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Abstract

Unlike many single-celled organisms, the growth of fission yeast cells within a cell

cycle is not exponential. It is rather characterized by three distinct phases (elongation,

septation and fission), each with a different growth rate. Experiments also show that the

distribution of cell size in a lineage is often bimodal, unlike the unimodal distributions

measured for the bacterium Escherichia coli. Here we construct a detailed stochastic

model of cell size dynamics in fission yeast. The theory leads to analytic expressions

for the cell size and the birth size distributions, and explains the origin of bimodality

seen in experiments. In particular our theory shows that the left peak in the bimodal

distribution is associated with cells in the elongation phase while the right peak is due

to cells in the septation and fission phases. We show that the size control strategy,

the variability in the added size during a cell cycle and the fraction of time spent in

each of the three cell growth phases have a strong bearing on the shape of the cell size

distribution. Furthermore we infer all the parameters of our model by matching the

theoretical cell size and birth size distributions to those from experimental single cell

time-course data for seven different growth conditions. Our method provides a much

more accurate means of determining the cell size control strategy (timer, adder or sizer)

than the standard method based on the slope of the best linear fit between the birth

and division sizes. We also show that the variability in added size and the strength of

cell size control of fission yeast depend weakly on the temperature but strongly on the

culture medium.
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Author summary

Advances in microscopy enable us to follow single cells over long timescales from

which we can understand how their size varies with time and the nature of innate

strategies developed to control cell size. This data shows that in many cell types growth

is exponential and the distribution of cell sizes has one peak, namely there is a single

characteristic cell size. However data for fission yeast shows remarkable differences:

growth is non-exponential and the distribution of cell sizes has two peaks, meaning two

characteristic cell sizes exist. Here we construct the first mathematical model of this

organism; by solving the model analytically we show that it is able to predict the two

peaked distributions of cell size seen in data and provides an explanation for each peak

in terms of the various growth phases of the single-celled organism. Furthermore by

fitting the model to the data, we infer values for the rates of all microscopic processes in

our model. This method is shown to provide a much more reliable inference than current

methods and sheds light on how the strategy used by fission yeast cells to control their

size varies with external conditions.

Introduction

Fission yeast cells are shaped as regular cylinders with hemispherical ends [1]. The

cylinder has a fixed cross-sectional area and a variable length; hence both the length

of the cylinder (cell length) and the area of the longitudinal section (cell area) are

approximately proportional to cell volume. In experiments, length, area, and volume

have all been used to characterize cell size. It has been reported that individual cell size

grows exponentially in many cell types such as various bacterial strains and budding

yeast [2–9]. However, fission yeast undergoes a complex non-exponential growth pattern

within each cell cycle [10, 11], as illustrated by the time-course data of cell area along

a typical cell lineage (Fig. 1(a)). Another remarkable feature of such lineage data is

the bimodal shape of the cell size distribution (Fig. 1(b)). Recent studies have shown

that if cell size grows exponentially in each generation, then the distribution of cell size

must be unimodal [12, 13]. The main aim of the present paper is to propose a detailed

model of cell size dynamics in fission yeast that can characterize its non-exponential

growth, cell division, and size homeostasis, as well as develop an analytical theory that

can account for the bimodal shape of the cell size distribution.

In the study of cell size dynamics, a core issue is to understand the size homeostasis

strategies in various cell types, especially in fission yeast [14–17]. There are three popular

phenomenological models of cell size control leading to size homeostasis [18]: (i) the

timer strategy which implies a constant time between successive divisions; (ii) the sizer

strategy which implies cell division upon attainment of a critical size, and (iii) the adder
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strategy which implies a constant size addition between consecutive generations. A

conventional method of inferring the size control strategy is to use the information of

cell sizes at birth and at division [19, 20]. This approach assumes that the birth size Vb

and the division size Vd in each generation are related linearly by

Vd = βVb + γ + ε, (1)

where 0 ≤ β ≤ 2 and γ ≥ 0 are two constants and ε is Gaussian white noise. Here β

characterizes the strength of size control with β = 0, β = 1, and β = 2 corresponding to

the sizer, adder, and timer strategies, respectively. Using the data of birth and division

sizes across different generations, the parameter β can be determined as the slope of the

regression line of the division size on the birth size. However, in fission yeast, the linear

relationship between birth and division sizes are actually very weak with numerous

outliers and an exceptionally low R2 around 0.1 (Fig. 1(c)). This makes the inference of

the parameter β highly unreliable. Hence another aim of the present paper is to develop

a more reliable technique that can be used to accurately infer the size homeostasis

strategy in fission yeast using a dynamic approach.
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Fig 1. Cell size dynamics in fission yeast. (a) Single-cell time course data of cell area

along a typical cell lineage cultured at 34oC in the yeast extract medium. The data shown are

published in [11]. The green dots show cell sizes at birth. (b) Histogram of cell sizes along all

cell lineages. The cell size distribution of lineage measurements has a bimodal shape. (c) Scatter

plot of the birth size versus the division size and the regression line. When plotting (b),(c), we

use the data of all 1500 cell lineages cultured at 34oC in the yeast extract medium, each of which

is recorded every 3 minutes and is typically composed of 50− 70 generations. The length of each

generation is 114± 15 minutes.

3/24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Model specification

Here we consider a detailed model of cell size dynamics in fission yeast across many

generations, including a complex three-stage growth pattern, asymmetric and stochastic

cell division, and size homeostasis (see Fig. 2(b) for an illustration). The model is based

on a number of assumptions that are closely related to experimental data obtained using

microfluidic devices. The assumptions are as follows and the specific meaning of all

model parameters is listed in Table 1.
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Fig 2. A detailed model of cell size dynamics in fission yeast. (a) Three-stage growth

pattern of fission yeast: an elongation phase where cell size grows exponentially with rate g0,

followed by a septation phase during which the septum is formed and cell size remains constant,

and then followed by a fission phase where cell size increases abruptly with a higher growth rate

g1 > g0. Here Vb is the size at birth, Vs is the size in the septation phase, and Vd is the size at

division. (b) Schematic illustrating a detailed model of cell size dynamics describing cell growth,

multiple effective cell cycle stages, cell-size control, and symmetric or asymmetric partitioning at

cell division (see inset graph). Each cell can exist in N effective cell cycle stages. The transition

rate from one stage to the next at a particular time t is proportional to the αth power of the cell

size V (t) with α > 0 being the strength of cell-size control and a > 0 being the proportionality

constant. This guarantees that larger cells at birth divide faster than smaller ones to achieve size

homeostasis. At stage N , a mother cell divides into two daughters that are typically different in

size via asymmetric cell division. Symmetric division is the special case where daughters are

equisized.

