
Meditation-induced effects on whole-brain
structural and effective connectivity

Eleonora De Filippi1*, Anira Escrichs1*, Estela Càmara2,3, César Garrido 4, Marti
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4Radiology Unit, Hospital Cĺınic Barcelona, Barcelona, Spain

5Department of Information and Communications Technologies, Universitat Pompeu Fabra, 08018,

Barcelona, Spain

6Theory of multi-scale neuronal networks, INM-6, Forschungszentrum Juelich, Germany
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Abstract

In the past decades, there has been a growing scientific interest in characterizing neural

correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain

elusive. In the present work, we investigated meditation-related changes in structural and

functional connectivities (SC and FC, respectively). For this purpose, we scanned experienced

meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire

structural and functional data during two conditions, resting-state and meditation (focused

attention on breathing). In this way, we aimed to characterize and distinguish both short-

term and long-term modifications in the brain’s structure and function. First, we performed a

network-based analysis of anatomical connectivity. Then, to analyze the fMRI data, we calcu-

lated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model

to replicate BOLD signals’ spatio-temporal structure, akin to FC with lagged correlations.

We compared the estimated EC, FC, and SC links as features to train classifiers to predict
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behavioral conditions and group identity. The whole-brain SC analysis revealed strengthened

anatomical connectivity across large-scale networks for meditators compared to controls. We

found that differences in SC were reflected in the functional domain as well. We demonstrated

through a machine-learning approach that EC features were more informative than FC and

SC solely. Using EC features we reached high performance for the condition-based classifi-

cation within each group and moderately high accuracies when comparing the two groups in

each condition. Moreover, we showed that the most informative EC links that discriminated

between meditators and controls involved the same large-scale networks previously found to

have increased anatomical connectivity. Overall, the results of our whole-brain model-based

approach revealed a mechanism underlying meditation by providing causal relationships at the

structure-function level.

Keywords— meditation, resting-state, fMRI, whole-brain modeling, effective connectivity,

structural connectivity
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Introduction

”The mind is definitely something that can be transformed, and meditation is a means to transform

it,” wrote in 2015 the world’s foremost Buddhist leader, the 14th Dalai Lama, in his book ”The

Wheel of Life: Buddhist Perspectives on Cause and Effect”.

Despite having its roots in an ancient Eastern tradition, in the last years, meditation has become

increasingly practiced in the Western society, becoming a focus of scientific interest (Ricard et al.,

2014; Millière et al., 2018; Hilton et al., 2017; Vieten et al., 2018; Davidson and Dahl, 2018; Afonso

et al., 2020).

The term meditation entails all those training practices designed to get aware of mental and

bodily processes, which can be clustered into two broader types: concentrative and open awareness

practices. The former type requires attention to be voluntarily directed and sustained toward either

an internal or external object (e.g., breath-awareness, bodily sensations, musical mantras), whereas

the latter implies letting attention opened to whatever comes to the mind.

In line with the above statement from the Dalai Lama, several studies have shown an association

between meditation practice and behavioral benefits that result in improvements in attention (Lutz

et al., 2008; Valentine and Sweet, 1999), emotional regulation (Miller et al., 1995; Wenzel et al.,

2020), and well-being more in general (Peterson and Pbert, 1992; Grossman et al., 2004). In the last

decades, different studies have found that experienced meditators show changes in brain morphology

compared to matched controls. The first morphometric study conducted by Lazar and colleagues

demonstrated that areas involved in interoception and attentional processes, such as the anterior

insula and the prefrontal cortex (PFC), were thicker in experienced meditators than controls (Lazar

et al., 2005). Since then, several studies investigated meditation-induced brain morphology changes,

mainly by measuring cortical thickness (Lazar et al., 2005; Grant et al., 2013; Kang et al., 2013),

gray matter volume (Hölzel et al., 2008, 2010; Vestergaard-Poulsen et al., 2009; Pagnoni and Cekic,

2007; Tang et al., 2020), and white-matter integrity (DTI) (Tang et al., 2010, 2015; Luders et al.,

2011; Fayed et al., 2013; Posner et al., 2014).

Along with anatomical changes, several cross-sectional studies have found functional changes

in experienced meditators compared to controls across large-scale networks, such as the central

executive network (CEN), the default mode network (DMN) and the salience network (SN) (Doll

et al., 2015; Hasenkamp et al., 2012; Froeliger et al., 2012; Garrison et al., 2015; Kong et al., 2016;

Mooneyham et al., 2017; Gard et al., 2014; Irrmischer et al., 2018; Lim et al., 2018). A recent

study explored information processing across the whole-brain network, reporting higher dynamical

complexity during resting-state in experienced meditators than in healthy controls. At the same

time, they found that meditation appears to be characterized as a state of reduced information

processing, indicating a switch to a less complex regime compared to the resting state (Escrichs
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et al., 2019). Similar evidence comes from the work conducted by Toutain et al. (2020), in which

they investigated topological stability across relaxation state and meditation in experienced medi-

tators using the electroencephalogram (EEG). The authors demonstrated an increase in stability of

global topological patterns during meditation compared to relaxation state (Toutain et al., 2020).

