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 2 

Abstract 14 

To what extent do substitutions in protein-coding versus gene-regulatory regions contribute to 15 

fitness change over time? Answering this question requires estimates of the extent of selection 16 

acting on beneficial mutations in the two classes of sites. New mutations that have advantageous 17 

or deleterious fitness effects can induce selective sweeps and background selection, respectively, 18 

causing variation in the level of neutral genetic diversity along the genome. In this study, we 19 

analyse the profiles of genetic variability around protein-coding and regulatory elements in the 20 

genomes of wild mice to estimate the parameters of positive selection. We find patterns of 21 

diversity consistent with the effects of selection at linked sites, which are similar across mouse 22 

taxa, despite differences in effective population size and demographic history. By fitting a model 23 

that combines the effects of selective sweeps and background selection, we estimate the strength 24 

of positive selection and the frequency of advantageous mutations. We find that strong positive 25 

selection is required to explain variation in genetic diversity across the murid genome. In 26 

particular, we estimate that beneficial mutations in protein-coding regions have stronger effects 27 

on fitness than do mutations in gene-regulatory regions, but that mutations in gene-regulatory 28 

regions are more common. Overall though, our parameter estimates suggest that the cumulative 29 

fitness changes brought about by beneficial mutations in protein-coding may be greater than 30 

those in gene-regulatory elements.  31 

 32 

 33 

34 
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Introductions 35 

Understanding the relative contributions of protein-coding and gene regulatory variation to 36 

adaptation is a long-standing goal of evolutionary biology. Molecular changes in protein-coding 37 

and gene regulatory regions contribute to evolution, but in classic essays King and Wilson (1975) 38 

and Carroll (2005) argued that changes in gene expression may dominate adaptive evolution. King 39 

and Wilson (1975) reasoned that since nucleotide identity between human and chimpanzee 40 

proteins is around 99%, there are too few protein sequence difference between the species, 41 

implying that changes in gene regulation are probably required to explain the many phenotypic 42 

differences between the species. Carroll's (2005) argument highlighted the idea that molecular 43 

changes in the gene regulatory apparatus may have smaller pleiotropic effects than those in 44 

protein-coding regions, so that changes in gene expression may dominate adaptive evolution. 45 

However, Hoekstra and Coyne (2007) attempted to refute these arguments, maintaining that 46 

there is insufficient evidence to decide whether adaptation is primarily driven by changes in 47 

protein sequences or gene regulatory elements. For example, a 1% difference in protein sequence 48 

between humans and chimpanzees could still result in a very large number of phenotypic 49 

differences. However, the contribution of individual variants to additive genetic variance for a trait 50 

is expected to be proportional to the square of their phenotypic effect sizes, assuming semi-51 

dominance (Fisher 1918; Falconer and Mackay 1996). Without an understanding of the 52 

frequencies of new mutations, their effect sizes, and the strength of selection acting on them, the 53 

question of the contribution of molecular evolution in different genomic elements to adaptation 54 

will remain intractable. 55 

 56 

Information on the strength of selection acting on beneficial mutations and the rates at which 57 

they occur can be obtained by analysing patterns of neutral genetic diversity. Because genetically 58 

linked sites do not evolve independently, natural selection acting at a given site may leave 59 

signatures at linked sites that are informative about the strength and mode of selection. The 60 

effects of selection at linked sites on neutral genetic diversity depend on the frequency and 61 

strength of selected mutations and the rate of recombination (Charlesworth 2012; Hermisson and 62 

Pennings 2017; Stephan 2019). Several modes of selection at linked sites have been identified. Of 63 

specific relevance to this study are background selection (BGS), caused by the removal of 64 

deleterious mutations from a population, and selective sweeps, caused by the spread of 65 

advantageous variants. The classic footprint of a selective sweep is a trough in nucleotide diversity 66 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447924doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447924
http://creativecommons.org/licenses/by-nc/4.0/


 4 

at neutral sites surrounding an adaptive substitution. The reduction in nucleotide diversity caused 67 

by a sweep is proportional to the ratio of the strength of selection acting on the causal mutation 68 

to the local recombination rate (Barton 2000). Using such information, Wiehe and Stephan (1993) 69 

developed a model of recurrent selective sweeps and used it to estimate the frequency and 70 

strength of advantageous mutations in Drosophila melanogaster. They fitted their model of 71 

sweeps to the relationship between recombination rate and nucleotide diversity for a number of 72 

loci sampled across the D. melanogaster genome. At the time of their analysis, the theory of BGS 73 

was in its infancy, and models combining the effects of BGS and sweeps had not been developed. 74 

However, the effects of BGS are expected to be ubiquitous across the genome (McVicker et al. 75 

2009; Comeron, 2014; Elyashiv et al. 2016; Pouyet et al. 2018), and conceptually similar studies to 76 

Wiehe and Stephan (1993) have shown that controlling for BGS is important when parametrizing 77 

sweep models (Kim and Stephan 2000; Comeron 2014; Elyashiv et al. 2016; Campos et al. 2017).  78 

 79 

In Drosophila, there are reductions in average diversity around recent nonsynonymous 80 

substitutions, which are greater than those observed around synonymous substitutions (Sattath et 81 

al. 2011; Elyashiv et al. 2016). To investigate the causes of this difference, Elyashiv et al. (2016) 82 

fitted a model of sweeps and BGS to genome-wide variation in genetic diversity in D. 83 

melanogaster and found that a combination of BGS and selective sweeps provided a close fit to 84 

the observed data. From the fit of their model to empirical data, Elyashiv et al. (2016) inferred a 85 

distribution of fitness effects for advantageous mutations that included a class of very strongly 86 

selected mutations and a more mildly beneficial class. In both mice and humans, however, there is 87 

very little difference between the profiles of diversity around recent nonsynonymous and 88 

synonymous substitutions (Hernandez et al. 2011; Halligan et al. 2013). In these species, dips in 89 

average nucleotide diversity have been observed in genomic regions surrounding whole functional 90 

elements, such as protein-coding exons or conserved non-coding elements, which may reflect the 91 

cumulative effects of recurrent selective sweeps and BGS (Hernandez et al. 2011; Halligan et al. 92 

2013; Booker and Keightley 2018)  93 

 94 

Natural populations of mice in the genus Mus are excellent material for the study of adaptive 95 

evolution in different regions of the mammalian genome. Their populations are very large 96 

compared to other mammals (Leffler et al. 2012), so there is likely to be more power for 97 

population genetic analyses to differentiate between the evolutionary processes that affect 98 

genetic variability. Previous studies in mice have established that both protein-coding genes and 99 
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regions putatively involved in gene regulation have an excess of sequence differences from sister 100 

taxa compared to that expected under a model of purifying selection, suggesting widespread 101 

adaptive molecular evolution (Halligan et al. 2010, 2013). Halligan et al. (2013) analysed a sample 102 

of Mus musculus castaneus individuals and estimated that there have been around 1.3 million and 103 

0.38 million positively selected regulatory and nonsynonymous changes, respectively, over the 104 

period since this subspecies began to diverge from rats. At face value, this finding suggests that 105 

changes in gene regulation may dominate adaptive evolution in mice. However, Halligan et al. 106 

(2013) also showed that there are much larger reductions in neutral diversity surrounding protein-107 

coding exons than around gene regulatory elements, and that BGS could not fully explain these 108 

observations (Halligan et al. 2013; Booker and Keightley 2018). Halligan et al. (2013) concluded 109 

that this difference in neutral diversity may reflect differences in the strength of positive selection 110 

acting on the different classes of sites.  111 

 112 

Building on Halligan et al. (2013), we have sought to tease apart the contributions of BGS and 113 

sweeps to the patterns of nucleotide diversity observed in the Eastern house mouse M. m. 114 

castaneus (Booker and Keightley 2018). We inferred the distribution of fitness effects (DFE) for 115 

deleterious and advantageous mutations occurring in protein-coding genes and gene regulatory 116 

elements, by analysing the frequency distribution of derived allele frequencies (the unfolded site 117 

frequency spectrum, uSFS). Based on analysis of the uSFS, we found that a model of positive 118 

selection was insufficient to explain the troughs in nucleotide diversity around protein-coding 119 

exons or conserved non-coding elements (CNEs). However, we found that infrequent, strongly 120 

beneficial mutations, which have negligible effect on the uSFS, potentially could do so (Booker and 121 