1) The growth of cell size of fission yeast within a cell cycle is very different from

the exponential growth observed in many other cell types [2]. Actually, fission yeast

undergoes a non-exponential three-stage growth pattern: an elongation phase followed

by a septation phase and a fission phase (Fig. 2(a)) [10]. During the elongation phase,
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model parameters meaning

g0 exponential growth rate in the elongation phase

g1 exponential growth rate in the fission phase

N total number of effective cell cycle stages

N0 number of cell cycle stages in the elongation phase

N1 number of cell cycle stages in the fission phase

r0 proportion of cell cycle stages in the elongation phase

r1 proportion of cell cycle stages in the fission phase

a proportionality constant for the transition rate between stages

α strength of size control

M0 mean generalized added size in the elongation phase

M1 mean generalized added size in the fission phase

p mean partition ratio of cell size at division

Table 1. Model parameters and their meaning.

the size of each cell grows exponentially in each generation with growth rate g0. Note

that in some previous papers [10], the growth in the elongation phase is assumed to

be linear. However, numerous single-cell time-course measurements of cell size under

different growth conditions support the assumption of exponential elongation used in the

present paper [11]. After the elongation phase, the size of the cell remains constant for

a period during which the septum is formed (see Fig. 4A in [10]). From the lineage data

in Fig. 1(a), it seems also reasonable to assume that there is a small non-zero growth

rate in the septation phase. However, according to the principle of parsimony, we choose

not to introduce an extra parameter and assume zero growth rate during septation. At

the end of the septation phase, there is a sharp increase in cell size for a short period

prior to division; this period is called the fission phase. During the fission phase, we

assume that cell size grows exponentially with a higher rate g1 > g0.

2) Each cell can exist in N effective cell cycle stages, denoted by 1, 2, ..., N . We assume

that the cell stays in the elongation phase in the first N0 stages, stays in the fission phase

in the last N1 stages, and stays in the septation phase in the intermediate N −N0 −N1

stages (Fig. 2). The transition rate from one stage to the next at a particular time

is proportional to the αth power of cell size at that time [13, 21]. In other words, the

transition rate between stages at time t is equal to aV (t)α, where V (t) is the cell size

at that time, α > 0 is the strength of cell size control, and a > 0 is a proportionality

constant. Under this assumption, larger cells at birth, on average, have shorter cell cycle

duration and lesser volume change than smaller ones; in the way size homeostasis is
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achieved.

Recent investigations have suggested that the accumulation of some cyclin (Cdc13),

phosphatase (Cdc25), or kinase (Cdr2) up to a critical threshold as a possible mechanism

for fission yeast cell division [14–16]. Biophysically, the N effective cell cycle stages in

our model can be understood as different levels of the division protein (Cdc13, Cdc25,

or Cdr2). The power law form for the rate of cell cycle progression may come from

cooperation of the division protein, as explained in detail in [13, 21]. This power law

not only coincides with certain biophysical mechanisms, but also results in a natural

scaling transformation among the timer, sizer, and adder, as will be explained later.

Let Vb and Vd denote cell sizes at birth and at division in a particular generation,

respectively, and let Vs denote cell size in the septation phase, which is assumed to be

a constant. Then the increment in the αth power of cell size, which is referred to as

generalized added size, in the elongation phase, ∆0 = V α
s −V α

b , has an Erlang distribution

with shape parameter N0 and mean M0 = N0g0α/a (see Supplementary Section 1 for the

proof). Similarly, the generalized added size in the fission phase, ∆1 = V α
d −V α

s , also has

an Erlang distribution with shape parameter N1 and mean M1 = N1g1α/a. Therefore,

the total generalized added size across the cell cycle, ∆ = ∆0 + ∆1 = V α
d − V α

b , is the

sum of two independent Erlang distributed random variables and has a hypoexponential

distribution (also called generalized Erlang distribution) whose Laplace transform is

given by

〈e−λ∆〉 =

(
1 +

M0λ

N0

)−N0
(

1 +
M1λ

N1

)−N1

:= b(λ). (2)

Note that 〈e−λ∆〉 → e−(M0+M1)λ as N → ∞. This means that the generalized added

size ∆ = M0 +M1 becomes deterministic when N is large. However, when N is small,

the variability in ∆ is much larger. Hence, our model allows the investigation of the

influence of added size variability on cell size dynamics.

Three special cases deserve special attention. When α → 0, the transition rate

between stages is a constant and thus the doubling time has an Erlang distribution that

is independent of the birth size; this corresponds to the timer strategy. When α = 1, the

added size Vd − Vb has an hypoexponential distribution that is independent of the birth

size; this corresponds to the adder strategy. When α→∞, the αth power of the division

size, V α
d , has a hypoexponential distribution that is independent of the birth size; this

corresponds to the sizer strategy. Intermediate strategies are naturally obtained for

intermediate values of α; timer-like control is obtained when 0 < α < 1 and sizer-like

control is obtained when 1 < α <∞ [21].

3) Cell division occurs when the cell transitions from stage N to the next stage 1. At

division, most previous papers assume that the mother cell divides into two daughters

that are exactly the same in size via symmetric partitioning [22–25]. Experimentally,

fission yeast in general do not divide perfectly in half. Here we follow the methodology
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that we devised in [13, 26] and extend previous models by considering asymmetric

partitioning at division: the mother cell divides into two daughters with different sizes.

