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Abstract 

Helminth infections, including hookworms and Schistosomes, can cause severe disability and 

death. Infection management and control would benefit from identification of biomarkers for 

early detection and prognosis. While animal models suggest that Trefoil Factor Family proteins 

(TFF2 and TFF3) and interleukin-33 (IL-33) -driven type 2 immune responses are critical 

mediators of tissue repair and worm clearance in the context of hookworm infection, very little is 

known about how they are modulated in the context of human helminth infection.  We measured 

TFF2, TFF3, and IL-33 levels in serum from patients in Brazil infected with Hookworm and/or 

Schistosomes, and compared them to endemic and non-endemic controls.  TFF2 was 

specifically elevated by Hookworm infection, not Schistosoma or co-infection.  This elevation 

was more strongly correlated with age than with worm burden.  To determine if this might apply 

more broadly to other species or regions, we measured TFFs and cytokine levels in both the 

serum and urine of Nigerian school children infected with S. haematobium.  We found that 

serum levels of TFF2 and 3 were reduced by infection, but urine cytokine levels were increased 

(IL-1β, TNFα, IL-13, and IL-10).  Finally, to determine if TFF2 and 3 might have 

immunosuppressive effects, we treated stimulated or unstimulated PMBCs with recombinant 

human TFF2 or TFF3 and measured proinflammatory cytokine levels.  We found that rhTFF2, 

but not rhTFF3, was able to suppress TNF alpha and IFN gamma release from stimulated 

human PMBCs.  Taken together, these data support a role for TFF proteins in human helminth 

infection. 
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Author Summary 

Billions of people are infected with parasitic helminths across the globe, especially in resource 

poor regions.  These infections can result in severe developmental delay, disability, and death.  

Adequate management of helminth infection would benefit from the identification of host 

biomarkers in easily obtained samples (e.g. serum or urine) that correlate to infection state.  Our 

goal was to determine if specific proteins involved in tissue repair and immune modulation are 

altered by infection with specific helminth species in Brazil (hookworm) or Nigeria (blood fluke).  

One of these proteins, Trefoil Factor 2 (TFF2), was elevated in the serum of hookworm infected 

individuals, and decreased in the serum of blood fluke infected children.  In the blood fluke-

infected children, there were also significant increases in pro-inflammatory cytokines in the 

urine, where the eggs burst from host tissue.  Further, in laboratory experiments, Trefoil Factor 

2 reduced the release of pro-inflammatory cytokines from human blood cells.  This suggests 

that at high levels TFF2 may suppress inflammation and could serve as a biomarker for 

infection or treatment efficacy. 
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Introduction 

 
Billions of people are infected with parasitic helminths including cestode, nematode, and 

trematode species that are collectively responsible for millions of disability associated life years 

(DALYs) annually across the globe [1]. While considerable advances have been made in drug 

development and mass drug administration efforts can reduce worm burdens in endemic areas, 

the high prevalence of re-infection in humans living in endemic countries [2-4] suggests worms 

have evolved multiple ways to subvert and/or avoid host immunity. For instance, infection of 

children with hookworms including Necator americanus and Ancylostoma duodenale infections 

causes anemia and failure to thrive [5-8].  In adults, hookworm infections have been linked with 

a generalized immunosuppression that may lead to reduced vaccine efficacy [9, 10]. N. 

americanus experimental infections engage host immunoregulatory pathways driven by 

cytokines like interleukin 10 (IL-10) and transforming growth factor beta (TGF-β) [11], which 

could partially explain the ameliorative effect of hookworm infections in the context of 

autoinflammatory diseases, like celiac disease [12]. Whether such immunosuppression is due to 

host derived suppressive molecules and/or parasite derived factors released within the 

excretory secretory products remains unclear. 

