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Abstract
Classification and characterization of neuronal types is critical for understanding their function and dysfunction.
Neuronal classification schemes typically rely on measurements of electrophysiological, morphological and
molecular features, but aligning these data sets has been challenging. Here, we present a unified classification
of retinal ganglion cells (RGCs), the sole retinal output neurons. We used visually-evoked responses to classify
1777 mouse RGCs into 42 types. We also obtained morphological or transcriptomic data from subsets and
used these measurements to align the functional classification to publicly available morphological and
transcriptomic data sets. We created an online database that allows users to browse or download the data and
to classify RGCs from their light responses using a machine-learning algorithm. This work provides a resource
for studies of RGCs, their upstream circuits in the retina, and their projections in the brain, and establishes a
framework for future efforts in neuronal classification and open data distribution.

Introduction
A major goal in biology is the establishment of a comprehensive atlas of cell types. Many large-scale efforts are
underway to classify cells in different tissues (Hodge et al., 2019; Regev et al., 2017; Wilbrey-Clark et al., 2020;
Yuste et al., 2020). In the central nervous system (CNS), classification efforts have relied mainly on three types
of information: functional, morphological, and molecular. Functional classification involves the physiological
properties of neurons, typically measured by electrophysiological recordings. Morphological classification uses
the dendritic and axonal structures of neurons, typically measured by light microscopy and sometimes by
electron microscopy (EM). Molecular classification relies on genomic readouts, particularly gene expression
patterns (transcriptomics) where recent advances in single-cell RNAseq and spatial transcriptomics have made
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large-scale measurements feasible (Close et al., 2021; Yuste et al., 2020). It has become increasingly clear
that these different classification methods offer complementary information and that a comprehensive
classification of cell types needs to unify all three modalities (Scala et al., 2020; Zeng and Sanes, 2017).

The mammalian retina is especially well suited to provide a template for integrating functional, morphological,
and genetic classification for three reasons. First, many retinal cell types exhibit regular spacing, called a
mosaic, which ensures smooth and complete sampling of visual space (Bleckert et al., 2014; Kay et al., 2012;
Reese and Keeley, 2015; Rockhill et al., 2000; Rousso et al., 2016; Wässle et al., 1981). This property means
that experimentalists can sample from a sub-region of the retina and be assured that they will find cells of each
type. Moreover, mosaics establish an independent metric to assess whether a set of cells comprises an
authentic type. Second, because the retina responds to light ex vivo, functional measurements of retinal
neurons include both intrinsic biophysical properties and response properties to visual stimuli. Light responses
depend on the entire upstream synaptic network, creating a rich data set. Finally, our knowledge of the
morphology of retinal neurons, particularly in the mouse, is unparalleled among tissues of the mammalian CNS
(Bae et al., 2018; Hoon et al., 2014; Sanes and Masland, 2015).

Here, we present a unified functional, morphological, and genetic classification of mouse retinal ganglion cells
(RGCs), the output cells of the retina. We collected detailed functional data from 1777 RGCs, and also
obtained morphological or transcriptomic data from subsets of them. We then used these doubly-characterized
cells to align the functional classification with publicly available large-scale datasets of RGC morphology (381
RGCs reconstructed from EM sections; Bae et al., 2018) and gene expression (35,699 single-RGC
transcriptomes(Bae et al., 2018; Tran et al., 2019), thereby generating a unified atlas. Comparison of the three
datasets reveals that close relationships of types by one criterion predicts, albeit imperfectly, close
relationships by the other criteria.

Finally, we provide two tools that make the data useful to the community and suggest formats for cross-modal
analyses of other populations.  First, we devised a machine-learning classifier that allows researchers to infer
an RGC’s functional type from a small and standardized set of spike measurements. Second, we curated the
data in the form of a continuously updated, open-access library (rgctypes.org) from which researchers may
browse single cell- or cell type-level data and download functional, morphological, and transcriptomic data
sets.

Results
RGCs have traditionally been classified by physiological, morphological, and molecular criteria. Recent studies
have used high-throughput methods to categorize mouse RGCs at large scale using all three criteria: optical
imaging of visually evoked responses (Baden et al., 2016); reconstruction from serial electron microscopic
sections; (Bae et al., 2018); and transcriptomic analysis of single RGCs (Tran et al., 2019). Our goal was to
unify these dimensions into a single schema that was as complete as possible in representing all known RGC
types in the mouse. We made our measurements in one cell at a time, allowing us to perform functional
classification online followed by recovery of the same cells for morphological or transcriptomic measurements
(Figure 1).
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Figure 1. Schematic of approach.
Light responses to a standard stimulus set were measured in 1777 RGCs with subsets measured for morphology or gene expression.
Functional data on light responses was visualized using UMAP (see Methods) and classified with machine-learning. Morphological and
transcriptomic measurements] were aligned to published datasets.

Functional classification of RGCs.
We began with physiological characterization, using a rapid and standardized light stimulus protocol for
functional measurements. Experiments were performed in dark-adapted ex vivo preparations of the mouse
retina where capacitive spikes from RGCs were recorded with cell-attached electrodes. Standard light stimuli
presented to every RGC were rod-saturating (~200 isomerizations/rod/s) spots (λ = 450 nm) from darkness
with diameters ranging from 30 – 1200 μm, centered on the receptive field (RF) of each individual cell. We
presented additional stimuli to subsets of RGCs to test for specific forms of feature selectivity. Moving bars
tested direction selectivity (DS), flashed bars and drifting gratings tested orientation selectivity (OS), and
contrast series tested contrast suppression (Figure S1).
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Our standard stimulus paradigm differed from the full-field “checkerboard” white noise and “chirp” stimuli used
in previous studies (Baden et al., 2016; Farrow and Masland, 2011; Jouty et al., 2018). Three considerations
drove this stimulus choice. First, maintenance of a consistent light-adaptation state was essential because
many aspects of RGC light responses change with luminance and with light adaptation (Tikidji-Hamburyan et
al., 2015; Wienbar and Schwartz, 2018). High background light is unavoidable in two-photon imaging
experiments due to excitation from the laser, limiting the time of stable light responses, especially in
preparations lacking the retinal pigment epithelium (Euler et al., 2019). Use of patch electrodes allowed us to
make our measurements from darkness. Second, precise localization of stimuli with respect to the RF center
cannot be achieved with full-field stimuli but turns out to be critical as shown below. Indeed, many RGCs that
respond well to small stimuli in their RF center failed to respond to any full-field stimulus (Jacoby and
Schwartz, 2017). Finally, to facilitate standardization in the field, we wanted our stimulus to be simple and rapid
and to correspond to those commonly used by others. For example, many previous studies have used
RF-centered spots of different sizes, enabling retrospective comparisons. (Jacoby and Schwartz, 2017;
Johnson et al., 2018; Krieger et al., 2017; Marco et al., 2013; Rousso et al., 2016)

We constructed a decision tree for functional classification based only on the responses to spots of light with
varying size (Figure S2). Response properties for additional stimuli are listed as confirmatory tests, and in the
cases of DS and OS RGCs, they were needed to subdivide types based on direction or orientation preference.
Our functional classification separates RGCs into 42 types: 34 from the responses to spots, and the remainder
from direction or orientation preference. We organized the RGC types in 8 functional groups: ON sustained,
OFF sustained, ON transient, OFF transient, ON OS, DS, ON-OFF small RF, and Suppressed-by-Contrast
(SbC)/Other. These groups were chosen as a starting point based on previous work; a formal, quantitative
grouping by functional relatedness is presented below.

