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Abstract 21 

Paraoxonase (PON) comprises a trio of mammalian enzymes that have been reported to have a number of 22 

roles including the inhibition of bacterial virulence and biofilm formation by microorganisms that quorum 23 

sense with acylated homoserine lactones (AHLs). PON have previously been reported to inhibit P. 24 

aeruginosa biofilm formation in mammalian airways and skin. An innate immune role for PON in urinary 25 

tract infection has not previously been reported. We performed western blots for PON1 in urine from 26 

patients with urinary tract infection (UTI), and also tested UTI urine for the presence of AHLs using a 27 

cellular reporter system. Urine sample microbiota was assessed through sequencing of the 16S rRNA 28 

marker gene. We report here that PON1 was not found in the urine of control subjects, however, in 29 

patients with UTI, PON1 was associated with the presence of E. coli in urine. AHLs, but not PON, were 30 

found in the bulk urine of those with P. aeruginosa UTI. Microbial consortia of PON positive UTI urine 31 

was found to be distinct from PON negative UTI urine; differentially over-represented bacteria in PON 32 

positive samples included a number of environmental opportunists. We hypothesize that PON may inhibit 33 

the quorum sensing activity of AHLs in UTI, as has previously described in skin and airways.  34 

  35 

 36 
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Introduction 43 

The paraoxonase family (PONs) of mammalian lactonases are an evolutionarily conserved (1–3) innate 44 

immune mechanism that limit bacterial virulence and biofilm formation by degrading quorum sensing 45 

(QS) acylated homoserine lactones (AHLs) produced by some bacteria (4–13). These AHL-producing 46 

bacteria include P. aeruginosa, as well as other environmental opportunists with large genomes and 47 

flexible lifestyles that are frequently found to be occult members of infecting biofilms (14–18). UTIs 48 

caused by such organisms have been reported to be more common in patients with urinary catheters, 49 

diabetes mellitus, and previous hospitalizations (19). In multiple studies PONs have been shown to be 50 

protective against infection by P. aeruginosa biofilms in mammalian airways and skin cells (9, 20).  51 

Another body surface that is subject to environmental exposure is the urinary system, and PON1 has 52 

previously been reported in minute concentrations in specialized vesicles in urine from healthy subjects 53 

(21). 54 

AHLs are known to be potent activators of quorum sensing that favors biofilm formation and virulence 55 

gene expression in certain gram negative bacteria (22). In parallel, AHLs can directly induce tissue 56 

inflammation and derangement of host immunity (23–27). AHLs have not previously been reported in 57 

urine from human UTI although their presence would have significant implications for the diagnosis and 58 

treatment of UTI. 59 

Uncomplicated UTI in an immunocompetent host is characterized by the predominance of a single 60 

bacterial species (28),  E. coli in 80% of cases. One possibility is that the predominance of E. coli in 61 

uncomplicated UTI is due to innate immune activity toward opportunists/difficult to eradicate 62 

environmental strains. In particular, we speculated that environmental opportunists, such as P. 63 

aeruginosa, are inhibited from quorum sensing with AHLs due to PON activity in the urine. PON has 64 

been shown to limit P. aeruginosa virulence in Drosophila—a model eukaryotic organism that does not 65 

naturally produce PON (7). PON-deficient mice display increased vulnerability to infection with P. 66 
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aeruginosa (29).  Whether and how PON is induced in mammalian infection is not at present known in 67 

detail, however protection against P. aeruginosa-mediated virulence has been shown to involve induction 68 

of PON2 through peroxisome proliferator-activated receptor-g (30, 31) which is found in mammalian 69 

urothelial cells (32), though the AHL QS molecule (3OC12-HSL) produced by P. aeruginosa has been 70 

shown to have inhibitory effect on this receptor (33). Another possibility is that PON are induced through 71 