Keightley 2018). This is because infrequent, strongly advantageous mutations may substantially 122 

influence diversity at linked sites, while making very little contribution to the uSFS. We concluded 123 

that the parameters of positive selection are very difficult to accurately estimate from the uSFS 124 

alone (Booker 2020). To understand the relative strengths of selection acting on protein-coding 125 

versus gene regulatory regions, the analysis of a model of selective sweeps fitted to patterns of 126 

neutral genetic variability may be more powerful.  127 

 128 

In this study, we examine the reductions in nucleotide diversity surrounding protein-coding exons 129 

and conserved non-coding elements in wild mice, and attempt to tease apart the modes of 130 

selection operating on the two different elements. We fitted a model of selective sweeps to the 131 

patterns observed in M. m. castaneus, while correcting for the confounding effects of BGS. Our 132 
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analysis provides evidence that the strength of selection acting on beneficial mutations in protein-133 

coding exons is far greater than that acting on conserved non-coding elements. Using a simple 134 

model of the fitness change brought about by positive selection, we find that selection on protein-135 

coding regions may contribute more to fitness change, despite positive selection occurring more 136 

frequently in regulatory regions of the genome. We then compared patterns of putatively neutral 137 

diversity among the principal subspecies of Mus musculus and their sister species Mus spretus. We 138 

find that the profiles of nucleotide diversity and the inferred distributions of fitness effects among 139 

each group are similar, suggesting that the contributions of positive selection to protein-coding 140 

and regulatory change are similar in the different mouse taxa. Note that our goal in this study is 141 

not to identify the individual loci that selection has recently acted on; for a recent study 142 

identifying the targets of recent selection in wild mice see (Lawal et al. 2021).   143 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447924doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447924
http://creativecommons.org/licenses/by-nc/4.0/


 7 

Results and Discussion 144 

Profiles of genetic diversity around protein-coding exons and conserved non-coding 145 

elements in multiple mouse lineages 146 

If different mouse lineages are subject to similar selection pressures, we might expect that they 147 

exhibit similar patterns of diversity across their genomes. We thus compared patterns of genetic 148 

diversity in populations of the house mouse Mus musculus and the sister species Mus spretus. We 149 

analysed data previously reported by Halligan et al. (2013) and Harr et al. (2016) for the two 150 

mouse species, M. musculus and M. spretus. For M. musculus, we analysed samples from the 151 

three sub-species, M. m. castaneus, M. m. domesticus and M. m. musculus. The M. m. castaneus 152 

individuals (n = 10) were from Himachal Pradesh, India. For M. m. domesticus, populations were 153 

sampled in France (n = 8), Germany (n = 8) and Iran (n = 8). In the case of M. m. musculus, 154 

populations were sampled in Afghanistan (n = 6), the Czech Republic (n = 8) and Kazakhstan (n = 155 

8). The M. spretus individuals were sampled in Spain (n = 8). We refer to the different sub-156 

populations of M. m. domesticus and M. m. musculus by the countries where the individuals were 157 

sampled. 158 

 159 

We identified conserved non-coding elements (CNEs) in murid rodents using a 40-way alignment 160 

of placental mammals by means of the phastCons approach (Siepel et al. 2005). Following 161 

Williamson et al. (2014), the genomes of M. musculus and other rodents were masked in the 162 

alignment to limit ascertainment bias affecting elements that have recently diverged in the rodent 163 

lineage. CNEs identified using phastCons overlap with features such as promoters and enhancers 164 

(Lindblad-Toh et al. 2011), and thus are likely to have roles in the regulation of gene expression. 165 

 166 

For each of the mouse taxa, we examined putatively neutral nucleotide diversity (π) in genomic 167 

regions surrounding protein-coding exons and CNEs using the methods described by Halligan et al. 168 

(2013). Briefly, polymorphism data were extracted in genomic windows surrounding protein-169 

coding exons and CNEs. We masked any putatively functional sites from analysis windows; these 170 

included the exons (including UTRs) of genes annotated in the M. musculus genome by ENSEMBL 171 

in release 93 (Howe et al. 2021) and CNEs. For each analysis window, we calculated the genetic 172 

map distance between the centre of the window and the focal functional element, assuming 173 

either the pedigree-based recombination map for M. musculus constructed by Cox et al. (2009) or 174 

a recombination map estimated using linkage disequilibrium (LD) in the M. m. castaneus genome 175 
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(Appendix). We excluded analysis windows that had a scaled genetic distance of 4Ner < 1, because 176 

downstream analyses assume that sites are not tightly linked. All remaining analysis windows 177 

were collated into genetic distance bins. The average number of pairwise differences (i.e. 178 

nucleotide diversity) and nucleotide divergence from Rattus rattus were calculated for each 179 

genetic distance bin. For all analyses, we only examined the autosomes. Downstream analyses 180 

were sensitive to the assumption of a single mutation rate, so we excluded hypermutable CpG-181 

prone sites from our analyses, identified as sites that were preceded by a C or succeeded by a G in 182 

the 3’ to 5’ direction in the reference genome (see Materials and Methods).  183 

 184 

The choice of recombination map had a substantial effect on the profiles of average nucleotide 185 

diversity observed around protein-coding exons and CNEs (Figures S1, S2). When assuming the 186 

pedigree-based Cox map, we found that nucleotide diversity was slightly higher in the immediate 187 

flanks of both exons and CNEs (with distances calculated using the estimated recombination 188 

frequency), and lower in regions far from functional elements, compared to results with the LD-189 

based map (Figure S1, S2). These differences are consistent with the possibility that the Cox map, 190 

which was constructed with a far smaller number of markers than the LD-based map, does not 191 

fully capture genomic regions that have either unusually low or high recombination rates. A 192 

possible consequence of this would be that analysis windows at intermediate distances from 193 

functional elements may appear to be more tightly linked to those elements than they actually 194 

are. This is supported by differences in numbers of sites falling into various genetic distance bins 195 

between the pedigree-based and LD-based recombination maps (Figures S1 and S2). However, 196 

both selective sweeps and BGS can induce LD, and may thus downwardly bias recombination rate 197 

estimates obtained using LD-based approaches (Clark et al., 2010). For this reason, we focus on 198 

results obtained assuming the pedigree-based Cox map for the remainder of the paper. We 199 

present parallel analyses, which assume the LD-based map, in the supplement and describe 200 

differences between the respective conclusions in the Discussion.  201 

 202 

All mouse taxa exhibited dips in nucleotide diversity around protein-coding exons and CNEs 203 

(Figure 1). To quantify the relative reduction in diversity for each taxa, we calculated π/πRef, the 204 

ratio of π to the average π at distances greater than 4Ner = 1,500 and less than 4Ner = 2,500 for 205 

exons, and distances greater than 4Ner = 150 and less than 4Ner = 250 for CNEs. The distances for 206 

determining πRef were chosen based on where π began to flatten off with increasing distance from 207 

functional elements. Despite the existence of large differences in genome-wide diversity between 208 
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 9 

the taxa, troughs in π/πRef around exons and CNEs were very similar among mouse lineages 209 

(Figures 1, S1, S2). Nucleotide diversity was reduced by 20-30% and 10-20% around protein-coding 210 

exons and CNEs, respectively (Figure 1). The dips in diversity extended to genetic distances of up 211 

to approximately 4Ner = 1,000 around exons, but only to 4Ner = 100 around CNEs (Figure 1). 212 

Consistent with Halligan et al. (2013), we observed little reduction in between-species divergence 213 

around the edges of protein-coding exons, suggesting that mutation rate variation is not a 214 

substantial driver of the observed dips in diversity. However, in the immediate flanks of CNEs, we 215 

observed a trough in divergence. This may be explained if the phastCons approach used to identify 216 

CNEs did not readily identify weakly conserved sequences at the edge of more strongly conserved 217 

blocks. This would imply that that some sites subject to purifying selection tightly linked to the 218 

CNEs may have remained unannotated in our analysis. However, the troughs in nucleotide 219 

divergence around CNEs were substantially narrower than the corresponding troughs in diversity. 220 

This implies that reduced mutation rates or constrained sites may account for part of the diversity 221 

drop around CNEs, but do not explain all of it (Figure S1, S2). 222 

 223 

An important caveat concerning the above analysis is that the mouse taxa thatare subject of the 224 

analysis are very closely related, i.e. it has been estimated that the M. musculus sub-species 225 

complex began to diverge around 350,000 years ago (Geraldes et al, 2011). Furthermore, Geraldes 226 

et al (2011) found extensive shared nucleotide variation among the sub-species, and that the 227 

average FST among the members of the sub-species complex ranged from 0.43 to 0.72. Thus, 228 

patterns of polymorphism identified in the species are likely to be highly non-independent, and 229 

differences in π between the groups presumably reflect fluctuations in population sizes.  230 

 231 
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 232 
 233 

Figure 1 Nucleotide diversity (π) in regions surrounding protein-coding exons and CNEs in wild 234 

mice. Population-scaled recombination rates (4Ner) were calculated assuming the recombination 235 

map for M. musculus constructed by Cox et al. (2009). πRef is the mean diversity calculated for sites 236 

far from functional elements. 237 

 238 

 239 

Nucleotide polymorphism and divergence in wild mouse genomes 240 

A first step for determining whether there was a consistent signal of natural selection across the 241 

mouse genomes, was to identify three classes of functional sites and two classes of putatively 242 

neutral sites as follows. For protein-coding gene orthologues between mouse and rat, we 243 

identified 0-fold degenerate nonsynonymous sites and UTRs, and used 4-fold degenerate sites as a 244 

neutral comparator. Protein-coding sites within the binding motifs of exonic splice enhancers 245 

including synonymous sites appear to be subject to purifying selection, implying that 4-fold sites 246 

located within them cannot be considered as neutral (Savisaar and Hurst 2018). We therefore 247 

excluded all synonymous and non-synonymous sites located within regions that matched such 248 

binding motifs. The total numbers of polymorphic and invariant sites that passed filtering for each 249 
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of the mouse taxa are detailed in Supplementary File 1. We identified sites in the upstream and 250 

downstream flanks of individual CNEs for use as neutral comparators (see Methods). 251 