If the partitioning of cell size is symmetric, we track one of the two daughters

randomly after division [27, 28]; if the partitioning is asymmetric, we either track the

smaller or the larger daughter after division [29, 30]. Let Vd and V ′b denote cell sizes at

division and just after division, respectively. If the partitioning is deterministic, then we

have V ′b = pVd, where 0 < p < 1 is a constant with p = 0.5 corresponding to symmetric

division, p < 0.5 corresponding to smaller daughter tracking, and p > 0.5 corresponding

to larger daughter tracking. The value of p can be inferred from experiments. However,

in fission yeast, the partitioning of cell size is appreciably stochastic. In this case, we

assume that the partition ratio R = V ′b/Vd has a beta distribution with mean p [31],

whose probability density function is given by

h(r) =
1

B(pν, qν)
rpν−1(1− r)qν−1, 0 < r < 1, (3)

where B is the beta function, q = 1 − p, and ν > 0 is referred to as the sample size

parameter. When ν →∞, the variance of the beta distribution tends to zero and thus

stochastic partitioning reduces to deterministic partitioning, i.e. f(r) = δ(r − p).
We next describe our stochastic model of cell size dynamics. The microstate of the

cell can be represented by an ordered pair (k, x), where k is the effective cell cycle stage

which is a discrete variable and x is the cell size which is a continuous variable. Note

that the cell undergoes deterministic growth in each stage (exponential growth in the

first N0 and the last N1 stages and no growth in the remaining N −N0 −N1 stages),

and the system can hop between successive stages stochastically. Let pk(x) denote the

probability density function of cell size when the cell is in stage k. Then the evolution of

cell size dynamics in fission yeast can be described by a piecewise deterministic Markov

process whose master equation is given by

∂tp1(x) = −∂x[g0xp1(x)] +

∫ 1

0

a

r

(x
r

)α
pN

(x
r

)
h(r)dr − axαp1(x),

∂tpk(x) = −∂x[g0xpk(x)] + axαpk−1(x)− axαpk(x), 2 ≤ k ≤ N0,

∂tpk(x) = axαpk−1(x)− axαpk(x), N0 + 1 ≤ k ≤ N −N1,

∂tpk(x) = −∂x[g1xpk(x)] + axαpk−1(x)− axαpk(x), N −N1 + 1 ≤ k ≤ N.

(4)

where h(r) is the function given in Eq. (3). In the first, second, and fourth equations,

the first term on the right-hand side describe cell growth and the remaining two terms

describe transitions between cell cycle stages. In the third equation, the two terms on

the right-hand side describe cell cycle stage transitions. In the first equation, the middle

term on the right-hand side describes the partitioning of cell size at division.
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Analytical distribution of cell size of lineage measurements

Let p(x) =
∑N

k=1 pk(x) denote the probability density function of cell size V (here

we use V to represent a random variable and use x to represent a realization of V ). In

our model, we assume that the rate of cell cycle progression has a power law dependence

on cell size. This assumption implies an important scaling property of our model: if the

dynamics for cell size V has a control strength α (with α < 1 corresponding to timer-like

and α > 1 corresponding to sizer-like strategies), then the dynamics for the αth power

of cell size, V α, has an adder strategy. This scaling property serves as the key to our

analytical theory.

Recall that the probability distribution of any random variable with nonnegative

values is fully determined by its Laplace transform. To obtain the analytical distribution

of cell size along a cell lineage, we introduce F (λ) = 〈e−λV α〉 =
∫∞

0 p(x)e−λx
α
dx, which

is nothing but the Laplace transform for the αth power of cell size. For simplicity, we

first focus on the case of deterministic partitioning. Despite the biological complexity

described by our model, the Laplace transform can still be solved exactly in steady-state

conditions as (see Supplementary Section 2 for the proof)

F (λ) = K

∫ ∞
λ

f(u)
∞∏
k=0

b(pαku)du, (5)

where b(λ) is the function given in Eq. (2),

f(λ) = (1 +A1λ)N1

[
(1 +A0λ)N0 − 1

NA0λ
+
N −N0 −N1

N

]
+

(1 +A1λ)N1 − 1

NA1λ
(6)

is another function with A0 = M0/N0 and A1 = M1/N1, and

K =

[∫ ∞
0

f(u)

∞∏
k=0

b(pαku)du

]−1

is a normalization constant. From the definition of f(λ) in Eq. (6), it is clear that f(λ)

tends to infinity as λ→∞. However, from the definition of b(λ) in Eq. (2), the infinite

product
∏∞
k=0 b(p

αkλ) decays to zero as λ → ∞ at a faster exponential speed. Hence

the integral in Eq. (5) is always well defined.

In principle, taking the inverse Laplace transform gives the probability density

function of V α, from which the distribution of cell size V can be obtained. Next we

introduce how to compute the cell size distribution more effectively using our analytical

results. Taking the derivative with respect to λ on both sides of Eq. (5), using the

change of variables formula, and finally replacing λ by iλ yield (see Supplementary

Section 2 for the proof)∫ ∞
0

yp̃(y)e−iλy = Kf(iλ)
∞∏
k=0

b(pαkiλ) := G(λ), (7)
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where

p̃(y) =
1

α
y

1
α
−1p(y

1
α ),

is the probability density function of V α. This shows that the Fourier transform of yp̃(y)

is exactly G(λ). Since the Fourier transform and inverse Fourier transform are inverses

of each other, we only need to take the inverse Fourier transform of G(λ) so that we can

obtain yp̃(y). Finally, the cell size distribution p(x) can be recovered from p̃(y) as

p(x) = αxα−1p̃(xα). (8)

In general, the cell size distribution along a cell lineage can also be numerically

computed by carrying out stochastic simulations of the piecewise deterministic Markovian

model. However, under the complex three-stage growth pattern of fission yeast, according

to our simulations, over 107 stochastic trajectories must be generated in order to obtain

an accurate computation of the size distribution (Supplementary Fig. 1) — this turns out

to be very slow. The analytical solution is thus important since it allows a fast exploration

of large swathes of parameter space without performing stochastic simulations.

To gain deeper insights into the cell size distribution, we next consider two important

special cases. For the case of exponential growth of cell size, there is only the elongation

phase and the remaining two phases vanish. In this case, we have N1 = 0 and N = N0;

the cell size distribution is still determined by Eq. (5) with the functions b(λ) and f(λ)

being simplified greatly as

b(λ) = (1 +A0λ)−N , f(λ) =
(1 +A0λ)N − 1

NA0λ
. (9)

In fact, the analytical cell size distribution for exponentially growing cell lineages has

been studied previously in [13], where the distribution of the logarithmic cell size, instead

of the original cell size, is obtained. We emphasize that the analytical expression given

here is not only much simpler, but also numerically more accurate than the one given in

that paper, which includes the integral of an infinite product term which is very difficult

to compute accurately.