In most recordings, retinal orientation and cell locations were noted to determine whether classification varied
based on retinal position. Response patterns within some RGC types have been shown to vary as a function of
retinal position in photopic conditions (Joesch and Meister, 2016; Warwick et al., 2018), likely because of a
pronounced cone opsin gradient along the dorsoventral axis (Nadal-Nicolás et al., 2020). In our dark-adapted
preparation, however, where much of the light response was initiated in rods (Grimes et al., 2014), response
variation across retinal position was minimal. Functional types were found relatively uniformly across retinal
locations with four exceptions: we found a dorsal position bias for sSbC EW27 and both ONOS SmRF types,
and we found a ventral bias for ON small OFF large RGCs (Figure S3).

Data from 37 RGC types are presented in 3 ways in Figure 2. (Only 37 of the 42 types are illustrated because
DS RGCs with different directional preferences did not differ from each other in their responses to light spots.)
We first measured the response polarity and kinetics of light responses with a 200 μm light spot centered on
the RF (marked “a” in the first panel, which shows an ON alpha RGC). This allowed us to assign cells
according to response polarity (ON, OFF, ON-OFF or Suppressed-by-Contrast) and as having sustained or
transient responses to luminance changes. Second, to assess how each RGC type’s response varied with
stimulus size, we measured the total ON and OFF spike responses for spots of 12 sizes from well below the
RF center diameter of the smallest RGC (30 μm) to a size that reached the far RF surround (1200 μm) (marked
“b” in the ON alpha RGC panel). This information was critical in separating many types. For example, despite
similar responses to the 200 μm spots, ON-OFF DS, HD1, HD2, and UHD all had different response profiles of
their ON and OFF responses across spot size. For some RGC types, even the overall polarity of the light
response depended on spot size. For example, HD2 RGCs are ON-OFF for small spots and ON for large spots
(Jacoby and Schwartz, 2017) and the ON small OFF large RGC switches polarity entirely with spot size as its
name suggests. Finally, we combined information about response amplitude and kinetics as a function of spot
size into a single plot using a heatmap of firing rate over time for each spot size (marked “c” in the ON alpha
RGC panel).
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Figure 2. Functional diversity of mouse RGCs.
Each panel (separated by purple lines) contains 3 graphs showing the light response of an RGC type to flashed spots of light (200
R*/rod/s) from darkness. The top left graph (marked ‘c’ in ON alpha panel) is a heatmap of average firing rate over time (x-axis) for
spots from 30 – 1200 μm (y-axis). Dashed lines show the time of spot onset and offset. The top right graph (marked ‘b’ in ON alpha
panel) shows the total spike count during flash onset (cyan) and offset (black) for each spot size. The solid lines indicate mean across
cells and the shaded regions indicate standard deviation (s.d.). The bottom graph (marked ‘a’ in ON alpha panel) shows peristimulus
time histogram (PSTH) plots averaging the response of each cell type to 200 μm spots, indicated in upper plots by red dotted lines.
Scale bars in the upper left region are shared across all graphs. Separate scale bars for the y-axis of the PSTH plots are provided
within each boxed group of cells and apply within that box. Abbreviations for cell types: sus. = sustained; tr. = transient; med. = medium;
EW = Eyewire (named based on the Eyewire museum); OS = orientation selective; h = horizontal; v = vertical; DS = direction selective;
SmRF = small receptive field; MeRF = medium receptive field; LgRF = large receptive field; HD = high definition; UHD = ultra high
definition; LED = local edge detector; (b,s)SbC = (bursty, sustained) suppressed-by-contrast.
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Automated functional classification
To validate our functional classification (Figure S2), we implemented a machine-learning classifier to assign
RGCs to types based on a feature set comprising spike responses to spots of varying size (see Methods).
Since the responses to moving bars and drifting gratings were not included in the feature set, we collapsed DS
and OS cells across direction and orientation, respectively. We also removed 3 sparsely sampled RGC types
with insufficient data to train the classifier (M1, OFF sus. EW3o, and Motion sensor). Together, our filtered
dataset comprised 1766 RGCs across 31 types, which we split into a training set (n=1362 RGCs) and a testing
set (n=404 RGCs). Other than ensuring that at least 5 cells of each type were represented in the test set,
separation of training and test sets was random.

Following training, the performance of the classifier was evaluated on the test set (Figure 3). For each cell, the
classifier outputs the probability of membership in each RGC type. Thus, the algorithm provides both a “best
guess” and a confidence rating for each prediction. An advantage of probabilistic scoring is that the classifier
predictions can easily be updated to include complementary sources of information (e.g. prior probabilities
based on stratification depth in the inner plexiform layer, IPL, or labelling in a transgenic line) via Bayes’ rule
(MacKay and Mac, 2003)

Without thresholding the probability scores, classification accuracy was 64% overall, exceeded 80% for 9 RGC
types, and was 100% for 2 types (Figures 3B,D). The correct RGC type was among the top three choices of
the classifier 86% of the time (Figure 3A, inset), suggesting that additional information (functional, structural or
molecular), could be used to refine its predictions. The distribution of classification accuracy was bimodal with
7 types falling within 1 s.d. of the chance level of 1/31 (3.2%) and the other 24 having a median accuracy of
74% (Figure 3B). Overall accuracy scaled linearly with unclassified fraction as we increased the classification
margin, i.e. minimum probability score at which cells are assigned a type label (Figure 3A). Cells with maximal
class probabilities below the classification margin are considered “unclassified”. Increasing the classification
margin to 0.32 achieved an accuracy of 80% across the whole data set with 31% of cells unclassified (Figure
3E). The most significant limitation of our classifier was the size of the training set. RGC types with >40
examples in the training set performed much better (median 79% correct) than those with fewer (median 7%
correct)(Figures 3B,C). Thus, we expect classifier performance to improve steadily as we continue to collect
more data, particularly from rare RGC types. Updated results, newly trained versions, and tutorials for
formatting data and running it through the classifier will continue to be made available at rgctypes.org.

Functional relatedness of RGC types
To visualize the relationships between functional RGC types, we used uniform manifold approximation and
projection (UMAP)(Becht et al., 2018; McInnes et al., 2018)(Figure 4). The UMAP algorithm assigned each cell
to a point in 2D space based only on its response to spots of varying size (the data in Figure 2) with
closely-related cells projecting to nearby locations in this space. We did not include the moving bar or drifting
gratings responses as input to the UMAP algorithm because they were not measured for every RGC.
Therefore, DS RGCs with different direction preferences and OS RGCs with different orientation preferences
were grouped together in this representation. Most RGC types formed clear clusters in UMAP space with a few
exceptions for types that were sampled sparsely in our dataset (e.g. ON bursty, sSbC EW27)(Figure 4A).