The immunoregulatory impact of parasitic helminths on their hosts is also a central 

feature of infections by blood flukes in the Schistosoma species. Human schistosomiasis, a 

neglected tropical disease that affects over 250 million people worldwide, results in severe 

morbidity, compromised childhood development, and an estimated 280,000 deaths annually 

[13]. Although praziquantel administration is an effective pharmacological treatment against 

adult Schistosomes [14], patients often present with elevated re-infection rates [15, 16] , which 

again points to the ability of Schistosomes to modulate the immunological landscape of their 

hosts during chronic parasitism.  Indeed, humans infected with S. haematobium can mount 

prototypical Type 2 responses associated with reduced damage and parasite clearance [17], but 
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also show reduced tendency toward allergic responses [18-20], implying that ongoing infection 

downmodulates the inflammatory status of the host.  Further, the generation of long-lasting 

immunotherapies to combat Schistosoma infections is greatly limited by our poor understanding 

of how helminth-induced inflammation is regulated.  A greater understanding of how different 

worm species module their hosts is certainly needed in order to address three unresolved 

issues: 1) does parasite burden corelate with or predict the degree of immunomodulation, 2) do 

humans living in distinct endemic areas mount similar responses, 3) how does tissue injury 

caused by parasitic infection elicit host immune and tissue repair responses? 

Amongst all of the known tissue repair mechanisms operating at the mucosal interface, 

Trefoil factor family proteins (TFF1, TFF2, and TFF3) remain one of the most poorly understood. 

TFF proteins are small secreted glycoproteins produced by goblet cells under both homeostatic 

and injury-induced conditions [21-23]. Trefoils are named after their evolutionarily conserved 

cloverleaf shaped “P” or trefoil-domain, which imparts functional resistance to proteolysis [24]. 

TFF2 and TFF3 are the predominant TFFs produced in the colon of humans and most 

mammals, but only bear ~20% amino acid conservation [25].  TFFs 1-3 are diagnostic for GI 

tissue injury responses in human mucosa, e.g., TFF expression marks the ulcer-associated cell 

lineage (UACL), which defines cells located at the regenerative border of GI ulcers [26, 27]. 

Although it is known that prophylactic administration of rTFF2 and rTFF3 into the GI lumen of 

rodents with injury induced inflammation leads to suppression of disease [28-30], the lack of 

protective efficacy for TFF3 enema administration in a clinical trial of humans with Ulcerative 

Colitis [31] has led to controversy regarding the necessary context and utility for using TFFs in 

the regulation of GI inflammatory disease.  Our work has implicated TFF's as important 

immunoregulatory molecules in the context of GI parasite infection [32-35].  Importantly we 

found that TFF2 can suppress proinflammatory cytokine production in the context of T. gondii 

infection [34] and the genetic deficiency in TFF3 led to increased release of Type 1 

inflammatory cytokine INFγ [32].   
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The overarching goal of this study was to address the idea that the chronic injurious 

nature of hookworm or Schistosoma infection in different parts of the world would associate with 

changes in TFF2 or 3.  We also sought to determine if parasite intensity might correlate with the 

levels of TFFs. Here, we find that hookworm infection in a Brazilian cohort preferentially 

elevated TFF2 levels, even when compared to co-infection with Schistosomes.  In contrast to 

our expectation, we found that older age, rather than egg burden had a stronger positive 

correlation with TFF2 levels.  In agreement with this, children in Nigeria with S. haematobium 

infection exhibited lower levels of serum TFF2 and TFF3, which corresponded with higher levels 

of cytokines in the urine, including the type 2 cytokine IL-13, the proinflammatory cytokines 

TNFα and IL-1β, and the regulatory cytokine IL-10. Interestingly, exposure of human PBMC 

from normal subjects not living in endemic areas shows that TFF2, but not TFF3 had 

suppressive effects on the ability of these cells to undergo PHA induced proinflammatory 

cytokine production (TNFα and IFN-γ).  Taken together, this work indicates that TFF levels are 

modulated in body fluids of infected individuals and may have a role in promoting 

immunoregulation that occurs in such individuals.  
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Methods 
IRB Approval and Recruitment of Samples from Human Subjects  

The George Washington University IRB approved the project (IRB# 100310), which was 

effective August 22, 2011.  Samples for this study were recruited from this ongoing study from 

2013-2014.  The study was conducted in an area endemic for hookworm in Americaninhas, 

Novo Oriente, Northeastern Minas Gerais, Brazil.  All communication about the study, including 

the written consent form was conducted in Portuguese.  The Brazilian Ministry of Health (MOH) 

and local health officials from each village were in charge of the on-site medical supervision.  