Toll-like receptors (TLRs) which are cellular sensors for a variety of bacterial factors. Urinary TLR 72 

signaling has been found to be sensitive to uropathogens (34, 35), resulting in activation of NF-kB and the 73 

expression of the pro-inflammatory genes IL-6 and IL-8 with consequent ingress of neutrophils to the 74 

bladder mucosa (36). There is at present, however, no report in the literature of TLR mobilization of 75 

PON.   Host disruption of AHL QS through induction of PON has been proposed as protective against 76 

inflammatory bowel disease (37). While urea-mediated inhibition of QS mechanisms in chronic P. 77 

aeruginosa infection have been shown to limit biofilm formation and other virulence factors without 78 

inhibiting the production of AHLs in a murine CAUTI model (38),  in acute UTI with P. aeruginosa, 79 

AHL QS has been shown to promote virulence (39). In addition, it has been shown that PON mediates 80 

changes in microbiota in the Drosophila gut (40), and in a flow cell model of a polymicrobial consortia 81 

(41). In summary PON are an effector of innate immunity (29, 42) that inhibit bacterial QS-mediated 82 

virulence through degrading the AHL QS signal. In addition, PON have been shown to alter the 83 

composition of host microbiota. To explore possible implications of this in the urinary system, we set out 84 

to measure AHLs and PON in urine from patients with UTI presenting to an emergency department of an 85 

urban hospital. We also assessed the microbiota of study samples through 16S rRNA gene sequencing. 86 

We hypothesized that 1) UTI patients will have PON present, while non-UTI patients will not; 2) among 87 

patients presenting with urinary symptoms (dysuria and frequency) and urinalysis showing elevated urine 88 

leukocytes, the presence of PON will be associated with growth of a urinary pathogen in culture; 3) UTI 89 

urine with PON will be associated with urinary microbiota distinct from that of UTI urine without PON. 90 
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Materials and methods 91 

Human subject enrollment 92 

Study protocol was reviewed/approved by the Miriam Hospital IRB (#496193-16). Written informed 93 

consent was obtained.  The study was conducted at the Anderson emergency department of Rhode Island 94 

Hospital. Inclusion criteria for entry into the study: Greater than 18 years of age and able to give informed 95 

consent for study participation; 10 or more white cells in urine analysis with symptoms of urinary tract 96 

infection; urine culture sent to the hospital microbiology department (prior to administration of 97 

antibiotics). Control subjects were emergency department patients with minor complaints unrelated to 98 

urinary system and without significant metabolic derangement such as fever, hyperglycemia, renal disease 99 

(acute or chronic), or significant hypertension. Once enrolled study subjects were asked to provide 50-100 100 

ml of clean-catch urine in a sterile cup. This was immediately frozen at -80 for further study. Culture 101 

results and clinical data were obtained through the electronic medical record at Rhode Island Hospital. 102 

 PON and AHL assays 103 

Growth media. Plates and broth were lysogeny broth (LB). 104 

Strains. The long chain HSL reporter strain E. coli JM109 (pSB1142) (carries P. aeruginosa lasR and the 105 

lasI promoter fused to luxCDABE) (43), and P. aeruginosa PAO1 carrying PlasB-luxCDABE (44) were 106 

grown in LB broth with shaking at 37 deg. C. 107 

Reagents. 3-oxo-C12-HSL stock solution 20 mg/ml (Cayman Chemicals) was diluted to 4 108 

micrograms/milliliter in water. Dilutions were arrived at empirically by testing against luminescence in 109 

the long chain HSL reporter strain E. coli JM109 (pSB1142). 110 

Western blotting. Urine samples from enrolled research subjects with UTI were stored at -80 deg. C., 111 

and thawed for use. 25 microliter samples of unprocessed urine were assayed for PON1 using the Bio-112 

Rad iBlot system as previously described (45). 113 
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Antibodies. Primary antibody: polyclonal human PON1 from rabbit (HPA001610, 114 

Atlas Antibodies). Secondary antibody: goat anti-rabbit labeled with peroxidase (Invitrogen) 115 