Nonetheless, these phenomenological studies cannot by nature provide a mechanistic explanation

about how long-term meditation practice shapes the global spatio-temporal BOLD structure via

the underlying interregional connections, which instead requires a model-based approach.

Whole-brain computational modeling is one of the most potent tools used to study the link

between macroscopic functional dynamics and the underlying structural connectome (Deco and

Kringelbach, 2014; Deco et al., 2017; Jobst et al., 2017). They have been mostly used to study

the resting-state as well as cognitive functions, including ”consciousness” and alterations thereof.

These studies have focused on generating empirical FC with empirical anatomical SC, for psychedelic

states (Deco et al., 2018; Herzog et al., 2020; Kringelbach et al., 2020), sleep stages (Jobst et al.,

2017; Ipiña et al., 2020) and consciousness disorders (Lopez-Gonzalez et al., 2020; Cofré et al.,

2020). In contrast with this work, another line of research has focused on the estimation of the

”effective connectivity”, which describes the directional influence that one region exerts on another

in a dynamic model (Friston, 2011). Effective connectivity profiles provide new insights into the

causal mechanisms of neuroimaging results by determining the propagation of activity (as a proxy

for information) between different areas. Indeed, a challenge of interpreting FC patterns at the

whole-brain level is that the BOLD correlation between each pair of areas does not simply follow

from connections between them, but also involve network effect via third-party areas. On the

biological side, EC estimates represent the modulation of synaptic efficacies due to various factors

like neuromodulation, changes in local excitability, etc. that occur in a task-specific manner. A

recent approach has developed a model and estimation method, the ‘MOU-EC’, to constrain EC

using the SC topology, which forces the model to generate FC by modulating anatomical connections

(Gilson et al., 2016, 2020). The MOU-EC model relies on the multivariate Ornstein-Uhlenbeck

(MOU) process whose diffusion-type dynamics are used to reproduce the propagation of BOLD

signals across the whole brain, and explain them by the structure of the directional EC. Importantly,

the EC is masked by the underlying anatomy (DTI tractography), which allow us to evaluate the

influence of the measured differences in SC across the two subject groups on the generated BOLD

signals. This method has proven capable of extracting biomarkers for cognition as well as subject

identification (Senden et al., 2018; Pallares et al., 2018). Moreover, effective connectivity profiles

have been proved to be helpful to understand the mechanisms behind brain disease (Adhikari et al.,

2020), mental illness (Rolls et al., 2018) and developmental disorders (Rolls et al., 2020).

In this work, we aimed at investigating how meditation-induced changes in the anatomical
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pathways are associated with the reorganization of the spatio-temporal structure using a dataset

consisting of 19 experienced meditators and 19 healthy controls scanned during meditation and

resting-state. To do so, we explored whole-brain changes in white-matter tracts following extensive

meditation training using a network-based non-parametric approach. We tested whether medita-

tors would show enhanced anatomical connectivity across different large-scale networks. Then, we

applied the MOU-EC whole-brain model (Gilson et al., 2016, 2020) in order to relate changes in

SC to changes in FC and EC, both across subject groups and across conditions. We compared

the effective, functional, and structural connectivity measures as features to train the multino-

mial linear regression (MLR) and the first-nearest neighbor (1NN) classifiers. Since EC profiles

hold information about the underlying structural connectome, we expected EC features to hold

more predictive power than FC or SC alone, allowing us to disentangle characteristic information

propagation patterns of both groups and conditions.

Methods

Participants

A total of 19 experienced meditators and 19 healthy controls were selected from a dataset previ-

ously described in Escrichs et al. (2019). In brief, the meditator group was recruited from Vipassana

communities of Barcelona, Catalonia, Spain (7 females; mean age=39.8 years (SD=10.29); educa-

tion=13,6 years; and meditation experience=9.526,9 hours (SD=8.619,8). Meditators had more

than 1,000 hours of meditation experience and maintained the daily practice ( > 1 hour/day).

Healthy controls were well-matched participants for age, gender, and educational level, with no

previous meditation practice experience (7 females; mean age= 39,75 years (SD=10,13); educa-

tion=13,8 years). No significant differences in terms of age (p>.05), educational level (p>.05), and

gender (p>.05) were found between groups. All participants reported no history of past neurologi-

cal disorder and gave written informed consent. The study was approved by the Ethics Committee

of the Bellvitge University Hospital according to the Helsinki Declaration on ethical research.

Experimental conditions

Functional data were acquired for two conditions, resting-state and meditation, for a total scanning

time of (≈ 30 min). Participants were asked to stay still in the scanner and move as little as possible

throughout the experiment. First, we asked subjects to fixate a cross in the middle of the screen

while trying not to think about anything in particular to acquire resting-state data (≈ 15 min).

Then, we acquired functional data during meditation (focused attention on breathing) (≈ 15

min). Both groups were asked to practice Anapanasati meditation. Participants had to focus
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on their natural breathing patterns, trying to recognize whenever their minds were wandering to

switch back attention on their breathing. Before the scanning, we instructed control subjects to

perform meditation following the instruction given by S.N. Goenka. All subjects confirmed that

they understood the procedure before entering the scanner.