Using distances between the centroids of the RGC types in UMAP space, we constructed a dendrogram
representing functional similarity among RGCs within this limited stimulus space (Figures 4B,C). As expected,
ON and OFF RGC types generally formed distinct clades. In other respects, however, this grouping differed
substantially from our historical grouping (Figure 2). For example, “sustained” and “transient” types were
extensively mixed, indicating that this distinction is not as strong an organizing property as polarity.
Interestingly, a major distinction was based on the presence of strong surround suppression (Figures 4B,C).
The RGC types in this group were either completely silent or nearly so for the largest spot size (see Figure 2).
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Figure 3. Functional classification from spot responses.
(A) Overall model accuracy (y-axis) as a function of the fraction of unclassified cells in the test cells (x-axis), which increases with the
classification margin. The dashed line represents the expected accuracy of a random classifier. Inset, fraction of instances when the
correct choice was present among the top 1-5 probability scores in the classifier output.
(B) Fraction of test cells of each type classified correctly versus the number of cells of that type in the training set. Histogram at the right
shows the distribution of classifier accuracy across RGC types.
(C) Mean classification score for test cells of each type versus the number of cells of that type in the training set.
(D) Confusion matrix (row normalized) for the classifier with no explicit classification margin set. Dotted lines separate RGC groups as
in Figure 2.
(E) Confusion matrix (row normalized) for the classifier with a classification margin of 0.62. The fraction of unclassified cells of each
type is shown in the first column. Remaining entries in the matrix only consider classified cells.
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Figure 4. Visualization of functional relationships among RGCs.
(A) UMAP projection of 1777 RGCs colored by assigned functional type. Inset shows magnified view of boxed region.
(B) Heatmap showing pairwise distances among RGC types based on their centroids in UMAP space. Types (rows and columns) are
ordered based on a dendrogram in panel C. Groups from Fig. 2 are shown as colors along the left as indicated in the legend below.
Red dashed lines indicate a group of types with strong surround suppression.
(C) Dendrogram computed using agglomerative hierarchical clustering showing a hierarchy of functional similarity among RGC types.
The strong surround suppression group is highlighted.

Alignment of functional and morphological classification
After we recorded visually evoked responses from RGCs, we filled 180 with Neurobiotin to measure en face
morphology and stratification patterns within the IPL (Figure 5). Patterns were matched with the morphological
types defined in the Eyewire museum (Bae et al., 2018). Despite some limitations mentioned below, the
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Figure 5. Morphological diversity of mouse RGCs
Each panel shows a representative en face image of an RGC of the specified type (name in black) and the matching type in the
Eyewire museum (name in red). Below each panel is a graph of normalized dendritic stratification in the IPL. Mean stratification profile
from the Eyewire museum is shown in red. Individual cells from the present dataset are shown in thin grey lines with their mean in black
and their s.e.m. in shaded bars, where appropriate. Dotted lines on the stratification plots indicate the ON and OFF choline
acetyltransferase (ChAT) bands. Scale bar and arrows for dorsal and ventral directions on the retina apply to all images.
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morphology of each functionally defined RGC type was consistent with that of a single morphologically-defined
type in the Eyewire museum (comparisons available at rgctypes.org). In some cases, details of the morphology
were instructive in separating otherwise similar types. For example, despite their similar stratification profiles,
the ON transient MeRF and ON transient SmRF types were matched to Eyewire types 6sw and 6sn,
respectively, based on differences in dendritic area (SmRF smaller), tortuosity (SmRF more tortuous), and
branch angle (SmRF more sharp angles) (Figure S4).

A central conclusion of the work of (Bae et al., 2018) was that stratification patterns in the IPL were extremely
stereotyped within RGC types. Thus, an RGC’s stratification profile was the dominant factor in specifying its
morphological type. After computationally flattening our images with respect to the ChAT bands (Sümbül et al.,
2014), we matched each stratification pattern to one of the types in the Eyewire museum (Figure 5). The fits
were excellent for most types despite the limitations of our lower Z-resolution and potentially different warping
due to the different fixation methods (most evident above and below the ChAT bands).

Alignment of functional and transcriptomic classification
Recent large-scale investigations of single-cell transcriptomes in the retina have identified ~45 molecularly
distinct types of postnatal mouse RGCs, comparable to the number of RGC types identified through
physiological and morphological analyses (Rheaume et al., 2018; Tran et al., 2019). While some clusters could
be matched 1:1 with previously known types based on well-established molecular markers (Sanes and
Masland, 2015), approximately 40% of clusters remained unmatched. Moreover, these methods used
dissociated tissue, precluding direct harmonization of gene expression with function.

To relate functional to molecular criteria, we used a variant of the Patch-seq technique (Cadwell et al., 2016) in
which RGCs were first classified based on their cell-attached light responses and then the cytoplasm was
collected for RNA-seq by aspirating the soma with a clean pipette (see Methods). We obtained 91 high-quality
single RGC transcriptomes (>2000 genes/cell). We used gradient boosted decision trees (Chen and Guestrin,
2016) to match each of our transcriptomes to a cluster in the published adult RGC dataset (Tran et al.,
2019)(see Methods). Many of our functionally-identified cells matched the transcriptomic clusters with high
concordance (Figure 6A) providing putative matches to previously unknown clusters. For example, the three
types of ON DS sus. cells all aligned to C10 (an uncharacterized type), ON tr. SmRF aligned with C21,
corresponding to T-RGC S2 (Liu et al., 2018) and ON delayed (Mani and Schwartz, 2017), previously
observed in CCK-ires-Cre mice (Jacoby and Schwartz, 2018; Tien et al., 2015) aligned with a cluster (C14),
which was distinguished by the expression of the neuropeptide Cck.