AHL assay. Construction of standard curve for 3-oxo-C12-HSL was determined by varying 116 

concentrations of the stock solution diluted in water and incubated with E coli JM109 (pSB1142), using a 117 

microtiter plate reading format(46) as previously described (47). 3-oxo-C12-HSL concentrations in 118 

samples were determined by adding 50 microliters of study urine samples to 5 microliters of overnight 119 

sensor strain E. coli JM109 (pSB1142) and then measured in a Varioskan Flash plate reader. 120 

Urine Microbiome. Urine samples, (previously stored at -80 deg C.) in 50 ml quantities, were 121 

centrifuged at 2000 rpm for 20 minutes. Supernatant was poured off, and pellet was resuspended in 1 ml 122 

of sterile water. DNA was extracted using the FastDNA SPIN Kit (MP Biomedicals) (48)   123 

Preparation of 16S rDNA amplicon inserts for Next-Generation library construction and NGS 124 

sequence analysis using sequential PCR amplification steps. 125 

Sample preparation and sequencing was performed at the at the UMASS core facility in Shrewsbury, MA. 126 

16S PCR was initially performed to add indexes to individual templates. 10 microliters of DNA template 127 

(10 nanograms) were amplified with primers for 16S V1V2 hypervariable region (figure 1—all primers 128 

were added in 1 microliter volumes from 10 micromolar stock solutions) (49) with Platinum PCR Super 129 

Mix (1306, LifeTech). 45 microliter reaction mixtures were placed in the wells of MicroAmp Fast 130 

Optimal 96-well Reaction Plates (0.1microliter) and run on a 7500 ABI Fast Real-Time PCR System with 131 

the cycling parameters: (95� 2 min) + 22 x (95� 45 sec, 50� 45 sec, 72� 1 min) + (72� 7min) + 4�  132 

O/N. Reaction clean-up was performed with Qiagen 96-well PCR cleanup plates; and PCR Product 133 

quantitated and profiled using an Advanced Analytics DNA Fragment Analyzer, Qubit, and NanoVue.  A 134 

second 16S PCR was performed to add NGS adapter to barcoded templates with the same protocol (Table 135 

1). Samples were sequenced on an Illumina MiSeq using 300 bp PE chemistry. Reads were processed 136 

and amplicon sequence variants (ASVs) were generated using DADA2 in R. Reads were quality trimmed 137 
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and filtered using the command fastqPairedFilter using parameters trimLeft=c(10, 20), truncLen=c(240, 138 

200), maxEE=2, rm.phix=TRUE, rm.lowcomplex=5, kmerSize=2. DADA2 was used to learn error rates, 139 

perform sample inference, dereplicate and merge paired end reads, and construct a sequence table. 140 

Taxonomy was assigned using the SILVA 132 ribosomal RNA (rRNA) database. 141 

 Table 1. Primers 1&2 were used in the first PCR to add barcode; 3&4 in the second PCR reaction to add 142 

NGS adapters 143 

1 Primer F:  GCCTCCCTCGCGCCATCAGAGAGTTTGATCMTGGCTCAG   
2 Primer R: GCCTTGCCAGCCCGCTCAGCYNACTGCTGCCTCCCGTAG  
3 Primer F: 5’-AATGATACGGCGACCACCGANNNAACGTGAGG-3’ 
4 Primer R: 5’-CAAGCAGAAGACGGCATACGAGATNNNTACCAGGGTAC-3’ 
 144 

 Measures  145 

Culture results were recoded into a binary variable (positive/negative). As a sensitivity analysis, we also 146 

coded those patients who were positive but with <50k cfu as negative. Positively skewed continuous 147 

variables and those with outliers were recoded into ordinal variables.  148 

Data analysis.  149 

Associations between diagnosis and categorical variables were analyzed using chi-square or Fishers Exact 150 