MRI Data Acquisition

MRI images were acquired on a 3T (Siemens TRIO) using 32-channel receiver coil. The high

resolution T1-weighted images were acquired with 208 contiguous sagittal slices; repetition time

(TR)= 1970ms; echo time (TE)= 2.34ms; inversion time (IT)= 1050ms; flip angle= 9°; field of view

(FOV)= 256mm; and isotropic voxel size 1mm. Resting-state and meditation fMRI images were

performed by a single shot gradient-echo EPI sequence with a total of 450 volumes (15 min); TR=

2000ms; TE= 29ms; FOV= 240mm; in-plane resolution 3mm; 32 transversal slices with thickness=

4mm; flip angle= 80°. Diffusion-weighted Imaging (DWI) data were acquired using a dual spin-echo

DTI sequence with 60 contiguous axial slices; TE= 92ms; FOV = 236mm; isotropic voxel size 2 mm;

no gap, and 118x118 matrix sizes. Diffusion was measured with 64 optimal non-collinear diffusion

directions by using a single b value= 1,500s/mm2 interleaved with 9 nondiffusion b0 images. A

frequency-selective fat saturation pulse was applied to avoid chemical shift misregistration artifacts.

fMRI preprocessing: resting-state and meditation

Functional MRI images (resting-state and meditation) were preprocessed using version 3.14 of the

Multivariate Exploratory Linear Optimized Decomposition into Independent Components (Beck-

mann and Smith, 2004, MELODIC), which is part of FSL (http://fsl.fmrib.ox.ac.uk/fsl). Im-

ages were preprocessed as follows: removal of the first five time-points, motion correction through

MCFLIRT (Jenkinson et al., 2002), non-brain removal using the Brain Extraction Tool (Smith,

2002, BET), rigid-body registration, smoothing with 5mm FWHM Gaussian Kernel, and a high-

pass filter cutoff set at 100.0s. To discard artifactual components, we applied FIX (Griffanti et al.,

2014, FMRIB’s ICA-based Xnoiseifier) using the default parameters to clean the data indepen-

dently for each subject. Then, the cleaned functional fMRI data were co-registered to the T1 image

and the T1 was co-registered to the MNI (Montreal Neurological Institute) space by using FLIRT

(Jenkinson and Smith, 2001). The resulting transformations were applied to warp the atlas from

MNI space to the cleaned functional data in native space by using a nearest-neighbor interpolation

method. Finally, time series in the native EPI space were extracted using fslmaths and fslmeants

for 100 cortical using the 7-Networks Schaefer Parcellation (Schaefer et al., 2018) and 16 subcortical

regions from the Melbourne subcortical functional parcellation (Tian et al., 2020).
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Probabilistic Tractography analysis

A whole-brain structural connectivity matrix (SC) was computed individually for each subject in

their native MRI diffusion space with the same parcellation mentioned above. Analysis was per-

formed using the FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software Library www.fmrib.ox.

ac.uk/fsl. First, DICOM images were converted to Neuroimaging Informatics Technology Ini-

tiative (NIfTI) format using dcm2nii www.nitrc.org/projects/dcm2nii. The b0 image in native

space was co-registered to the T1-weighted image using FLIRT (Jenkinson and Smith, 2001), and

the co-registered T1 image was co-register to the standard space. The resulting transformation was

inverted and applied to warp the atlas in MNI space to the native MRI diffusion space by applying

a nearest-neighbor interpolation algorithm. Second, diffusion-weighted images were analyzed using

the processing pipeline of the FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software Library

www.fmrib.ox.ac.uk/fsl. First, non-brain tissues were extracted using the Brain Extraction Tool

(Smith, 2002, BET), eddy current distortions and head motion were corrected by using eddy-correct

tool (Andersson and Sotiropoulos, 2016), and the gradient matrix was reoriented to correct for sub-

ject motion (Leemans and Jones, 2009). Then, crossing fibers were modeled using BEDPOSTX, and

the probability of multi-fiber orientations was computed to improve the sensitivity of non-dominant

fiber populations (Behrens et al., 2007). Then, Probabilistic Tractography was performed for each

subject in native MRI diffusion space using the default settings of PROBTRACKX (Behrens et al.,

2007). The connectivity probability SCij between brain areas i and j was calculated as the total

proportion of sampled fibers in all voxels in brain area i that reach any voxel in brain area j. Since

DTI does not capture fiber directionality, the SCij matrix was then symmetrized by computing

their transpose matrix SCij and averaging both matrices.

Network-based statistics

To explore group differences at the anatomical level, we analyzed the whole-brain DTI matrices

parcellated into 116 ROIs using the ”Network-Based Statistic Toolbox v1.2 (NBS)” (Zalesky et al.,

2010). The NBS, which has been designed to test the hypothesis under the connectome framework,

is the network-based equivalent of the suprathreshold cluster-based test (Bullmore et al., 1999;

Nichols and Holmes, 2002).