T5-RGCs share a functional and morphological profile
Alignment of our physiologically characterized types to transcriptomically defined RGC groups (Tran et al.,
2019) enables a deeper analysis of the relationships between gene expression of RGCs and their function and
morphology. One example is provided by Tusc5 (also known as Trarg1), which we identified as a key marker of
a group of 9 mostly unidentified transcriptomic clusters termed T5 RGCs (Tran et al., 2019). Most of these
RGCs are labeled by the transgene TYW3, which exhibits insertion-site dependent expression (Laboulaye et
al., 2018). T5-RGCs stratify their dendrites between the ChAT bands and possess transient light responses
and strong surround suppression. Seven of the T5-RGC clusters have now been assigned to functional RGC
types, and they all fit this functional and morphological profile. Further, the matched T5 RGC types comprise 6
of the 11 morphological types that stratified the majority of dendrites between the ChAT bands. Finally, 4 of the
5 Tusc5-negative RGCs with this dendritic stratification have different functional characteristics (Figure 6B,C).
Other subclasses of RGCs can be queried in this way, with increasing power as additional data is added to
rgctypes.org.
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Figure 6. Matches between functional types and transcriptomic clusters.
(A) Heatmap showing correspondence between functional types (rows) and transcriptomic clusters reported in Tran et al., 2019
(columns). Matches used in subsequent analyses are indicated by an ‘X’. Green Xs indicate matches to transcriptomic clusters
identified as T5-RGCs, characterized by the specific expression of gene Tusc5/Trarg1, in (Tran et al., 2019).
(B) Surround suppression index (see Methods) is plotted against the peak stratification depth in the IPL for each RGC type. Both ON
responses (light gray) and OFF responses (dark gray) are plotted. Dotted lines connect data points from the same type: horizontal lines
for bistratified types and vertical lines for ON-OFF types. Filled symbols indicate transient cells. RGC types aligned to Tusc5-positive
transcriptomic clusters are colored green (light for ON; dark for OFF). Dotted lines at 0 and 1 stratification level indicate ON and OFF
ChAT bands, respectively.
(C) Magnified view of the red boxed region in (B). RGC types aligned to Tusc5-positive clusters are labeled with green text; those
aligned to Tusc5-negative clusters are labeled with black text; types lacking a transcriptomic match are labeled with blue text. The
unlabeled RGC types along the ChAT bands are ON-OFF DS RGCs.
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The question of completeness
One way to estimate the completeness of our classification is to record nearly all the RGCs in a small region of
the retina and count how many can be assigned to one of our types. We performed such an experiment and
stained the tissue with the pan-RGC marker gamma-synuclein (Surgucheva et al., 2008) to confirm RGC
identity post-hoc (Figure S5). We recorded 55 spiking cells and 25 cells for which we could not elicit spikes
with our test stimuli. Of the 55 spiking cells, 48 were successfully identified in the fixed tissue. In the live tissue
we had labeled 42 of these cells as RGCs matching one of our types and 6 as spiking amacrine cells. All 48 of
these identifications were verified by the gamma-synuclein staining (42/42 gamma-synuclein positive RGCs
and 6/6 gamma-synuclein negative spiking amacrine cells). Of the 25 cells for which we could not elicit spikes,
22 were identified in the fixed tissue: 10 were gamma-synuclein negative, presumably non-spiking amacrine
cells, and 12 were gamma-synuclein positive, presumably RGCs that we failed to identify. Thus, we identified
78% (42 / 54) of the putative RGCs in this sample. While somewhat less than our estimate of 89% coverage of
the types in the Eyewire museum (Table 1), it is a conservative estimate because some of the non-responding
RGCs were likely damaged during removal of the inner limiting membrane or by the recording procedure and
did not spike (e.g. because the axon initial segment was destroyed) but survived enough structurally for
gamma-synuclein staining.

Relatedness of functional, morphological, and transcriptomic space
The main goal of our study was to directly relate physiological, structural and molecular definitions of cell type.
With these data in hand, we were able to address an additional question: to what extent do relationships
among types depend on the criteria used to define them. To this end, we constructed a UMAP embedding
based on morphology using the stratification profiles of each cell in the Eyewire museum (Bae et al.,
2018)(Figure 7A). We then compared nearest neighbors in this space to those in the UMAP embedding of
physiological relatedness among RGC types described above (Figure 4A) and the UMAP embedding of
molecular relatedness generated from the single-cell transcriptomic data (Tran et al., 2019; reproduced in
Figure 7B).

We then queried the set of alignments between RGC types in these three different spaces (Figure 7C). For
each RGC type, we computed the fractional overlap among its nearest neighbors in one of these maps with its
nearest neighbors in the other maps. We repeated this analysis for neighborhood sizes from 2 to 12 nearest
neighbors. To establish statistical significance on this fractional overlap measure, we used the bootstrap
approach. We randomly shuffled type identities in each of the maps and recomputed the fractional overlap.
Repeating this process 1000 times yielded an empirical null distribution. Fractional overlap values obtained
from the real data are reported as z-scores relative to this null distribution with positive values indicating
greater overlap in the real data than in the null distribution (Figure 7D–F).

Each of the three pairwise comparisons between modalities had a preponderance of positive fractional overlap
z-scores, indicating significant alignment of type-type interrelationships above that expected by random
chance. Some types, such as the ON alpha, PixON, and M2 RGCs showed very high correspondence
between functional and morphological UMAP spaces for a range of small to medium neighborhood sizes
(Figure 7D). For other types, correspondence was lower and in some cases types had negative overlap
scores, meaning that their neighbors in functional space (particularly for large neighborhoods) are more
different from those in morphological space than one would expect by chance. The map alignment from
function to gene expression (Figure 7E) was globally similar to the function-morphology alignment, but with
somewhat different RGC types showing high vs. low correspondence. The map alignment between
morphology and gene expression (Figure 7F), while still weighted toward positive overlap scores, had overall
weaker correspondence than the other two alignments.
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Figure 7. Correspondence between RGC relatedness in functional, morphological, and transcriptomic space.
(A) UMAP embedding of RGC morphology constructed from the stratification profiles in the Eyewire museum (Bae et al., 2018). Inset
shows boxed region at higher magnification.
(B) UMAP embedding of RGC gene expression from Tran et al. (2019). Cluster labels removed for clarity.
(C) Alignments between the three classification schemes that we used for subsequent analysis. Lines connect putative corresponding
RGC types in each classification schema.
(D) Heatmap of fractional overlap z scores for the correspondence between functional and morphological UMAP spaces. Each row
shows the overlap score between maps for a particular RGC type across different neighborhood sizes.
(E, F) Same as (D) but showing alignment between functional and morphological space (E) or morphological and gene expression
space (F).

Integrated web-based RGC compendium
A major goal of this project was to create a resource so that labs around the world can come to a consensus
on the classification of mouse RGCs. To that end, we have developed a website, rgctypes.org (Figure 8), with
a direct pipeline to our database of functional and morphological measurements. Following a curation step and
type assignment, every RGC recorded in the Schwartz lab will automatically update to rgctypes.org. Other
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researchers are invited to submit data for integration as well. Cells can also be reassigned to different types if
evidence supports a different assignment. Full datasets are available for download immediately, regardless of
publication status. We have also provided a downloadable version of our automated classifier and instructions
on how to prepare a data file to obtain a type prediction and confidence score.

Figure 8. Screenshot from rgctypes.org.

Discussion
We present a resource of physiological, morphological, and transcriptomic data aimed at establishing a
comprehensive typology of mouse RGCs. A summary of our classification and its alignment with previous RGC
classifications is provided in Table 1.

Method for functional classification
We recorded from RGCs one at a time, which allowed us to center stimuli on the receptive field of each cell.
This undeniably limits throughput.  On the other hand when activities of many RGCs are recorded
simultaneously – for example by calcium imaging or with multielectrode arrays – it is not feasible to center
stimuli on individual RGCs, so these studies have used a combination of full-field modulation, large moving
objects or gratings, and spatiotemporal white noise. These stimulus choices come with a significant cost. Many
RGC types, including some of the most numerous types, respond poorly or not at all to full-field stimuli or
spatiotemporal white noise(Jacoby and Schwartz, 2017). Other types respond both to small (RF-centered) and
large stimuli, but basic response properties depend on spot size. For example, the ON small OFF large RGC
would be classified as an OFF cell for full-field stimulation but responds as an ON cell for small spots in its RF
center. Surround suppression differentially affects both the total spike count and response kinetics in most
RGC types (Figure 2)(Wienbar and Schwartz, 2018), providing information that we found necessary to
separate otherwise functionally similar types.
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RGC type Eyewire type Eyewire
density (%)