 252 

To determine whether there was a consistent signal of natural selection, we assessed nucleotide 253 

diversity and lineage-specific divergence for the three classes of putatively functional sites (Figure 254 

2).  In all cases, functional site diversity and divergence were lower than for their putatively 255 

neutral counterparts, consistent with the action of purifying selection (Figure 2). Note that the M. 256 

m. castaneus data have been analysed in this way before (Halligan et al. 2013; Booker and 257 

Keightley 2018) and, as previously reported, M. m. castaneus had the highest nucleotide diversity 258 

of all Mus taxa surveyed (Figure 2; Harr et al. 2016). However, nucleotide divergence reported is 259 

the lineage specific divergence accumulated since the focal taxa began to diverge from Mus 260 

famulus, so that divergence estimates for the various mouse taxa are highly non-independent 261 

because of shared histories. 262 

 263 

All populations had nonzero Tajima’s D for putatively neutral sites, indicating the presence of 264 

either non-equilibrium population dynamics or genome-wide effects of selection (Figure 2). Mouse 265 

populations from Western Europe and Kazakhstan exhibited positive Tajima’s D for all classes of 266 

sites (Figure 2), consistent with a recent history of admixture between different populations or 267 

population bottlenecks (Charlesworth and Charlesworth 2010, pp.290-291). A population 268 

structure analysis of the mice analysed in this study did not suggest strong admixture between the 269 

sampled groups (Harr et al. 2016), but we cannot rule out the possibility of admixture with other 270 

unsampled mouse populations. M. m. castaneus and populations sampled in Iran and Afghanistan 271 

had strongly negative Tajima’s D values, consistent with recent population expansion or a 272 

genome-wide effect of recurrent selective sweeps (Charlesworth and Charlesworth 2010, pp.290, 273 

414). Indeed, simulations modelling D. melanogaster populations have shown that recurrent, 274 

strong selective sweeps can induce negative Tajima’s D as large as -0.156 at synonymous sites 275 

(Campos and Charlesworth 2019). It worth noting that Tajima’s D is sensitive to the number of 276 

individuals and nucleotides analysed (Simonsen et al. 1995), which vary among the mouse taxa, so 277 

it is not straightforward to interpret differences in demographic history or strength of selection 278 

from these data. 279 

  280 
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 281 

Figure 2 Population genetic summary statistics for three classes of putatively functional sites in the 282 

mouse genome and two putatively neutral comparators. Nucleotide diversity (π) and Tajima’s D 283 

are also shown. Error bars represent 95% confidence intervals based on 100 bootstrap samples. 284 

Those not visible are shorter than the height of the points.  285 
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The distribution of fitness effects for deleterious mutations inferred from the uSFS 287 

To parameterise a model of BGS, we estimated the distribution of fitness effects (DFE) for 288 

deleterious mutations in each of the mouse taxa by fitting a model of mutation-selection-drift 289 

balance to the unfolded site frequency spectrum (uSFS). The uSFS is a vector of 0, 1, 2, …, k counts 290 

of derived alleles, where k is the number of haploid genomes sampled. Estimates of the DFE can 291 

be obtained by contrasting the uSFS for a selected class of sites and a neutral comparator. Here, 292 

we estimated the uSFS for the three classes of functional sites and their putatively neutral 293 

comparator sequences. For each class of sites, we fitted a gamma distribution of deleterious 294 

mutational effects using polyDFE (v2; Tataru and Bataillon 2019). Tataru et al. (2017) showed that 295 

polyDFE provides robust estimates of the DFE for deleterious mutations based on the uSFS if a 296 

discrete class of beneficial mutations is also inferred. While the inferred beneficial mutation 297 

parameters are often spurious, including them seems to improve inference of the DFE for 298 

deleterious mutations (Booker 2020). Finally, while the gamma distribution is an arbitrary choice 299 

of model, and other probability distributions may give better fits to the data, it can capture the 300 

important features of the DFE, even if the underlying distribution is multi-modal (Kousathanas and 301 

Keightley 2013). Additionally, using the same probability distribution across taxa provides a 302 

consistent framework for comparing molecular evolution in the different mouse groups.  303 

 304 

The estimated DFEs were all highly leptokurtic and had similar estimated parameters across the 305 

different taxa (Figure 3; Supplementary Table 2). Using polyDFE, the DFE is estimated in terms of 306 

the scaled selection coefficient for deleterious mutations, 2Nesd, where sd is the reduction in 307 

fitness experienced by an individual homozygous for the mutation (which is assumed to be semi-308 

dominant). Figure 3 shows the distribution of effects of deleterious mutational effects discretised 309 

into three ranges; nearly neutral mutations with 2Nesd  < 1, mildly deleterious mutations with 1≤ 310 

2Nesd < 10 and mutations with 2Nesd ≥ 10. Consistent with previous studies, amino-acid changing 311 

mutations were found to have the highest probability of having strongly deleterious effects 312 

(Halligan et al. 2013) and non-coding elements (UTRs and CNEs) had higher fractions of nearly 313 

neutral mutations (Figure 3). For 0-fold degenerate sites and CNEs, M. m. castaneus had the 314 

smallest proportion of nearly neutral variants among the taxa. The DFE inferred for the M. m. 315 

musculus sample from Afghanistan had the highest proportion of strongly deleterious mutations in 316 

UTRs, but this may reflect sampling error, since there were only 6 individuals and the population 317 

had among the lowest levels of nucleotide diversity (Figure 2).  318 

 319 
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 320 
Figure 3 Graphical representation of the distribution of fitness effects of deleterious mutations for 321 

three classes of functional sites in wild mice. The figure shows the proportion of mutations falling 322 

into three ranges of effect size assuming a gamma DFE for each taxa and class of sites. Error bars 323 

indicate the 95% range based on 100 bootstrap replicates. 324 

 325 

The contribution of background selection to patterns of diversity around functional 326 

elements 327 

Using the inferred DFE parameters for deleterious mutations, we can estimate the contribution of 328 

BGS to reductions in nucleotide diversity across the mouse genome. Specifically, we used 329 

simulations modelling M. m. castaneus to estimate the contribution of BGS to troughs in diversity 330 

observed around functional elements (Figure S3). Our simulations incorporated recombination 331 

rate variation (assuming either the pedigree-based or LD-based recombination maps, see below), 332 

the distribution of exons, UTRs and CNEs in the mouse genome, and the distributions of fitness 333 

effects for deleterious mutations estimated for those elements. We estimated values of π around 334 

both exons and CNEs from simulated data in the same manner as for the empirical data. Using the 335 
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simulation results, we estimated the reduction in diversity caused by background selection, B, 336 

around functional elements for each genetic distance bin. We calculated B = p/p0, where p  is the 337 

nucleotide diversity observed in the simulation and π0 is the neutral expectation. As we found 338 

previously (Booker and Keightley 2018), BGS could not fully explain the reductions in diversity 339 

observed around protein-coding exons or CNEs (Figure S3). 340 

 341 

Inferences about the strength of BGS made under the assumption of constant population size be 342 

misleading if there has been recent population size change. For example, a population bottleneck 343 

may lead to the accumulation of weakly deleterious mutations if drift overwhelms selection. As 344 

population size increases after a bottleneck, rapid purging of weakly deleterious mutations can 345 

occur, leading to deviations from the expectations of standard models of BGS, which assume 346 

constant population size (Torres et al. 2020; Johri et al. 2021). We have previously inferred a 347 

model of demographic history for M. m. castaneus, which suggested that population size has 348 

recently increased following a bottleneck (Booker and Keightley 2018). We performed an 349 

additional set of simulations incorporating this demographic history, but found that the relative 350 

reductions in diversity around both protein-coding exons and CNEs were very similar to those 351 

observed under constant population size (Figure S4). Note that the trajectory of the demographic 352 

history (bottleneck followed by recovery) we inferred may be an artefact of BGS (Ewing and 353 

Jensen 2016; Johri et al. 2021). However, we proceeded with our analysis assuming estimates of B 354 

for a constant population size, because the variations in B around exons and CNEs were very 355 

similar with or without population size change. 356 

 357 

Parameters of beneficial mutations obtained from patterns of nucleotide diversity 358 

We estimated the parameters of beneficial mutations occurring in protein-coding and gene 359 

regulatory regions by fitting a model that combines the effects of BGS and recurrent selective 360 

sweeps to troughs in average nucleotide diversity around functional elements (see Materials and 361 

Methods). The model quantifies the reduction in neutral diversity surrounding the average exon or 362 

CNE, assuming that they are 150bp and 52bp long, respectively. A key parameter in the model is 363 