We implemented the NBS to test the hypotheses of structural (SC) over-connectivity (medi-

tators>controls) or under-connectivity (meditators<controls) following extensive training. A non-

parametric permutation approach, with 10000 random permutations, was used to estimate the null

distribution of the maximal component size for each of the mentioned hypotheses. At each permu-

tation, values stored in each subject’s SC matrix were used to compute a t-test for each pairwise

association contrasting the two groups. Then, we established a primary threshold, t = 3 to the t-
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statistic to determine a set of suprathreshold links from which the connected components and their

respective size were identified. The decision to set the primary threshold, t, at three for the t-test

was based on the fact that we were only interested in a medium or above effect-size, calculated as

follows: t = sqrt (N)∗0.5 , where N is the number of subjects, in our case 38, and 0.5 is the Cohen’s

coefficient. Finally, for each contrast (meditators>controls and meditators<controls), topological

clusters of structural links that showed significant differences (p<.05) between the two groups were

extracted and represented using the Matlab toolbox ”BrainNet Viewer” (Xia et al., 2013).

Whole-brain MOU-EC model and parameter estimation

As described in Figure 1, the dynamic generative model MOU-EC was used to obtain whole-brain

connectivity estimates from the datasets parcellated into 116 ROIs as previously described. First,

we used the SC matrices extracted through the probabilistic tractography analysis (black and white

matrix at the left top of Fig.1) to constrain the model’s topology by setting a threshold to retain a

30% density of anatomical pathways. For within-group comparisons, we extracted two probabilistic

SC matrices, one for meditators and one for controls, by computing the average SC of participants

of each group. In contrast, to compare groups within each task, we converged the overlapping links

that were above threshold in both groups, by intersecting the SC matrix of meditators with the SC

matrix of controls. For each fMRI session, the BOLD autocovariance was calculated, both with and

without time lag (blue FC0 and green FC1 matrices in Fig. 1), and then reproduced by the model.

Before calculating autocovariance matrices, fMRI data were further filtered with narrowband 0.04-

0.07 Hz to avoid artifacts (Glerean et al., 2012). This framework relies on a dynamic system with

linear feedback to extract spatio-temporal information about the BOLD dynamics and directed

connectivity estimates (i.e, EC), namely the Multivariate Ornstein-Uhlenbeck (MOU) process. The

MOU process, analogous in continuous-time of the discrete-time multivariate autoregressive process,

can be mathematically described as follows:

dxi =

−xi

Tx
+

∑
j 6=i

Cji xj

 dt + dBi

Where xi denotes the activity of ROI i, which is influenced by the activity of other nodes and

decays exponentially by the time constant Tx. The information about the direct connection between

ROIs(i,j ) (i.e., EC) is stored in the matrix Cji (pink matrix at the left bottom of Fig.1), whose

skeleton is determined by the SC matrix so that weights for nonexistent connections are kept to

0 while those for existing links are estimated from the FC matrices. The variable dBi refers to

independent fluctuating inputs (i.e., local variability), consisting of the diagonal covariance matrix

Σ (vector of variances at the bottom of Fig.1). The estimated FC is determined by the propagation
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of the local variability generating network feedback via the EC. The model’s parameters Σ, and

Cji undergo an iterative gradient-descent optimization procedure such that the model is tuned to

reproduce the empirical FC0 and FC1 with the minimal error and the maximum values of Pearson

correlation coefficient mean for each session. For further mathematical details, we refer the readers

to Gilson et al. (2016, 2020). The code related to model optimization and classification is based

on the open-source language python, and it is available at github.com/MatthieuGilson/WBLEC_

toolbox.

Figure 1: Model parameters estimation (adapted from Gilson et al., 2020).

To capture BOLD dynamics, the model uses the time-series parcellated into 116 ROIs (box on the left top) to

calculate two autocovariance matrices (FC0 and FC1 matrices) both with and without time lag (blue and green lines

in the central box on top). The SC connectivity matrix (black and white matrix on the left) is used as a binary matrix

to constrain the model’s topology to existing connections. Besides the effective connectivity estimates (Pink matrix

at the left bottom), the autocovariance matrices (green and blue matrices at the right bottom) are also reproduced

by the dynamic model. The model undergoes an optimization procedure so that, at each step, the estimated FC

matrices are evaluated with regards to the empirical FC0 and FC1 matrices. The optimization steps are repeated

until reaching a high Pearson correlation coefficient between the model’s and the empirical FC matrices, reducing

this way the model error (depicted as the green and black lines in the central box on the left of the figure).
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Figure 2: Intersected SC matrix for each group

To estimate functional dynamics of both groups during each condition, we intersected the SC matrix specific to each

group (two matrices on the left side) and we generated a new SC matrix with all the links above-threshold common

to both meditators and controls (SC matrix on the right side).

Classification based in EC/FC weights

The classification procedure was run using the scikit-learn package (Pedregosa et al., 2011) based

on Python language. We performed four binary classification types: classification of conditions

(resting-state vs. meditation) within each group (controls and meditators, separately) and then

group classification (control group versus meditators), one for each state. To construct the feature

arrays, we used the probabilistic SC matrix together with model’s FC and estimated EC matrices.

