635 XPO1 -0.002919
35 RAF1 0.004159 BTK -0.002855
36 SMAD7 0.004071 MUC1 -0.002814
37 NCOR1 0.004038 EIF2AK2 -0.002807
38 RASA1 0.003998 CASP8 -0.002758
39 FXR2 0.003879 CSNK2A2 -0.002717
40 RPA1 0.003560 MDM2 -0.002710
41 HRAS 0.003525 NTRK1 -0.002636
42 UBB 0.003302 ADAM15 -0.002541
43 BRCA1 0.003292 FASLG -0.002522
44 SUMO4 0.003283 VIM -0.002436
45 ARRB2 0.003248 CD247 -0.002372
46 XRCC6 0.003065 AXIN1 -0.002333
47 HGS 0.003025 SMARCA4 -0.002256
48 HDAC3 0.002965 SNAPIN -0.002246
49 HSP90AA1 0.002924 PPP2R5A -0.002187

Table 3: Changes in average scalar curvature based on risk (high vs low). Top
50 genes ranked by positive (�risk > 0) and negative (�risk < 0) di↵erence
in average scalar curvature between low risk (n = 33) and high risk (n = 12)
groups.
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4 Discussion489

4.1 Biological/molecular relevance490

Mutational profiles of HGSOCs are characterized by abnormal gene CNAs,491

which results in protein overexpression or underexpression [13]. The major-492

ity of these OCs are characterized by inactivating mutations or loss of TP53,493

leading to aneuploidy, resulting from loss of control of centrosome numbers [34],494

and selection for enhanced copy number and gene expression of selected genes495

controlling the cell cycle (Figure 7). These OCs commonly overexpress the cy-496

clin E protein due to loss of p53 function, resulting in downregulation of p21497

(the inhibitor of cyclin E-Cdk-4/6 activity), as well as amplification of cyclin E498

[13]. In addition, the serous OCs have one or more of the K-RAS, MYC, and499

AKT protein kinase genes overexpressed in the late G-1 phase of the cell cycle500

(see Figure 7). The K-RAS activity signals that the cell is stimulated by growth501

factors and should progress through the cell cycle, the MYC gene regulates the502

transcription of hundreds of genes for cell growth and division and the AKT503

gene promotes TORC-2 activity for entry into S-phase and stimulates AKT ki-504

nase to enhance the MDM-2 E3 ubiquitin ligase to increase the destruction of505

the p53 protein [35]. All of these driver gene products promote a constant over-506

expressed signal for cell cycle progression and division. The mutational profile507

of this cancer is copy number changes of genes and overexpression of selected508

gene products. For that reason, the methods developed here employ copy num-509

ber values as the measurement for each node containing a gene in the signal510

transduction pathway and the resultant network that is employed to measure511

curvature.512

This mutational profile of serous OC results in the loss of control for duplicat-513

ing centrosomes, which sets up the polarity in a cell for the normal segregation514

of chromosomes. This is driven by the loss of function of p53 and the overex-515

pression of cyclin E, which co-localizes with the centrosome, which duplicates516

abnormally producing three or more centrosomes [36]. In the extreme, this re-517

sults in chromothripsis, where a chromosome fragments and some of the parts518

are reassembled in a random order. This can result in double minute chromo-519

somes without a centromere for proper segregation and random partition of the520

double minutes and distribution of multiple copy numbers. Often the popula-521

tion of cells forms a distribution of copy numbers of a combination of genes,522

which are then selected for optimal fitness.523

Biomarkers of response to immunotherapy in OC remain underdeveloped.524

Here, we characterized a cohort of HGSOC patients treated with immunother-525

apy for whom detailed treatment, genomic, and survival data were available.526

Our analysis indicates that employing the copy number of the relevant genes527

as a measurement for each node in a network provides the strongest predictive528

power for OS, when compared to prior examined parameters such as TMB, LST,529

and FGA (Figure 5). These results suggest that no one gene or even its alter-530

ations can predict responses to therapy. Rather it is the integration of the copy531

