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 2 

Abstract 23 

 While viremia in the vertebrate host is a major determinant of arboviral reservoir 24 

competency, transmission efficiency, and disease severity, immune mechanisms that control 25 

arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor 26 

MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following 27 

subcutaneous inoculation, alphavirus particles drain via the lymph and are rapidly captured by 28 

MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread 29 

to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the 30 

circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral 31 

dissemination. MARCO-mediated accumulation of alphavirus particles in the dLN and liver is an 32 

important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- 33 

mice and disease is more severe. These findings uncover a previously unrecognized arbovirus 34 

scavenging role for LECs and improve our mechanistic understanding of viremia control during 35 

arboviral infections. 36 
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Introduction 40 

 Over the last two decades we have experienced the unanticipated emergence or re-41 

emergence of multiple arboviruses, leading to far-reaching epidemics. In 2004, chikungunya virus 42 

(CHIKV), a mosquito-borne alphavirus, re-emerged in the Indian Ocean region and has since 43 

infected millions of people in epidemics spanning the globe, including the Americas (Moro et al, 44 

2010; Volk et al, 2010; Zeller et al, 2016). CHIKV and closely related alphaviruses (e.g., Mayaro, 45 

o’nyong’nyong (ONNV), and Ross River (RRV) viruses) cause severe arthralgia and arthritis 46 

affecting the small joints. These debilitating symptoms can persist for months to years after 47 

infection (Borgherini et al, 2008; Couturier et al, 2012; Rodríguez-Morales et al, 2016; Schilte et 48 

al, 2013), and have severe economic consequences (Cardona-Ospina et al, 2015; Soumahoro et 49 

al, 2011; Vijayakumar et al, 2013). In 2007, the previously obscure Zika virus (ZIKV) caused 50 

multiple outbreaks in islands of the Pacific Ocean before spreading to the Americas in 2015 (Duffy 51 

et al, 2009; Metsky et al, 2017; Musso et al, 2018). This epidemic revealed an unexpected 52 

association of ZIKV with severe disease manifestations, including Guillain-Barré syndrome and 53 

congenital ZIKV syndrome (Pierson & Diamond, 2018). Because of this, in 2016 the WHO 54 

declared the ZIKV outbreak in the Americas a Public Health Emergency of International Concern. 55 

These events underscore the ongoing threat that zoonotic arboviruses pose.  56 

 Arboviral infections in humans are often the result of spillover from enzootic cycles, and 57 

for many arboviruses, humans are a dead-end host. However, some arboviruses sustain human-58 

mosquito-human transmission, including dengue virus (DENV), yellow fever virus (YFV), ZIKV, 59 

and CHIKV (Weaver, 2018), which facilitates global emergence through air travel and allows for 60 

rapid spread of the virus through urban areas. While there are many determinants of arbovirus 61 

urbanization, a key factor is the development of a magnitude and duration of viremia sufficient to 62 

support infection of mosquitoes (Weaver, 2018). Beyond influencing reservoir competency and 63 

transmission efficiency, viremia also positively correlates with arboviral disease severity (Chow et 64 

al, 2011; de St Maurice et al, 2018; Pozo-Aguilar et al, 2014; Vaughn et al, 2000; Vuong et al, 65 
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2020; Waggoner et al, 2016). Thus, understanding factors that influence the magnitude and 66 

duration of viremia following arboviral infection is of critical importance.  67 

 Following the delivery of arboviruses via a mosquito bite, the virus replicates at the site of 68 

inoculation before spreading via the lymph to ultimately reach the bloodstream (Johnston et al, 69 

2000; MacDonald, 2000). Given this, arboviruses must evade immune defenses in draining lymph 70 

nodes (dLNs) to establish a primary viremia. Within the dLN, subcapsular sinus (SCS) 71 

macrophages and medullary sinus (MS) macrophages are strategically positioned to encounter 72 

lymph-borne pathogens (Bellomo et al, 2018). These cells have been described as molecular 73 

“flypaper” given their roles in rapidly capturing a wide range of incoming particulate antigen, 74 

including lymph-borne virions (Farrell et al, 2015; Junt et al, 2007). Moreover, viral replication 75 

within SCS macrophages initiates interferon production and facilitates recruitment and activation 76 

of immune cells to limit further viral dissemination (Iannacone et al, 2010; Kastenmuller et al, 77 

2012).   78 

 Upon reaching the bloodstream, virus particles must evade clearance by blood-filtering 79 

organs to maintain viremia and disseminate to distal tissues. The liver and spleen contain 80 

phagocytic cells strategically positioned to recognize and remove circulating self and non-self 81 

molecules. In the splenic marginal zone, marginal zone (MZM) and metallophilic (MMM) 82 

macrophages remove circulating apoptotic cells, antigen and microbes (Borges da Silva et al, 83 

2015; Lewis et al, 2019). In the liver, Kupffer cells (KCs), which account for 80-90% of all tissue 84 

macrophages (Bilzer et al, 2006), line the sinusoids to detect and clear blood-borne microbes and 85 

modified host molecules from the circulation (Hickey & Kubes, 2009; Lee et al, 2010; Zeng et al, 86 

2016).  87 

In prior studies, we found that i.v. inoculated arthritogenic alphavirus virions were rapidly 88 

removed from the circulation and accumulated in the liver (Carpentier et al, 2019). In addition, we 89 

identified the scavenger receptor MARCO as essential for alphavirus particle clearance from the 90 

blood (Carpentier et al., 2019). These findings revealed a critical host defense mechanism that 91 
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contributes to the control of arbovirus viremia once viral particles have reached the bloodstream. 92 

Here, using genetic approaches, confocal microscopy, and single cell mRNA sequencing (scRNA-93 

seq) analysis of dLN cell populations, we expand these analyses to improve our mechanistic 94 

understanding of the role of MARCO during arthritogenic alphavirus infection following a more 95 

natural subcutaneous inoculation route. Our studies revealed two distinct roles for MARCO in 96 

controlling arthritogenic alphavirus dissemination in vertebrate hosts. First, MARCO+ LECs in the 97 

dLN sequester CHIKV particles to delay the establishment of viremia. Once this barrier is 98 

breached, MARCO-expressing Kupffer cells in the liver provide a second layer of protection by 99 

removing circulating viral particles. These findings advance our understanding of the immune 100 

mechanisms that control arthritogenic alphavirus viremia and dissemination and reveal an 101 

arbovirus-scavenging role for LECs.  102 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447957


 6 

Results 103 

 104 

CHIKV infection outcomes are more severe in MARCO-/- mice. 105 

 To further elucidate the role of MARCO during arthritogenic alphavirus infection, we 106 

inoculated four-week-old WT or MARCO-/- mice subcutaneously (s.c.) in the left rear footpad with 107 

CHIKV and evaluated disease outcomes. As a control, WT and MARCO-/- mice were inoculated 108 

with CHIKV E2 K200R, a mutant virus that evades MARCO-mediated clearance from the 109 

circulation (Carpentier et al., 2019) and causes severe disease in WT mice (Hawman et al, 2017). 110 

WT mice inoculated with WT CHIKV steadily gained weight (Fig 1A) and displayed little to no 111 

defects in gait or hind-limb gripping ability (Fig 1B). In contrast, and similar to previous findings 112 

(Hawman et al., 2017), WT mice inoculated with CHIKV E2 K200R had delayed weight gain and 113 

developed more severe signs of musculoskeletal disease. Similarly, MARCO-/- mice infected with 114 

either WT CHIKV or CHIKV E2 K200R developed more severe disease signs (Fig 1A and 1B). 115 

Notably, the disease observed in MARCO-/- mice infected with CHIKV E2 K200R was not more 116 

severe than disease in MARCO-/- mice infected with WT CHIKV, suggesting that the enhanced 117 

disease caused by CHIKV E2 K200R in WT mice is due to evasion of MARCO. These findings 118 

demonstrate that the scavenger receptor MARCO protects from severe CHIKV disease.  119 

 120 

CHIKV viremia and tissue burdens are elevated in MARCO-/- mice 121 

 Since our previous work identified a critical role for MARCO in clearing arthritogenic 122 

alphavirus particles from the circulation (Carpentier et al., 2019), we evaluated the extent to which 123 

the magnitude and duration of viremia is altered in MARCO-/- mice. At 1-day post-inoculation (dpi), 124 

infectious virus in the blood of MARCO-/- mice was elevated (230-fold; P < 0.0001) compared with 125 

WT mice (Fig 1C). Viremia peaked in both WT and MARCO-/- mice at 2 dpi, but peak viremia was 126 

150-fold higher in MARCO-/- mice. In addition, MARCO-/- mice maintained an elevated level of 127 

infectious virus in the serum through day five post-infection (Fig 1C). As neutralizing antibody can 128 
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mask viral particles in the circulation at later times post-infection, we also analyzed serum 129 

samples for viral genomes by RT-qPCR. This analysis revealed that while CHIKV particles were 130 

mostly cleared from the blood of WT mice by 7 dpi, they remained detectable in the blood of 131 

MARCO-/- mice (Fig 1D). These findings demonstrate that in the absence of MARCO both the 132 

magnitude and duration of viremia are increased. 133 

 We next evaluated whether the presence or absence of MARCO influences viral 134 

dissemination by quantifying viral burden in tissues proximal and distal to the inoculation site at 1 135 

dpi. CHIKV burdens were similar in the ipsilateral ankle of WT and MARCO-/- mice, suggesting 136 

that MARCO does not influence replication near the site of inoculation (Fig 1E). In contrast, 137 