π0 = 4Neμ, the nucleotide diversity expected under neutrality in the absence of selection at linked 364 

sites, where Ne is the effective population size and μ is the mutation rate per basepair. Estimation 365 

of π0 is problematic, however, and π0 may even be unobservable in empirical data, given the 366 

ubiquity of selection at linked sites (Kern and Hahn 2018). In the empirical data, π levelled off at 367 
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different values for protein-coding exons and CNEs (Figure 1, S1, S2). However, our simulations 368 

predicted that B should plateau at around 0.95 in genomic regions surrounding both protein-369 

coding exons and CNEs (Figure S3). B was not predicted to plateau at 1.0 in our simulations, 370 

because we modelled the distribution of all functional elements in the genome, so that a site may 371 

be influenced by BGS generated by many surrounding elements. Our simulations did not model 372 

sweeps, so simply dividing empirical π by our estimated B would give an underestimate of π0, 373 

because the reduction in diversity caused by positive selection was not included. When analysing 374 

variation in π, we therefore assumed values of π0 = 0.0081 and 0.0091 for protein-coding exons 375 

and CNEs, respectively, to reflect the different levels at which diversity plateaued. 376 

 377 

We proceeded to fit models combining BGS and selective sweeps to the troughs in diversity 378 

around protein-coding exons and CNEs in M. m. castaneus assuming various models for the effects 379 

of advantageous mutations. We estimated the strength of selection acting on new, semi-dominant 380 

beneficial mutations as ɣa = 4Nesa, where sa is the increase in relative fitness experienced by 381 

heterozygotes. We also estimated pa, the proportion of new advantageous mutations in a 382 

functional element. We found that a model with two classes of advantageous mutations gave a 383 

better fit than a single class of mutations or an exponential distribution of effects (as judged by 384 

AIC; Supplementary File 3). This result held regardless of the recombination map that was 385 

assumed (Supplementary File 3).  386 

 387 

 388 
Figure 4 The reduction of scaled nucleotide diversity around protein-coding exons and CNEs in M. 389 

m. castaneus, predicted by fitting a model combining the effects of background selection and 390 

selective sweeps to the observed data. Genetic distances were calculated assuming the pedigree-391 
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based recombination map constructed by Cox et al. (2009). The effect of background selection (B) 392 

was estimated using simulations.  393 

 394 

For both protein-coding exons and CNEs, we found that the best fitting model included a class of 395 

strongly advantageous mutations and a class of more mildly beneficial mutations (Table 1). When 396 

assuming the pedigree-based Cox map, we estimated the scaled fitness effects of the strongly 397 

selected class (ɣa) to be 6,200 and 1,900 for protein-coding exons and CNEs, respectively. The 398 

proportions of mutations with these selection coefficients were 9 x 10-6 and 3 x 10-4, respectively. 399 

The more mildly beneficial class of mutations inferred for protein-coding exons and CNEs had 400 

scaled effects of 210 and 7.0, respectively, and the proportion of mutations with these effects 401 

were 3.5 x 10-4 and 1.8 x 10-2, respectively. In the case of CNEs, although two classes of 402 

advantageous mutational effects gave the best fit to the data, the coefficient of variation for the 403 

parameter estimates of the mildly selected class was large, and evidence for mildly beneficial 404 

mutations is fairly weak in this case (Table 1).  405 

 406 

The choice of recombination map strongly affected the estimated selection parameters obtained. 407 

Use of the pedigree-based Cox map resulted in estimated selection coefficients that were typically 408 

smaller than those obtained when assuming the LD-based recombination map (Supplementary 409 

Table 3). This is because we found the troughs in diversity around both exons and CNEs were 410 

shallower when calculating genetic distances using the pedigree-based map than when using the 411 

LD-based map (Figure S1, S2). 412 

  413 

BGS appears to contribute to the troughs in diversity around both protein-coding exons and CNEs 414 

and causes an overall reduction in neutral diversity (Figure 4). Ignoring the contribution of BGS 415 

(i.e. by setting B to 1.0 when fitting Equation 4 to the diversity troughs) resulted in a much poorer 416 

model fit (Supplementary File 3). In the absence of BGS, the selection coefficients for 417 

advantageous mutations required to explain the observed data are, as expected, far higher 418 

(Supplementary File 3).  419 

 420 

 421 

 422 

 423 
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Table 1 Parameters of positive selection in M. m. castaneus estimated by fitting a model of 424 

selective sweeps and background selection to troughs in diversity around functional elements. The 425 

frequency (pa) and scaled selection coefficients (𝛾a) for the two classes of advantageous effects are 426 

given. Standard errors are shown in square brackets below point estimates. 427 

 428 

 429 

Element 𝛾a,1	 pa,1 𝛾a,2 p	a,2 

Protein-Coding Exons 
6,170 

[2,650] 

0.80 x 10-5 

[0.50 x 10-5] 

208 

[105] 

3.50 x 10-4  

[1.80 x 10-4] 

CNEs 
1,910 

[673] 

1.30 x 10-5 

[0.60 x 10-5] 

7.00 

[3.50] 

1.78 x 10-2 

[1.29 x 10-2] 

 430 

We did not include gene conversion events in our analysis, because gene conversion tracts, which 431 

have an estimated mean length in mice of 135bp (Paigen et al. 2008), are relatively short 432 

compared to the genetic distances we analysed (up to 100,000bp and 5,000bp for exons and CNEs, 433 

respectively). Furthermore, the ratio of the rates of gene conversion and crossover events has 434 

been estimated to be 0.105 in mice (Paigen et al. 2008). Overall, gene conversion is expected to 435 

contribute little to the net frequency of recombination between neutral and selected sites. 436 

 437 

The relative contribution of adaptive substitutions in protein-coding and regulatory regions 438 

to fitness change in mice 439 

An important goal of evolutionary biology is to understand the extent to which protein-coding and 440 

regulatory elements contribute to phenotypic evolution (King and Wilson 1975; Wray 2007; Stern 441 

and Orgogozo 2008; but see Hoekstra and Coyne 2007). Using our estimated selection parameters, 442 

we can parameterise the following model of the rate of fitness change per generation (ΔW) 443 

brought about by the fixation of advantageous mutations. For a particular class of sites, assume 444 

there are ηa nucleotides in the genome at which new mutations occur at rate μ per nucleotide site 445 

per generation. If the size of the breeding population is N, then 2Nμ new mutations enter the 446 

population each generation. We assume that a proportion of the new mutations, pa, is strongly 447 

advantageous, with a selection coefficient of sa in heterozygous carriers. When the effectiveness 448 

of selection exceeds that of genetic drift (2Nesa > 1), the fixation probability is approximately 2sa 449 

(Haldane 1927). Once fixed, advantageous mutations increase population mean fitness by sa /h, 450 

where h is the dominance coefficient, giving the following expression: 451 
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 452 

Δ𝑊 = !"#$!%!&!"

'
                                     (1). 453 

 454 

Since we are interested in the relative contribution to fitness change, and assumed that the 455 

average point mutation rate is the same for CNEs and protein-coding exons, we can thus ignore μ 456 

in Equation 1. Note that the above model is conceptually similar to an approach taken by Lynch et 457 

al. (1993) to model fitness change under mutational meltdown. We parametrized Equation 1 using 458 

our estimated selection parameters. Note that we estimated two classes of beneficial mutational 459 

effects for the two classes of functional elements. When parameterizing Equation 1, we summed 460 

the fitness contributions over the two classes of fitness effect inferred for each element. We 461 

calculated the ratio of ΔW for protein-coding exons and CNEs (ΔWExons/ ΔWCNEs) as a measure of 462 

the relative contributions of the two types of elements to adaptive evolution (which also implicitly 463 

assumes the same h for all classes of mutation).  464 

 465 

Our point estimates suggest that ΔW is larger for protein-coding regions than regulatory regions. 466 

However, it is notable that the total genomic rate of fixation of beneficial mutations is higher for 467 

CNEs than for coding regions (see also Halligan et al. 2013), but this reflects the fact that there are 468 

approximately three times as many CNE bases as non-synonymous bases in the mouse genome. 469 

Although the estimated genomic rate of fixation of beneficial mutations in CNEs is greater than 470 

that of protein-coding exons (Table 2), the average strength of selection acting on a new 471 

advantageous nonsynonymous mutation far exceeds that of CNEs (Table 2). Fitness change is 472 

proportional to the square of the effect size, so that the change in population mean fitness 473 

brought about by the fixation of advantageous mutations is substantially higher for protein-coding 474 

exons than for CNEs. This result is sensitive to the choice of recombination map, since we inferred 475 

stronger selection when assuming the LD-based map (Supplementary Table 3). Using a parametric 476 

bootstrap approach, we found that ΔWExons/ ΔWCNEs was significantly greater than 1 when using 477 

the LD-based map, but not when assuming the pedigree-based map of Cox et al. (2009).  478 

  479 

Table 2 Estimates of the change in fitness brought about by the fixation of advantageous 480 

mutations. Estimates were obtained assuming an effective populations size for M. m. castaneus of 481 

420,000 and the selection parameters shown in Table 1. 482 

 483 
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Recombination 

Map 
Element 

ΔWExons/ 

ΔWCNEs 

95% Bootstrap 

interval 

LD-based 

(castaneus map) 

Protein-Coding Exons 
23.11 11.08 - 54.67 

CNEs 

Pedigree-based 

(Cox et al. 2009) 