Baden et al.
(2016) Group

Baden et al.
(2016) match
confidence

Tran et al.
(2019) Cluster Physiology n Morphology n Single-cell

RNA-seq n References

ON alpha 8w 1.0 24 high 43 89 10 3 (Krieger et al., 2017)
PixON 9n 2.4 22a,b low 8 100 24 4 (Johnson et al., 2018)
M2 9w 0.3 11 1 2 (Schmidt and Kofuji, 2009)
M1 1ws 0.5 40 4 1 1 (Berson et al., 2010; Do et

al., 2009)
OFF sus. alpha 1wt 0.8 5a,b,c high 29 26 3 2 (Krieger et al., 2017)
OFF med. sus. 2i 3.1 3 low 22 3 0
OFF sus. EW1no 1no 2.1 4a medium 10 3 1
OFF sus. EW3o 3o 1.0 4b medium 4 2 0
OFFhOS 2aw 5.5 1, 14 medium 5 17 9 1 (Nath and Schwartz, 2017)
OFFvOS 2aw 5.5 1, 2, 6, 14 medium 5 29 1 3 (Kim et al., 2008; Nath and

Schwartz, 2017)
M6 91 1.8 20 low 58 3 0 (Quattrochi et al., 2019)
ON tr. MeRF 6sw 1.3 18a low 82 4 2
ON tr. SmRF 6sn 1.6 18b low 30 54 5 2
ON tr. EW6t 6t 0.8 21 low 20 4 0
OFF tr. alpha 4ow 1.0 8a,b high 45 22 1 3 (Krieger et al., 2017)
OFF tr. MeRF 4on 3.1 9 low 73 2 1
OFF tr. SmRF 4i 2.9 9 low 21 28 5 3
ONhOS SmRF 82wi 0.8 17a,b,c medium 27 24 3 0 (Nath and Schwartz, 2016)
ONhOS LgRF 82wo 0.5 30 medium 36 11 1 0
ONvOS SmRF 72 1.3 17a,b,c medium 38 27 0 1 (Nath and Schwartz, 2016)
ONvOS LgRF 81o, 81i 1.0 30 medium 16 1 0
ON DS sus. DN 7iv 0.5 25 high 10 11 0 1 (Estevez et al., 2013)
ON DS sus. T 7ir 1.0 26,29 high 10 12 1 2 (Estevez et al., 2013)
ON DS sus. V 7id 0.8 26,29 high 10 13 0 3 (Estevez et al., 2013)
ON DS sus. -
direction
unknown

7i* 25,26,29 high 10 16 2

ON DS tr. 7o 1.8 16 medium 22 0 0 (Gauvain and Murphy,
2015)

OODS D 37v 2.4 12a,b,13 high 16 20 1 4 (Kay et al., 2011)
OODS T 37r 2.6 12a,b,13 high 16,24 40 2 4 (Kay et al., 2011)
OODS V 37d 1.6 12a,b,13 high 16,12 21 1 0 (Trenholm et al., 2011)
OODS N 37c 2.4 12a,b,13 high 16,12 21 2 2 (Kay et al., 2011)
OODS - direction
unknown

37* 12a,b,13 high 11 1

HD1 5si 2.6 10,11a,b low 13 90 8 2 (Jacoby and Schwartz,
2017)

HD2 5so 4.5 10,11a,b low 6 107 14 5 (Jacoby and Schwartz,
2017)

UHD 5ti 7.9 10,11a,b low 2 102 8 3 (Jacoby and Schwartz,
2017)

LED 51 5.2 10,11a,b low 11 79 4 3 (Jacoby and Schwartz,
2017)

F-mini-ON 63 6.6 10,11a,b low 3 177 5 6 (Cooler and Schwartz,
2020; Rousso et al., 2016)

F-mini-OFF 2an 6.6 63 5 4 (Cooler and Schwartz,
2020; Rousso et al., 2016)

ON delayed 73 1.8 27,28a,b low 14 161 16 5 (Mani and Schwartz, 2017)
ON bursty 3i 1.6 27 low 18 26 4 2
bSbC 2o 1.3 32a,b,c medium 25 16 9 3
sSbC EW27 27 1.0 31a,b,c,d,e low 8 4 2 (Jacoby et al., 2015)
sSbC EW28 28 1.3 31a,b,c,d,e low 28 24 1 1 (Jacoby et al., 2015)
ON Sm. OFF Lg. 1ni 1.3 10 3 0
Motion sensor 5to 0.8 3 3 0
unknown 25 5.8
unknown 82n 1.8
unknown 85 2.1
unknown 8n 0.3
unknown 915 1.0
Table 1. Mouse RGC types and their alignment to previous classifications.

Comparisons to previously defined RGC types
Our 42 RGC types appear to include all 28 types previously identified functionally (referenced in Table 1 and at
rgctypes.org) as well as 14 “novel” types that have not, to our knowledge, been defined previously.
Remarkably, most of these types can be distinguished based on their response patterns to spots of varying
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size. The total is close to previous estimates (Baden et al., 2016; Bae et al., 2018; Rheaume et al., 2018; Tran
et al., 2019), supporting the view that mouse RGC classification is approaching completion. Many of the
“novel” types had certainly been encountered in previous studies, but we list them as such here based on our
belief that they had not been identified separately as distinct functional types (e.g. multiple types had been
grouped into “ON transient” and “OFF transient” categories). The novel types include several sets of
functionally similar RGCs (ON tr. MeRF / ON tr. SmRF / ON tr. EW6t, OFF tr. MeRF / OFF tr. SmRF, OFF med.
sus / OFF sus. EW1no / OFF sus. EW3o), all of which match 1:1 to morphological types and many to
transcriptomic types.

Why did the retina evolve entire populations of RGCs that vary only subtly in function? Of many possible
answers, we believe the most likely is that functionally similar types would reveal profound differences under
stimulus conditions beyond those in our simple battery. A striking example is Eyewire type 25. This type is
abundant (5.8% of the population), and forms a convincing and statistically validated dendritic mosaic(Bae et
al., 2018), yet we were unable to find its match in thousands of recordings. A natural hypothesis is that this
RGC type does not respond to our standard test stimuli, so it was consistently passed over. Supporting this
idea, the calcium responses for type ‘25’ in the Eyewire museum are weak (~1% ΔF/F with low signal-to-noise
ratio as opposed to some RGC types which reached 20% ΔF/F). Similarly, we failed to find a clear “trigger
feature” for several RGC types (e.g. ON bursty, Motion sensor, sSbC EW27). Responses of these cells to
flashed spots were inconsistent. For simplicity and reproducibility, our study omitted the vast space of light
stimuli that may have differentiated these cell types, including high luminance, variations in color, and complex
forms of motion.