These officials routinely supply and administer anti-helminthics, and are proficient and skilled at 

drawing blood in a rural setting, due to continuous surveillance studies run by the MOH. Prior to 

obtaining written consent, subjects were informed of the study during a village meeting, when 

members of the local departmental health institutes provided an explanation about the aim, 

execution plan, and methodologies of the study.  At this meeting the villagers were able to ask 

questions and offer their opinions, and efforts were made to ensure that the village residents 

understood, including their right to refuse participation in the study.  After this meeting, written 

consent was obtained from all adult subjects, from the parents or guardians of minor subjects, 

and written assent was obtained from the minor subjects.  Exclusion criteria included full time 

school or work attendance outside of the endemic area, a positive pregnancy test, or 

hemoglobin < 80g/L.  

The George Washington University IRB also approved an additional protocol (IRB# 

190988) to recruit healthy adult subjects (18-50 years old) to provide control serum samples via 

word of mouth and advertisement (e.g. newspaper, online, Research Match).  These subjects 

were also informed of the purpose of the study via in person meeting with a member of the 

study team in a private room, who also answered any questions the subject might have and 

stress that participation is voluntary. Subjects also receive a written description of the study and 

provided their signature on an informed consent form.  It was made clear that they could 
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withdraw their sample at any time, and the written document provided a means to contact the 

research team if they chose to revoke consent.  Blood collection was conducted by a trained 

individual and the volume of collection did not exceed 50 mL. 

The Nigerian Institute of Medical Research IRB approved the project (No. IRB/18/042), 

which was effective April 4, 2018 – March 10, 2019, when patient information and samples were 

recruited.  Social approval for the study was obtained from the Medical Officer in-charge of 

Health in the Local Government as well as the approval of the Education Secretary of the Borgu 

Local Government Education Authority. Details of the procedure were explained to all 

participants during the social mobilization stage. The written informed consent of parents was 

obtained with the assent of the children to participate in the exercise.  Participation was 

voluntary and the assent of each child was obtained before sample collection. The study was 

conducted in accordance with the tenets of Helsinki Declaration of 1964 as amended in 2013 

and guidelines of Good Clinical Practice. 

 

Patient Demographics and Samples 

Brazilian Cohort: Patients were recruited from hookworm (N. americanus) endemic 

areas for this study, consented to provide serum and fecal samples (to diagnose infection and 

assess egg burden).  TFF2, TFF3, and IL-33 were measured from serum samples by ELISA.  

Initial analysis indicated that sexes did not differ.  Further, endemic and non-endemic controls 

did not differ in their levels of any analyte, and were pooled for statistical comparison with 

patient levels.  The first experiment assessed co-infection state, which is common in the region, 

and included patients infected with either Schistosoma (n = 11, 6 female), Hookworm (n = 20, 9 

female), or both (n = 16, 8 female), and were compared to both uninfected endemic (n = 25, 13 

female) and non-endemic (n = 20, 10 female) controls (data in Fig.1A-C).  This cohort ranged 5-

67 years old (27 mean ± 18 SD years).  We also collected from a larger cohort of hookworm-
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infected individuals that included 69 females (3-72 years old, 29 mean ± 21 SD years) and 97 

males (4-70 years old, 27 mean ± 20 SD years) (data in Fig.1D-F). 

     

Nigerian Cohort: Children aged 6-17 years undergoing routine health screening through 

their school provided blood, urine and feces, and were divided into infected or uninfected groups 

based on the presence of eggs from the blook fluke S. haematobium in urine samples.  Fecal 

samples were used to determine if any control individuals (no S. haematobium eggs in urine) 

also had hookworm infection and these were excluded from analysis.   There were no S. 

haematobium infected children co-infected with hookworm.  Trefoil factors and cytokines (IL-33, 

IL-1b, IL-13, IL-17A, IL-22, IL-10, IFNγ and TNFα) were measured from serum and urine 

samples by ELISA.  Dipstick uranalysis was performed by pipetting drops of urine onto Multisitx 

10SG reagent strips from Siemens (Tarrytown, NY), to assess for signs of damage to the 

urinary tract such as elevated protein and presence of blood in the urine, and other features 

(specific gravity, pH, ketones, glucose, nitrite, urobilinogen, and leukocyte content).   