Test. Comparison of continuous variables across groups was done using 2-tailed independent groups t-151 

tests or the Kruskal-Wallis test for skewed variables. In order to test the independent association of PON1 152 

with being culture-positive in UTI patients, we used multivariate logistic regression, adjusting for 153 

variables that might be confounds. These were defined as having an association with PON1 antigen with 154 

p<.10. We also used a multivariable logistic regression model to develop an optimal prediction model for 155 

being culture-positive in UTI patients. This was based on the patient variables that were associated with 156 

being culture-positive with p<.10, dropping any for which an odds ratio could not be calculated due to 157 

low sample size. SAS version 9.4 (Cary, NC) was used for data analysis, with p<.05 considered 158 

significant.  159 

Microbiome analysis:  160 
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A total of 24 samples had sufficient PCR amplification to pass quality control.  161 

These were processed for further analysis with bioinformatics tools as previously described. [ref.] Of 162 

these, 2 were technical controls, and 4 samples were found to have insufficient sequencing depth (< 1,000 163 

reads per sample) and were not included in the analysis. Of the remaining 18 samples, 6 were controls, 5 164 

were UTI/PON-, and 7 UTI/PON+. These 18 samples had a median sequencing depth of 132,986 reads. A 165 

total of 208 OTUs observed more than 3 times in at least 20% of the samples were retained for analysis in 166 

R using the packages phyloseq (50), breakaway (51), DivNet (52), and corncob (53).  167 

 168 

Results 169 

PON and clinical parameters 170 

Mean age of enrolled subjects was 60 ± 22, 13 (19%) were black and 44 (63%) were white, 48 (69%) 171 

were female, and 11 (16%) had urinary catheters.  Culture was positive with one or more uropathogens in 172 

39/61 cases (64%), while western blot for PON1 antigen was positive in 22 cases (36%).  There were 61 173 

UTI patients and 9 controls in the sample.  174 

Controls and UTI patients differed significantly in age, serum creatinine, highest temperature, and lowest 175 

diastolic blood pressure (Table 2.). Patients with UTI had higher average creatinine, likely due to age-176 

related decline in kidney function; higher temperature in UTI subjects is likely due to some subjects being 177 

systemically ill.   178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 
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 186 

 187 

 188 

 189 

Table 2. Patient variables by diagnosis (UTI vs control) 190 

Patient variable Control (n=9) UTI (n=61) p 

Age 42 ± 16 63 ± 22 .009 

Race  

  Black  

  White 

  Other 

 

3 (33%) 

5 (56%) 

1 (11%) 

 

10 (16%) 

39 (64%) 

12 (20%) 

.45 

Gender female 4 (44%) 44 (72%) .13 

Catheterized 0 11 (18%) .34 

WBC 9.3 ± 4.4 11.4 ± 4.4 .25 

Hemoglobin 13.7 ± 0.9 12.5 ± 1.9 .07 A 

Serum creatinine 0.8 ± 0.1 1.2 ± 0.9 .042 A 

Highest HR 85 ± 14 93 ± 21 .29 

Highest temp 97.7 ± 0.6 99.0 ± 1.5 .0001 

Lowest systolic bp 123 ± 16 118 ± 20 .40 

Lowest diastolic bp 78 ± 11 68 ± 13 .044 
A  using Kruskal-Wallis test.   191 

 192 

PON1 was significantly associated with UTI diagnosis. Of the 61 UTI patients, 22 (36%) were PON1 193 

positive, while none of the controls were PON1 positive (Fisher Exact test p=.049).  PON1 was not 194 

significantly associated with any demographic or laboratory values (Table 3), but was significantly 195 

associated with higher heart rate (HR) (Table 3).  196 

 197 

 198 

 199 

 200 

 201 

 202 
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 203 

 204 

 205 

 206 

Table 3. Associations between patient variables and PON1 in patients with UTI 207 

Patient variable PON1 Neg (n=39) PON1 Pos 

(n=22) 

p 

Age 62 ± 22 63 ± 21 .82 

Race  

  Black  

  White 

  Other 

 

5 (13%) 

26 (67%) 

8 (21%) 

 

5 (23%) 

13 (59%) 

4 (18%) 