MARCO-/- mice had 2-3 orders of magnitude more infectious virus in distal tissues compared with 138 

WT mice (contralateral ankle: 3,163-fold, P < 0.0001; contralateral quadriceps: 951-fold, P < 139 

0.0001) (Fig 1E). These findings were not unique to CHIKV, as infection of MARCO-/- mice with 140 

two other arthritogenic alphaviruses, ONNV and RRV, also resulted in elevated viral burdens in 141 

distal tissues and in the serum at 1 dpi compared with WT mice (Fig 1F-G). The elevated viral 142 

burden observed in the contralateral ankle and quadriceps of MARCO-/- mice infected with CHIKV 143 

persisted throughout the course of infection, with increased viral burden observed at days 3, 7 144 

and 14 post-infection (Fig S1A-C). These findings demonstrate that in the absence of MARCO, 145 

arthritogenic alphaviruses develop a much higher viremia and are better able to disseminate to 146 

distal tissues.  147 

 148 

Kupffer cells rapidly remove CHIKV particles from the circulation.  149 

 In prior studies, we found that i.v. inoculated CHIKV particles are rapidly cleared from the 150 

circulation and accumulate in the liver in a MARCO-dependent manner (Carpentier et al., 2019). 151 

Moreover, depletion of phagocytic cells in the spleen and liver in contact with the blood, through 152 

i.v. administration of clodronate-loaded liposomes (CLL), prevented accumulation of CHIKV RNA 153 

in the liver (Carpentier et al., 2019). These data suggest that KCs play a dominant role in the 154 
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removal of CHIKV particles from the circulation. Based on these data, we hypothesized that 155 

MARCO-mediated clearance of viral particles by KCs limits the magnitude and duration of viremia, 156 

thus restricting viral dissemination and pathogenicity. To test this, we evaluated the extent to 157 

which specific depletion of KCs impaired the clearance of circulating CHIKV particles. To do this, 158 

we used Clec4F-DTR mice (Scott et al, 2016), which express the diphtheria toxin receptor (DTR) 159 

under the control of Clec4f, a gene expressed exclusively in KCs. We treated WT or Clec4F-DTR+ 160 

mice with DT 1-2 days prior to i.v. inoculation of CHIKV. In WT mice, CHIKV particles were rapidly 161 

cleared from the circulation by 45 min (Fig 2A). In contrast, Clec4F-DTR+ mice had increased 162 

viral particles in the serum at this time point (77-fold; P < 0.0001) (Fig 2A), demonstrating that 163 

KCs contribute to CHIKV clearance. However, the block to clearance in DT-treated Clec4F-DTR+ 164 

mice was not as robust as observed in mice treated i.v. with CLL (Fig 2B). Given the broad effects 165 

of CLL treatment (Seiler et al, 1997; Van Rooijen & Sanders, 1994), we employed CD169-DTR+ 166 

mice (Miyake et al, 2007), which allow for specific depletion of CD169+ cells, including liver KCs 167 

and splenic MMM and MZM (Gupta et al, 2016; Miyake et al., 2007). CHIKV clearance was 168 

blocked in DT-treated CD169-DTR+ mice to levels similar to that observed in CLL-treated mice 169 

(Fig 2C). However, we found that KC depletion was much more efficient in CLL-treated WT mice 170 

and DT-treated CD169-DTR+ mice compared with DT-treated Clec4F-DTR+ mice, with averages 171 

of 1.25 (CLL), 2.5 (CD169-DTR+) and 11.5 (Clec4F-DTR+) F4/80+ cells per field of view (Fig 2D-172 

E). The less efficient depletion of KCs in Clec4F-DTR+ mice likely accounts for the less potent 173 

block to clearance of circulating CHIKV particles. Collectively, these findings suggest that KCs 174 

are primarily responsible for the rapid removal of CHIKV from the circulation following i.v. 175 

inoculation.  176 

 177 

Depletion of KCs is not sufficient to enhance early CHIKV dissemination.  178 

 We reasoned that if clearance of viral particles by MARCO-expressing KCs was 179 

responsible for the enhanced viremia and dissemination observed in MARCO-/- mice following s.c. 180 
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virus inoculation, depletion of KCs would also enhance CHIKV dissemination. To test this idea, 181 

we treated WT or Clec4F-DTR+ mice with DT prior to s.c. inoculation of CHIKV in the left rear 182 

footpad and measured viral burden in tissues at 1 dpi. Surprisingly, unlike what we observed in 183 

MARCO-/- mice (Fig 1E), the amounts of CHIKV in tissues and the circulation of WT and DT-184 

treated Clec4F-DTR+ mice were indistinguishable (Fig 3A). Given that depletion of KCs is not 185 

complete in DT-treated Clec4F-DTR+ mice (Fig 2D-E), we i.v. treated WT mice with PLL or CLL 186 

42 h prior to s.c. inoculation of CHIKV in the left rear footpad, as i.v. CLL treatment efficiently 187 

depletes F4/80+ cells in the liver (Fig 2D-E). Despite this, we found that CHIKV levels in distal 188 

tissues at 1 dpi were indistinguishable among PLL- and CLL-treated mice (Fig 3B). However, 189 

viremia was elevated in CLL-treated mice (27-fold; P < 0.001) (Fig 3B), confirming a role for 190 

phagocytic cells in limiting CHIKV viremia. These data demonstrate that while the absence of 191 

MARCO is sufficient to enhance CHIKV dissemination, depletion of KCs is not, suggesting that 192 

additional MARCO expressing cells restrict CHIKV dissemination.  193 

 194 

The draining lymph node limits arthritogenic alphavirus dissemination.  195 

 Following replication at the site of inoculation, arthritogenic alphaviruses spread through 196 

the lymph to the dLN before establishing viremia and disseminating to distal tissues. Given this, 197 

we hypothesized that MARCO-expressing cells in the dLN capture CHIKV particles, delaying the 198 

establishment of viremia and limiting viral dissemination to distal tissues. To test this, we used 199 

lymphotoxin alpha deficient mice (LTa-/-), which developmentally lack peripheral lymph nodes (De 200 

Togni et al, 1994). To evaluate the relative contributions of the dLN and liver in controlling CHIKV 201 

dissemination, WT or LTa-/- mice were treated i.v. with PLL or CLL to deplete phagocytic cells in 202 

the liver prior to s.c. inoculation of CHIKV in the left rear footpad. At 1 dpi, the viral burden in 203 

tissues proximal and distal to the site of inoculation were quantified. In WT mice, low levels of 204 

virus were detected in distal tissues and serum of both PLL- and CLL-treated mice (Fig 4A). In 205 
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contrast, PLL-treated LTa-/- mice, which lack LNs but retain liver KCs, had an elevated viral burden 206 

in distal muscle (29-fold; P < 0.0001) and joint tissue (107-fold; P < 0.0001), and had moderately 207 

elevated viremia (10-fold; P < 0.0001) (Fig 4A). Compared with PLL-treated LTa-/- mice, LTa-/- 208 

mice treated with CLL, which lack both LNs and KCs, had higher viral burdens in distal muscle 209 

(4-fold; P < 0.05) and joint tissue (7-fold; P < 0.0001), and a highly elevated viremia (223-fold; P 210 

< 0.0001) (Fig 4A). These findings demonstrate that the dLN functions as a major barrier to 211 

CHIKV dissemination, as in its absence viral dissemination to distal tissues is strongly increased. 212 

The modest elevation in viremia in PLL-treated LTa-/- mice compared with CLL-treated LTa-/- mice 213 

suggests that phagocytic cells in the liver remove much of the circulating virus. An important role 214 

for liver phagocytes in controlling dissemination is supported by the elevated viral burden in both 215 

distal tissues and the circulation in CLL-treated LTa-/- mice, which lack both LNs and KCs (Fig 216 

4A).  217 

 The enhanced viral dissemination observed in CLL-treated LTa-/- mice (Fig 4A) is similar 218 

to what was observed in MARCO-/- mice (Fig 1E), suggesting that MARCO-expressing cells in 219 

the dLN sequester alphavirus particles. To explore this idea, we inoculated WT or MARCO-/- mice 220 

s.c. in the footpad with WT CHIKV or CHIKV E2 K200R (mutant virus that evades MARCO).  At 221 

2 hpi, a time point at which no new infectious virus has been produced, we collected the dLN and 222 

serum to evaluate the fate of the inoculated virus. In WT mice inoculated with WT CHIKV, we 223 

detected high levels of viral RNA in the dLN, while little to no virus was observed in the serum 224 

(Fig 4B). In contrast, WT mice inoculated with CHIKV E2 K200R and MARCO-/- mice inoculated 225 

with either WT CHIKV or CHIKV E2 K200R had 7-10-fold lower levels of viral RNA in the dLN, 226 

and remarkably had 3,700-6,200-fold more virus in the serum (Fig 4B). Moreover, we found that 227 

MARCO-/- mice inoculated with RRV, a closely related arthritogenic alphavirus, also had reduced 228 

viral RNA in the dLN (5-fold; P < 0.001) and higher levels of virus in the blood (1,790-fold; P < 229 

0.0001) compared with WT mice (Fig 4C). Importantly, MARCO-/- mice inefficiently clear 230 
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circulating viral particles (Carpentier et al., 2019). Therefore, the increased viremia in MARCO-/- 231 

mice 2 h following s.c. virus inoculation is likely a reflection of not only reduced virus accumulation 232 

in the dLN, but also the lack of clearance of circulating virus by liver KCs.  233 