In total, 78 (30 female) children, aged 6-14 years, provided samples. Preliminary 

laboratory analysis done at the Nigerian Institute of Medical Research was included prior to 

shipment to the University of Pennsylvania, where ELISA measurements were performed. After 

shipment, some samples lacked sufficient volume for testing.  Of the serum samples tested, 51 

came from children without S. haematobium eggs in their urine (23 were female, 17 had 

hookworm eggs in feces), 16 came from infected children with S. haematobium eggs in their 

urine (2 were female).  Of the urine samples tested, 48 came from children without S. 

haematobium eggs in their urine (21 were female, 14 had hookworm eggs in feces), 17 came 

from infected children with S. haematobium eggs in their urine (23 were female).  Only 

hookworm uninfected controls (n = 34) were compared to S. haematobium infected samples (n 

= 16-17). 
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Culture and Treatment of Human Peripheral Blood Mononuclear Cells 

 Human Peripheral Blood Mononuclear Cells (PBMCs) were obtained from four 

anonymous donors and generously provided by Dr. Douglas Nixon.  Cells were plated 2.5 x 105 

per well in RPMI buffer (Gibco, Amarillo, TX) containing 5-10% human non-autologous plasma 

(Gemini Bio, West Sacramento, CA) and maintained in 37°C incubation with 5% CO2.  Some 

wells were pre-treated with human recombinant TFF2 or 3 overnight (25 ng/µL, US Biologicals, 

Salem, MA), before being stimulated with phytohemaglutinin (PHA, 50µg, Thermofisher, 

Waltham, MA), for 24 hours.  Unstimulated controls were run simultaneously, both with or 

without exogenous TFFs, to confirm a lack of direct effect on cytokine release.  Supernatants 

were collected and IFNγ and TNFα were measured by ELISA at the end of stimulation.  Each 

treatment point is the average of two duplicate wells. 

 

Enzyme Linked Immuno-Sorbent Assays (ELISAs) 

Commercially available ELISAs were used to measure levels of human TFF2, TFF3, IL-

33, IL-1β, IL-13, IL-17A, IL-22, IL-10, IFNγ and TNFα in human serum and urine samples, and 

for IFNγ and TNFα, media from control or stimulated human PMBCs, according to the 

manufacturer’s instructions.  Human TFF2, TFF3, and IL-33 ELISA kits were from R&D Systems 

(Minneapolis, MN).  Human IL-1β, IL-10, IL-22, IFN-γ, and TNF-� ELISA kits were from 

Biolegend (San Diego, CA). Human IL-13 and IL-17A ELISA kits were from eBioscience (San 

Diego, CA). Because the Brazilian cohort required multiple plates to process the samples, 

standard curves and positive and negative plate to plate quality controls were run on each plate 

to ensure consistency across plates.  All standard curves produced R squared values ranging 

from 0.978-0.993, and the quality controls were less than 2 standard deviations from the 

average across plates, indicating consistent performance across plates. 

 

Statistical Analyses 
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Graph Pad Prism (v9) was used to graph and statistically analyze the data.  One statistical 

outlier, defined as greater than 2 standard deviations above the group mean, was excluded from 

the endemic control TFF2 serum data set in Fig.1D for the Brazilian cohort.  For two group 

comparisons, Welch’s t-tests were used.  For comparisons between three groups, one-way 

ANOVA was used, with post-hoc Tukey’s test.  Pearson’s correlations were used to determine 

the contribution of egg count or age to TFF2 levels in hookworm infected patients.   For culture 

data, which does not conform to normality, non-parametric comparison of three groups was 

performed using the Kruskal-Wallis test, with post-hoc Dunn’s multiple comparisons test.  Data 

in box and whisker plots are expressed as median and the interquartile range, while data in bar 

graphs are expressed as mean and standard error of the mean. 