numbers of driver genes and the change of resultant networks formed by these532
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genetic or epigenetic alterations that impacts immunological responsiveness of533

the tumor after checkpoint therapy. Employing the overexpression of the same534

set of genes and loss of p53 function in a mouse model of ovarian cancers treated535

with immunotherapy resulted in similar heterogeneous responses to checkpoint536

therapy and the beginnings of experimental tests of genes and products that537

could modify the results of the responses to cancer therapies [14]. This permits538

the pairing and testing of the type of modeling presented here along with pre-539

diction of genes with high curvature with experimental tests in a mouse model540

to improve the choice of therapies depending upon the genotypes of the tumors.541

Interestingly, in non-small cell lung cancer a major tumor antigen, not genet-542

ically altered in sequence (not a neo-antigen), was found to be overexpressed in543

many di↵erent independent tumors [7, 8]. This suggests that in serous OCs, like544

non-small cell lung cancers, the higher concentration of a non-genetically altered545

tumor antigen was an important variable in responsiveness to checkpoint ther-546

apy. Similar conclusions were reached by the mathematical construct employed547

here and measured by both abundance and changes in a network architecture548

and quantitated by curvature of the edges of the network.549

4.2 Conclusions550

The marriage of mathematical models with experimental tests is one of the goals551

that will speed up the testing of new ideas and directions. The gene lists in Ta-552

bles 3, S1, S2, S3, S4 that compare the values of curvature, topology, geometry,553

feedback connectivity, and other properties of the networks under study, permit554

a selection of the best ways to measure lists of genes that impact success of555

immunotherapy. The conclusion of the analysis presented in this work is that556

the stability or instability of local network robustness driving changes in feed-557

back connectivity has the largest impact upon prognosis after immunotherapy.558

The analysis identifies the mutant TP53 gene and its loss of functional protein,559

resulting in the inability to control cyclin E activity and the resultant abnor-560

malities in copying centrosome numbers accurately as the driving force for this561

cancer [34, 36].562

In conclusion, a network version of the geometric concept of curvature was563

introduced to model information variability, robustness, and dysregulation of564

cancer gene networks. Total curvature, thus formulated for HGSOC, was demon-565

strated to work better in comparison to other standard metrics for the prediction566

of response to immunotherapy. Network curvature, formulated in this manner567

as a consistent information passing measure, thus appears to e↵ectively capture568

global gene signaling dysregulation, and furthermore functions to identify key569

contributors to signaling dysregulation. Establishing total curvature as a useful570

clinical biomarker, possibly in combination with FGA (also proposed as a po-571

tential biomarker in ovarian cancer [12]), will require larger datasets in order to572

further quantify and validate these results.573
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Figure 7: Genes involved in Serous Ovarian Cancer in the G-1 Phase of the
Cell Cycle: The G-1 phase of the cell cycle can be divided up into cyclin D-
cdk4/6 early events and cyclin E-cdk2 later events. The inhibitors of these
protein kinase activities, p38 and p16 for cyclin D and p53 and p21 for cyclin
E are shown above the cyclin D and E panels. The activating pathways for
cyclin D (TORC-1) and cyclin E (TORC-2) are shown below these panels. The
mutational loss of TP53 and the amplification of cyclin E results in the loss
of control of cyclin E levels and the hyper-amplification of centrosome numbers
destabilizing the copy number control of chromosome numbers (aneuploidy) and
gene copy numbers. Serous ovarian cancers commonly have K-RAS, MYC and
AKT genes or chromosome amplifications and overexpression. The p21 gene is
not mutated suggesting that it has additional functions required elsewhere for
viability or that additional functions of p53 must be lost for ovarian cancers.
Every gene highlighted in this figure can be found genetically altered in a cancer
of other tissue types.
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