 234 

LN Macrophages are not required for CHIKV accumulation in the dLN or for limiting viral 235 

dissemination 236 

 We next sought to define the cell type(s) in the dLN that limit CHIKV dissemination. Within 237 

the LN, MARCO is reported to be expressed by MS macrophages (Elomaa et al, 1995) and a 238 

subset of LECs in the medullary region (Fujimoto et al, 2020; Takeda et al, 2019; Walsh et al, 239 

2021; Xiang et al, 2020). Consistent with these data, using flow cytometry we found that MARCO 240 

was expressed specifically on MS macrophages and LECs (Fig S2). Previous studies found that 241 

macrophages in the dLN capture lymph-borne viruses (Farrell et al., 2015; Gonzalez et al, 2010; 242 

Hickman et al, 2008; Junt et al., 2007), and that CLL-mediated depletion of dLN macrophages 243 

decreased viral capture by the dLN and increased viremia and dissemination (Farrell et al., 2015; 244 

Junt et al., 2007). Given this, we hypothesized that MARCO+ MS macrophages limit the 245 

dissemination of arthritogenic alphaviruses. As MS and SCS macrophages in the LN are CD169+ 246 

(Gray & Cyster, 2012), we used CD169-DTR mice to deplete LN macrophages and evaluate their 247 

capacity to promote virus accumulation in the dLN and limit virus accumulation in the circulation. 248 

WT or CD169-DTR mice were treated with DT, which results in efficient depletion of CD169+ cells 249 

in the dLN (Fig 5A). Mice were then inoculated with CHIKV s.c. in the footpad and at 2 hpi, viral 250 

RNA in the dLN and serum was quantified by RT-qPCR. Remarkably, there was no difference in 251 

the amount of viral RNA detected in the dLN of DT-treated WT or CD169-DTR+ mice, and low 252 

levels of viral RNA in the blood were observed in both WT and CD169-DTR+ mice (Fig 5B). 253 

Importantly, DT treatment of CD169-DTR mice also depletes KCs (Fig 2D and 3E), and thus any 254 

virus that traffics from the dLN to the blood should remain circulating and not be masked by the 255 

clearance effects of KCs. These findings suggest that macrophages in the dLN are not required 256 
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to sequester viral particles and limit access to the circulation. Consistent with this, CHIKV 257 

dissemination to distal tissues was not enhanced in DT-treated CD169-DTR+ mice compared with 258 

WT mice (Fig 5C), or in mice treated with CLL both i.v. and s.c. in the footpad to deplete 259 

phagocytic cells in the liver and dLN, respectively (Fig S3). These findings reveal that in contrast 260 

to previous reports for other viruses (Junt et al., 2007), LN macrophages are not required for 261 

clearance of arthritogenic alphavirus particles from the lymph.  262 

  263 

CHIKV-E2-mCherry particles co-localize with MARCO+ LECs in the dLN 264 

 Given that medullary macrophages are not required for accumulation of arthritogenic 265 

alphavirus particles in the dLN, we next investigated the role of LECs, as recent reports identified 266 

a subset of LECs in the medullary region of the lymph node that express MARCO (Fujimoto et 267 

al., 2020; Xiang et al., 2020). Moreover, LECs have been shown to capture and archive viral 268 

antigen (Tamburini et al, 2014), further supporting a potential role for LECs in capturing alphavirus 269 

particles. To determine whether viral particles colocalized with MARCO+ LECs in the dLN, we 270 

used a recombinant CHIKV in which mCherry is fused to the E2 glycoprotein present in viral 271 

particles (CHIKV-E2-mCherry). Importantly, CHIKV-E2-mCherry particles were efficiently cleared 272 

from the circulation, and clearance could be blocked by pre-treatment of mice with poly(I), a class 273 

A SR inhibitor that competitively inhibits MARCO (Chen et al, 2006) (Fig S4). CHIKV-E2-mCherry 274 

particles were inoculated s.c. into the foot and the popliteal dLN was collected at 2 hpi. Frozen 275 

LN sections were stained for Lyve1+ LECs, MARCO, B220 (marking B cell follicles and revealing 276 

nodal orientation) and mCherry+ CHIKV particles. As previously reported, we detected a robust 277 

MARCO+ Lyve1+ LEC population in both infected and uninfected WT mice that was primarily 278 

restricted to the LN medullary sinus (Fig 6A). Although MARCO-/- mice lacked MARCO+ cells as 279 

expected, the medullary sinus remained intact with similar morphology to that of WT mice (Fig 280 

6A, middle panels). Visually, mCherry staining for CHIKV particles was most intense in Lyve1+ 281 

MARCO+ LECs (Fig 6A, far right panels). To better quantify CHIKV+ cells in the LECs of WT and 282 
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MARCO-/- mice, we first colocalized mCherry and Lyve1+ signals in the LN, detecting many double 283 

positive cells in WT but not MARCO-/- LNs (Fig 6B-C). Indeed, while 39.3% of Lyve1+ voxels in 284 

were also mCherry+ in WT LNs, only 3.0 % were mCherry+ in MARCO-/- mice, consistent with the 285 

decreased accumulation of viral genomes in the dLN of MARCO-/- mice at 2 hpi (Fig 5B). Higher 286 

magnification images demonstrated that in WT mice, mCherry staining overlapped with both 287 

Lyve1 and MARCO staining (Fig 6D). In contrast, in MARCO-/- LNs, we observed only a small 288 

amount of mCherry staining in CD11b+ cells, some of which co-expressed CD169 (representing 289 

medullary sinus macrophages) (Fig 6E). Collectively, these findings demonstrate that following 290 

s.c. inoculation, CHIKV particles are bound by medullary sinus LECs using MARCO-/-.  291 

 292 

MARCO+ LECs harbor CHIKV RNA  293 

 To further characterize LEC subsets that capture virus, at 24 hpi we generated single cell 294 

suspensions from the dLN for three biological replicates each of mock- and CHIKV-infected mice.  295 

We then enriched for CD45- cells (Fig S5) and performed scRNA-seq to identify cell populations 296 

that harbor viral RNA. Between mock- and CHIKV-infected samples, which clustered distinctly, 297 

we captured a total of 60,185 cells (Fig 7A). To identify the cell types represented in these 298 

samples, we used an automated approach (Fu et al, 2020) that classifies cells based on their 299 

correlation with reference RNA-seq data. Using published data for cell types found in the mouse 300 

LN (Heng, 2008; Malhotra et al, 2012; Rodda et al, 2018), we were able to identify large 301 

populations of endothelial cells, non-endothelial stromal cells including fibroblastic reticular cells 302 

(FRC) and perivascular cells (PvC), along with smaller populations of CD45+ cells including B 303 

cells, T cells, and macrophages (Fig 7B). To identify endothelial cell subsets, we further divided 304 

the endothelial cells into niche-specific subpopulations using published reference data (Xiang et 305 

al., 2020). By this method, we identified blood endothelial cells (BEC) as well as LEC subsets 306 

including MARCO+, ceiling (cLEC), floor (fLEC), valve, collecting, Ptx3, and transition zone 307 

(tzLEC) (Fig 7C and EV6). Cells collected from the dLN of CHIKV-infected mice contained fewer 308 
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LEC subsets and were mainly composed of MARCO+ LECs, valve LECs, and a population of 309 

endothelial cells that we were unable to further classify (Fig 7C). The limited number of LEC 310 

subsets identified in CHIKV-infected samples could be due to cell death within the dLN at 24 hpi. 311 

However, one caveat to our approach is that we are using reference data from uninfected mice 312 

which could make it more challenging to accurately annotate LN cell populations during CHIKV 313 

infection.  314 

 To identify cell types harboring CHIKV RNA, we classified cells based on the number of 315 

viral sequence counts. As expected, we detected only background levels of CHIKV RNA 316 

(3/26,500 cells with 1 CHIKV count each) in dLN cells of mock-infected mice (Fig S7A), while 317 

cells collected from the dLN of CHIKV-infected mice had viral RNA sequence counts as high as 318 

>8,000 per cell (Fig S7A). We used k-means clustering to divide cells from each sample into 319 

CHIKV-low and CHIKV-high groups and identified a small number of cells (n = 690, 1.1%) with 320 

high amounts of CHIKV RNA (Fig S7A). CHIKV-high cells displayed fewer mouse mRNA counts 321 

per cell and fewer expressed mouse genes (Fig S7B) potentially due to inhibition of host cell 322 

transcription or cell lysis, both of which can occur in CHIKV-infected cells (Fros & Pijlman, 2016).   323 

 We next analyzed the cell populations containing high amounts of CHIKV RNA. CHIKV-324 

high cells are mainly composed of MARCO+ LECs (n = 231, 33%), FRCs (n = 89, 13%), BECs (n 325 

= 49, 7%), and PvCs (n = 44, 6%), along with a group of LECs that we were unable to further 326 

classify (unassigned-LEC, n = 232, 34%) (Fig 7F). Among the CHIKV-high cell types, we found 327 

that the unassigned-LECs and MARCO+ LECs show the highest viral burden as indicated by a 328 

high fraction of CHIKV counts per cell (Fig 7E-G), suggesting that these are the predominant cell 329 

populations in the dLN that capture viral particles. To further investigate the role of MARCO in 330 

these interactions, we compared MARCO expression for CHIKV-low and CHIKV-high MARCO+ 331 