 

Results 

Helminth Infections Differentially modulate TFFs and Hookworm Single Infection 

Increases TFF2 Age-dependently in the Brazilian Cohort 

We have previously shown critical roles for TFF2, TFF3 and the alarmin cytokine IL-33 in 

protective immune responses in a murine model of hookworm infection [32, 33, 36], which 

needs to be confirmed in human infection.  We first addressed this in patient samples from 

Brazil.  Serum levels of TFF2, TFF3, and IL-33 did not differ between endemic and non-endemic 

controls (Fig. 1A-C), so these were pooled for comparison against patient samples.  Co-

infection of helminths is quite common in Brazil, particularly between hookworm (N. americanus) 

and Schistosoma mansoni, but there do not seem to be common genetic factors associated with 

their regulation within a single host, suggesting they may have different effects on immune 

responses [37]. Therefore, we sought to determine what effect co-infection of hookworm and 

Schistosoma, or Schistosoma infection alone might have on TFF2, TFF3, and IL-33 levels in 

serum.  There was a significant effect of infection on serum levels of TFF2 (F3, 88 = 3.404, p = 

0.0211) and TFF3 (F3, 88 = 11.88, p<0.0001), but not on IL-33 levels (F3, 88 = 1.246, p = 0.2980) 
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(Fig. 1A-C).  Hookworm infection alone was associated with significantly elevated TFF2 in 

serum as compared to controls, while Schistosoma-only or coinfection were intermediate and 

not significantly different from controls (Fig. 1A).  In contrast, TFF3 levels in serum from 

Hookworm-infected individuals was no different from pooled controls and significantly lower than 

Hookworm/Schistosoma co-infection, while Schistosoma infection and co-infection had 

significantly greater TFF3 than controls (Fig. 1B).  Given the trend toward increased TFF2 

associated with Hookworm-only infection, we tested additional samples against endemic 

controls, and found a significant increase (t = 8.861, df = 135.9, p<0.0001, Fig. 1D).  Taken 

together, this indicates that TFF levels are differentially regulated by different types of helminth 

infection.  Specifically, TFF2 elevation is specifically associated with Hookworm infection while 

TFF3 elevation is associated with Schistosoma infection in a mostly adult population. 

Given that our cohort from Brazil may have variable levels of worm burden and have a 

wide age-range (2-72 years), we sought to assess whether these factors correlate positively or 

negatively with TFF2 levels in hookworm-infected patients.  There was a small but significant 

positive correlation for both fecal egg count (R2 = 0.03745, n = 108, p = 0.0448, Fig. 1E) and 

age (R2 = 0.1215, n = 108, p = 0.0002, Fig. 1F).  This indicates that age, rather than worm 

burden, is more positively correlated with TFF2 levels in hookworm-infected individuals. 

 

TFF Serum Levels are Decreased with S. haematobium Infection in Nigerian School 

Children 

 Helminths impact a large proportion of the globe and a wide range of age groups.  

Nigeria is another region where different helminth infections are common, including the blood 

fluke Schistosoma haematobium, which is more prevalent among Nigerian school children than 

S. mansoni[38].  Given the differences we observed in the Brazilian cohort between hookworm 

and Schistosoma infections, we also sought to characterize TFF2, TFF3, and IL-33 levels in a 

pediatric cohort from Nigeria including children infected with S. haematobium.  We found that 
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both TFF2 (t = 5.896, df = 30.04) and TFF3 (t = 8.317, df = 42.94) were significantly decreased 

in serum samples from children infected with S. haematobium (Fig. 2A, B), but not IL-33 (Fig. 

2C). Although this species of blood fluke infects the urinary tract and causes damage during 

infection[39], we did not find a similar pattern of significance in urine samples from infected 

versus uninfected children (Fig. 2D-F), indicating that urine cannot substitute for serum in terms 

of immune-related responses in this infection.  TFF2 levels are much higher in urine than serum 

levels for the whole cohort, and TFF3 levels also seem to be higher in urine than serum in some 

cases.  This may reflect a high degree of clearance of these factors.  As indicated previously 

(Fig. 1D), lower age is associated with lower TFF2 levels, indicating the low measured values of 

the Nigerian children versus the mostly adult Brazilian cohort.  Taken together, these data 

indicate that helminth species differentially affect the levels of TFF2 and TFF3 in an age-

dependent manner. 