Protein-Coding Exons 
2.94 0.211 - 46.36 

CNEs 

 484 

 485 

Selective sweeps and background selection in the mouse genome 486 

The profiles of nucleotide diversity indicate the existence of pervasive effects of selection on 487 

diversity across the genome (Figure 1, Figure 2). By fitting a model of sweeps to the troughs in 488 

diversity around protein-coding exons and CNEs, while assuming that the troughs are partly 489 

caused by BGS, we estimated the parameters of positively selected mutations occurring in the two 490 

classes of element. Our analysis suggests that regulatory sequences experience a higher genomic 491 

rate of newly arising advantageous mutations than protein-coding sites. However, the trough in 492 

diversity around exons is both deeper and wider than what is observed around CNEs, and, 493 

accordingly, we found that protein-coding regions experience more strongly selected mutations 494 

than regulatory sequences. Using a different approach, Campos et al. (2017) came to a similar 495 

conclusion for D. melanogaster by comparing UTRs with the coding sequences of genes. 496 

 497 

Due to non-independence among the various M. musculus sub-species, we only estimated 498 

parameters of positive selection for M. m. castaneus, the sub-species with the highest levels of 499 

diversity.  Our selection parameter estimates for M. m. castaneus are fairly similar to estimates 500 

obtained for European M. m. domesticus in an earlier study (Teschke et al. 2008).  501 

  502 
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 503 

Limitations and next steps 504 

There are a number of caveats concerning our estimates of positive selection parameters. Firstly, 505 

we found that an exponential distribution of beneficial mutational effects provided a poorer fit to 506 

the troughs in diversity compared to a model with two discrete classes of effects (Supplementary 507 

File 3). However, the true DFE for advantageous mutations is almost certainly more complex than 508 

the simple models assumed. The approach used in this study was based on average nucleotide 509 

diversity across many sites, and we presumably had little power to infer a more complex model of 510 

the DFE for advantageous mutations. Secondly, we have assumed that all elements of a particular 511 

class share a common set of selection parameters. This is problematic, since CNEs could be 512 

composed of several categories, such as promoters and enhancers, which may be subject to 513 

different selective pressures. Indeed, different categories of protein-coding genes may also be 514 

subject to different selection pressures. For example, immunity genes in D. melanogaster, virus 515 

interacting proteins in humans and highly expressed genes in Capsella grandiflora appear to have 516 

higher rates of adaptive substitutions than the respective genome wide averages (Enard et al. 517 

2014; Obbard et al. 2009; Williamson et al. 2014). Thirdly, for a single class of advantageous 518 

mutational effects, under the assumption that there is no interference among sweeps, the 519 

predicted reductions in diversity caused by selective sweeps can be modelled as a simple 520 

hyperbolic function (Equation 4). However, if the rate of sweeps is sufficiently high, and the rate of 521 

recombination is sufficiently low, selective interference can cause the rate of sweeps to be lower 522 

than predicted by a given strength of selection (Campos and Charlesworth 2019). This implies that 523 

the strength of positive selection would be overestimated by our methods. A bias in the opposite 524 

direction, which is likely to be more important for genomic regions with normal levels of 525 

recombination, is caused by deviations from one of the assumptions underlying Equation 4,  i.e. 526 

that there is full recovery of nucleotide diversity between selective sweeps (Campos and 527 

Charlesworth 2019; Charlesworth 2020). This would lead to the effects of sweeps to be 528 

underpredicted. Incorporating more sophisticated models of selective sweeps into the inference 529 

framework is a logical next step. 530 

 531 

The architecture of functional elements in the mammalian genome is such that a single exon or 532 

CNE is rarely far away from another functional element. When estimating the effects of sweeps on 533 

neutral diversity, we excluded all putatively functional sites from our analysis windows, but 534 

multiple linked elements may affect observed diversity at a given locus. For this reason, we did not 535 
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estimate the strength of positive selection acting on UTRs, although sweeps in these elements are 536 

also likely to contribute to heterogeneity in π across the mouse genome, as has been found in D. 537 

melanogaster (Campos et al. 2017). The model fitted to the troughs in diversity assumes that 538 

selection is generated by a single, idealised exon or CNE. However, there is variation in the length 539 

of exons and CNEs across the genome. An analysis that models genome-wide heterogeneity in 540 

diversity while taking into account the locations of individual functional elements, similar to the 541 

method developed by Elyashiv et al. (2016) for D. melanogaster, could be a more powerful 542 

approach. Note that the approach of Elyashiv et al. (2016) might not be applicable in all situations, 543 

because it conditions the effects of sweeps on the locations of recent substitutions. In mice and 544 

humans, patterns of diversity around nonsynonymous substitutions are indistinguishable from the 545 

patterns of diversity around synonymous substitutions (Hernandez et al. 2011; Halligan et al. 546 

2013). Developing a chromosome-wide analysis that conditions the effects of sweeps on the 547 

locations of genomic elements rather than substitutions may be a useful avenue for further 548 

research. 549 

 550 

The model of sweeps we assumed involves positive selection acting on de novo mutations – the 551 

so-called `hard', or `classic' sweep model. Studies in humans and Drosophila have, however, 552 

suggested that 'soft' sweeps are common (Garud et al. 2015; Garud and Petrov 2016; Schrider and 553 

Kern 2016; but see Harris et al. 2018). Soft selective sweeps occur when advantageous alleles 554 

present in multiple copies in the population spread to fixation, which can occur if selection acts on 555 

standing genetic variation or if multiple copies of the selected allele arise independently 556 

(Hermisson and Pennings 2017). Additionally, adaptation acting on quantitative traits subject to 557 

stabilising selection may generate partial sweeps, because changes in allele frequencies at many 558 

loci can rapidly alter mean phenotypes, without necessarily causing fixations (Pritchard et al. 2010; 559 

Jain and Stephan 2017) . The profiles of the reductions in diversity around soft and partial sweeps 560 

differ from those expected under hard sweeps, and if either of the alternative types of sweep 561 

were common, the assumption of a hard sweep model could result in spurious parameter 562 

estimates (Elyashiv et al. 2016). Finally, the trough in diversity around a selective sweep in a 563 

structured population is expected to be shallower than in a panmictic population because of the 564 

longer time taken to reach fixation (Barton 2000; Santiago and Caballero 2005). If beneficial alleles 565 

are frequently introduced via migration, we may therefore underestimate the strength of 566 

selection.  567 

 568 
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Finally, it is important to note that CNEs are generally expected to represent regulatory sequences 569 

that are deeply conserved. It has been demonstrated that the evolution of regulatory elements is 570 

more dynamic than that of coding sequences, with major gains of new regulatory elements having 571 

occurred in vertebrate and mammalian evolution (Mikkelsen et al. 2007; Lowe et al. 2011). If more 572 

recently acquired regulatory elements, which may be absent from the CNE dataset, experience 573 

stronger or more frequent adaptive substitutions, it is possible that we have underestimated the 574 

contribution of regulatory changes to adaptive evolution. For instance, a recent gain of a new 575 

regulatory element might have been caused by relatively strong positive selection acting on the 576 

element as a whole, resulting in a single sweep event. This would fall outside the inference 577 

framework developed here. 578 

 579 

It seems likely that adaptation does not fit any one particular mode, but rather different functional 580 

elements will be subject to a mixture of different types of sweep that may vary depending on the 581 

genomic region. For example, adaptation may more commonly act on standing variation in 582 

regulatory regions simply because they harbour greater nucleotide diversity than nonsynonymous 583 

sites (Figure 2).  584 

  585 
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Conclusions 586 

 587 

In this study, we have shown that multiple wild mouse taxa exhibit patterns of genetic diversity 588 

and divergence that are consistent with the action of natural selection. Furthermore, we have 589 

shown that strong positive selection can explain the dips in diversity around protein-coding exons 590 

and CNEs in M. m. castaneus. Finally, even though the framework we have adopted here is 591 

incapable of distinguishing different modes of positive selection such as adaptation, sexual 592 

selection and various forms of competition, the estimated parameters of positive selection 593 

suggest that mutations in protein-coding regions may contribute more to the rate of change in 594 

fitness under positive selection than regulatory mutations.  595 

596 
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Materials and Methods 597 

Genomic data 598 

We re-analysed previously published genome sequences for the 54 wild-caught Mus musculus  599 

individuals described in Harr et al. (2016) and the 10 M. m. castaneus individuals and the M. 600 

famulus individual originally described in Halligan et al. (2010, 2013). The mouse samples 601 

belonged to three species: Mus spretus, Mus musculus and Mus famulus. The M. spretus 602 

individuals (n = 8) were from Madrid, Spain. The M. musculus individuals are composed of samples 603 

from the sub-species M. m. domesticus, M. m. musculus and M. m. castaneus. Three populations 604 

of M. m. domesticus were sampled (Massif Central, France, n = 8; Cologne-Bonn, Germany, n = 8; 605 

Ahvaz, Iran, n = 8) and three populations of M. m. musculus were sampled (Afghanistan, n = 6; 606 

Studenec, Czech Republic, n = 8; Mazar-e-Sharif, Kazakhstan, n = 8). We also analysed 10 M. m. 607 

castaneus described by Halligan et al. (2010, 2013), sampled in Himachal Pradesh, India. The one 608 