LECs. This analysis revealed that CHIKV-high MARCO+ LECs had significantly higher expression 332 

of MARCO in comparison to their CHIKV-low counterparts (Fig 7D and 7H). Moreover, CHIKV-333 

low and CHIKV-high MARCO+ LECs expressed little to no Mxra8, a cell entry receptor for CHIKV 334 
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(Zhang et al, 2018) (Fig 7I). These data further support a role for MARCO and LECs in 335 

sequestering viral particles in the dLN and limiting CHIKV dissemination.  336 

 337 

Discussion 338 

 Our results reveal a critical role for the scavenger receptor MARCO in controlling 339 

arthritogenic alphavirus viremia, dissemination, and disease. Similar protective roles for MARCO 340 

have been observed during other infections. For example, MARCO-/- mice are impaired in their 341 

ability to clear Streptococcus pneumonia from the nasopharynx and lungs (Arredouani et al, 2004; 342 

Dorrington et al, 2013). Moreover, MARCO enhances phagocytosis of Mycobacterium 343 

tuberculosis in vitro (Bowdish et al, 2009), and MARCO polymorphisms are associated with 344 

altered susceptibility to pulmonary tuberculosis (Bowdish et al, 2013; Lao et al, 2017; Ma et al, 345 

2011; Thuong et al, 2016). Finally, during influenza A virus infection in mice, MARCO suppresses 346 

early immunopathologic inflammatory responses, and accordingly, MARCO-/- mice have 347 

increased morbidity and mortality compared with WT mice (Ghosh et al, 2011). However, MARCO 348 

also can be exploited by pathogens. For example, herpes simplex virus 1 (HSV-1) interactions 349 

with MARCO enhance epithelial cell adsorption, and MARCO-/- mice have reduced wound sizes 350 

following s.c. HSV-1 inoculation (MacLeod et al, 2013).  351 

 Our findings identify two distinct MARCO expressing cell types that limit arthritogenic 352 

alphavirus dissemination and viremia: MARCO+ LECs in the dLN and KCs in the liver. KCs are 353 

well established to play a critical role in controlling bacteremia (Jenne & Kubes, 2013; Lee et al., 354 

2010) However, the role of KCs in controlling viremia is not as well characterized. We find that 355 

specific depletion of KCs using Clec4F-DTR+ mice impairs CHIKV clearance from the circulation. 356 

While it remains possible that MARCO+ MZM in the spleen contribute, our findings demonstrate 357 

that KCs are the major cell type involved in the efficient removal of arthritogenic alphavirus 358 

particles from the blood, expanding their surveillance function to arboviruses.  359 
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 Despite the critical role for KCs in removing alphavirus particles from the circulation, we 360 

found that depletion of KCs had no impact on CHIKV dissemination following s.c. viral inoculation. 361 

This led us to investigate the role of MARCO+ cells in the dLN in controlling CHIKV viremia and 362 

dissemination, as lymph nodes can function as barriers to pathogen dissemination (Bogoslowski 363 

& Kubes, 2018). For example, within minutes of subcutaneous inoculation, fluorescently labeled 364 

vesicular stomatitis virus (VSV) particles can be found trapped within SCS macrophages in the 365 

dLN (Junt et al., 2007). This observation extends to other viruses, including adenovirus (AdV) and 366 

vaccinia virus (VV) (Hickman et al., 2008; Junt et al., 2007), thus lending to the description of 367 

these SCS macrophages as “molecular flypaper” in regard to their ability to capture incoming viral 368 

particles. This macrophage-mediated capture has important implications for pathogen 369 

dissemination, as depletion of macrophages in the draining lymph node via s.c. CLL 370 

administration decreased accumulation of VSV in the dLN at early times post-infection, and 371 

increased viral dissemination to the blood (Junt et al., 2007). Similarly, depletion of macrophages 372 

in the dLN was shown to enhance the dissemination of murine cytomegalovirus (MCMV), West 373 

Nile virus (WNV), and Pseudomonas aeruginosa (P. aeruginosa), and facilitate CNS invasion of 374 

neurotropic VSV (Farrell et al., 2015; Iannacone et al., 2010; Kastenmuller et al., 2012; 375 

Winkelmann et al, 2014).  376 

 Our results demonstrate the dLN is a major barrier to arthritogenic alphavirus 377 

dissemination, but unlike prior reports of macrophage-mediated capture our findings uncover a 378 

previously unrecognized role for LECs in scavenging arboviral particles to impair dissemination. 379 

We found that CHIKV-E2-mCherry particles colocalized with MARCO+ LECs in the dLN, and 380 

scRNA sequencing of dLN stromal cell populations identified MARCO+ LECs as the predominant 381 

cell type harboring CHIKV RNA. Notably, CHIKV RNA levels among MARCO+ LECs correlated 382 

with MARCO expression levels, with CHIKV-high cells showing higher expression of MARCO, 383 

suggesting MARCO may mediate internalization. MARCO+ LECs were negative for Mxra8, a 384 

known arthritogenic alphavirus entry receptor (Zhang et al., 2018). The genetic absence of Mxra8 385 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447957


 17 

in mice reduced but did not eliminate viral replication and dissemination in vivo (Zhang et al, 386 

2019), demonstrating that additional entry receptors exist. Notably, MARCO has been reported 387 

to facilitate entry of other viruses, including HSV-1, VV, and adenovirus into target cells (MacLeod 388 

et al, 2015; MacLeod et al., 2013; Maler et al, 2017; Stichling et al, 2018).  389 

 The role of LECs in capturing lymph-borne viral particles likely extends beyond 390 

arthritogenic alphaviruses. While macrophages were reported to play a major role in capture of 391 

other viruses, fluorescently labeled VSV, AdV, and VV particles co-localized with LECs in the 392 

medullary region of the dLN (Junt et al., 2007; Reynoso et al, 2019), which is where MARCO+ 393 

LECs reside. Future investigations are needed to understand whether MARCO is responsible for 394 

broadly mediating capture of diverse viruses by LECs, or whether other pattern recognition 395 

receptors (PRRs) are also involved. LECs express a wide range of PRRs, including toll-like 396 

receptors, Fc receptors, C-type lectin receptors, and additional scavenger receptors, suggesting 397 

they may have multiple mechanisms for scavenging diverse viral particles (Berendam et al, 2019; 398 

Jalkanen & Salmi, 2020).  399 

 Additional work is also needed to better understand the consequences of viral capture by 400 

LECs. Our findings suggest that capture of arthritogenic alphaviruses by MARCO+ LECs 401 

contributes to the control of viral dissemination. However, whether LECs become productively 402 

infected by arthritogenic alphaviruses remains under investigation. In prior studies, we were 403 

unable to detect fluorescent signal in the dLN following s.c. inoculation with a recombinant CHIKV 404 

expressing the fluorescent protein mKate (McCarthy et al, 2018). However, our scRNA-seq 405 

results reveal that only a small fraction of stromal cells in the dLN harbor CHIKV RNA, suggesting 406 

flow cytometry may not be sensitive enough to detect whether the virus is productively replicating 407 

in these cells. Our scRNA-seq analysis provides hints that the MARCO+ LECs may be actively 408 

infected. For example, cells harboring CHIKV RNA have high viral reads, suggestive of genome 409 

replication, and CHIKV-high cells have reduced reads for mouse genes, which is consistent with 410 

virus-mediated transcriptional shutoff (Fros & Pijlman, 2016). Further studies are needed, but 411 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447957doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447957


 18 

these findings raise the possibility that MARCO facilitates arthritogenic alphavirus entry and 412 

infection of distinct cell types, such as MARCO+ LECs.   413 

 LEC-mediated capture of viral particles also could influence innate and adaptive immune 414 

responses. LECs have been reported to archive viral antigen for weeks following the resolution 415 

of the adaptive immune response (Kedl et al, 2017; Tamburini et al., 2014), and our findings may 416 

provide insight as to how these antigens are initially acquired by LECs. This archived antigen can 417 

be either directly presented or exchanged with dendritic cells to allow for cross-presentation to 418 

CD8+ T-cells to stimulate memory T cells and augment protective immunity (Kedl et al., 2017; 419 

Tamburini et al., 2014; Vokali et al, 2020). In other studies evaluating factors that influence 420 

alphavirus viremia and dissemination, injection of Semliki Forest virus, a closely related 421 

alphavirus, at the site of a mosquito bite in the skin of mice was found to delay viral spread to the 422 

lymph node, which ultimately enhanced early viremia and viral dissemination, and led to more 423 

severe disease outcomes (Pingen et al, 2016). It is possible that the retention of viral particles at 424 

the site of inoculation allows the virus to replicate to high titers before initiating potent immune 425 

responses due to viral capture in the dLN. Future studies are necessary to better understand how 426 

MARCO+ LEC-mediated capture of arthritogenic alphaviruses influences downstream innate and 427 

adaptive immune responses.  428 

 In summary, our results reveal a critical scavenging role for MARCO during arthritogenic 429 

alphavirus infection. We find that following s.c. inoculation, alphavirus particles accumulate in the 430 

dLN in association with MARCO+ LECs, limiting viral spread to the blood. Once reaching the 431 

blood, liver KCs provide a second line of defense and rapidly clear circulating alphavirus particles 432 

in a MARCO-dependent manner. Collectively, these findings advance our mechanistic 433 

understanding of how viremia is controlled during arboviral infections, which has several important 434 

implications for arboviral biology. First, viremia has been shown to positively correlate with 435 

disease severity following infection with CHIKV and other arboviruses (Chow et al., 2011; de St 436 