The second case occurs when N →∞, while keeping r0 = N0/N and r1 = N1/n as

constants, where r0 and r1 represent the proportions of cell cycle stages in the elongation

and fission phases, respectively. In this case, the generalized added size ∆ becomes

deterministic and the system does not involve any stochasticity. As N →∞, the Laplace

transform given in Eq. (5) can be simplified to a large extent as (see Supplementary

Section 2 for the proof)

F (λ) = K
{ r0

M0
[E1(vαb λ)− E1(vαmλ)] +

(1− r0 − r1)

vαm
e−v

α
mλ

+
r1

M1
[E1(vαmλ)− E1(vαd λ)]

}
,

(10)
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where E1(x) =
∫∞
x

e−u

u du is the exponential integral,

vb = p

(
M0 +M1

1− pα

) 1
α

, vm =

(
M0 +M1p

α

1− pα

) 1
α

, vd =

(
M0 +M1

1− pα

) 1
α

are the birth size, septation size, and division size, respectively, and K = (T1 +T2 +T3)−1

is a normalization constant with

T1 =
αr0

M0
log

vm
vb
, T2 =

1− r0 − r1

vαm
, T3 =

αr1

M1
log

vd
vm

being the durations in the elongation, septation, and fission phases, respectively. Note

that in [10], the septation size (size in the septation phase) is called the division size and

the division size (size just before division) is called the fission size. Here the terminology

is slightly different. Taking the inverse Laplace transform finally gives the cell size

distribution:

p(x) =
w1

(log vm − log vb)x
I[vb,vm](x) +w2δ(x− vm) +

w3

(log vd − log vm)x
I[vm,vd](x), (11)

where IA(x) is the indicator function which takes the value of 1 when x ∈ A and takes

the value of 0 otherwise, δ(x) is Dirac’s delta function, and

w1 =
T1

T1 + T2 + T3
, w2 =

T2

T1 + T2 + T3
, w3 =

T3

T1 + T2 + T3

are the proportions of subpopulations in the three phases, respectively. This indicates

that when added size variability is small, cell size has a distribution that is concentrated

on a finite interval between vb and vd.

To validate our theory, we compare the analytical cell size distribution with the one

obtained from stochastic simulations under different choices of N (Fig. 3(a)). Clearly,

they coincide perfectly with each other. It can be seen that as added size variability

become smaller (N increases), the analytical distribution given in Eq. (8) converges

to the limit distribution given in Eq. (11). When N is small, the size distribution is

unimodal. As N increases, the size distribution becomes bimodal with the right peak

becoming higher and narrower. The bimodality of the size distribution can be attributed

to cells in different phases: the left peak corresponds to cells in the elongation phase and

the right peak corresponds to cells in the septation and fission phases. Since the size in

the elongation phase is smaller than that in the fission or septation phase, the left peak

is associated with elongation and the right peak with the other two phases. When N is

very large, the size distribution is the superposition of three terms, corresponding to the

three phases of cell growth.

To gain a deeper insight, we illustrate the cell size distribution as a function of

the parameters α, r0, r1, and g1 when N is relatively large (Fig. 3(b)-(e)). It can be

seen that as size control becomes stronger (α increases), the size distribution changes

10/24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447927doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447927
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6

b

a

pr
ob

ab
ilit

y 
de

ns
ity

analytical solution
numerical simulation

N = 600N = 30

cell size

N = 10 N = 60

c d e

cell size cell size cell size

α = 1
α = 0.5

pr
ob

ab
ilit

y 
de

ns
ity

α = 4
α = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6
0

0.5

1

1.5

2

0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6

r0 = 0.6
r0 = 0.5

r0 = 0.8
r0 = 0.7

r1 = 0.1
r1 = 0

r1 = 0.3
r1 = 0.2

g1 = 3g0

g1 = 2g0

g1 = 5g0

g1 = 4g0

Fig 3. Influence of model parameters on the cell size distribution. (a) Cell size

distribution as N varies. The blue curve shows the analytical distribution obtained by taking the

inverse Laplace transform of Eq. (5) (e.g. by using the technique described by Eqs. (7) and (8))

and the red circles show the distribution obtained using stochastic simulations. The parameters

are chosen as r0 = 0.6, r1 = 0.1, g1 = 2g0, α = 2. (b) Cell size distribution as α varies. The

parameters are chosen as N = 30, r0 = 0.6, r1 = 0.1, g1 = 2g0. (c) Cell size distribution as r0

varies. The parameters are chosen as N = 30, r1 = 0.1, g1 = 2g0, α = 2. (d) Cell size distribution

as r1 varies. The parameters are chosen as N = 30, r0 = 0.6, g1 = 2g0, α = 2. (e) Cell size

distribution as g1/g0 varies. The parameters are chosen as N = 30, r0 = 0.6, r1 = 0.1, α = 2. In

(a)-(e), the parameters g0 and p are chosen as g0 = 0.01, p = 0.5 and the parameters a,M0,M1

are chosen so that the mean cell size 〈V 〉 = 3.

from the unimodal to the bimodal shape (Fig. 3(b)). The size distribution is generally

unimodal for timer-like strategies and bimodal for sizer-like strategies. The dependence

of the size distribution on r0 is expected — a small r0 results in a small fraction of cells

in the elongation phase and thus the left peak is much lower than the right peak, while

a large r0 gives rise to the opposite effect (Fig. 3(c)). Bimodality is the most apparent

when r0 is neither too large nor too small.

The influence of r1 on the cell size distribution is more complicated. Recall that a

larger r1 means a larger fraction of cells in the fission phase and a smaller fraction of

cells in the septation phase. Here since we fix r0 to be a constant and tune r1, there

is little change in the fraction of cells in the elongation phase. As the septation phase

becomes shorter (r1 increases), the size distribution changes from being bimodal to

being unimodal and becomes more concentrated (Fig. 3(d)). In particular, bimodality is

apparent when the septation phase is relatively long, while a very short septation phase

may even destroy bimodality.