First, we vectorized the SC, FC and EC matrices for each session (e.g., resting-state or meditation).

To reduce dimensionality, we selected the lower triangle of the symmetric SC and FC matrices,

resulting in a vector of 6670 SC links and one of 6670 FC links for each session. We applied the

SC mask specific for each group, or the intersected matrix between the two groups, to the EC

matrix in order to extract the EC vectors. Then, we z-scored within each session the SC, FC

and EC links using the mean and standard deviation of the corresponding vectorized connectivity

measures. Therefore, for each session of each subject, here referred to as sample, we had the ranking

of the vectorized elements of EC, FC, and SC as features to train two different classifiers, namely

the 1-Nearest Neighbor (1NN) and the Multinomial linear regression (MLR). This choice is because

the two algorithms capture the data’s different properties. Indeed, for the 1NN, we used Pearson
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correlation as a metric to evaluate the inverse distance between samples (i.e., vectorized connectivity

matrices). In this way, the 1NN classifier predicts the test-set session’s class by identifying the

trainset’s most similar session. On the other hand, the MLR is a supervised learning algorithm for

high-dimensional data optimal for linear classification. In order to predict the class (i.e., group or

condition), the model regressors are adjusted. The MLR tunes weights for each dimension of the

input features, allowing efficient feature selection procedures.

To train and cross-validate the two classifiers (1NN and MLR), we used 80% of the datasets

for training the algorithms and the remaining 20% for testing. We repeated the random splitting

procedure 50 times to assess the impact on the performance of different splits of data in train/test

sets. Only the accuracy of the 50 predictions on unknown data from the test-set were considered

to evaluate models’ performance.

We compared accuracy distributions using the Wilcoxon rank-sum method understand which

combination of classifier and metric performed better. Moreover, to investigate whether classifi-

cation results were significantly above chance, we compared accuracy distributions of real-labeled

data with surrogate data using the Wilcoxon rank-sum test.

Signatures extraction: support networks

We applied the Recursive-Feature Elimination with the MLR to extract group-specific signatures.

This algorithm is largely used in machine learning to rank the features according to their relevance

for the classification (Guyon et al., 2002). RFE applied to MLR allows to iteratively select a subset

of features by pruning at each iteration the least important features from the whole set until only the

most relevant links are left. We applied the RFE algorithm to group classification during meditation

and resting-state, separately, to disentangle the EC links (akin, support network) specific to the

group. For each application, we randomly selected 80% of data to train and fit the MLR using

RFE. Simultaneously, the remaining samples were used to evaluate the accuracy of MLR using

a different number of features based on the order given by the RFE ranking. We repeated this

cross-validation procedure ten times, randomly selecting 80% of samples for the train set and 20%

for the test set. Finally, we chose a subset of features for which the classifier performance was

stable across iterations and including additional features did not provide a significant increase in

classification accuracy.
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Results

White-matter changes induced by long-term meditation practice: NBS results

We used the NBS toolbox for identifying network connectivity differences at the anatomical level

following extensive training. We compared probabilistic DTI matrices of experienced meditators and

controls, and tested for both increased (meditators>controls) and decreased (controls>meditators)

probability of white-matter connectivity.

Significant results of nonparametric statistical analysis on anatomical matrices using the NBS

toolbox are shown in Figure 3. When testing the hypothesis of increased WM connectivity following

extensive training (meditators>controls), we found a component of 9 edges and 10 nodes, mainly

involving interhemispherical connections, that was significantly enhanced in meditators compared

to controls (p= .009).

Figure 3: Increased network-related SC in the meditators group compared to the control group. The

significant network resulting from the contrast meditators>controls, comprising 9 edges and 10 nodes, is represented

from a lateral (left top brain), medial (left bottom brain), and dorsal (right bottom brain) views. Nodes are colored

according to the hue of the network they belong. Connections within the same network nodes are presented with the

color hue of that specific network, while a gray arrow represents edges between nodes of different networks. The two

yellow nodes correspond to the left posterior area 1 and area 5 of the dorsal attention network, the green node refers

to region 1 of the limbic temporal pole, and the red node represents the visual area 1. The amygdala, part of the

subcortical network, is represented by the dark blue node, while the three lighter blue nodes refer to the prefrontal

cortex (PFC) areas belonging to the default mode network.
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The component comprised regions belonging to the dorsal attention, the default-mode (DMN),

the control, and the limbic networks. In particular, we found an increased probability of connection

in the meditator group within and between the posterior dorsal attention network and prefrontal

regions belonging to the DMN. The left prefrontal cortex (PFC) area of the DMN was also found to

show increased connectivity with three areas in the contralateral hemisphere: the precuneus, part

of the control network, the portion of ventral PFC belonging to the DMN, and the right amygdala.

Furthermore, in the meditator group, we found that two DMN nodes in the right PFC had increased

connectivity with the left visual area and the left limbic temporal pole. On the other side, for the

contrast controls>meditators, we obtained no significant results in component extent (p = .72),

suggesting that meditators do not show any network-related decrease in anatomical connectivity

compared to controls.