Maurice et al., 2018; Pozo-Aguilar et al., 2014; Vaughn et al., 2000; Vuong et al., 2020; Waggoner 437 
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et al., 2016). Consistent with this, we find that the high magnitude and duration of viremia 438 

observed in CHIKV-infected MARCO-/- mice promoted more rapid viral dissemination, increased 439 

viral tissue burdens, and resulted in more severe disease signs. These finding raise the possibility 440 

that MARCO also influences disease severity in humans. The MARCO gene is highly polymorphic 441 

in humans and mice (Bowdish & Gordon, 2009), and this genetic variation has been demonstrated 442 

to influence human susceptibility to tuberculosis and respiratory syncytial virus (Bowdish et al., 443 

2013; High et al, 2016; Lao et al., 2017; Ma et al., 2011; Thuong et al., 2016). Given our findings, 444 

it is possible that MARCO polymorphisms similarly influence disease severity following 445 

arthritogenic alphavirus infection. In addition to influencing disease severity, MARCO-virus 446 

interactions likely also affect virus transmission efficiency and reservoir host competency in 447 

nature, as the magnitude and duration of viremia is an important factor dictating which vertebrate 448 

species can serve as reservoirs for arboviruses (Weaver, 2018). Thus, differences in MARCO 449 

alleles may influence which vertebrate hosts participate in arthritogenic alphavirus transmission 450 

cycles. While humans are dead-end hosts for most arboviruses, a select few including CHIKV, 451 

DENV, and ZIKV generate a sufficiently high level of viremia to facilitate human-mosquito-human 452 

transmission cycles (Weaver, 2018). These viruses pose a high risk for emergence and re-453 

emergence, as evidenced by the now global distribution of DENV and the recent ZIKV and DENV 454 

epidemics. This underscores the need for an improved understanding of viremic control. 455 

Collectively, our findings shed light on the mechanistic control of viremia during arboviral 456 

infections, and more broadly advance our understanding of how the lymph node restricts virus 457 

dissemination.  458 

 459 

Materials and Methods  460 

  461 

Ethics Statement. This study was performed in strict accordance with the 462 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 463 
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Institutes of Health. All of the animals were handled according to approved institutional animal 464 

care and use committee (IACUC) protocols (#00026) of the University of Colorado School of 465 

Medicine (Assurance Number A3269-01). Experimental animals were humanely euthanized at 466 

defined endpoints by exposure to isoflurane vapors followed by thoracotomy. 467 

 468 

Cells.  Vero cells (ATCC CCL81) were cultured at 37°C in Dulbecco’s Modified Eagle 469 

medium (DMEM)-F-12 (Gibco) supplemented with 10% fetal bovine serum, 1x nonessential 470 

amino acids (Life Technologies), and 1X penicillin-streptomycin. BHK-21 cells (ATCC CCL10) 471 

were cultured at 37°C in α-minimum essential medium (Gibco) supplemented with 10% FBS, 472 

10% tryptone phosphate broth, and penicillin-streptomycin.  473 

 474 

 Viruses. The CHIKV strain used in these studies is AF15561, an Asian genotype strain 475 

isolated from a human patient in Thailand (GenBank accession no. EF452493). cDNA clones of 476 

AF15561 and AF15561 E2 K200R have been described previously (Hawman et al., 2017). The 477 

recombinant CHIKV AF15561 cDNA clone encoding mCherry-tagged E2 glycoprotein was 478 

derived from a 181/25 CHIKV E2 mCherry-tagged cCNA clone kindly provided by Richard Kuhn 479 

(Purdue University). Site-directed mutagenesis was first used to revert positions E2 12 and E2 84 480 

from attenuated 181/25 to WT AF15561 using the following primers: CHIKV-181/25 E2 I12T FOR 481 

(5′-gtgagctaggtacggtcttgtggctttatagacattgaa-3′), CHIKV-181/25 E2 I12T REV (5′-482 

ttcaatgtctataaagccacaagaccgtacctagctcac-3′), CHIKV 181/25 E2 R82G FOR (5′-483 

gttcttacaaatagcccggccctctctgcgtc-3′) and CHIKV 181/25 R82G Rev (5′-484 

gacgcagagagggccgggctatttgtaagaac-3′). A fragment containing part of capsid, mCherry, and part 485 

of E2 was then subcloned into an AF15561 cDNA clone using restriction sites XhoI and XmaI. To 486 

generate virus stocks, linearized cDNA clones were in vitro transcribed with SP6 RNA 487 

polymerase, and viral RNA was electroporated into BHK-21 cells as described previously 488 
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(Ashbrook et al, 2014). At 24-28 h post-electroporation, clarified supernatant containing infectious 489 

virus was collected, aliquoted and stored at -80°C. The RRV strain used is SN11 (Liu et al, 2011), 490 

a clinical isolate (kindly provided by John Aaskov, Queensland University of Technology) that was 491 

passaged 1X on C6/36 cells before we propagated the stock used in these studies in BHK-21 492 

cells. ONNV SG650 (Lanciotti, 1998), a strain isolated from human sera in Uganda in 1996, was 493 

derived from a cDNA clone ((Vanlandingham, 2006); provided by Stephen Higgs, Kansas State 494 

University) through electroporation into BHK-21 cells, and propagated on BHK-21 cells for one 495 

passage to increase titer. Infectious virus was titered by plaque assay on BHK-21 cells. To 496 

quantify viral genomes, viral stocks were treated with RNase1 at 37°C for 1 h. RNA was extracted 497 

and viral genomes were quantified by RT-qPCR.   498 

 499 

Mouse Experiments. WT C57BL/6 and congenic Lymphotoxin alpha-/- (LTa-/-) mice (De 500 

Togni et al., 1994) were obtained from the Jackson Laboratory. Congenic CD169-DTR+ (Miyake 501 

et al., 2007) mice were provided by Jason Cyster (University of California San Francisco) and 502 

congenic MARCO-/- mice (Arredouani et al., 2004) were provided by Dawn Bowdish (McMaster 503 

University). Clec4F-DTR+ C57BL/6 mice (Scott et al., 2016) were provided by Martin Guilliams 504 

(Ghent University). CD169-DTR+, MARCO-/-, LTa-/- and Clec4F-DTR+ mice were housed and bred 505 

at the University of Colorado School of Medicine under specific pathogen-free conditions and 506 

were distributed randomly into groups containing approximately even division of sexes for 507 

experiments. WT male mice were purchased commercially and were age matched and distributed 508 

randomly across groups. Mice 4 weeks of age were used in all experiments. All mouse 509 

experiments were performed under animal biosafety level 2 or 3 conditions, as appropriate.  510 

For experiments involving Clec4F-DTR+ mice, mice were treated with 50 ng of DT either 511 

i.v. or i.p. as indicated in the Figure legend, 48 h and 24 h prior to virus inoculation. For 512 

experiments involving CD169-DTR+ mice, mice were injected with 100 ng of DT i.p. 48 h and 24 513 
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h prior to virus inoculation. For experiments involving depletion of liver and splenic phagocytes, 514 

mice were inoculated i.v. with 100 µl per 10 g of body weight of PBS- (PLL) or clodronate-loaded 515 

liposomes (CLL) (clodronateliposomes.org) 42 h prior to virus inoculation. To deplete phagocytic 516 

cells in the draining lymph node, mice were inoculated s.c. in the left-rear footpad with 20 µl of 517 

PLL or CLL 24 h prior to virus inoculation.  518 

In experiments evaluating disease or viral tissue burdens, mice were anesthetized with 519 

isoflurane vapors and inoculated in the left-rear footpad with a 10 µl volume containing 103 PFU 520 

of virus diluted in PBS/1% FBS. Mice were weighed daily and disease scores were assigned as 521 

described previously (Jupille et al, 2011). In brief, the following criteria were used: score of 1: mild 522 

deficit in hind paw gripping of injected foot; score of 2: mild deficit in bilateral hind-paw gripping; 523 

score of 3: bilateral loss of gripping ability; score of 4: bilateral loss of griping ability, moderate 524 

bilateral hind-limb paresis, altered gait, difficulty righting self; score of 5: bilateral loss of gripping 525 

ability, severe bilateral hind-limb paresis, altered gait, inability to right self; score of 6: moribund 526 

state. At experiment termination, mice were euthanized by exposure to isoflurane vapors followed 527 

by bilateral thoracotomy. Blood was collected, mice were perfused with 5-10 mL of 1X PBS or 4% 528 

paraformaldehyde (PFA) (for experiments involving histology), and indicated tissues were 529 

harvested in in vitro diluent (1X PBS with 1% FBS and 1x Ca2+Mg2+) for analysis of infectious virus 530 

by focus formation assay (FFA) or plaque assay, or in TRIzol reagent Life Technologies) for RNA 531 

isolation and quantification of viral genomes by RT-qPCR. Tissues were homogenized using a 532 