Finally, we examine the dependence of the cell size distribution on the ratio of

the growth rate in the fission phase to the one in the elongation phase, g1/g0, which

characterizes the sharpness of the size increase in the fission phase. As the size addition
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in the fission phase becomes sharper (g1/g0 increases), the size distribution changes from

being bimodal to being unimodal and becomes more concentrated (Fig. 3(d)). Here we

fix the mean cell size to be a constant by tuning the parameter a and thus the increase

in g1 does not make the right peak shift more to the right. To our surprise, we find

that bimodality is the most apparent when the growth rates in the two phases are close

to each other, while a very abrupt size addition in the fission phase may even destroy

bimodality.

To summarize, we find that small added size variability, strong size control, moderate

length in the elongation phase, long septation phase, short fission phase, and mild size

addition in the fission phase are capable of producing more apparent bimodality.

Analytical distribution of the birth size

In our model, the distribution of the birth size Vb can also be derived analytically in

steady-state conditions. In fact, the Laplace transform for the αth power of the birth

size, V α
b , is given by (see Supplementary Section 3 for the proof)

〈e−λV αb 〉 =
∞∏
n=1

b(pαnu) =
∞∏
n=1

(
1 +

M0p
αnλ

N0

)−N0
(

1 +
M1p

αnλ

N1

)−N1

. (12)

Taking the inverse Laplace transform gives the probability density function of V α
b , from

which is the distribution of Vb can be obtained. A special case takes place when α is

large (strong cell-size control) or when p is small (smaller daughter tracking). Under the

large α or small p approximation, the term pαn is negligible for n ≥ 2 and it suffices

to keep only the first term in the infinite product given in Eq. (12). In this case, the

laplace transform of V α
b reduces to

〈e−λV αb 〉 =

(
1 +

M0p
αλ

N0

)−N0
(

1 +
M1p

αλ

N1

)−N1

.

Taking the inverse Laplace transform gives the birth size distribution

P(Vb = x) =
αβN0

0 βN1
1

(N0 +N1 − 1)!
xα(N0+N1)−1e−β0x

α

1F1(N1, N0 +N1, (β0 − β1)xα), (13)

where 1F1 is the confluent hypergeometric function, β0 = N0/M0p
α, and β0 = N1/M1p

α.

Actually, the birth size distribution has also been computed analytically in some

simpler models. It has been shown that the birth size in those models approximately

has a log-normal distribution [22] or a gamma distribution [32]. Therefore it is natural

to ask whether the birth size in our model shares the same property. To see this, we

illustrate the birth size distribution and its approximation by the log-normal and gamma

distributions as N and α vary (Fig. 4(a),(b))). We find that under a wide range of

model parameters, the true distribution is in excellent agreement with its log-normal
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approximation. However, when N and α are both small, the true distribution is severely

right-skewed and deviates significantly from its gamma approximation. When N and α

are both large, the true distribution becomes more symmetric and the three distributions

become almost indistinguishable.
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Fig 4. Further properties of the birth size and cell size distributions. (a) Comparison

of the birth size distribution (blue curve and red circles) with its log-normal (solid grey region)

and gamma (dashed green curve) approximations when N and α are small. The blue curve

shows the analytical distribution obtained by taking the inverse Laplace transform of Eq. (12)

and the red circles show the distribution obtained from stochastic simulations. (b) Same as (a)

but when N and α are large. In (a),(b), the parameters are chosen as r0 = 0.6, r1 = 0.1, g0 =

0.01, g1 = 4g0, p = 0.5. The parameters N and α are chosen as N = 10, α = 0.5 in (a) and

N = 30, α = 2 in (b). (c) Comparison between the cell size distributions for the model with

deterministic partitioning (solid grey region) and the model with stochastic partitioning (blue

curve and red circles). The blue curve shows the analytical distribution obtained by taking the

inverse Laplace transform of Eq. (14) and the red circles show the distribution obtained from

stochastic simulations. The parameters are chosen as N = 30, r0 = 0.6, r1 = 0.1, g0 = 0.01, g1 =

4g0, α = 2, p = 0.5. For the model with stochastic partitioning, the parameter ν is chosen as

ν = 200. In (a)-(c), the parameters a,M0,M1 are chosen so that the mean cell size 〈V 〉 = 3 for

the model with deterministic partitioning.

Influence of stochastic partitioning on the cell size distribution

Thus far, the analytical distribution of cell size is derived when the partitioning at

division is deterministic. In the presence of noise in partitioning, we can also obtain an

explicit expression for the cell size distribution, whose Laplace transform is given by (see

Supplementary Section 2 for the proof)

F (λ) = 〈e−λV α〉 = K

∫ ∞
λ

f(u)

∞∑
n=0

anu
ndu, (14)

where f(λ) is the function given in Eq. (6),

K =

[∫ ∞
0

f(u)

∞∑
n=0

anu
ndu

]−1
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is a normalization constant, and an is a sequence that can be determined by the following

recursive relations:

an =
1

1− cn

n−1∑
m=0

amcmbn−m, a0 = 1. (15)

Here bn and cn are two other sequences that are defined by

bn =
(−1)n

m!(n−m)!

n∑
m=0

(N0)m(N1)n−mA
m
0 A

n−m
1 , cn =

B(αn+ pν, qν)

B(pν, qν)
,

with (x)m = x(x+ 1) · · · (x+m− 1) being the Pochhammer symbol. For the special case

of exponential growth of cell size, there is only the elongation phase and the remaining

two phases vanish. In this case, we have N1 = 0 and N = N0; the cell size distribution

is still determined by Eq. (14) with the sequence bn and the function f(λ) being greatly

simplified as

bn =
(N)n(−A0)n

n!
, f(λ) =

(1 +A0λ)N − 1

NA0λ
.

Clearly, fluctuations in partitioning at division lead to a much more complicated

analytical expression of the cell size distribution. Actually, when partitioning is stochastic,

the analytical cell size distribution for exponentially growing cell lineages has been

obtained approximately in [13] under the assumption that noise in partitioning is very

small. Here we have removed this assumption and obtained a closed-form solution of

the size distribution for general non-exponentially growing cell lineages even if noise in

partitioning is very large. Recent cell lineage measurements suggest that the coefficient

of variation of the partition ratio R = V ′b/Vd in fission yeast is 6% - 8% under different

growth conditions [11].