M. famulus individual, originated in Southern India, though Halligan et al. (2013) obtained it from 609 

the Montpellier Wild Mice Repository.  610 

 611 

Harr et al. (2016) published and made available the variant calls obtained from the M. musculus 612 

samples described above in the form of VCF files. However, Harr et al. (2016) did not include 613 

invariant sites in their VCFs; for our purposes we required this information, so we re-called 614 

variants from their processed BAM files, available at 615 

http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/. The data had been processed according 616 

to the GATK version 3 best practices pipeline, up to the step prior to variant calling. Briefly, all 617 

sequencing reads had been mapped to the mm10 genome using bwa-mem (Li 2013) . Reads were 618 

then sorted, merged and PCR duplicates were marked using picardtools 619 

(https://broadinstitute.github.io/picard/). Base Quality Score Recalibration was then applied using 620 

the dbSNP resource for mice (https://www.ncbi.nlm.nih.gov/snp) to produce analysis-ready 621 

alignments in BAM format. We generated BAM files for the M. m castaneus data and the M. 622 

famulus mice using the same procedure using FASTQ files downloaded from the European 623 

Nucleotide Archive (accession number PRJEB2176). For each of the mice, we called variants 624 

separately using the HaplotypeCaller tool from GATK3.7 (McKenna et al. 2010) , with the options 625 

“– emitRefConfidence BP_RESOLUTION  –max-alternate-alleles 2”, and made population-specific 626 
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VCF files using the GATK tools combineGVCFs and genotypeGVCFs. We restricted all analyses to 627 

autosomal sites. 628 

 629 

Outgroup information and CpG sites 630 

In this study we used M. famulus, Mus pahari and Rattus norvegicus as the outgroup species.  For 631 

each of the mouse taxa described above and each outgroup, we created a synthetic mm10-length 632 

reference genome by replacing mm10 alleles with the major allele of the variant call set. In 633 

addition, we constructed a synthetic genome for R. norvegicus by replacing mm10 alleles with the 634 

homologous positions in the rat genome using the UCSC reciprocal best alignments between rn6 635 

and mm10 (available at: 636 

ftp://hgdownload.cse.ucsc.edu/goldenPath/rn6/vsMm10/reciprocalBest/) using custom Python 637 

scripts. For an additional outgroup, more closely related to Mus musculus than the rat, we 638 

obtained the homologous alleles from Mus pahari at mm10 positions using the ENSEMBL pairwise 639 

alignments between the M. pahari reference sequence (Thybert et al. 2018) and mm10 (available 640 

at: ftp://ftp.ensembl.org/pub/release-90/maf/ensembl-compara/pairwise_alignments/).  641 

 642 

CpG sites have higher rates of spontaneous mutation than non-CpG sites, and identifying and 643 

excluding CpG-prone sites is a conservative way of reducing the impact of CpG hypermutability on 644 

analysis of population genomic data (Gaffney and Keightley 2008). For each of the rodent taxa, we 645 

used the synthetic mm10-length reference genomes to identify the locations of CpG-prone sites, 646 

defined as those sites in our synthetic references that were preceded by a C or followed by a G in 647 

the 5’ or 3’ direction, respectively. All analyses presented in this paper excluded CpG-prone sites. 648 

 649 

Annotations and identifying conserved non-coding elements  650 

We downloaded the list of mouse-rat orthologs from https://www.ensembl.org/biomart/ and 651 

extracted the annotations for each from version 38.93 of ENSEMBL 652 

(Mus_musculus.GRCm38.93.gtf.gz; Howe et al. 2021). For each of the orthologs, we identified the 653 

positions of 0-fold degenerate nonsynonymous and 4-fold degenerate synonymous sites using the 654 

synthetic genomes for each of the mouse taxa and the outgroups described above. The locations 655 

of 5’ and 3’ untranslated regions (UTRs) were retained for downstream analyses. We also retained 656 

a list of all exonic positions in the mouse genome, regardless of orthology, for the purposes of 657 

filtering out functionally constrained sites in downstream analyses.  658 
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 659 

There is evidence that synonymous sites within exonic splice enhancers (ESEs) in humans are 660 

subject to purifying selection, and that ignoring ESEs can bias analyses that rely on the assumption 661 

that synonymous sites evolve neutrally (Savisaar and Hurst 2018). Savisaar and Hurst (2018) 662 

identified putative ESEs by comparing human gene sequences against various lists of ESE motifs. 663 

They found that synonymous sites in regions matching ESE motifs had lower nucleotide diversity 664 

than those outside of putative ESEs. We identified the locations of potential ESEs in protein-coding 665 

genes orthologous between mice and rat using the merged list of ESEs described in Savisaar and 666 

Hurst (2018) (kindly provided by Rosina Savisaar). For each of the mouse-rat orthologs, we 667 

extracted the gene sequence and performed a string search against the list of ESE motifs. We 668 

recorded the genomic position of each region matching an ESE motif and used them to filter out 669 

the affected coding sites in downstream analysis.  670 

 671 

We identified conserved non-coding elements (CNEs) in murid rodents using a 40-way alignment 672 

of placental mammals downloaded from UCSC 673 

(http://hgdownload.cse.ucsc.edu/goldenPath/mm10/multiz60way/). To avoid ascertainment bias, 674 

the mouse and rat genomes in the 40-way alignment were converted to the character “N” prior to 675 

calling conserved elements, following Williamson et al. (2014). We ran phastCons with the 676 

following arguments --expected-length=45 --target-coverage=0.3 --rho=0.31. To identify CNEs, we 677 

masked all exonic regions from the resulting file of phastCons elements using the complete list of 678 

annotations from the 38.93 database (see above). The scripts and full pipeline used to identify 679 

CNEs are available at https://github.com/rorycraig337/mouse_mm10_conserved_elements. 680 

 681 

For each CNE identified in this way, we obtained the location of their flanking sequences, which 682 

we used as neutral comparators in downstream analysis. For each CNE, we recorded the locations 683 

of two loci of equal length upstream and downstream of the focal element, offset by 500bp. We 684 

merged overlapping CNE-flanks and masked out sites that overlapped any CNE or exonic sites. 685 

 686 

We analysed the mouse genomes assuming the pedigree-based genetic map of Mus musculus 687 

constructed by Cox et al. (2009). The Cox map was constructed using data from 3,546 meioses 688 

observed in crosses of common laboratory strains. The markers genotyped by Cox et al. (2009) 689 

were mapped to the mm9 reference genome, but in the present study we converted the mm9 690 

coordinates to mm10 positions as follows. The Cox map was downloaded from the Jackson 691 
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Laboratory website (http://cgd.jax.org/mousemapconverter/). The SNP positions of the Cox map 692 

were then extracted and converted to mm10 positions using the online UCSC LiftOver tool 693 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver). The physical distances between the mm10 SNP 694 

positions were then converted to units of genetic distance using the Jackson Laboratory’s 695 

conversion tool (http://cgd.jax.org/mousemapconverter/). We also analysed the mouse genomes 696 

using an LD-based recombination map inferred from the sample of M. m. castaneus individuals, as 697 

described in the Appendix. 698 

 699 

Mouse analysis – Patterns of nucleotide diversity around selected sites 700 

For each of the M. musculus sub-species and Mus spretus, we examined patterns of nucleotide 701 

diversity around protein-coding exons and CNEs. From the edges of protein-coding exons (CNEs), 702 

polymorphism data and divergence from the rn6 rat reference genome were extracted in windows 703 

of 1Kbp (100bp) extending to distances of 100Kbp (5Kbp). Analysis windows only extended to the 704 

midway point between adjacent elements. Sites within the exons of protein-coding genes or CNEs 705 

were excluded from analysis windows. The genetic distance between an analysis window and a 706 

focal element was calculated either from the pedigree-based genetic map constructed using 707 

common lab strains of M. musculus (Cox et al. 2009) or the linkage disequilibrium (LD) based 708 

recombination map for M. m. castaneus. The SFS and divergence from were recorded for each 709 

analysis window. Analysis windows were then binned based on the genetic distance from the focal 710 

element, and the SFS and divergence from individual windows were collated. Because LD-based 711 

and pedigree-based recombination maps have different features and shortcomings (see Results), 712 

we performed analyses based on both genetic maps.  713 

 714 

Estimating the unfolded site frequency spectrum, summary statistics and the 715 

distribution of fitness effects 716 

We analysed genetic variation for five different classes of sites in the genome, i.e. the 0-fold and 4-717 

fold degenerate sites and UTRs of protein-coding genes, CNEs and CNE-flanks.  For each class of 718 

sites, we inferred the unfolded site frequency spectrum (uSFS), which is the distribution of derived 719 

allele frequencies in the mouse samples. The uSFS was inferred by maximum likelihood using the 720 

two-outgroup method of Keightley and Jackson (2018) using Mus famulus and Mus pahari as 721 

outgroups. We compared the fit of 1-, 2- and 6- parameter mutation rate models using est-sfs 722 

(v2.03; Keightley and Jackson 2018). Consistently, a model with 6 mutation rate parameters (i.e. 723 
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the R6 model from Keightley and Jackson 2018) provided the best fit to the data (as judged by 724 

model likelihoods), but the uSFS and lineage specific divergences that were estimated under the 2-  725 

parameter and 6-parameter models were almost identical in all cases (Supplementary File 1), so 726 

we have used the results from the 2-parameter model in our analyses for all taxa. For each taxon 727 

and class of sites, we performed 100 bootstraps, sampling genes or CNEs with replacement. We 728 

inferred the uSFS for each bootstrapped dataset as above. For each class of sites, we calculated 729 

nucleotide diversity (π) and Tajima’s D from the inferred uSFS for each bootstrap sample.  730 