MagNA Lyser instrument (Roche).  533 

For serum clearance experiments, mice were anesthetized with isoflurane vapors and 534 

inoculated i.v. with 108 genomes of CHIKV diluted in 100 µl of PBS/1% FBS. At 45 min post 535 

inoculation, mice were sacrificed and serum was collected. For lymph node accumulation 536 

experiments, mice were anesthetized with isoflurane vapors and inoculated s.c. in the left-rear 537 
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footpad with a 10 µl volume containing 5 x 104 PFU of virus. At 2 hpi, blood and the draining pLN 538 

were collected in TRIzol.  539 

 540 

Viral Genome Quantification by RT-qPCR. To quantify viral genomes, RNA was 541 

extracted from 20 µl of serum or from homogenized tissues in TRIzol reagent using the PureLink 542 

RNA mini kit (Life Technologies). CHIKV cDNA was generated from 10 µl of serum derived RNA 543 

or 1 µg of tissue derived RNA using random primers (Invitrogen) with SuperScript IV reverse 544 

transcriptase (Life Technologies). CHIKV genome copies were quantified by RT-qPCR using a 545 

CHIKV specific forward primer (5′-TTTGCGTGCCACTCTGG-3′) and reverse primer (5′-546 

CGGGTCACCACAAAGTACAA-3′) with an internal TaqMan probe (5′-547 

ACTTGCTTTGATCGCCTTGGTGAGA-3′), as previously described (Hawman et al, 2013).  RRV 548 

cDNA was generated from 10 µl of serum derived RNA or 1 µg of tissue derived RNA using a 549 

sequence-tagged (indicated with lower case letters) RRV-specific RT primer (5¢-550 

ggcagtatcgtgaattcgatgcAACACTCCCGTCGACAACAGA-3¢) with SuperScript IV reverse tran- 551 

scriptase (Life Technologies). RRV genomes were quantified by RT-qPCR using a tag sequence-552 

specific reverse primer (5′-GGCAGTATCGTGAATTCGATGC-3′) with a RRV sequence-specific 553 

forward primer (5′-CCGTGGCGGGTATTATCAAT-3′) and an internal TaqMan probe (5′-554 

ATTAAGAGTG TAGCCATCC-3′), as previously described (Stoermer et al, 2012). 555 

 556 

Plaque Assay and Focus Formation Assay. To quantify infectious virus, a plaque assay 557 

or focus formation assay (FFA) were used as previously described (Hawman et al., 2017). For 558 

plaque assays, samples were serially diluted 10-fold in 1X PBS + 2% FBS + 1X Ca2+Mg2+ and 559 

absorbed to BHK-21 cells in a 6-well plate for 1 h, after which cells were overlayed with 1% 560 

immunodifusion agarose (MP Biomedical). After incubation at 37ºC for 40-44 h, cells were stained 561 

with neutral red stain and plaques were counted. For the FFA, serum or tissue homogenate were 562 
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serially diluted 10-fold in 1X PBS+ 2% FBS+ 1X Ca2+Mg2+ and adsorbed to Vero cells in a 96-well 563 

plate for 2 h. Cells were then overlaid with 0.5% methylcellulose in MEM-alpha + 10% FBS and 564 

incubated at 37ºC for 18 h. Following fixation with 1% PFA, cells were probed with CHK-11 565 

monoclonal antibody (Pal et al, 2013) at 500 ng/ml diluted in Perm Wash (1x PBS, 0.1% saponin, 566 

0.1% BSA), followed by a secondary goat anti-mouse IgG conjugated to horseradish peroxidase 567 

at 1:2,000 in Perm Wash. Foci were visualized with TrueBlue substrate (Fisher) and counted with 568 

a CTL Biospot analyzer using Biospot software (Cellular Technology).    569 

 570 

Immunohistochemistry. To evaluate KC depletion in the livers of DT-treated WT, 571 

Clec4F-DTR+, and CD169-DTR+ mice and PLL- or CLL-treated WT mice, at the time of harvest 572 

mice were perfused with 4% PFA and livers were harvested and fixed in 4% PFA for 24 h. Livers 573 

were paraffin-embedded and immunohistochemistry was performed on 5-micrometer sections 574 

using F4/80 antibody clone Cl:A3-1 (BioRad Cat. No. MCA497) and the VECTASTAIN Elite ABS 575 

HRP kit (Vector Laboratories, PK-6100) as previously described (Carpentier et al., 2019). To 576 

quantify the efficiency of KC depletion, F4/80+ cells were counted from 10 randomly selected high-577 

power fields (HPF; 40X) for each stained liver section, and were used to calculated the average 578 

number of F4/80+ cells per HPF of view. 579 

 580 

Isolation of cells from lymph nodes and flow cytometry. To evaluate MARCO 581 

expressing cells in lymphoid tissue, popliteal and inguinal lymph nodes were pooled from WT or 582 

MARCO-/- mice. Lymph nodes were minced with a 22-gage needle in 1 mL of digestion media 583 

(EHAA with 0.25 mg/mL Liberase DL and 17 μg/mL DNase) and incubated at 37°C for 1 h, after 584 

which an equal volume of dissociation buffer (0.1M EDTA in EHAA) was added and incubated at 585 

37°C for 5 min. Cells were passed through a 100 μm cell strainer (BD Falcon). Single-cell 586 

suspensions were incubated for 20 min at 4°C with anti–mouse FcγRIII/II (2.4G2; BD 587 
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Pharmingen) prior to staining for 1 h at 4°C with the following antibodies from BioLegend (most) 588 

or Novus Biologicals (MARCO) diluted in FACS buffer (PBS with 2% FBS): anti-CD45 ( 30-F11), 589 

anti-PDPN (8.1.1), anti-CD31 (390), anti-CD169 (3D6.112), anti-CD11c (BV510), anti-CD11b 590 

(M1.70), anti-B220 (RA3-6B2), anti-TCRb (H57-597), anti-F4/80 (BM8), anti-NK1.1 (PL136) and 591 

anti-MARCO (2359A). Cells were fixed overnight in 1× PBS/1% paraformaldehyde (PFA) and 592 

analyzed on a BD LSR Fortessa cytometer using FACSDiva software. Further analysis was 593 

performed using FlowJo software (Tree Star). 594 

  595 

 Immunofluorescence and confocal microscopy. Lymph nodes were fixed in 1 mL of 596 

phosphate buffer containing 0.1 M L-lysine, 2% PFA, and 2.1 mg/mL NaIO4 at pH 7.4 for 24 h at 597 

4°C, followed by incubation in 30% sucrose phosphate-buffered solution for 48 h, then in 30% 598 

sucrose/PBS for 24 hr. LNs were then embedded in optimal-cutting-temperature medium 599 

(Electron Microscopy Sciences) and frozen in dry-ice-cooled isopentane. Eighteen-μm sections 600 

were cut on a Leica cryostat (Leica Microsystems). Sections were blocked with 5% goat, donkey, 601 

bovine, rat or rabbit serum and then stained with one or more of the following: B220 (clone RA3-602 

6B2, ThermoFisher), Lyve-1 (clone ALY7, ThermoFisher), CD169 (clone 3D6.112, BioLegend) 603 

MARCO (clone ED31, BioRad), CD11b (clone M1/70, BioLegend) and mCherry (polyclonal, 604 

Novus Bio, Cat# NBP2-25157). Images were acquired using identical photomultiplier tube (PMT) 605 

and laser power settings on a Leica Stellaris confocal microscope (Leica). Confocal microscopy 606 

images were collected over the entire popliteal lymph node (representing approximately a 7 mm2 607 

imaged area) and individual fields (tiles) were merged into a single image file. Images were 608 

analyzed using Imaris v9.02 software (Oxford Instruments). Colocalization of Lyve1 and mCherry 609 

was performed using the Coloc module of Imaris (Oxford Instruments) and % of colocalized 610 

(double positive) voxels quantitated by the program using the same settings for each LN. 611 

 612 
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 Preparation of single-cell suspensions for single-cell mRNA sequencing. The 613 

draining popliteal lymph node from mock- or CHIKV-inoculated mice were pooled into individual 614 

replicates (3 replicates; LNs from 5 mice pooled per replicate). Lymph nodes were mechanically 615 

homogenized using a 22G needle in Click’s medium (Irvine Scientific, 9195) supplemented with 616 

5 mg/mL liberase DL (Roche, 05401160001) and 2.5 mg/mL DNase (Roche 10104159001) for 1 617 

h at 37°C. After incubation, digested tissues were clarified by passing through a 100 μm cell 618 

strainer. Cell suspensions were enriched for CD45- cells by labeling cells with PE-conjugated anti-619 

mouse CD45 (30-F11), CD140A (APA5), and Ter119 (Ter119) monoclonal antibodies and 620 

subsequent depletion of PE-labeled cells using Miltenyi anti-PE microbeads (130-048-801) and 621 

Miltenyi MACS LS (130-042-401) columns according to the manufacturer’s instructions with the 622 

following modifications: (1) we used 25% of the recommended volume of anti-PE microbeads and 623 

(2) we subjected the CD45- enriched cell fraction to a second MACS LS column. All cell 624 

suspensions post-column enrichment were enumerated using a hemacytometer. Cell fractions 625 

throughout the procedure were analyzed for PE-labeled cell depletion and enrichment of CD45- 626 

cells by flow cytometry. Cell fractions were stained with fixable LIVE/DEAD dye (Invitrogen, 627 

L34955) and antibodies against the following cell surface antigens: CD45 (30-F11), CD31 (390), 628 