Direction selective (DS) and orientation selective (OS) RGCs represent a substantial fraction of the RGCs in
the mouse retina (14/42; 33% of types). We identified ON-OFF DS RGCs preferring all four cardinal directions
(dorsal, ventral, nasal, temporal), ON DS sustained types preferring three different directions, and one ON DS
transient type encountered infrequently and with a wide distribution of preferred directions (Figure S6). While
there is broad agreement that there are four ON-OFF DS RGC types in the mouse, there is not as strong a
consensus about ON DS RGCs. Some studies have reported three types (Estevez et al., 2013) while another
reported four (Sabbah et al., 2017). It remains unclear whether this discrepancy is due to one of the ON DS
RGC types being transient and the other three being sustained. One study reported a functionally and
morphologically distinct ON DS RGC that projects to superior colliculus (SC) and not to the medial terminal
nucleus (MTN) or nucleus of the optic tract (NOT) of the accessory optic system(Gauvain and Murphy, 2015).
This SC-projecting ON DS RGC had transient responses and more balanced ON and OFF dendritic strata than
the MTN-projecting types, consistent with type ‘7o’ in the Eyewire museum. While the previous study on these
cells did not report the distribution of their preferred directions (Gauvain and Murphy, 2015), calcium responses
for Eyewire type ‘7o’ consistently preferred a nearly nasal direction on the retina (Bae et al., 2018). Our sample
of ON DS sustained RGCs had a distribution of preferred directions with three clusters, separated by ~120
degrees, but the sparsely sampled ON DS transient RGCs had inconsistent direction preference (Figure S6),
and we have so far been unable to reconstruct its morphology. Thus, we have provisionally assigned the ON
DS trans. RGC to Eyewire type ‘7o’, but it is the match in which we have the least confidence. A more focused
study on ON DS RGCs will be needed to resolve this final issue in the classification of DS RGC types.

OS RGCs, described long ago in other species (Levick, 1967; Maturana and Frenk, 1963), were only recently
identified in the mouse (Nath and Schwartz, 2016, 2017). OFF OS RGCs were separated into horizontal- and
vertical-preferring types based on their physiology, and the vertical-preferring type tended to have ventrally
directed dendrites, while horizontally-preferring cells had a less consistent asymmetry (Nath and Schwartz,
2017). The Eyewire data did not have a corresponding type consisting only of cells with strong ventrally
directed dendrites, although they note that type ‘2aw,’ with its similar range in dendritic asymmetry, has a much
higher coverage factor than the other types and likely corresponds to at least two RGC types that were not
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separable based on morphology alone (Bae et al., 2018). Given these facts and the corresponding stratification
patterns between these types, we are confident in the categorization of both OFFhOS and OFFvOS RGCs as
Eyewire type ‘2aw’.

ON OS RGCs were also classified into horizontal- and vertical-preferring types when they were reported in
mouse (Nath and Schwartz, 2016), but here we further subdivide each group into separate “Small RF” and
“Large RF” types based on the spot size to which they respond optimally and their degree of surround
suppression. All four ON OS RGC types are among the largest in the retina in terms of dendritic span, so their
morphology is captured incompletely in the Eyewire dataset. Nonetheless, we have been able to assign each
of these functional OS RGC types to its most likely matching morphological type, in one case combining two
Eyewire types (‘81i’ and ‘81o’).

We identified three RGC types as suppressed-by-contrast (SbC), and a fourth, the ON delayed RGC, has been
classified as an SbC RGC under some conditions (Jacoby and Schwartz, 2018; Tien et al., 2015). The RGC
type we originally identified as the sustained SbC (Jacoby et al., 2015) has now been split into two types
(EW27 and EW28) based on both physiological and morphological criteria. The bursty SbC (bSbC) RGC is
distinguished from the sustained SbC types by its much higher baseline firing rate, more transient suppression,
and monostratified morphology. Overall, our data underscores the fact that, like the other three polarities (ON,
OFF, and ON-OFF), SbC is a response class composed of multiple RGC types (Jacoby and Schwartz, 2018).

Relationships between morphology, function, and gene expression
Having matched functional, morphological, and transcriptomic information for most RGC types, we were able
to assess the relationships among these properties. Three surprising trends emerged in comparing function to
morphology. First, there are many exceptions to the rule that RGCs with dendrites in the outer half of the IPL
have OFF responses. The M1 ipRGC was a well-known exception, because it receives ectopic synapses from
ON bipolar cells in the outer IPL (Dumitrescu et al., 2009), but it is far from the only exception to this rule. All
four ON OS RGC types, the ON delayed, the M6, and both sSbC types have OFF dendrites but lack OFF spike
responses. Additionally, the OFF OS RGCs and the F-mini-ON RGC receive OFF input via gap junctions but
lack OFF bipolar cell input under any stimulus condition we have tested (Cooler and Schwartz, 2020; Nath and
Schwartz, 2017). An important caveat is that stimuli beyond our test set could reveal OFF responses, perhaps
in bright conditions (Pearson and Kerschensteiner, 2015; Tikidji-Hamburyan et al., 2015).

Second, the dendritic area of an RGC has often been associated with the size of its RF center. While this
association has a strong basis in the anatomy of the vertical excitatory pathways of the retina, there are a
number of exceptions in our data set. For example, “Small RF” and “Large RF” ON OS RGC types do not differ
appreciably in dendritic area, and M6 RGCs have smaller RFs than ON delayed RGCs despite substantially
larger dendritic area. Differential influences of inhibition and disinhibition likely explain some of these effects
(Mani and Schwartz, 2017; Wienbar and Schwartz, 2018).

Finally, RGCs with dendrites near the inner and outer margins of the IPL are typically assumed to have more
sustained light responses while those stratifying near the middle of the IPL are assumed to be more transient
(Awatramani and Slaughter, 2000; Roska and Werblin, 2001). This association has gained support from
large-scale measurements of the kinetics of glutamate release from bipolar cells throughout the IPL (Franke et
al., 2017; Marvin et al., 2013). While our data generally fit this trend (Figure 6B,C), there were two notable
exceptions. The M6 RGC is transient despite stratification at both margins of the IPL, and the LED RGC is
sustained despite stratification near the middle of the IPL (Jacoby and Schwartz, 2017).

The literature linking gene expression in particular RGC types to their morphology and function has been more
fragmentary because the lack of known matches has prevented a wide view. We found that expression of the
gene Tusc5 is strongly associated with a particular physiological profile (transient light responses and strong
surround suppression) and a morphological profile (stratification between the ChAT bands)(Figure 6B,C). As
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more information about each of the RGC types becomes available, including their projection patterns in the
brain, we expect more insights into the molecular determinants of RGC wiring patterns both within the retina
and to the brain. Future studies may also link biophysical properties of RGCs to the expression of ion
channels.

Limitations of the dataset and future directions
Several limitations of our dataset suggest directions for future work. First, our stimuli were limited to a single
wavelength distribution, a small range of scotopic to mesopic luminance, and a simple set of artificial patterns
(spots, gratings, and moving bars). These stimulus choices meant that we could not explore how RGC
responses differed over the parameters of luminance or wavelength. More generally, RGCs evolved not for
selectivity to the artificial parameterized stimuli we presented but to detect behaviorally relevant features of
natural scenes. Second, while centering the stimulus for each RGC was important for measuring the spatial
features of its response, this step complicates the recovery of locally-complete RGC mosaics. Therefore, a
future step in RGC typology alignment will be needed to match our types with those in large-scale recordings
using either calcium imaging or multi-electrode arrays. Finally, our morphological alignment to the Eyewire
dataset was largely qualitative; the limited number of cells in both datasets made quantitative analysis of
morphological parameters impractical. With additional cells, a future classification algorithm might make RGC
type predictions from morphology alone, and since our functional classification algorithm produces a posterior
probability for each class, functional and morphological information could be incorporated seamlessly into a
single prediction. Similarly, our improving understanding of the gene expression profiles of each RGC type
could enable more accurate composite predictions from the expression of a few key genes plus functional
and/or morphological data.