.60 

Gender female 29 (74%) 15 (68%) .61 

Catheterized 5 (13%) 6 (27%) .18 

WBC 11.2 ± 4.4 11.7 ± 4.6 .68 

Hemoglobin 12.5 ± 2.0 12.4 ± 1.7  .75 

Serum creatinine 1.2 ± 1.0 1.2 ± 0.5 .48  

Highest HR 88 ± 16 101 ± 25 .03 A 

Highest temp 99.0 ± 1.6 98.9 ± 1.3 .66 

Lowest systolic bp 120 ± 20 114 ± 20 .27 

Lowest diastolic bp 68 ± 12 70 ± 13 .45 
A  using Kruskal-Wallis test.   208 

 209 

PON1 was significantly associated with positive culture in UTI patients: PON was positive in 4/22 with 210 

negative culture (18%) versus 18/39 with positive culture (46%; p=.03; Fishers Exact test; Supplemental 211 

Table 1). We did a sensitivity analysis in patients who had culture < 50,000 cfu (culture negative), and 212 

found that the association was still significant (culture negative had 23% PON positive, culture positive 213 

had 48% PON positive, p=.04).  Thus, in UTI patients, presence of PON in urine was associated with 214 

urine culture growing out a urinary pathogen, in contrast to urogenital flora, or no growth.     215 
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In addition to PON1, other patient variables that were associated with being culture-positive, in UTI 216 

patients, included WBC (higher with culture positive), and being catheterized (more frequent for culture 217 

positive). Highest HR was marginally associated with culture-positive (Table Supplemental Table 1.).  To 218 

demonstrate the potential clinical utility of PON measurement in UTI we created an optimal prediction 219 

model for being culture-positive, which included PON1, highest HR, and WBC (being catheterized was 220 

dropped because OR could not be calculated for this variable due to small sample size), which had an area 221 

under the ROC curve of 0.72 for predicting culture-positive.  222 

Using the equation:  risk = -2.43 + 1.007*PON1 + .014*highestHR + .138*WBC, and then probability = 223 

exp(risk) / (1 + exp(risk)). Splitting the probabilities into tertiles, we found that the observed incidence of 224 

being culture positive in tertiles 1 through 3, respectively, were 39%, 75%, and 83% (p=.01).  225 

Half of all positive urine cultures grew out  E. coli alone (19/38) . PON1 was positive in 10 of these 226 

(53%). When compared to cultures that grew out multiple organisms (including those with ‘urogenital 227 

flora’), PON was significantly associated with cultures that grew out E. coli alone, P=0.05 (Supplemental 228 

Table 2.). Seven gram-negative environmental opportunists were cultured from PON negative urines.  229 

Four were P. aeruginosa; the others were: Serratia marscesens, Citrobacter freundii, and Klebsiella 230 

pneumoniae. These organisms, like P. aeruginosa, are multi-drug resistant environmental opportunists. 231 

Additionally these bacteria have all been reported to produce or QS with AHLs.(54–56) Among PON+ 232 

urines no such taxa grew out in culture, though, gram negative environmental opportunists were over-233 

represented as members of the urinary microbiome of PON+ urines (Figure 3).   234 

Measurement of AHLs in urine samples 235 

Using an E. coli luminescent reporter construct (E. coli JM109 (pSB1142)), the presence and abundance 236 

of long chain AHLs was also assayed in urine samples. Long chain AHLs were only detected in three out 237 

of four urine samples that were culture positive for P. aeruginosa and PON1 negative. AHL concentration 238 
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in one sample (patient #9) was about 1.5 micromolar. The other three samples in which P. aeruginosa 239 

grew out of culture had considerably lower concentrations (see Supplemental Table 3.).  240 

 241 

 242 

Urine microbiome 243 

Similar to other human-associated microbiome studies (57), the taxonomic composition of the samples 244 

varied widely across individuals (Figure 1). Shannon diversity, which accounts for the richness and 245 

evenness of taxa within samples, was different between controls and UTI samples, but not between PON+ 246 

and PON- UTI samples (Figure 2A , p-value < 0.05). Similarly, Bray Curtis dissimilarity revealed greater 247 

differences between samples based on UTI status, than between PON+ and PON- UTI samples (Figure 248 