PDPN (8.1.1), B220 (RA3-6B2), TCRβ (H57-597), CD11b (M1/70), and Ly6C (HK1.4). All flow 629 

cytometry antibodies from obtained from BioLegend, BD Bioscience or eBioscience. Following 630 

surface antigen staining, cells were washed, fixed in 1%PFA/1%FBS, and data was acquired on 631 

a BD LSR Fortessa X-20 flow cytometer. Data analysis was performed using FlowJo analysis 632 

software (Tree Star). 633 

 634 

 Single-cell library preparation using the 10x Genomics platform. Lymph node cell 635 

suspensions enriched for CD45- cells were subject to single-cell droplet-encapsulation using the 636 

Next GEM Chip G Kit (1000127) and a 10x Genomics chromium controller housed in our BSL3 637 

laboratory. We targeted recovery of 10,000 cells for single-cell RNA sequencing for each 638 
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replicate. Single-cell gene expression libraries were generated using the Next GEM single-cell 3′ 639 

GEM library and gel bead kit v3.1 (1000128) and single index kit T set A (1000213) according to 640 

the manufacturer’s instructions (10x Genomics). Sequences were generated with the Illumina 641 

NovaSEQ 6000 instrument using S4 flow cells and 300 cycle SBS reagents. We targeted 50,000 642 

reads per cell, with sequencing parameters of Read 1:151 cycles; i7 index: 10 cycles; i5 index: 0 643 

cycles; Read 2: 151 cycles. 644 

 645 

 Transcriptome and oligonucleotide detection and analysis. FASTQ files for each 646 

replicate (3 mock, 3 CHIKV-infected) were processed using the cellranger count pipeline (v5.0.1). 647 

Reads were aligned to the mm10 and CHIKV AF15561 (EF452493.1) reference genomes. 648 

Analysis of gene expression data was performed using the Seurat R package (v4.0.0). Gene 649 

expression data for each biological replicate were combined into a single Seurat object. CHIKV 650 

counts were included as a separate “assay” in the Seurat object so they would not influence 651 

downstream processing (dimensionality reduction, clustering) of the mouse gene expression 652 

data. 653 

CHIKV-low and -high cells were identified by first filtering cells to only include those with 654 

>5 CHIKV counts. K-means clustering was then used to independently group each biological 655 

replicate into CHIKV-low and -high populations (Walsh et al., 2021). Cells with 5 CHIKV counts 656 

or less were included in the CHIKV-low population. Cells were filtered based on the number of 657 

detected mouse genes (>250 and <6000) and the percent mitochondrial counts (<20%). Genes 658 

were filtered to only include those detected in >5 cells. Potential cell doublets were removed using 659 

the DoubletFinder (v2.0.3) R package using an estimated doublet rate of 10%. Due to the ability 660 

of CHIKV to inhibit host transcription (Fig. S8), CHIKV-high cells with a low number of detected 661 

mouse genes (<250) or a high fraction of mitochondrial reads (>20%) were not filtered and 662 

remained in the dataset for the downstream analysis. The fraction of CHIKV counts was 663 

calculated by dividing the number of CHIKV counts by the total number of counts for each cell. 664 
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Mouse gene expression counts were normalized by the total mouse counts for the cell, multiplied 665 

by a scale factor (10,000), and log-transformed (NormalizeData), Normalized mouse counts were 666 

scaled and centered (ScaleData) using the top 2000 variable features (FindVariableFeatures). 667 

The scaled data were used for PCA (RunPCA) and the first 40 principal components were used 668 

to find clusters (FindNeighbors, FindClusters) and calculate uniform manifold approximation and 669 

projection (UMAP) (RunUMAP). 670 

B cells and T cells were identified based on CD19 and CD3 expression, respectively. The 671 

remaining cell types were annotated using the R package clustifyr 672 

(https://rnabioco.github.io/clustifyr) with published reference RNA-seq data (Heng, 2008; 673 

Malhotra et al., 2012; Rodda et al., 2018) available for download through the clustifyrdata R 674 

package, https://rnabioco.github.io/clustifyrdata). Endothelial cells were further classified using 675 

reference data for mouse LEC subsets (Xiang et al., 2020). 676 

 677 

Statistical Analysis. Appropriate experimental sample sizes were determined using a 678 

power calculation (80% power, 0.05 type I error) to detect a 4-5-fold effect in pre-existing sample 679 

sets. Each Figure legend defines the biological replicates of individual mice (N) and the number 680 

of experiments performed. Data are represented as mean ± SD or mean ± SEM, as indicated. 681 

The statistical tests conducted on each data set are indicated in the Figure legend and were 682 

performed using GraphPad Prism 8.0. Two-sided t-tests (parametric) or Mann Whitney tests 683 

(nonparametric) were used to compare two groups. One-way ANOVA with Bonferroni’s multiple 684 

comparison test (parametric) or Kruskal-Wallis with Dunn’s multiple comparisons test 685 

(nonparametric) were used to compare three or more groups, and two-way ANOVA with 686 

Bonferroni’s multiple comparison test was used to compare two groups at multiple time points. 687 
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Figure Legends 997 

 Figure 1. CHIKV infection outcomes are more severe in MARCO
-/- 

mice and viremia 998 

and dissemination are enhanced. (A-B) WT or MARCO
-/-

 C57BL/6 mice were inoculated 999 

subcutaneously (s.c.) in the left rear footpad with 10
3
 PFU of CHIKV or CHIKV E2 K200R. The 1000 

percent of starting body weight (A) and disease score (B) were recorded daily over 14 days. Mean 1001 

± SEM. N=7-12, three experiments. Two-way ANOVA with Bonferroni’s multiple comparison test; 1002 

****P < 0.0001. (C-E) WT or MARCO
-/-

 C57BL/6 mice were inoculated s.c. in the left rear footpad 1003 

with 10
3
 PFU of CHIKV. Serum collected on days 1, 2, 3, 5, 7, and 14 was analyzed by focus 1004 

formation assay (FFA), mean ± SD (C) and by RT-qPCR, mean ± SD (D). (E) Viral tissue burdens 1005 

were analyzed at 1 day post inoculation (dpi) by FFA. Mean ± SEM. Two experiments, n=5-10. 1006 

Two-way ANOVA with Bonferroni’s multiple comparison test (C-D) or Mann-Whitney test (E); 1007 

****P < 0.0001. (F-G) WT or MARCO
-/-

 C57BL/6 mice were inoculated s.c. in the left rear footpad 1008 

with 10
3
 PFU of ONNV (F) or RRV (G). Tissues and serum were collected at 1 dpi and analyzed 1009 

by plaque assay. Mean ± SEM. Two experiments, n= 8-10. Mann-Whitney test; ****P < 0.0001.  1010 

 1011 

 Figure 2. Depletion of Kupffer cells impedes CHIKV clearance from the circulation. 1012 

(A) WT and Clec4F-DTR
+
 C57BL/6 mice were treated with diphtheria toxin (DT) either 1013 

intraperitoneally (i.p.) 24 h prior to inoculation (n=10, two experiments, black dots) or intravenously 1014 

(i.v.) 48 and 24 h prior to inoculation (n=4, one experiment, grey dots) to deplete KCs and 1015 

inoculated i.v. with 10
8
 CHIKV particles. Viral genomes in the inoculum and serum at 45 minutes 1016 

(min)-post inoculation were determined by RT-qPCR. Mean ± SD. Three experiments, n= 14. 1017 

Mann-Whitney test; ****P < 0.0001. (B) WT or Clec-4F-DTR
+
 C57BL/6 mice were treated i.v. with 1018 

DT, PLL or CLL prior to i.v. inoculation of 10
8 
CHIKV particles. Viral genomes were quantified as 1019 

in (A). Mean ± SD. One experiment, n=4. Mann-Whitney test; **P < 0.01, ****P < 0.0001. (C) WT 1020 
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or CD169-DTR
+
 mice were treated i.p. with DT prior to i.v. inoculation of 10

8 
CHIKV particles. Viral 1021 

genomes were quantified as in (A). Mean ± SD. Two experiments, n=7-8. Mann-Whitney test; 1022 

***P < 0.001. (D) Livers from WT, Clec4F-DTR+ or CD169-DTR+ mice treated i.p. with DT, or WT 1023 

mice treated i.v. with PLL or CLL were analyzed by IHC to visualize F4/80
+
 macrophages (brown). 1024 

Representative sections are shown. (E) F4/80
+ 
cells in 10 randomly selected high-powered fields 1025 

(HPF) per liver section were counted to calculate average F4/80
+ 
cells per HPF. Mean ± SD. N=2-1026 

4 mice per group.  1027 

 1028 

 Figure 3. Depletion of KCs is not sufficient to enhance early CHIKV dissemination. 1029 

(A) WT or Clec4F-DTR
+
 C57BL/6 mice were treated i.v. with DT prior to s.c. inoculation in the left 1030 

rear footpad with 10
3
 PFU of CHIKV. Infectious virus was quantified at 24 hpi by FFA. Mean ± 1031 

SEM. Two experiments, n=8. Mann-Whitney test; P > 0.05. (B) WT C57BL/6 mice were treated 1032 

i.v. with PLL or CLL 42 h prior to s.c. inoculation in the left rear footpad with 10
3
 PFU of CHIKV. 1033 

Infectious virus at 24 hpi was quantified by FFA. Mean ± SD. Two experiments, n=8. Mann-1034 

Whitney test; ***P < 0.001. 1035 

 1036 

 Figure 4. The draining lymph node limits arthritogenic alphavirus dissemination. (A) 1037 

WT or LT𝛼
-/-

 mice were treated i.v. with PLL or CLL 42 h prior to s.c. inoculation of the left rear 1038 

footpad with 10
3
 PFU of CHIKV. Infectious virus at 24 hpi was analyzed by FFA. Mean ± SEM. 1039 