To see the effect of stochastic partitioning, we illustrate the cell size distributions

under deterministic and stochastic partitioning in Fig. 4(c) with the standard deviation

of the partition ratio R being 7% of the mean for the latter. Clearly, the analytical

solution given in Eq. (14) matches the simulation results very well. In addition, it can be

seen that noise in partitioning gives rise to larger fluctuations in cell size, characterized

by a smaller slope of the left shoulder, an apparent decrease in the height of the left

peak, and a slight decrease in the height of the right peak. The valley between the two

peaks and the right shoulder are almost the same for the two models.

Correlation between sizes at birth and sizes at division

In [22], it has been shown that the correlation between cell sizes at birth and at

division can be used to infer the size control strategy. For the case of deterministic

partitioning, since the generalized added size ∆ = V α
d − V α

b is hypoexponentially

distributed, it is easy to obtain (see Supplementary Section 4 for the proof)

ρ(V α
b , V

α
d ) = pα, (16)
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where ρ(X,Y ) denotes the correlation coefficient between X and Y . This characterizes

the correlation between sizes at birth and sizes at division in fission yeast, which only

depends on the asymmetry of partitioning (p) and the strength of size control (α). In

particular, we find that if partitioning is deterministic, the correlation between birth

and division sizes is independent of the growth pattern of the cell — both exponentially

and non-exponentially growing cells share the same correlation coefficient whenever they

are the same parameters p and α.

In the presence of noise in partitioning, the formula for the correlation coefficient

should be modified as (see Supplementary Section 4 for the proof)

ρ(V α
b , V

α
d ) =

√√√√√ [
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 +K2

[
M2

0
N0

+
M2

1
N1

]
[
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 + (K2 + 1)

[
M2

0
N0

+
M2

1
N1

] . (17)

where

K1 =
B(α+ pν, qν)

B(pν, qν)−B(α+ pν, qν)
, K2 =

B(2α+ pν, qν)

B(pν, qν)−B(2α+ pν, qν)
. (18)

In this case, ρ(V α
b , V

α
d ) is generally lower than pα due to partitioning noise. Interestingly,

if partitioning is stochastic, the correlation between birth and division sizes not only

depends on p and α, but also depends on the parameters N0,M0, N1,M1, which describe

the growth pattern of fission yeast. This is very different from the case of deterministic

partitioning.

Experimental validation of the theory

To test our theory, we apply it to lineage data of cell size in fission yeast that

are published in [11]. In this data set, the single-cell time-course data of cell size

were recorded every three minutes using microfluidic devices. The experiments were

performed under seven growth conditions with different media (Edinburgh minimal

medium (EMM) and yeast extract medium (YE)) and different temperatures. For EMM,

cells were cultured at four different temperatures (28oC, 30oC, 32oC, and 34oC), while

for YE, three different temperatures (28oC, 30oC, and 34oC) were used. For each growth

condition, 1500 cell lineages were tracked and each lineage is typically composed of 50-70

generations. Note that for a particular cell lineage, it may occur that the cell was dead

or disappeared from the channel during the measurement [11, 33]. Such lineages are

removed from the data set and thus the number of lineages used for data analysis for

each growth condition is actually less than 1500.

Based on such data, it is possible to estimate all the parameters involved in our

model for the seven growth conditions. Parameter inference is crucial since it provides

insights into the size control strategy, added size variability, and complex growth pattern
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in fission yeast. We perform parameter inference by fitting the noisy data to two models:

the model with deterministic partitioning (model I) and the model with stochastic

partitioning (model II). The estimated values of all parameters for the two models are

listed in Table 2. Compared with model II, model I gives rise to a lower estimate of α

and r1, as well as a higher estimate of N , a, and g1; the estimates of other parameters

are very similar for the two models. In the following, we briefly describe our parameter

estimation method.

model I EMM 28oC EMM 30oC EMM 32oC EMM 34oC YE 28oC YE 30oC YE 34oC

p 0.459± 0.003 0.459± 0.002 0.468± 0.003 0.470± 0.004 0.466± 0.003 0.468± 0.003 0.475± 0.004

α 1.767± 0.093 1.695± 0.089 1.726± 0.102 1.692± 0.097 1.139± 0.058 1.371± 0.072 1.245± 0.066

N 17.463± 0.803 20.727± 0.899 20.002± 0.886 21.010± 0.900 32.369± 1.375 45.713± 1.846 55.315± 2.126

r0 0.645± 0.011 0.658± 0.015 0.654± 0.012 0.696± 0.018 0.709± 0.018 0.651± 0.012 0.634± 0.010

r1 0.070± 0.006 0.039± 0.004 0.045± 0.004 0.034± 0.003 0.038± 0.004 0.041± 0.005 0.034± 0.004

a 0.012± 0.001 0.022± 0.003 0.019± 0.002 0.022± 0.003 0.301± 0.035 0.210± 0.029 0.420± 0.051

g0 0.216± 0.001 0.277± 0.002 0.279± 0.002 0.245± 0.002 0.333± 0.003 0.400± 0.003 0.470± 0.005

g1 0.414± 0.021 0.735± 0.034 0.764± 0.030 0.701± 0.031 0.628± 0.026 1.250± 0.056 1.682± 0.078

model II EMM 28oC EMM 30oC EMM 32oC EMM 34oC YE 28oC YE 30oC YE 34oC

α 2.068± 0.152 1.936± 0.136 2.068± 0.146 1.990± 0.139 1.419± 0.082 1.622± 0.099 1.518± 0.090

N 16.387± 0.800 19.051± 0.925 18.609± 0.898 19.499± 0.907 30.137± 1.382 43.905± 1.921 50.067± 2.037

r0 0.635± 0.010 0.643± 0.012 0.644± 0.014 0.685± 0.017 0.702± 0.020 0.640± 0.011 0.614± 0.009

r1 0.089± 0.008 0.059± 0.006 0.054± 0.006 0.049± 0.005 0.072± 0.007 0.072± 0.006 0.068± 0.007

a 0.004± 0.001 0.009± 0.002 0.006± 0.001 0.008± 0.001 0.117± 0.017 0.089± 0.012 0.151± 0.022

g1 0.380± 0.017 0.526± 0.030 0.710± 0.037 0.543± 0.028 0.444± 0.017 0.803± 0.041 0.936± 0.046

ν 225.97± 8.68 257.01± 10.26 201.98± 7.56 206.33± 7.84 198.97± 6.99 272.09± 11.18 270.18± 10.85

Table 2. Parameters estimated using lineage data of cell size in fission yeast under

seven growth conditions. Two theoretical models are used: the model with deterministic

partitioning (model I) and the model with stochastic partitioning (model II). The estimation

error for each parameter was computed using bootstrap. Specifically, we performed parameter

inference 50 times; for each estimation, the theoretical model was fitted to the data of 50 randomly

selected cell lineages. The estimation error was then calculated as the standard deviation over

50 repeated samplings.