 

S. haematobium Infection is Associated with Increases in Cytokines in Urine but not 

Serum  

 We further evaluated consequences of S. haematobium infection on cytokine levels in 

serum and urine, where serum may reflect systemic inflammatory responses, while urine may 

reveal damage-associated signals as well as site-directed healing.  Indeed, urine samples from 

children with S. haematobium infection had significantly elevated protein (0.07353 vs 1.029, t = 

4.650, df = 16.74, p = 0.0002) and blood (0.1029 vs 1.765, t = 4.884, df = 17.54, p = 0.0001) as 

compared to uninfected controls, but across other general measurements of the urine samples 

(e.g., glucose, pH, specific gravity, etc.) did not differ significantly (data not shown).  Helminth 

infection is associated with alarmin cytokine signaling, and clearance is broadly associated with 

Type 2 immune responses [40].  In both compartments, we measured IL-1β, which is in the 

same family as IL-33 [41], cytokines associated with proinflammatory immune responses and 

enhanced tissue damage (IFNγ, TNFα) [42], with Type 2 immune responses (IL-13) [40], and 
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other regulatory or healing processes (IL-17A, IL-22, IL-10) [43, 44].  As with TFF levels, serum 

and urine samples revealed differing patterns of increased cytokine levels in infected versus 

uninfected children.  Serum levels were not significantly different for any cytokine tested (Fig. 

3A-D and SFig. 1), although IL-13 (t = 1.974, df = 17.85, p = 0.0640) and IL-10 (t = 1.878, df = 

15.77, p = 0.0790) trended towards significance.  In urine, there was a significant increase in IL-

13 (t = 3.735, df = 19.78, p = 0.0013), IL-1β (t = 2.547, df = 16.2, p = 0.0214), IL- 10 (t = 3.290, 

df =16.08, p = 0.0046), and TNFα (t = 2.488, df = 19.48, p = 0.0221) in infected versus 

uninfected children (Fig. 4 E-H).  We found no difference between infected versus uninfected for 

levels of IFNγ, IL-17A, or IL-22 in urine (Sfig.1).  Taken together, these data indicate that 

significant elevations in inflammatory cytokines (IL-13, IL-1β, TNF α) and the regulatory cytokine 

IL-10 are detected in at the active site of damage in the urinary tract (urine), rather than more 

systemically in the serum.   

 

TFF2, but not TFF3, Suppresses Pro-Inflammatory Cytokine Release 

 Because TFFs are altered by helminth infection and known to modulate immune 

responses, we sought to determine what effect TFFs might have on proinflammatory responses. 

We cultured human PBMCs and stimulated them with phytohemaglutinin (PHA), both alone and 

in the presence of recombinant human TFF2 or TFF3. PHA mimics a highly inflammatory state 

and produces a significant increase in both interferon gamma (IFN-y) and tumor necrosis factor 

alpha (TNF-a) production vs media alone, or with TFFs alone (Fig. 4).  This response was 

significantly repressed by co-treatment with rh-TFF2, but not rh-TFF3 (Fig. 4), indicating that 

elevated TFF2 may contribute to suppressed inflammatory responses in the context of 

hookworm infection.  
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Discussion 

 Our previous work in mouse models of helminth infection strongly suggests that trefoil 

factors contribute to protective immune responses and parasite clearance [32-35].  To further 

support the translational potential of TFFs as a biomarker of infection or therapeutic target, we 

evaluated the levels of TFF2 and TFF3 for the first time in human helminth infection in 

geographically distinct regions.  In Brazil, we found that human TFFs are modulated by helminth 

infection in a species and age-dependent manner.  TFF2 was specifically elevated by 

hookworm infection and increased more strongly with age than with parasite burden.  In 

contrast, infection with the blood fluke S. haematobium decreased TFF2 and TFF3 levels in 

serum of infected Nigerian children.  This reduced level of TFFs was accompanied by increased 

levels of cytokines in the urine of infected children, including proinflammatory IL-1b and TNFα, 

the type-2 cytokine IL-13, and the inhibitory IL-10.  Exogenous TFF2 was associated with 

suppressed TNFα and IFNγ production by stimulated human PMBCs, suggesting that elevated 

TFF2 in the context of hookworm infection could reduce these pro-inflammatory cytokine levels 

through direct or indirect mechanisms in vivo.  Given that TFF2 is low in younger populations 

and further reduced in S. haematobium infected children, this could be why TNFα is high in 

urine and by proxy the infection site of the bladder and urinary tract, where S. haematobium 

eggs burst through tissue into the urine. These findings bring us closer to understanding the 

mechanisms involved in human helminth infection.  This information is necessary for uncovering 

diagnostic biomarkers to evaluate treatment efficacy and to develop better strategies to control 

infection. 