2B). A total of 22 taxa were significantly differentially abundant between PON+ and PON- samples when 249 

controlling for differences based on UTI status (Figure 3).  Those associated with PON- were typical host 250 

commensals such as Corynebacterium and Peptoniphilus spp.; all were gram positive cocci. Among the 251 

PON+ group, there was a more diverse group represented including commensals typically associated with 252 

mammalian hosts, and environmental bacteria found in a variety of ecosystems such as Caulobacter and 253 

Aerococcus which have both been found to cause human infection (58,59). 254 
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255 
Figure 1. Bars show color-coded proportions of the top 12 taxa in urine microbiome samples, grouped according to UTI and PON256 

status. 257 

258 
Figure 2. (A) Differences in Shannon diversity estimates (with confidence intervals) were seen between control and UTI subjects259 

but not between PON+ and PON- UTI subjects (breakaway betta test, p-value < 0.05) (B) Beta diversity estimates (with260 

confidence intervals) highlight that control and UTI samples are more dissimilar to each other than PON+ and PON- UTI261 

samples. 262 
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 263 

 264 

Figure 3. A total of 22 OTUs were differentially abundant across PON status when controlling for the effect of UTI status on 265 

abundance. OTUs detected by differentialTest in corncob (FDR adjusted p-values < 0.05). The seven OTUs increased in PON- 266 

samples are all small, gram positive host commensals not otherwise found in the environment. Species over-represented in PON+ 267 

samples include environmental opportunists such as Aerococcus and Caulobacter, as well as human-associated genera such as 268 

Bacteroides, Gardenerella, Cutibacterium, Prevotella, and Staphylococcus 269 

 270 

Discussion 271 

PON has previously been shown to inhibit virulence in certain gram-negative pathogens, and to influence 272 

the composition of host microbial consortia. We speculated that PON may have a role in the innate 273 
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immune response in UTI. Our results indicate a positive association between urine PON and positive 274 

culture in patients with UTI. This finding tends to support the idea that PON may be induced by 275 

uropathogens, and be associated with infections with uropathogens that grow out in culture. Absence of 276 

PON, on the other hand is associated with urine from those without UTI, or, with symptoms of UTI, but 277 

with cultures showing “urogenital flora” (Supplemental Table 2) or, “no growth”. The latter two are urine 278 

culture results which are not considered to represent significant infection. It is notable that in PON+ 279 

samples OTUs that were significantly increased, (compared to PON- samples) were more diverse and 280 

contained environmental/opportunistic species (Figure 3), while OTUs differentially found in PON- 281 

samples were a more uniform set of commensals. More generally, the PON+ UTI microbiota was 282 

different than the PON- UTI microbiota—whether this is a result of the presence of PON or PON 283 

expression resulted from pre-existing consortial differences cannot at present be determined. Consortial 284 

differences caused by an AHL quorum quenching enzyme related to PON (SsoPox) was recently reported 285 

by Schwab, et al.  (41). They found that in a complex microbial community the addition of an AHL-286 

degrading enzyme inhibited biofilm formation (even among genera that neither sense nor produce AHLs) 287 

and altered the composition of microbial consortia without changing overall community diversity. 288 

Combined with the present results, Schwab et al.’s findings suggest the possibility that interfering with 289 

AHL signaling can have far-reaching effects on complex microbial communities beyond those limited to 290 

specific effects on species that quorum sense with, or have receptors for, AHLs. In connection with this it 291 

is notable that only PON- urines grew out P. aeruginosa or were found to contain AHLs. This may be a 292 

specific effect of PON; there is also evidence that it has more global effects; a practical example is that, 293 

according to our findings, in the complex system consisting of host, uropathogen and urinary microbiota, 294 

information about PON, heart rate, and white blood count can predict the probability of positive urine 295 

cultures.  296 

In our study PON positive subjects had significantly more UTIs caused by E. coli alone, rather than multi-297 

species infections, or infections with opportunists such as P. aeruginosa. It has previously been reported 298 
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that the large majority of uncomplicated UTIs in normal hosts are caused by single species (28). Infection 299 

associated with impaired immunity is characterized by difficult to eradicate biofilms, polymicrobial 300 

infections, and infection with opportunistic organisms that don’t readily infect immune-competent hosts. 301 