Classification of conditions within each group

Next we investigated functional changes, as quantified by FC and EC, with the aim to relate them

to the SC changes. For EC, we fitted the dynamic whole-brain model informed by the SC for the

two groups of subjects, meditators and controls. We investigated using machine-learning algorithms

whether meditation condition would be accurately differentiated from resting-state in meditators

and in controls subjects who were naive to meditation practice. Average accuracies corresponding

to the classification of conditions (i.e., meditation and resting-state) within each group following the

described feature extraction and validation methods are shown in Figure 4. Moreover, we compare

the distributions of accuracies for different features or classifiers using the Wilcoxon rank-sum test,

reporting p-values.

For features extracted with the estimated EC, we reported a significantly higher performance

with an average increase in accuracy of 6% compared to FC features for the MLR classifier in the

meditator group (Fig. 4A) (p=.004). Differences in MLR performance, depending on the type

of features, were not significant (p>.05) for the control group (Fig. 4B). Performance of 1NN

for distinguishing resting-state from meditation in the meditator group appeared to improve when

using FC features compared to EC (p<.0001), indicating that FC patterns are overall more similar

between the two conditions, while differences in EC measures are more localized. However, MLR

significantly outperformed the 1NN, both when using EC (p<.0001) and FC features (p<.0001)

for the meditator group. This suggests that the it is less the global EC (captured by the Pearson

correlation as a similarity measure for the 1NN) profile than specific EC links that significantly vary

across conditions in the meditator group. In contrast, EC significantly improved 1NN accuracy for

the control group, with a performance drop of 14% on average using FC (p<.0001) while the MLR

performance was not affected by the type of features for control subjects (p>.05). Nevertheless, the
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performance of classifiers was highly above chance-level both for meditators and controls (p<.0001)

using all metrics and classifiers.

Figure 4: Resting-state vs. meditation: classification accuracies within each group. Accuracy distributions

are shown for meditators (left panel) and controls (right panel) The violin plots in green show the accuracies for

the MLR classifier using the features related to EC, while the blue ones represent MLR performance using FC

features. Accuracies related to 1NN are shown in orange for EC and in pink for FC features. For both groups, all the

combinations between classifiers (MLR and 1NN) and metrics were significantly higher than chance-level (p<.0001).

These results showed that meditation induces characteristic connectivity patterns in brain activ-

ity which can be differentiated with high precision even in control subjects naive to the meditation

practice.

Group classification within each condition and signatures extraction

To further investigate the relationship between the impact of extensive training on white-matter

connectivity with the whole-brain functional dynamics, we classified the groups (meditators vs.

controls) separately in the two conditions (meditating and resting). Following the differences in SC

across the two groups in Fig 3, we also included a third set of features consisting of the vectorized

SC matrix specific to each subject. The group classification results for each condition are shown in

Figure 5.

The results of classification using resting-state sessions (Fig.5A) suggested that the better com-

bination of classifier and metric is the 1NN with EC features, with an average accuracy of 67%. The

1NN appeared to be better suited for discriminating meditators and controls in rest, suggesting that

data are overall clustered and that samples with the same labels are closer (i.e., showing similar

EC profiles). In particular, we found significant higher accuracy using EC features compared to FC

features in the group classification during resting-state, both for the MLR (p=.01) and the 1NN

(p=.002). EC features also yielded higher accuracies for the MLR compared to FC features, but
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the difference did not reach significance (p=.06). There were no difference in performance between

FC and SC, both when using the 1NN (p>.05) and the (p>.05), nor between EC and SC when

using the 1NN (p>.05).

When comparing the two groups while meditating (Fig. 5B), we found that the MLR showed

better performance (average accuracy= 68%) than the 1NN (average accuracy=55%) when using

EC features. This indicates that differences between the two groups while meditating are based

on specific weights of some EC features rather than the overall EC profile. Again, EC features

yielded to a better MLR performance compared to FC (p<.0001), and compared to SC (p=.005).

In contrast, we found a significant increase in 1NN performance when using SC features compared

to EC (p =.03). Difference in 1NN performance when contrasting FC and SC features were not

significant (p>.05).

Figure 5: Results of group classification during meditation and resting-state. The performance of 1NN and

MLR in discriminating the two groups are shown for resting-state condition (A) and meditation task (B). Significant

differences in performance depending on the type of features are shown in black for the contrast EC-FC features

and in purple for the contrast EC-SC features. Violin plots colored in gray represent accuracy distributions of

surrogate data. EC features led to the highest average accuracies with either the MLR or the 1NN, depending on

the condition. While the 1NN yielded the best performance for the resting-state sessions (average accuracy of 67%),

the MLR outperformed the 1NN when comparing the two groups during the meditation task (average accuracy of

68% against 55%, respectively).

These results suggested that meditation condition is in general better to distinguish between

subjects of the two different groups, as compared to resting-state. Moreover, EC features appeared

to be more informative than FC and SC in discriminating the two groups, both when resting (using

MLR and 1NN) and meditating (using MLR). This indicates that the combination of information

of SC and FC by the anatomo-functional whole-brain model better characterizes the differences
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between the two groups. Note that the performance of combination of classifiers (1NN and MLR)

and metrics (EC,FC,SC) was significantly higher than change-level (p<.05) for all cases except the

combination MLR with SC features which did not reach significance (p>.05).