1) Estimation of p and ν. Note that the data of cell sizes just before division and

just after division, Vd and V ′b , across different generations can be easily extracted from

the lineage data and thus for model I, the parameter p can be estimated as the mean

partition ratio 〈V ′b/Vd〉. For model II, the parameters p and ν can be inferred by fitting

the partition ratio data to a beta distribution. Typically, a mother cell divides into

two daughters that are different in size due to stochasticity in partitioning and possible
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asymmetric cell division [31]. An interesting characteristic implied by the fission yeast

data is that at division, the smaller daughter is always tracked with the mean partition

ratio p being 0.46− 0.47 for all the seven growth conditions (Table 2).

2) Estimation of α. Note that the data of cell sizes at birth and at division, Vb and Vd,

across different generations can be easily extracted from the lineage data. For model I,

since the parameter p has been determined, the strength α of cell size control can be

estimated by finding the unique value of α satisfying the equality ρ(V α
b , V

α
d ) = pα. The

inference of the control strength α for model II is much more complicated. Note that

once α is determined, both K1 and K2 can be computed via Eq. (18). For model II, the

mean and variance for the αth power of the birth size are given by (see Supplementary

Section 4 for the proof)

〈V α
b 〉 = K1(M0 +M1),

Var(V α
b ) =

[
(2K1 + 1)K2 −K2

1

]
(M0 +M1)2 +K2

[
M2

0

N0
+
M2

1

N1

]
.

Since K1 and K2 have been determined (assuming α is known), it is possible to estimate

both M0 +M1 and M2
0 /N0 +M2

1 /N1 using the data of birth sizes. Finally, the control

strength α can be estimated by finding the unique value of α satisfying Eq. (17).

3) Estimation of g0/a and g1/a. For model I, the mean and variance for the αth power

of the birth size are given by (see Supplementary Section 4 for the proof)

〈V α
b 〉 =

pα

1− pα
(M0 +M1),

Var(V α
b ) =

p2α

1− p2α

[
M2

0

N0
+
M2

1

N1

]
.

Since the parameters p and α have been determined, using the data of birth sizes, we

are able to estimate the following two quantities:

M0 +M1 = N0αg̃0 +N1αg̃1,

M2
0

N0
+
M2

1

N1
= N0α

2g̃2
0 +N1α

2g̃2
1,

where g̃0 = g0/a and g̃1 = g1/a. Once N0 and N1 are known, both g̃0 and g̃1 can be

solved from the above two equations and thus can be inferred. For model II, we have

shown how to estimate M0 +M1 and M2
0 /N0 +M2

1 /N1 in step 2).

4) Estimation of a, g0, and g1. For each generation, say, the kth generation, we fit the

time-course data of cell size to a three-stage growth model: an exponential growth in

the elongation phase, followed by a constant size in the septation phase and another
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round of exponential growth in the fission phase:

V (t) =


Vbe

g0(k)t, Tk ≤ t ≤ t0,

Vs, t0 ≤ t ≤ t1,

Vse
g1(k)t, t1 ≤ t ≤ Tk+1,

where Tk and Tk+1 are two successive division times, g0(k) and g1(k) are the growth

rates in the elongation and fission phases for the kth generation, respectively, and t0

and t1 are the initial and end times of the septation phase, respectively. By carrying out

least-squares optimal fitting, we can estimate the growth rate g0(k) in the elongation

phase and the growth rate g1(k) in the fission phase for the kth generation. Fig. 5(a)

illustrates the fitting of the time-course data to the three-stage growth model for three

typical cell lineages, from which we can see that the model matches the data reasonably

well. Then the parameter g0 can be determined as the mean of g0(k) across different

generations. Since the time that the cell stays in the fission phase is very short, the

estimate of g1(k) in general is not accurate. Therefore, we do not adopt this method

to estimate the parameter g1. Since both g0 and g̃0 = g0/a have been determined, the

parameter a can also be inferred. Since both a and g̃1 = g1/a have been estimated, the

parameter g1 can be determined.

5) Estimation of N , N0, and N1. Note that once the parameters N , N0, and N1 are

known, all other parameters can be inferred by carrying out steps 1) - 4). Finally, we

determine these three parameters by solving the following optimization problem:

min
N,N0,N1

M∑
i=1

|p(xi)− p̂(xi)|2 , (19)

where p(x) is the theoretical cell size distribution, p̂(x) is the sample cell size distribution

obtained from lineage data, xi are some reference points, and M is the number of bins

chosen. In other words, we estimate the three parameters by matching the theoretical

and experimental cell size distributions. For model I, the theoretical distribution is

determined using Eq. (5), while for model II, the theoretical distribution is determined

using Eq. (14). Thus far, all model parameters have been determined.

To test our parameter inference method, we compare the experimental cell size and

birth size distributions obtained from lineage data (blue bars) with the theoretical ones

based on the estimated parameters (red curves) under the seven growth conditions for

both model I (Fig. 5(b),(c)) and model II (Fig. 6(a),(b)). It can be seen that the

cell size distributions of lineage measurements for the seven growth conditions are all

bimodal, while the birth size distributions are all unimodal. For the latter model, we

also compare the distribution of the partition ratio with its approximation using the

beta distribution (Fig. 6(c)). Clearly, the theory reproduces the experimental data
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Fig 5. Fitting the experimental cell size and birth size distributions to theory based

on the model with deterministic partitioning (model I). (a) Fitting the time-course data

of cell size (grey curve) to a three-stage growth model (red curve) for three typical cell linages

cultured in YE at 34oC. (b) Experimental cell size distributions (blue bars) and their optimal

fitting to model I (red curve) for seven growth conditions. Here the theoretical distributions are

computed using Eq. (5). (c) Same as (b) but for the birth size distributions. Here the theoretical

distributions are computed using Eq. (12).

of fission yeast excellently. Interestingly, while our inference method only involves the

matching the theoretical and experimental cell size distribution, the theoretical birth

size distribution also matches the experimental one reasonably well. The perfect match

between theory and experiments supports the main assumptions of the three-stage

growth model and the choice of the rate of moving from one cell cycle stage to the next

to be a power law of cell size.