Two experiments, n=8-10. Mann-Whitney test; *P < 0.05, ***P < 0.001, ****P < 0.0001. (B) WT or 1040 

MARCO
-/- 

C57BL/6 mice were inoculated s.c. in the left rear footpad with 10
8
 particles of WT 1041 

CHIKV or CHIKV E2 K200R. Viral genomes in the dLN and serum at 2 hpi were quantified by RT-1042 

qPCR. Mean ± SD. Two experiments, n=10.  Two-way ANOVA with Bonferroni’s multiple 1043 

comparisons test; ***P < 0.001, ****P < 0.0001. (C) WT or MARCO
-/- 

C57BL/6 mice were 1044 
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inoculated s.c. in the left rear footpad with 10
8
 particles of RRV. Viral genomes in the dLN and 1045 

serum were quantified by RT-qPCR. Mean ± SD. Two experiments, n=8-9. Mann-Whitney test; 1046 

***P < 0.001, ****P < 0.0001.  1047 

  1048 

 Figure 5. Macrophages in the dLN are not required for CHIKV accumulation in the 1049 

dLN or limiting viral dissemination. (A) CD169-DTR
+
 mice were treated i.p. with PBS or DT 1050 

prior to collection of the popliteal LN. Frozen LN sections were stained for CD169
+ 
macrophages 1051 

(green), B220
+ 

B cells (blue) or ERTR-7
+ 

stromal cells (red). (B) WT or CD169-DTR
+
 C57BL/6 1052 

mice were treated i.p. with DT prior to s.c. inoculation in the left rear footpad with 10
8
 particles of 1053 

WT CHIKV. Viral genomes in the dLN and serum at 2 hpi were quantified by RT-qPCR. Mean ± 1054 

SD. Two experiments, n=8. Mann-Whitney test; P > 0.05. (C) WT or CD169-DTR
+
 C57BL/6 mice 1055 

were treated i.p. with DT prior to s.c. inoculation in the left rear footpad with 10
3
 PFU of CHIKV. 1056 

Infectious virus at 24 hpi was quantified by FFA. Mean ± SEM. Two experiments, n=9-10. Mann-1057 

Whitney test; **P < 0.01.  1058 

 1059 

 Figure 6. MARCO+ LECs capture lymph-borne CHIKV particles. WT or MARCO-/- 
1060 

C57BL/6 mice were inoculated s.c. in the rear feet with 5*104 PFU of CHIKV-E2-mCherry and the 1061 

popliteal dLNs were collected at 2 hpi. (A) Frozen dLN sections were stained for Lyve-1+ LECs 
1062 

(white),  MARCO (green), B220 (blue) and mCherry+ CHIKV particles (red). (B) Representative 1063 

histograms of confocal images showing voxel intensities for Lyve1 and mCherry. (C) Percent of 1064 

Lyve1+ voxels with mCherry signal; dots represent individual sections. (D) Higher magnification 1065 

confocal image of a WT lymph node section stained as in (A) (E) Higher magnification confocal 1066 

image of a MARCO-/- lymph node stained for CD11b+ cells (white), mCherry+ CHIKV particles 1067 
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(red), B220+ B cells (blue), and CD169+ macrophages (green). Data are representative of 2 1068 

experiments, n=6-9. One-way ANOVA with Tukey’s multiple comparisons test; ****P<0.0001. 1069 

 1070 

 Figure 7. MARCO+ LECs harbor CHIKV RNA . WT C57BL/6 mice were s.c. inoculated 1071 

with PBS (mock, n=3) or 10
3
 PFU of CHIKV (n = 3) in the left rear footpad. At 24 hpi, the dLN was 1072 

collected and enzymatically digested into a single cell suspension. Cells were enriched for CD45- 1073 

cells and analyzed by scRNA-seq as described in the materials and methods. (A) UMAP 1074 

projection shows each replicate for mock- and CHIKV-infected mice; the number of cells obtained 1075 

for each replicate is shown at the bottom. (B) UMAP projection shows annotated cell types (top) 1076 

and the proportion of cells identified for each cell type (bottom). (C) UMAP projection shows 1077 

endothelial subtypes (top) and the proportion of cells identified for each cell type (bottom). Non-1078 

endothelial cells are shown in white. (D) UMAP projection shows Marco expression. (E) UMAP 1079 

projection shows the fraction of counts that align to the CHIKV genome. (F) UMAP projection 1080 

shows cell types for cells classified as CHIKV-high. CHIKV-low cells are shown in white. The 1081 

proportion of CHIKV-high cells belonging to each cell type is shown on the right. (G) The fraction 1082 

of counts that align to the CHIKV genome is shown for CHIKV-high cells. Only cell types that 1083 

include >20 cells are shown. (H, I) MARCO (H) and Mxra8 (I) expression is shown for MARCO+ 1084 

LECs for mock-infected cells and CHIKV-infected cells classified as either CHIKV-low or CHIKV-1085 

high. P-values were calculated using a two-sided Wilcoxon rank-sum test with Bonferroni 1086 

correction.  1087 

 1088 

 1089 

 1090 

 1091 

 1092 
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Supplemental Figure Legends 1093 

 Figure S1. CHIKV tissue burdens in distal tissues are enhanced in MARCO
-/- 

mice at 1094 

days 3, 7 and 14 pi. (A-C) WT or MARCO
-/-

 C57BL/6 mice were inoculated subcutaneously in 1095 

the left rear footpad with 10
3
 PFU of CHIKV. Viral tissue burdens were analyzed at 3 (A), 7 (B) 1096 

and 14 (C) days post inoculation (dpi) by FFA (A), or  RT-qPCR (B and C). Mean ± SEM Two 1097 

experiments for each time point, n= 10. Mann-Whitney test; *P < 0.05, ***P < 0.001, ****P < 1098 

0.0001.  1099 

 1100 

 Figure S2. MARCO is expressed by medullary sinus macrophages and LECs in LNs. 1101 

LNs were pooled from uninfected WT or MARCO
-/- 

C57BL/6 mice. Representative flow plots and 1102 

percentages of MARCO expressing cells by resident macrophage populations (A, C) and stromal 1103 

cell populations (B, D) are shown. Mean ± SEM. Two experiments, n=4-5. Two-way ANOVA with 1104 

Bonferroni’s multiple comparisons test; **P < 0.01, ****P < 0.0001.  1105 

 1106 

 Figure S3. Depletion of phagocytic cells in the lymph node and liver does not 1107 

enhance CHIKV dissemination. WT C57BL/6 mice were i.v. injected with PLL or CLL 42 h prior 1108 

to virus inoculation and subcutaneously injected in the left rear footpad (FP) with PLL or CLL 24 1109 

h prior to virus inoculation as indicated. Mice were then inoculated s.c. with 10
3
 PFU of CHIKV in 1110 

the left rear footpad, and tissues and serum were collected at 24 hpi. Infectious virus was 1111 

quantified by FFA. Mean ± SEM. Two experiment, n=8. Two-way ANOVA with Bonferroni’s 1112 

multiple comparison test, comparing all groups to IV PLL+ FP PLL group; **P < 0.01, ****P < 1113 

0.0001. 1114 

 1115 

 Figure S4. CHIKV-E2 mCherry is susceptible to clearance by a poly(I) sensitive 1116 

scavenger receptor. WT C57BL/6 mice were treated i.v. with poly(C) or poly(I) 5 min prior to i.v. 1117 
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inoculation of 10
8
 particles of CHIKV-E2 mCherry. Genomes in the inoculum and serum at 45 min 1118 

post-inoculation were quantified by RT-qPCR. Mean ± SD. N=3, one experiment.  1119 

 1120 

 Figure S5. CD45
- 
cell enrichment. Pre- and Post-CD45

+ 
cell depletion cell populations 1121 

were analyzed by flow cytometry. (A) Representative plots of gating strategy used. (B-C) 1122 

Representative flow plots of cell viability (B) and CD45
+ 

and CD45
-
 cell populations (C) in pre- 1123 

and post depleted postulations. (D) Percentages of CD45
+ 
and CD45

- 
subsets among replicates. 1124 

One experiment, n=3.   1125 

 1126 

 Figure S6. LEC Annotations. To assess the accuracy of endothelial cell type 1127 

annotations, the subtype assignments were compared back to the reference data. The correlation 1128 

with the reference RNA-seq data is shown for each subtype. Correlation coefficients (Spearman) 1129 

are shown for each subtype.  1130 

 1131 

 Figure S7. CHIKV-high classification and gene expression among CHIKV-high and 1132 

CHIKV low cells. (A) To identify cells with high amounts of viral RNA, cells were first filtered to 1133 

only include those with >5 CHIKV counts. K-means clustering was then used to independently 1134 

group each biological replicate into CHIKV-low and -high populations. Cells with <=5 CHIKV 1135 

counts are included in the CHIKV-low group. CHIKV counts are shown below for each sample 1136 

before filtering low quality cells (this includes all captured cells). (B) Cell quality metrics are shown 1137 

for CHIKV-low and CHIKV-high cells for each replicate. These plots include all captured cells 1138 

before quality filtering. CHIKV-high cells have fewer expressed mouse genes and an increased 1139 

percentage of mitochondrial counts. 1140 

 1141 

 1142 
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Figure 3
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Figure 4
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Figure 6
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Figure 7
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