Web-based resource
Standardization in the definitions of RGC types among different research groups is essential to support studies
on retinal computation, circuit connectivity, and disease pathology. Additionally, there is rapidly expanding
interest in the projection patterns of different RGC types throughout the brain (Dhande et al., 2015; Johnson et
al., 2021; Martersteck et al., 2017), which similarly relies on standardized type definitions. For these reasons,
we created an open online resource at rgctypes.org where users can search and download full datasets, use
our classification algorithm, and contribute their own data to this effort. By unifying the separate functional,
morphological, and molecular RGC classification schemas, this resource will allow researchers to connect data
across experimental modalities. For example, a set of RGCs labeled by their projection to a certain brain
region could be classified by gene expression, and our alignment between transcriptomics and function would
provide insights into the functional input to that brain region without additional measurements of light
responses. Or the complement of RGC types in a new transgenic mouse line could be measured by confocal
microscopy, and our alignment between morphology and function could help generate hypotheses about the
functional deficits that might exist if this RGC population were ablated. We expect rgctypes.org to play a central
role in the fields of retinal neurobiology and vision science moving forward and, more broadly, to serve as a
template for data sharing and collaboration that is applicable to neuronal classification projects throughout the
CNS.
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Methods
Animals. Wild-type mice (C57/Bl6 - JAX 000664) of either sex were dark-adapted overnight and sacrificed
according to standards provided by Northwestern University Center for Comparative Medicine. Retinal tissue
was isolated under infrared illumination (900 nm) with the aid of night-vision goggles and IR dissection scope
attachments (BE Meyers).  Retinal orientation was identified using scleral landmarks (Wei et al., 2010), and
preserved using relieving cuts in cardinal directions, with the largest cut at the ventral retina. Retinas were
mounted on 12mm poly-D-lysine coated glass affixed to a recording dish with grease, with the ganglion cell
layer up. Oxygenation was maintained by superfusing the dish with carbogenated Ames medium (US
Biological, A1372-25) warmed to 32˚C.

Visual stimuli. RGC types were identified via cell-attached capacitive spike train responses to light stimuli as
previously described (Jacoby and Schwartz, 2017; Jacoby et al., 2015; Mani and Schwartz, 2017; Nath and
Schwartz, 2016, 2017). Briefly, stimuli were presented using a custom designed light-projector (DLP
LightCrafter; Texas Instruments) at a frame rate of 60 Hz. Spatial stimuli patterns were generated on a
912x1140-pixel digital projector using blue (450nm) LEDs focused on the photoreceptor layer. Neutral density
filters (Thorlabs) were used to attenuate the light intensity of stimuli to 200 rhodopsin isomerizations per rod
per second (R*/rod/s) from darkness.

The receptive field (RF) centers of individual RGCs were determined by monitoring their relative light
responses to horizontal and vertical bars (200 x 40 μm, or 100 x 40 μm in the case of cells with high surround
suppression) flashed at 30 μm intervals at 11 locations along each axis. Subsequent stimuli were presented at
the RF center. For generic light steps, a spot of 200 μm diameter was presented for 1 s, with cell-attached
responses recorded for at least 0.5 s pre-stimulus and 1s post-stimulus. For spots of multiple sizes, spots with
diameters from 30-1200 μm (on a logarithmic scale) were presented in pseudorandom order, with similarly
timed epochs. Direction preference of direction-selective (DS) RGCs was determined by moving bar stimuli,
consisting of a rectangular bar (600 x 200 μm) passing through the receptive field center at 1000 μm/s
(ON-OFF DS RGCs) or 500 μm/s (ON DS RGCs). Flashed bar stimuli for testing orientation selectivity were
800 x 50 μm and presented at 12 different orientations (Nath and Schwartz, 2016). Drifting gratings and
contrast series were presented from a background luminance of 1000 R*/rod/s following protocols from
previous studies (Jacoby et al., 2015; Nath and Schwartz, 2017)

Automated classification. RGC type labels were assigned manually by two of the authors (JG and GWS)
according to the decision tree in Figure S2. Cells were then randomly assigned to a training set (~80% per
type) and testing set (~20% but at least 5 cells per type). The multi-class classification problem was broken
down into a series of binary ones using the error-correcting output code (ECOC) scheme, such that a series of
classifiers each learns to discern different combinations of RGC types. Each binary learner in the ECOC
scheme was trained using Ada-boosted decision trees (Hastie et al., 2009) with initial weights set to enforce a
uniform prior probability of each RGC type.

Individual trees were trained by performing elastic net logistic regression on a random subset of firing rates
from peristimulus time histogram (PSTH) vs. spot size for feature reduction and choosing the threshold that
minimized class uncertainty (Friedman et al., 2010; Schneider et al., 2015). Since not all PSTHs were recorded
over the same time and spot size ranges, we imputed missing data using a nearest neighbor approach. Poorly
sampled points were penalized in both random selection and regression: for time points the penalty was
inversely proportional to their frequency of occurrence across cells (since all PSTHs were binned with the
same Δt); for spot sizes we aimed to account for the nonlinearity of responses in the penalty with the following
formula:
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,𝑝𝑒𝑛𝑎𝑙𝑡𝑦−1(𝑠) ∝ 𝑚𝑎𝑥 (𝑙𝑜𝑔(𝑀𝑆𝐸(·))
+

) −  𝑙𝑜𝑔(𝑀𝑆𝐸(𝑠))
+

where MSE is the mean across cells of the squared error between the chosen spot size, s, and the nearest
recorded spot size, and denotes positive rectification.(·) 

+

To extract probabilities from classification scores, we next used an independent training fold to train an isotonic
regression model that transformed each binary learner score into a probability, again enforcing a uniform prior
using sample weighting (Zadrozny and Elkan, 2002). The probabilities from each binary learner were then
coupled to obtain a probability for each class (Zadrozny, 2002). Thus for our final results the training set was
divided into one fold for training the Adaboost models and one fold for training the isotonic regression models.
We used three-fold cross validation to train a Bayesian optimization model for hyperparameter tuning. Table 3
lists the hyperparameters we optimized and their final values. The classifier is available for use at rgctypes.org,
and the source code is available at https://github.com/zfj1/rgc-classifier.

Parameter Algorithm level Optimized value Optimization range

Number of features Elastic net 54 5 to 100

Number of folds Elastic net 6 2 to 10

Alpha Elastic net .326 0.0 to 1.0

Number of lambda values Elastic net 6 5 to 50

Number of repetitions Decision node 5 5 to 20

Minimum size Decision node 13 5 to 100

Maximum depth Decision tree 6 2 to 8

Minimum tree count Adaboost forest 76 20 to 100

Maximum tree count Adaboost forest 95 25 to 100

Stopping criterion Adaboost forest 1.44% improvement over last
44 trees

1% to 50% improvement over last 10 to 50
trees

Ensemble size ECOC 96 32 to 100

Probability of ensemble membership ECOC 22.2% in positive class, 38.2%
in negative class, 60.4% null

10% to 90% in positive/negative class

Table 2. Hyperparameters for the automated RGC classifier.