Following the results of classification performance, we performed Recursive-Feature Elimination

(RFE) with the MLR classifier during meditation and resting-state conditions, separately. We in-

vestigated which EC links contributed the most to the accurate distinction between subjects of the

two groups. Results of RFE for group comparison during meditation are presented in figure 6. We

found that features relevant for the group classification during meditation were less (15 edges) than

those of the resting-state condition (23 edges). In both cases, the support networks showed a promi-

nence of intermispheric connections and connections within the left hemisphere although they were

distributed and across frontal and posterior regions. The most relevant features extracted during

meditation mostly involved top-down regulation between high-level functioning areas belonging to

the control, the dorsal attention, the salience/ventral attention, the DMN and the somatomotor

networks. In contrast, the support network of the resting-state condition showed a larger involve-

ment of the visual network and subcortical structures (including the thalamus, the amygdala and

the putamen), together with large-scale networks. In particular, the precuneus/posterior cingulate

cortex areas belonging to the DMN were found to exert direct influence on nodes belonging to

the visual, salience/ventral attention and the posterior dorsal attention network. Moreover, the

left PFC areas belonging to the DMN showed a top-down regulation over the putamen together

with projections to somatomotor and control networks. At the same time, the left PFC section

of the DMN received direct influence from the frontal operculum/insular region belonging to the

salience/ventral attention network. This areas was also found to receive top-down projections from

the orbito-frontal cortex, part of the limbic network. Connections going from and to the frontal

operculum/insular region were also found to be relevant when using meditation sessions. In fact,

this area appeared to be modulated by the orbito-frontal cortex, together with the left PFC part

of the DMN and the lateral PFC part of the control network.
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Figure 6: RFE results: Support network for group classification during meditation The group signatures

(i.e., highest-ranked EC features) are presented for the two conditions in sagittal, medial, and dorsal views, both for

the right and left hemispheres. The color of the nodes is determined by their belongingness to one of the eight resting-

state networks (red= visual; orange= somatomotor; light orange= dorsal attention; light green = Salience/Ventral

Attention; dark green = limbic; light blue= control; blue = DMN; dark blue = subcortical). The networks are drawn

from the parcellation in 100 ROIs comprising 7 functional divisions (Schaefer et al., 2018) together with 16 subcortical

regions (?). Gray arrows show the directionality of connection (EC-links) between ROIs of distinct networks. In

contrast, direct links between nodes belonging to the same network are colored according to network-specific hue.

Visualization of results was generated using the BrainNet Viewer Toolbox (Xia et al., 2013)

.

Together these results suggest that there are distributed differences between meditators and

control subjects in information propagation across large-scale networks, which are more prominent

in the left hemisphere.

Discussion

The purpose of this work was to contribute to research in contemplative neuroscience by shedding

light on the causal mechanisms underlying long-term meditation practice. First, we computed a

network-based analysis of whole-brain structural connectivity to understand how extensive training

modulated anatomical pathways. We showed that meditators had increased white-matter connec-

tivity across several large-scale networks compared to controls. Then, we applied computational

modeling in order to understand how differences in the underlying anatomical connectivity were

reflected in the brain’s information propagation. We estimated through a model-based approach
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the whole-brain EC profiles of meditators and controls, using their underlying anatomical connec-

tivity to explain functional dynamics during rest and meditation. Using machine-learning tools, we

demonstrated that EC features led to higher performance than FC or SC alone when classifying

groups and conditions, indicating that there is a synergy between structural and functional connec-

tivity patterns that can be captured through EC measures. We demonstrated, by applying a feature

selection procedure, that the two groups showed differences in information propagation across the

same large-scale networks found to have increased SC, both during meditation and resting-state.

The consistency of these findings supports the structure-function mutual relationship hypothe-

sis, according to which there is a high topological correspondence between structural and functional

connectivity (Straathof et al., 2019). In fact, we showed that extensive meditation training leads

to a structural reorganization of white-matter pathways. We opted for a network-based approach

since we were more interested in investigating the effects of long-term meditation practice on inter-

connected subnetworks rather than focal effects. Using the network-based statistics (NBS) method,

we found that experienced meditators, compared to the control group, showed enhanced SC in a

subnetwork mostly involving distributed inter-hemispheric connections between areas of the DMN,

the dorsal attention, the limbic, the visual, and the control networks.

The second reason is simply a matter of power—the NBS can offer substantially greater power

in the right circumstances, which is advantageous in the context of the graph model due to the

massive number of multiple comparisons that arise when the hypothesis of interest is tested at

every connection. The component highlighted by NBS analysis demonstrated strengthened connec-

tivity between areas involved in attentional, self-referential, and emotional processes. In particular,

changes in anatomical connectivity following extensive practice were more prominent between hemi-

spheres and within the left hemisphere (Fig.3), with increased connectivity between the posterior

areas of the dorsal attention and the left PFC, part of the DMN. The left PFC area belonging to

the DMN appeared to be a central hub, showing increased connectivity also with posterior areas of

the control network, and subcortical structures, such as the right putamen and the right amygdala.