 731 

Estimates of the distribution of fitness effects (DFE) were obtained by analysing the unfolded site 732 

frequency spectrum for each class of functional site using polyDFE v2 (Tataru and Bataillon 2019). 733 

For 0-fold sites and UTRs, we used 4-fold degenerate synonymous sites as the neutral comparator, 734 

and for CNEs we used CNE-flanks. Using polyDFE2, we fitted a gamma distribution of deleterious 735 

mutations effects and a single class of beneficial mutations (using the -model B option). We 736 

excluded between species divergence from the analysis using the “-w” option. We fitted the uSFS 737 

data for each of the bootstrap replicates described above. 738 

 739 

Simulating background selection 740 

There is substantial evidence that background selection (BGS) contributes to troughs in diversity 741 

around protein-coding exons and CNEs (Halligan et al. 2013; Booker and Keightley 2018). For our 742 

analysis, we therefore required estimates of the effect of BGS on neutral diversity, B, at varying 743 

distances from functional elements. Estimates of B were included as covariates when fitting a 744 

model of selection at linked sites. However, when purifying selection is weak (𝛾d < 5) analytical 745 

formulae for calculating B over-predict the effects of BGS (Gordo et al. 2002; Good et al. 2014), 746 

and weakly deleterious mutations appear to comprise a large fraction of the DFEs for mice (Figure 747 

3 and Halligan et al. 2013). We therefore opted to obtain estimates of the variation in B from 748 

forward-in-time simulations that modelled the entire range of fitness effects inferred for mice. 749 

   750 

We used SLiM v3.2 (Haller and Messer 2019) for this purpose. Following Booker and Keightley 751 

(2018), we incorporated the actual distribution of functional elements (the coding exons and UTRs 752 

of protein-coding genes, and CNEs) and the estimated recombination rates. 1 Mbp regions of the 753 

mouse genome were randomly sampled and the functional annotations in the sampled regions 754 

were used as the basis of a simulation replicate. The parameters of the gamma distributions of 755 

fitness effects for deleterious mutations estimated for 0-fold sites, UTRs and CNEs were used in 756 
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the simulations for the respective elements. The recombination rate variation present in the 757 

sampled region of the mouse genome was included in the simulations using either the pedigree-758 

based map from Cox et al. (2009) or the LD-based recombination map for M. m. castaneus. When 759 

assuming the Cox map, the recombination rates (in units of cM/Mbp) were scaled in the 760 

simulations by a factor of 420r, assuming Ne = 420,000 for wild M. m. castaneus. In the case of the 761 

LD-based estimates of the recombination rate, population-scaled recombination rates (in units of 762 

4Ner) were simply divided by 4N, where N was the simulated population size. Populations of N = 763 

1,000 diploid individuals were simulated for 20,000 generations. We set the mutation rate such 764 

that the neutral expectation π0 = 4Neμ = 0.01, based on the upper estimate of nucleotide diversity 765 

observed in the M. m. castaneus genome (Figure 1). Given the simulated population size of 1,000 766 

diploids, 4Neμ = 0.01 corresponded to a point mutation rate of μ = 2.5 x 10-6. We used the tree-767 

sequence recording option in SLiM to record the genealogies of the simulated populations, so 768 

modelling neutral mutations in SLiM was not required. Instead, neutral mutations were added to 769 

the recorded coalescent trees at a rate μ using PySLiM 770 

(https://pyslim.readthedocs.io/en/latest/introduction.html). We sampled 200 haploid 771 

chromosomes from the population and extracted B = p/p0 as a function of genetic distance from 772 

both protein-coding exons and CNEs. Data were extracted from the simulated populations in the 773 

same way as for the empirical data. To obtain smoothed B values, we fitted LOESS curves to the 774 

average π observed around functional elements in the simulated data. We fitted LOESS curves 775 

using a span parameter of 0.3 and the number of sites contributing to each analysis bin as weights 776 

in R (v3.4.2).  777 

 778 

Model of recurrent selective sweeps and background selection 779 

Our analysis is a modification of that of  Elyashiv et al. (2016) and Campos et al. (2017), where 780 

expressions were described for the neutral diversity expected under the combined effects of BGS 781 

and sweeps. Consider a haplotype with a set of neutral sites linked to a site that is the target of 782 

positive selection. A new, semi-dominant advantageous mutation with heterozygous selection 783 

coefficient sa occurs at site i on the haplotype and spreads to fixation. Recombination between 784 

sites i and k uncouples the neutral and selected sites at rate ri,k per generation.  The expected 785 

change in neutral diversity at site k (Δπk), relative to its expectation in the absence of selection (π0) 786 

is given by     787 

()#
*$

=	−(4𝑁+𝑠,)
%"&',#
)!  .                           (2) 788 
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 789 

See Barton (2000), Charlesworth and Charlesworth (2010, p411) or Campos and Charlesworth 790 

(2019) for derivations of Equation 2. This approximation assumes that selection pressure on the 791 

advantageous allele satisfies Nesa >> 1, so that the sweep can be treated deterministically 792 

following an initial stochastic establishment phase. Under this assumption, the quantity –Dpk in 793 

Equation 1 can be equated to the probability of a sweep-induced coalescent event at site k (Wiehe 794 

and Stephan 1993). For a particular class of functional elements (e.g. protein-coding exons), 795 

sweeps occur at a rate of Va = 2μpa𝛾a per nucleotide per generation (Kimura and Ohta 1971), 796 

where μ is the mutation rate per nucleotide site, pa is the proportion of new mutations that are 797 

advantageous and 𝛾a is the scaled selection coefficient (4Nesa) for these mutations. If Va is 798 

sufficiently low, such that sweeps do not interfere with each other, the total probability of sweep-799 

induced coalescence for a neutral site caused by selection at a linked functional element is: 800 

 801 

 𝑃&-,/ =	𝑉,𝜏𝛾,

%"&',#
)! ,      (3) 802 

 803 

where 𝜏 is the number of sites in a particular class of functional element. In our analysis of data 804 

from wild mice, ri,k was measured from the end of a functional element to the centre of an analysis 805 

window. 806 

 807 

The effects of background selection at site k can be represented by multiplying the effective 808 

population size by a factor Bk. The probability of coalescence for a neutral allele affected by BGS is 809 

thus 1/(2BkNe). We assume that coalescent events caused by BGS and sweeps follow independent 810 

exponential distributions, so thar the rate of coalescence induced by the two processes is the sum 811 

of 1/(2BkNe) and Psc,k. We also multiply the sweep effect Psc,k by Bk to reflect the reduction in the 812 

fixation probability of a new advantageous mutation as a result of the reduction in Ne caused by 813 

BGS, following Kim and Stephan (2000). Simulations show that this may overestimate the effect of 814 

BGS on fixation probabilities (Campos and Charlesworth 2019), we thus compared selection 815 

parameters with and without including background selection. 816 

 817 

Writing the reciprocal of the rate of coalescence at the neutral site under the combined effects of 818 

BGS and sweeps as Tk (which is equivalent to the expected time to coalescence of a pair of alleles), 819 

and expressing it relative to the expected time to coalescence under neutrality (T0), we have: 820 
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  821 

    0#
0$
	≈ 	 *#

*$
≈	 1

2#
%*34"+2#5),,#

.         (4) 822 

 823 

We estimated parameters of advantageous mutations by fitting Equation 4 to the relationship 824 

between nucleotide diversity and genetic distance from functional elements, using non-linear 825 

least squares with the lmfit (v0.9.7) package for Python 2.7. When modelling a single class of 826 

fitness effects, we estimated 𝛾a  and pa using Equation 4. To incorporate two discrete classes of 827 

advantageous mutational effects, we modified Equation 4, replacing Psc,k in Equation 4 with 828 

 829 

𝑃&-,/ =	𝑉,,4𝜏𝛾,,4

%"&',#
)!," +	𝑉,,4𝜏𝛾,,4

%"&',#
)!," ,           (5) 830 

 831 

where the subscripts 1 and 2 refer to the two different classes of fitness effects.  832 

 833 

To model an exponential distribution of fitness effects, we replaced Psc,k with 834 

 835 

𝑃&-,/ =	∫ 𝑉,𝜏𝛾,

%"&',#
)!6

7 𝜙(𝛾,|	�̅�,)d𝛾,,      (6) 836 

 837 

where 𝜙(𝛾,|	�̅�,) is the probability density function of an exponential distribution with mean 𝛾,6 . In 838 

all cases, we used the average length of protein-coding exons or CNEs, 152.0 and 50.0 839 

respectively, as 𝜏 when fitting equation 4. We assumed that Ne = 426,200, based on 4Neμ = 0.0092 840 

and a mutation rate of 5.4 x 10-9 (Uchimura et al. 2015).  841 

 842 

We used our estimates of positive selection parameters to quantify the relative contributions of 843 

positive selection in protein-coding exons versus CNEs to the change in population mean fitness. 844 