Imaging. A subset of recorded RGCs were injected with Neurobiotin (Vector Laboratories, SP-1150, ∼3% w/v
and ∼280 mOsm in potassium aspartate internal solution) using patch pipettes. Retinas were then fixed in 4%
paraformaldehyde for 15 minutes at 25˚C, washed three times with PBS, and incubated for 1 hour in blocking
solution (1X PBS with 3% normal donkey serum, 0.05% sodium azide, 0.5% Triton X-100) including
streptavidin conjugated to a fluorophore (Alexa Fluor-488 or Alexa Fluor-568). Next, retinas were incubated
again in blocking solution with primary antibody against choline acetyltransferase (ChAT; Millipore, AB144P,
goat anti-ChAT, 1:1000) for 5 nights at 4˚C. Retinas were then rinsed in PBS three times at no less than 1 hour
per wash before incubation overnight at 4˚C with streptavidin (Jackson, 016-600-084) and secondary antibody
(Donkey anti-Goat 647, Fisher, A11055). Retinas were then rinsed again in PBS three times at no less than 1
hour per wash before mounting on slides with Fluoromount.
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RGCs filled with AlexaFluor were imaged immediately using two-photon microscopy (920 nm, MaiTai HP;
SpectraPhysics) under a 60× water-immersion objective (Olympus LUMPLan FLN 60×/1.00 numerical
aperture). A 520–540 nm band-pass filter was used to collect emission. After immunohistochemistry, confocal
imaging was performed at the Center for Advanced Microscopy at Northwestern University Feinberg School of
Medicine generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive
Cancer Center. Dendrites were traced in Fiji, and analysis to flatten the retina relative to the ChAT bands was
performed as described in (Sümbül et al., 2014).

Single-cell transcriptomics
Library generation. Following physiological recording, a subset of RGCs was isolated for single-cell
transcriptome sequencing. First, the area surrounding cells of interest was cleaned of nearby cells and visible
debris by aspiration through a large (3-4um inner diameter) patch pipette. Cells were then aspirated using a
freshly flame-pulled patch pipette (2.5 inner diameter) and placed into a 5 μl of lysis Buffer TCL (Qiagen,
1031576) + 1% 2-mercaptoethanol (Millipore-Sigma, 63689) before being flash-frozen on dry ice.

We generated RNA-Seq libraries using a modified Smart-seq2 method (Picelli et al., 2014) with the following
minor changes: Before reverse transcription, RNA was purified using 2.2X SPRI-beads (Beckman Coulter,
A3987) followed by 3 wash steps with 80% EtOH, elution in 4 µl of RT primer mix and denatured at 72 °C for 3
min. Six µl of the first-strand reaction mix, containing 0.1 μl SuperScript II reverse transcriptase (200 U/μl,
Invitrogen), 0.25 μl RNAse inhibitor (40 U/μl, Clontech), 2 μl Superscript II First-Strand Buffer (5x, Invitrogen),
0.1 μl MgCl2 (100 mM, Sigma), 0.1 μl TSO (100 μM) and 3.45 μl Trehalose (1M), were added to each sample.
Reverse transcription was carried out at 50°C for 90 min followed by inactivation at 85 °C for 5 min. After PCR
preamplification, product was purified using a 0.8X of AMPure XP beads (Beckman Coulter), with the final
elution in 12 μl of EB solution (Qiagen). For tagmentation the Nextera DNA Sample Preparation kit
(FC-131-1096, Illumina) was used and final PCR was performed as follows: 72 °C 3 min, 95 °C 30 s, then 12
cycles of (95 °C 10 s, 55 °C 30 s, 72 °C 1 min), 72°C 5min. Purification was done with a 0.9X of AMPure XP
beads. Libraries were diluted to a final concentration of 2 nM, pooled and sequenced on Next-Seq(Mid), 75bp
paired end.

Alignment and quantification of scRNA-cell transcriptomic libraries. Gene expression levels were quantified
using RNA-seq by Expectation Maximization (RSEM) (Li and Dewey, 2011). Under the hood, Bowtie 2
(Langmead and Salzberg, 2012) was used to map paired-end reads to a mouse transcriptome index
(mm10/GRCm38 UCSC build). RSeQC (Wang et al., Bioinformatics, 2012) was used to quantify quality metrics
for the alignment results. We only considered cells where the read alignment rate to the genome and
transcriptome exceeded 85% and 35% respectively, and the total number of transcriptome-mapped reads was
less than 350,000. RSEM yielded an expression matrix (genes x samples) of transcript per million counts
(TPM), which were log-transformed after the addition of 1 to avoid zeros. Overall 91 RGCs, each of which
carried a functional type label, were selected for further analysis.

Matching gene-expression clusters to cell types. To map each of the 91 RGC transcriptomes to a molecular
cluster in Tran et al., 2019 we used the XGboost algorithm (Chen and Guestrin, 2016), as implemented in the
R package xgboost. Briefly, we trained and validated an xgboost multi-class classifier on the atlas of 35,699
RGCs subdivided into 45 molecularly distinct groups (C1-C45). Around 50% of the data was used for training
and the remaining 50% was held out and used for validation. We optimized hyperparameters (e.g. tree depth,
number of features, class-specific weights) to achieve a validation set accuracy of >90% across each of the 45
transcriptomic classes. This trained classifier was then used to assign a cluster label for each of the 105
transcriptomes profiled in this study. We assigned a transcriptomic label to each RGC if a minimum of 15% of
trees in the forest voted on the majority decision. This choice of voting margin was >6x higher than the random
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threshold of 2.3%, based on the fact that there are 45 classes. The correspondences between functional and
transcriptomic labels were visualized as confusion matrices.

UMAP, agglomerative hierarchical clustering, and cross-modality neighborhood comparisons. The functional
input data to the UMAP algorithm was a linearized version of the full matrix of the PSTH for each cell across
spot sizes (as in Figure 2). We used a MATLAB implementation of UMAP
(https://www.mathworks.com/matlabcentral/fileexchange/71902) supervised by the RGC type labels for the
data set of 1777 cells. Agglomerative hierarchical clustering of RGC type centroids in UMAP space (Figure
4B, C) used the MATLAB ‘linkage’ function with the median (weighted center of mass) method. The input to the
UMAP algorithm for morphology was the unnormalized stratification profile for each RGC from the Eyewire
museum (381 cells) supervised by the labels in the museum. Although no attempt was made to capture details
of the en face morphological characteristics of each cell, the unnormalized stratification data allowed the
algorithm to use information about total dendritic length. The input to the UMAP algorithm for transcriptomic
space was a vector of gene expression values for RGC-type-selective genes from the published dataset
(~35,699 cells) as described in (Tran et al., 2019).

We measured similarities between the three UMAP spaces (function, morphology, and genetics) by comparing
nearest neighbors between spaces (Supplemental Fig. 5). For each RGC type in which we established a
match between the two spades being compared, we measured the fractional overlap between the neighest
neighbors in the first space and those in the second space (matching types / neighborhood size). The analysis
was repeated for neighborhood sizes from 2 - 12. To assess the statistics of the measured overlap values, we
created a bootstrap distribution by randomly shuffling the cluster identities in one of the spaces. Data in Figure
7D–F are z scores with respect to this bootstrap distribution which was Gaussian.
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