Further interhemispheric WM tracts that were found to be enhanced in meditators compared to

controls regard connections between the left visual area and the right ventral PFC, part of the

DMN, which was also observed to have increased connectivity with the limbic temporal pole and

the left DMN portion of the PFC. The structural neuroplasticity that we found involved areas

whose functions is associated with largely reported meditation-induced behavioral effects, such as

improved emotional regulation and reduced stress (Chiesa and Serretti, 2009; Chung et al., 2012;

Tang et al., 2016), enhanced attentional skills (Valentine and Sweet, 1999; Brefczynski-Lewis et al.,

2007; Semple, 2010; MacLean et al., 2010), and reduced mind-wandering (Brewer et al., 2011).

In line with these results, we found that direct connections (i.e., EC links) between areas of the
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same large-scale networks that showed increased SC were also part of the support networks that

allowed discriminating meditators from controls during resting-state and meditation. In fact, we

demonstrated through group classification that meditators could be accurately distinguished from

control subjects both during rest (MLR average accuracy =64%) and meditation (MLR average

accuracy =67%), and that the maximum accuracy was reached when using EC features. In both

meditation and resting-state, the group signatures extracted through RFE were distributed across

the cortex but showed a prominence of the left hemisphere and involved EC links between nodes

belonging to the DMN, the dorsal attention, the salience/ventral attention, the control, the visual

and the somatomotor networks. Notably, the support network using resting-state sessions was

langer and showed a bigger involvement of visual and subcortical areas, such as the amygdala, the

thalamus and the putamen, compared to the one of meditation condition. Additionally, the frontal

DMN nodes appeared to exert direct influence over the control, salience/ventral attention and

dorsal attention regions during resting-state. Moreover, we found an upregulation from the frontal

operculum/insular region belonging to the salience/ventral attention network sending projections

to the PFC area belonging to the DMN during resting-state. The frontal operculum/insular region

appeared to play a central role in differentiating between meditator and control groups during

resting-state as well as meditation. In both cases, we found that the frontal operculum/insular

region received projections from the lateral PFC (part of the control network) and the orbito-

frontal cortex (part of the limbic network). This is consistent with the hypothesis that the insular

regions play a central role in switching between different networks (Sridharan et al., 2008) and

for interoceptive and emotional awareness (Simmons et al., 2013), which is a central skill trained

through meditation (Lutz et al., 2008). Although here we went beyond FC by capturing the direct

influence that one region may exert on others through EC, these results are in line with previous

literature on meditation-induced functional connectivity changes that have found increased coupling

for meditation practitioners compared to matched control subjects within and between nodes of

dorsal attention network and areas of DMN, and salience networks (Froeliger et al., 2012), as well as

connections among the nodes of dorsal attention network, executive, and visual circuits (Kemmer

et al., 2015; Boccia et al., 2015).

Despite the differences between the two groups in EC links highlighted by the support network

of group classification, we found that it was possible to discriminate resting-state from meditation

with high precision also for control subjects naive to meditation practice. The results of condition

classification within each group showed that differences between resting-state and meditation for

control subjects could be captured with high accuracy both when using EC (MLR average accuracy

=78%, 1NN average accuracy =78%) and FC features (MLR average accuracy =79%, 1NN average

accuracy =64%). The significant difference in 1NN performance between EC and FC features
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suggest that the overall EC profile of control subjects is more informative than their global FC profile

in discriminating the two conditions. In contrast, in the meditator group the best performance was

reached when using the MLR classifier with EC features (average accuracy =87%), indicating that

for meditators the differences between the two conditions rely on specific EC links rather than on

the overall EC profile.

The present study could be improved in the future in several manners. First, the NBS method

does not allow for interpretation at the single edge level since it provides only information about

the network behavior as a whole (Zalesky et al., 2010). Therefore, we could not directly relate

at the node level the results of SC with the results of RFE highlighting the most informative EC

links. An analysis at the link level requires more statistical power, hence many more subjects

than those analyzed here. Another limitation of our cross-sectional study lies in the statistical

relationship between the structural and functional changes, which could be studied in more depth

via a longitudinal experimental design to jointly measure the structural and functional changes

induced by meditation practice over a long training period.

Conclusions

The present work focused on unraveling the anatomical mechanisms and their relationship to brain

function underlying long-term meditation practice. We demonstrated the advantage of using a

model-based approach to extract effective connectivity estimates compared to standard correlation

analysis of BOLD signals, to highlight differences in information propagation between experienced

meditators and controls. Moreover, network-based analysis of anatomical pathways revealed a

cluster of edges, comprising areas involved in attentional, emotional, self-referential and control

processes, for which structural was enhanced in experienced meditators. Effective connectivity

links between nodes of the same large-scale networks were also found to be the most discriminative

features for distinguishing meditators and control subjects in resting-state and during meditation.

Together these results suggest the presence of meditation-induced neuroplasticity at the function-

structure level.
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