It is generally accepted that tissue damage caused by the invading larval stages of 

various worm species drives prototypical Type 2 responses [45-49], which contribute to worm 

clearance and tissue repair [40].  These type 2 responses are initiated by the release of alarmin 

cytokines like IL-25, IL-33 or, thymic stromal lymphopoietin (TSLP) from damaged tissue [45-

49].  We were unable to detect any significant differences in IL-33 levels in either human cohort, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447912doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447912


 

 

suggesting that this cytokine is not a good biomarker of infection.  This finding does not 

necessarily negate a potential role for IL-33 in human immune responses to helminths, as it may 

be relevant at the infection site at specific times during the course of infection, which may not be 

adequately sampled by minimally-invasive methods.  

 Alarmin cytokines are key signals to activate tissue resident type 2 innate lymphocytes 

(ILC2s) and CD4+ TH2 cells, leading to their proliferation and release of both type 2 cytokines 

(IL-13 and IL-5) [48].  We were able to detect significant elevation in IL-13 associated with S. 

haematobium infection, particularly at the site of damage, supporting the idea that type 2 

immune responses occur in the context of human infection.  This may suggest that IL-13 in 

urine could serve as a non-invasive biomarker to track treatment efficacy.  Additionally, S. 

haematobium is difficult to model in experimental animals, but some features can be 

recapitulated in a mouse model system [50].  Our findings in human infection largely concur with 

earlier findings in the mouse model, specifically chronically elevated IL-13 and TNFα in the 

bladder tissue of egg-injected mice and only transient changes in IL-17 [50].  Some of the 

regulatory cytokine findings did differ between human data and the mouse model.  Specifically, 

IL-10 elevation, but not TGFβ was associated with human infection, whereas the opposite was 

true in the mouse model [50].  This supports the translational relevance of the mouse model 

system, as well as a potential avenue to uncover mechanisms that could be targeted to boost 

immunity in humans. 

These type 2 responses are thought to both augment clearance mechanisms against 

helminth colonization and also act to initiate tissue repair [40].  Host tissue repair would be 

advantageous for the parasite, as helminth survival depends on the host’s survival. TFF proteins 

are also critical for mucosal tissue repair [51], and may act upstream or in parallel with type 2 

immune responses.   Although our work in mouse models of hookworm infection suggests that 

both TFF2 and TFF3 contribute to worm clearance, tissue repair, and the suppression of 

proinflammatory cytokines [32-35], we found that TFF2 is specifically increased in the context of 
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human hookworm infection and can reduce secretion of proinflammatory cytokine by human 

PMBCs.  In the mouse hookworm infection model N. brasiliensis, TFF2 is required for induction 

of IL-33, early Type 2 cytokine responses, and contributes to clearance of worms from the 

gut[35].  We found that high TFF2 in human hookworm infection was not associated with higher 

IL-33 levels.  This may suggest a species difference that could be worth examining further.  The 

lack of IL-33 induction in humans may explain why the infection persists.  Further exploration as 

to why TFF2 in mice can induce IL-33, but may not do so as strongly in humans could help 

identify mechanisms where human immunity could be boosted to improve worm clearance.   

In contrast to hookworm infection, S. hematobium infection in children was associated 

with a decrease in both TFF2 and TFF3 in the serum, but not the urine.  The reason why TFFs 

modulation is detectable in serum, but not urine, while cytokine differences were seen only in 

urine and not serum is not entirely clear.  It could point to different responses of the host  to the 

adult form found in vasculature versus the eggs encysted in the bladder wall and released into 

the urine [52].  This is the first time TFFs have been examined in the context of S. hematobium 

infection, but there is some link in the literature connecting TFFs to bladder [53-55].  Of note for 

our findings, cats with idiopathic cystitis, a painful condition characterized by hypercontractivity 

and frequent urination, have reduced levels of TFF2 in bladder biopsies compared to healthy 

controls [54].  It may be useful to determine if TFF levels correlate with measurements of 

bladder dysfunction or other aspect of S. hematobium infection in the future.  Given the age and 

species specific-effects on TFF2 levels in serum of the Brazilian cohort, it will be necessary to 

expand these studies in children to additional age groups in the future.  