To obtain confidence intervals around our estimates of the ratio of fitness contributed by positive 845 

selection in exons versus CNEs (ΔWExons/ ΔWCNEs), we used a parametric bootstrap approach. For 846 

each estimated 𝛾a and pa parameter, we sampled random values from a truncated normal 847 

distribution with mean equal to the parameter estimate and variance equal to the square of the 848 

standard error of the parameter estimate. The truncated normal distribution had a lower bound of 849 

0.0, since values of 𝛾a and pa below 0 are biologically impossible. For the calculation of ΔWExons/ 850 

ΔWCNEs, we performed 1,000 bootstraps and used them to estimate 95% confidence intervals. 851 
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 852 

Data availability 853 

Scripts and code to reproduce all analyses, simulations and figures shown in this study are 854 

available at https://github.com/TBooker/MuridRodentProject.  855 
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Supplementary Material 1089 

Appendix: Analyses assuming LD-based 1090 

recombination maps 1091 

 1092 

Generating LD-based recombination rate maps 1093 

We phased variant calls using the read-aware methodology incorporated in SHAPEIT2 (Delaneau 1094 

et al., 2013). For each of the mouse population samples, we carried out the following procedure. 1095 

First, we created a stringently filtered set of SNPs following Booker et al. (2017), by only including 1096 

biallelic variant sites that met the following criteria: no overlap with indels, no missing data, QUAL 1097 

>= 30, genotype quality (GQ) greater than or equal to 15 in all individual genotypes, sequencing 1098 

depth (DP) greater than or equal to 10 for all individuals, rejected sites with significant deviation 1099 

from Hardy-Weinberg equilibrium at the level p < 0.05) . Using the filtered variants, we extracted 1100 

phase informative reads. We then ran SHAPEIT2 in ‘assemble’ mode to phase our stringently 1101 

filtered variants. Finally, we converted the output of SHAPEIT2 to FASTA files, which contained two 1102 

haplotypes per diploid sample using custom Python scripts. 1103 

 1104 

We ran LDhelmet version 1.9 (Chan et al. 2012)  on the phased haplotypes, in order to estimate 1105 

the population-scaled recombination rate, ρ = 4Ner, where Ne is the effective population size and r 1106 

is the rate of crossing over between two sites per generation, for each of the mouse populations. 1107 

We calculated the ancestral prior probability for each variant site that we passed to LDhelmet 1108 

using the method developed by Keightley & Jackson (2018)  as implemented in the program est-sfs 1109 

v2.01. As input for this program, we generated files including each variant and invariant site that 1110 

met less stringent filtering criteria than that described above (QUAL > 30, no missing data, no 1111 

overlap with indels, ExcessHet < 13, no more than two alleles per site), and additionally discarded 1112 

sites that did not have full outgroup information (alleles from both Mus famulus and Mus pahari 1113 

for mouse samples mapped to mm10). For sites that were present in the input to LDhelmet, but 1114 

not in the input for the Keightley & Jackson (2018)  method, because they lacked complete 1115 

outgroup data, we assigned the ancestral prior following Equation 18 in Keightley & Jackson 1116 

(2018) . We used the resulting information about the ancestral states of SNPs to populate the 4x4 1117 
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mutation transition matrix  used by LDhelmet (Chan et al. 2012). To estimate fine-scale 1118 

recombination rates in each of our populations, we ran the find_confs component of LDhelmet 1119 

with a window size (-w) of 50 SNPs to generate haplotype configuration files from the phased 1120 

FASTA files we made in the step above. Subsequently, we ran the table_gen and pade components 1121 

of LDhelmet with the default parameters, with the exception of θ [-t] which we set to the point 1122 

estimate of π at 4-fold degenerate synonymous sites specific to each population. To estimate ρ we 1123 

ran the rjmcmc component of LDhelmet with a width [-w] of 50 SNPs, a block penalty [-b] of 100, a 1124 

partition length of 4001 SNPs, an overlap of 200 SNPs, a burn-in period of 100,000 iterations 1125 

followed by 1,000,000 iterations of the Markov chain. 1126 

 1127 

Comparison of LD-based recombination rates among taxa 1128 

When analysing patterns of genetic diversity under a model of selection at linked sites, the way in 1129 

which recombination rate estimates were obtained may affect parameter estimates. We analysed 1130 

the relationship between nucleotide diversity and genetic distance from functional elements in M. 1131 

m. castaneus assuming either a high-resolution recombination map constructed using patterns of 1132 

linkage disequilibrium (LD) or the pedigree-based map constructed by Cox et al. (2009). These two 1133 

approaches for generating recombination rate maps have both advantages and disadvantages. By 1134 

examining patterns of LD, the population-scaled recombination rate (ρ = 4Ner), where r is the 1135 

recombination rate, can be inferred from a relatively small sample of unrelated individuals at very 1136 

fine-scales. However, natural selection can influence LD and may therefore affect such 1137 

recombination rate estimates (Clark et al. 2010). Alternatively, direct estimates of the 1138 

recombination rate can be obtained from crossing experiments, but to achieve a high-resolution 1139 

recombination map, a very large number of individuals need to be genotyped and this has typically 1140 

precluded the use of whole-genome re-sequencing in some species such as mice, thereby limiting 1141 

resolution.  1142 

 1143 

We generated recombination rate maps from patterns of LD for each of the mouse taxa, and 1144 

compared these to the pedigree-based estimates obtained by Cox et al. (2009). It is worth pointing 1145 

out that the Cox et al. (2009) map is an estimate of the recombination map that was generated 1146 

using inbred strains of mice of predominantly M. m. domesticus origin and there are known 1147 

differences in total genetic map length and local recombination rate between M. musculus sub-1148 

species (Dumont & Payseur 2011). For simplicity, we treat the Cox map as a baseline comparison 1149 

for each of the recombination rate landscapes we inferred. 1150 
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 1151 

We calculated Spearman’s correlation between LD-based recombination rate estimates obtained 1152 

for each mouse taxa and recombination rate estimates from the Cox map in windows from 1Mbp 1153 

up to 20Mbp. Across all scales tested, the recombination maps for M. m. castaneus and M. m. 1154 

musculus from Afghanistan showed the highest level of congruence with the Cox map (Figure A.1). 1155 

The correlation exhibited by the M. m. castaneus was very similar to the correlation previously 1156 

reported (Booker et al., 2017). For the purposes of calculating genetic distances, we used the LD-1157 

based recombination rate estimates for M. m. castaneus.  1158 

 1159 
Figure A.1 Spearman rank correlation coefficients between recombination maps inferred using 1160 

LDhelmet for wild mice and the pedigree-based map of Cox et al. (2009). Correlations were 1161 

calculated in non-overlapping windows of discrete physical size. For the purposes of visualisation, 1162 

the confidence interval is only shown for the M. m castaneus map. 1163 
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 1165 
Figure A.2 Identical to Figure 2 in the main text except that genetic distances were calculated 1166 

assuming the LD-based recombination map constructed for M. m. castaneus. 1167 

 1168 

 1169 

 1170 

 1171 

Supplementary Table S1 Comparison of uSFS model fits for each taxa and class of sites 1172 

considered. The maximum likelihood estimate of model parameters are shown along with the 1173 

estimated uSFS. A parameter key is given as a second sheet in the spreadsheet. 1174 
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Supplementary Table S2 Parameters of the distribution of fitness effects for deleterious mutations 1176 

as well as the positive selection parameters estimated for each population using polyDFE. Point 1177 

estimates are provided as well as 95% bootstrap confidence intervals. A parameter key is given as 1178 

an additional sheet in the spreadsheet. 1179 

 1180 

Supplementary Table S3 Estimates of positive selection parameters obtained by fitting a models 1181 

of selective sweeps and background selection to troughs in nucleotide diversity. Parameters are 1182 

given for models assuming a one or two discrete classes of advantageous mutations as well as an 1183 

exponential distribution of fitness effects. Estimates of the fitness change brought about by 1184 

positive selection in protein-coding exons and CNEs are also given in the table. A parameter key is 1185 

given as an additional sheet in the spreadsheet. 1186 

  1187 
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 1188 

Figure S1 Additional summary statistics in the regions surrounding functional elements assuming 1189 

the LD-based map of recombination rate variation we inferred for M. m. castaneus. 1190 
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 1191 

 Figure S2 Additional summary statistics in the regions flanking functional elements assuming the 1192 

Cox map. 1193 
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 1195 

 1196 

Figure S3 The reduction in neutral genetic diversity relative to neutral expectation caused by 1197 

background selection (B) observed in simulated datasets. Simulations assumed either the LD-1198 

based recombination map or the pedigree-based map of Cox et al. (2009). Lines indicate the fit of 1199 

a Loess regression fitted to the data with a span of 0.3 and the number of sites in each bin used as 1200 

weights.  1201 
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 1205 

 1206 

Figure S4 The reductions in neutral genetic diversity relative to neutral expectation caused by 1207 

background selection (B) observed in simulated datasets when modelling a population with 1208 

constant size, or the three-epoch demographic model estimated by Booker and Keightley (2018). 1209 

π0 in the constant size simulations was 0.01. π0 was 0.0042 in the 3-epoch simulations, which was 1210 

calculated from the harmonic mean of population sizes. Lines indicate the fit of a Loess regression 1211 

fitted to the data. 1212 
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