PON positive subjects featured microbiota with a larger proportion of opportunists, but greater likelihood 302 

of single-pathogen urine cultures, suggesting that PON may contribute to immunocompetence. PON- 303 

urines grew out more environmental opportunists in culture, compared to PON+ urines, (which grew out 304 

none as the primary uropathogen). As noted, the microbiota of PON positive urine in patients with UTI 305 

contained a larger proportion of environmental/opportunistic bacteria; whether or not the presence of 306 

opportunistic bacteria induces PON (which may then limit their ability to become primary uropathogen) 307 

can’t be determined at present. Nonetheless, the role of PON in innate immunity of the airway and skin 308 

(9, 20, 60), suggests that urinary PON may also have a protective role. This may occur through degrading 309 

the virulence-associated AHLs of some uropathogens, and independently as a mediator of inflammation. 310 

Another possible protective effective of PON relates to its putative effects on microbial consortia, and the 311 

possibility that host benefits are realized as a result. 312 

We also report here for the first time AHLs in urine from subjects with UTI. C12 AHL levels in urine 313 

from subjects with P. aeruginosa UTI have not previously been reported, though detection in urine of 314 

non-AHL P. aeruginosa mediators of QS associated with pulmonary infection has recently been reported 315 

(61). In the current study, 3 out of 4 urine samples from which Pseudomonas grew out in culture were 316 

found to have detectable levels of C12 AHLs. Two of three were below 1 micromolar (Table 5.) 317 

Biologically relevant concentrations of AHLs for QS are considered to be 1-5 micromolar (26), and levels 318 

of C12 AHL in planktonic cultures necessary to initiate QS-related lasB expression have previously been 319 

reported to be about 1 micromolar (62). This is a concentration of C12 AHLs that is not uncommonly 320 

seen in planktonic cultures of P. aeruginosa. By contrast, C12 AHL levels associated with P. aeruginosa 321 

biofilms in flow cells have been found to be hundreds of times higher (63). One possible interpretation of 322 

concentrations of C12 considerably below this in three of four samples suggests that QS and virulence 323 
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expression in P. aeruginosa UTI is not a planktonic phenomenon in the urine. QS may be occurring on 324 

mucosal surfaces of the bladder/urinary system with bacterial surface colonization where local 325 

concentrations of metabolites such as AHLs are likely to be much higher (64), and interactions with 326 

mediators of host immunity more intense (65). Urine has recently been reported to independently promote 327 

P. aeruginosa biofilm formation (66), suggesting that even in the absence of the normal QS-mediated 328 

mechanisms for biofilm formation, a biofilm may still be formed in P. aeruginosa UTI.    329 

Conclusion 330 

We report for the first time AHLs in the urine of subjects with P. aeruginosa UTIs; the significance of 331 

this, and the role that AHLs play in QS among planktonic P. aeruginosa remains to be investigated; our 332 

finding suggests that QS mechanisms may affect UTI-related microbial consortia, and possibly microbial 333 

pathogenesis in UTI.  We found that UTI subjects with PON positive urines were much more likely to 334 

have uncomplicated E. coli UTI. The presence of PON was associated with distinct microbial consortia in 335 

which differentially over-represented genera were more diverse, and included opportunistic 336 

environmental species. Future work may address the question of whether PON is induced in 337 

circumstances in which uropathogens might otherwise establish difficult to eradicate polymicrobial 338 

infections more often seen in immunocompromised hosts. 339 

 340 

 341 

 342 

 343 

 344 

 345 
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