Our data analysis also reveals some significant differences between the two media

used. From Table 2, it can be seen that cells cultured in EMM have a relatively strong

size control (large α) and a relatively large added size variability (small N), while cells

cultured in YE have a relatively weak size control (small α) and a relatively small added

size variability (large N). Furthermore, we find that the size control strategy of fission

yeast is sizer-like for all the seven growth conditions: for model II, the strength α of size

control is typically 2.0 for EMM and is typically 1.5 for YE. This is in sharp contrast to

the adder strategy found in E. coli, where α is estimated to be 0.8− 1.2 for different

growth conditions [13]. In addition, our data analysis predicts that the proportion of

cell cycle stages in the elongation phase is about 60%− 70% and the proportion in the

fission phase is about 5%− 10% for all growth conditions.
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Fig 6. Fitting the experimental cell size, birth size, and partition ratio distributions

to theory based on the model with stochastic partitioning (model II). (a) Experimental

cell size distributions (blue bars) and their optimal fitting to model II (red curve) for seven

growth conditions. Here the theoretical distributions are computed using Eq. (14). (b) Same

as (b) but for the birth size distributions. Here the theoretical distributions are computed

using stochastic simulations. (c) Same as (b) but for the partition ratio distributions. Here the

theoretical distributions are computed using Eq. (3).

To further evaluate the performance of our model, we examine the correlation

between cell sizes at birth and at division. Based on the lineage data, the correlation

coefficients between birth and division sizes for the seven growth conditions are listed

in the first row of Table 3. The theoretical predictions of the correlation coefficients

based on stochastic simulations of model I and model II with the estimated parameters

are listed in the second and third rows of Table 3, respectively. Clearly, both models

capture the birth and division size correlations very well.

EMM 28oC EMM 30oC EMM 32oC EMM 34oC YE 28oC YE 30oC YE 34oC

experiment 0.2599 0.2834 0.2885 0.2753 0.4232 0.3534 0.3999

model I 0.2576 0.2704 0.2734 0.2844 0.4201 0.3544 0.3959

model II 0.2432 0.2604 0.2573 0.2740 0.4182 0.3669 0.4051

Table 3. Correlation coefficients between birth and division sizes for seven growth

conditions. The experimental correlation coefficients are computed using the lineage data,

while the theoretical correlation coefficients are computed using stochastic simulations based on

model I and model II.
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Discussion

In this work, we have proposed two detailed models of cell size dynamics in fission

yeast across many generations and analytically derived the cell size and birth size

distributions of measurements obtained from a cell lineage. The main feature of cell size

dynamics in fission yeast is its three-stage non-exponential growth pattern: a slow growth

in the elongation phase, an arrest of growth in the septation phase, and a rapid growth

in the fission phase. The first model assumes that (i) the cell undergoes deterministic

exponential growth in the elongation and fission phases with the growth rate in the

latter phase being greater than that in the former phase; (ii) the size remains constant

in the septation phase; (iii) the size just after division is a fixed fraction of the one just

before division; (iv) the cell cycle is divided into multiple effective cell cycle stages which

correspond to different levels of the division protein (Cdc13, Cdc25, or Cdr2); (v) the

rate of moving from one stage to the next has a power law dependence on cell size. A

second model was also solved which relaxes assumption (iii) by allowing the size just

after division to be a stochastic fraction of the one just before division with the fraction

being distributed according to a beta distribution. Under assumptions (iv) and (v), the

three typical strategies of size homeostasis (timer, adder, and sizer) are unified.

Experimentally, the cell size distribution of lineage data in fission yeast is typically

bimodal under various growth conditions. This is very different from the unimodal size

distribution obtained in many other cell types [13]. Interestingly, the bimodal cell size

distribution of fission yeast can be excellently reproduced by the analytical solutions

of both models. The origin of bimodality is further investigated and clarified in detail;

we find that bimodality becomes apparent when (i) the variability in added size is not

too large, (ii) the strength of size control is not too weak, which implies that adder or

sizer-like strategies enforce size homeostasis, (iii) the proportion of the elongation phase

in the cell cycle is neither too large nor too small, (iv) the proportion of the septation

phase is large, (v) the proportion of the fission phase is small, and (vi) the size addition

in the fission phase is not too sharp. We also find that fluctuations in partitioning

at division has a considerable influence on the shape of the cell size distribution by

declining the slope of the left shoulder, as well as lowering the heights of the two peaks.

Furthermore, we have developed an effective method of inferring all the parameters

involved in both models using single-cell lineage measurements of fission yeast based on

the information of (i) the partition ratio, namely, the ratio of the size just after division

to the size just before division, across different generations, (ii) the mean and variance of

the birth size across different generations, (iii) the correlation of cell sizes at birth and at

division, and (iv) the cell size distribution. Specifically, we infer the parameters except

the numbers of cell cycle stages in different phases using the information (i)-(iii) and

then determine the remaining parameters by matching the theoretical and experimental
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cell size distributions.

We have shown that the theoretical cell size and birth size distributions provide an

excellent fit to the experimental ones of fission yeast reported in [11] under seven different

growth conditions. This match provides support for two implicit important assumptions

of our model: (i) the cell undergoes a complex three-stage growth pattern and (ii) the

speed of the cell cycle progression (the transition rate between cell cycle stages) has a

power law dependence on cell size. Finally, based on matching the experimental to the

theoretical cell size distributions, we have estimated all model parameters from lineage

data of fission yeast and found that the variability in added size and the strength of

size control are remarkably different when cells are cultured in different media — EMM

has a large added size variability and a strong size control, while YE has a small added

size variability and a weak size control. The estimated values of the strength α of size

homeostasis is typically 2.0 for EMM and 1.5 for YE, confirming the previous results

that fission yeast uses the sizer-like strategy to achieve size homeostasis [16]. Simulations

with the inferred parameters using distribution matching also captured the correlation

between birth and division sizes — this provides further evidence of the accuracy of our

detailed model.
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