 

Conclusion 

It is critically important that we find ways to identify helminth infected individuals using 

easily obtained samples and inexpensive techniques that can be implemented in endemic 

regions.  One of these approaches is the identification of disease biomarkers.  Our findings 
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provide an initial step toward determining if TFFs or other immune mediators might serve as 

biomarkers for specific helminth infections.  Disease biomarkers could be used to track the 

efficacy of drug treatments for parasite clearance and to focus expensive mass drug 

administration efforts on the most vulnerable populations, like children at risk for developmental 

delay, which will minimize risk of generating drug resistant parasites, particularly Schistosomes 

[15, 56].  While the use of molecular diagnostic approaches, including parasite-derived 

microRNAs shows promise [57, 58], these have not been developed for S. haematobium. Our 

work suggests that evaluation of tissue reparative molecules that significantly change during 

active infection could present a viable approach for serological-based analyses in resource 

limited settings. It is likely that a combinatorial approach that uses both detection of parasite-

derived and host-derived molecules would allow a highly specific approach to identify individuals 

with distinct parasite species and those who are likely to have a blunted response to vaccination 

against viral and bacterial pathogens.   
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Figure Legends 

Figure 1.  TFF2 and 3 levels are modulated differently by hookworm versus Schistosoma 

helminth species and TFF2 levels are age-dependent in individuals from Brazil. (A) Levels of 

TFF2 or (B) TFF3 in serum samples from Brazilian patients with either Schistosoma (n = 11), 

Hookworm (n = 20), or both (n = 16) versus uninfected controls (n = 25 endemic and n = 20 

non-endemic). (C) Levels of TFF2 in serum sample from hookworm-infected patients (n = 108) 

and non-endemic negative controls (n = 48).  (D) Linear relationship between patient fecal egg 
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burden and serum TFF2 levels.  (E) Linear relationship between patient age and serum TFF2 

levels in hookworm-infected patients.  * p<0.05, ** p<0.01, **** p<0.0001 

 

Figure 2.  TFFs are decreased in serum but not urine samples from Nigerian children infected 

with S. haematobium.  (A, B) Levels of TFF2 or (C, D) TFF3 in serum (A, C) and urine (B, D) 

samples from Nigerian school children infected with S. haematobium (n = 16-17) versus 

uninfected controls (n = 34).  **** p<0.0001. 

 

Figure 3.  Cytokine levels are significantly elevated in urine, but not serum samples of Nigerian 

children infected with S. haematobium. (A-D) Serum levels and (E-H) urine levels of (A, E) IL-

13, (B, F) IL-1b, (C, G) IL-10, and (D, H) were measured infected (n = 16-17) and uninfected (n 

= 34) children, and only urine samples from infected children were significantly higher.   * 

p<0.05, ** p<0.01 

 

Figure 4.  rhTFF2, but not rhTFF3 reduces PHA-evoked TNF alpha and INF gamma produced 

by human PMBCs in culture. (A) TNF alpha levels or (B) INF gamma levels produced by 

cultured PMBCs (2.5 x 105 cells/well) following treatment with media alone, media with rhTFF2 

or rhTFF3 (25 ng/µL each, n = 4 wells), PHA (50µg) alone or PHA with rhTFF2 or rhTFF3 (n = 8 

wells).  Pairwise comparisons as indicated: * p<0.05 

 

Supplemental Figure 1.  Cytokines (IFNγ, IL-22, and IL-17A) not changed in serum or urine 

samples of Nigerian children infected with S. haematobium. (A-C) Serum and (D-F) Urine 

samples were assessed for (A, D) IFNγ, (B, E) IL-22, and (C, F) IL-17A levels, and do not 

significantly differ between infected (n = 16-17) and uninfected (n = 34) children. 
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