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Mounting evidence suggests that during conscious states, the elec-
trodynamics of the cortex are poised near a critical point or phase
transition, and that this near-critical behavior supports the vast flow
of information through cortical networks during conscious states.
Here, for the first time, we empirically identify the specific critical
point near which conscious cortical dynamics operate as the edge-
of-chaos critical point, or the boundary between periodicity/stability
and chaos/instability. We do so by applying the recently developed
modified 0-1 chaos test to electrocorticography (ECoG) and magne-
toencephalography (MEG) recordings from the cortices of humans
and macaques across normal waking, generalized seizure, GABAer-
gic anesthesia, and psychedelic states. Our evidence suggests
that cortical information processing is disrupted during unconscious
states because of a transition of cortical dynamics away from this
critical point; conversely, we show that psychedelics may increase
the information-richness of cortical activity by tuning cortical elec-
trodynamics closer to this critical point. Finally, we analyze clinical
electroencephalography (EEG) recordings from patients with disor-
ders of consciousness (DOC), and show that assessing the proxim-
ity of cortical electrodynamics to the edge-of-chaos critical point may
be clinically useful as a new biomarker of consciousness.
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Introduction1

What are the dynamical properties of electric brain activ-2

ity that are necessary for consciousness, and how are3

those properties disrupted during unconscious states such as4

surgical anesthesia, generalized seizures, coma, and vegetative5

states?6

One possibility, which is suggested by a large body of re-7

cent evidence, is that the electrodynamics of the conscious8

brain are poised near some sort of phase transition or "critical9

point," and that this near-critical behavior supports the vast10

flow of information through the brain during conscious states11

(1, 2). A critical point refers to the knife’s edge in between12

different phases of a system (e.g. liquid to solid water) or13

types of dynamical states (e.g. laminar to turbulent airflow).14

It is widely believed that electrodynamics of both micro- and15

macro-scale cortical networks are poised near some critical16

point, because power-law statistics, which are a key signature17

of criticality (3), are consistently identified in recordings of18

neural electrodynamics (4, 5). And such critical behavior is19

known to have important computational benefits: because 20

critical and near-critical systems tend to have a high capacity 21

for encoding and transmitting information (6–9), it is widely 22

believed that being poised at - or at least near (10, 11) - crit- 23

icality of some form endows neural populations with a high 24

capacity for encoding sensory signals and for communicating 25

with other neural populations (4, 5, 12), particularly during 26

conscious states (1, 2). On the flip side, because signatures 27

of cortical criticality have been observed to disappear or di- 28

minish during unconscious states (4, 13, 14), it may be that 29

a transition of cortical activity away from criticality is what 30

underlies the disruption to cortical information processing 31

during unconscious states (2). 32

Though the existing evidence supports this conjectured re- 33

lationship between criticality, cortical information processing, 34

and conscious vs. unconscious brain states, prior empirical 35

work has, for the most part, relied on the detection of power- 36

law statistics in neural electrodynamics, most typically in the 37

form of "neuronal avalanches" or bursts of electric activity 38

whose sizes follow a power-law distribution, in order to infer 39

neural criticality during conscious states and a loss of criti- 40

cality during unconscious states (15); but, the detection of 41

power-law statistics alone cannot specify the type of critical 42

point a system is poised at, because power-law statistics ap- 43
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pear across many types of phase transitions (3). Moreover,44

neuronal avalanches can arise in non-critical neural systems45

(16), and neural networks can display several unique dynamical46

critical points, only one of which is the phase transition that47

gives rise to neuronal avalanches (17). Though some prior48

studies have attempted to use alternative metrics to assess49

the relationship between neural criticality and consciousness50

(18–20), the precise form of criticality under consideration51

has largely remained mathematically unspecified (15), which52

leaves open the fundamental question: what, exactly, is this53

phase transition near which cortical electrodynamics seem to54

operate during conscious states? Put another way: what, from55

a mathematical perspective, are the dynamical phases that lie56

on either side of this critical point? Terms like "order" and57

"disorder" have commonly been used to describe the phases on58

either side of neural criticality, but these terms are imprecise59

unless they are defined relative to the breaking of a specific60

form of mathematical symmetry, where the "ordered" phase of61

a system is the symmetry-broken phase (in the way that ice62

is the "ordered" phase of water relative to the freezing criti-63

cal point, because water loses its translational and rotational64

symmetry at this phase transition) - see SI Appendix, Supple-65

mentary Note 1 for a more detailed discussion of this point.66

Imprecise use of terms like "order" and "disorder" can also be67

misleading in the context of neural criticality. For example,68

chaos, which is defined as exponential sensitivity to small69

perturbations, is often used interchangeably with "disorder" in70

the literature on neural criticality (15), but chaos is in fact the71

"ordered" phase of dynamical systems because it corresponds72

to the breaking of topological or de-Rahm supersymmetry (21)73

(SI Appendix, Supplementary Note 1). This inconsistency74

and lack of mathematical specificity in definitions of neural75

criticality may underlie the apparent variability of prior results76

relating criticality to different brain states, where, for example,77

some purported metrics of criticality seem to suggest that78

seizures constitute a departure from criticality while others79

seem to suggest that seizures are in fact critical phenomena80

(22). If, as has been proposed (1), the disruption to cortical81

information processing during unconscious states is mediated82

by an excursion of cortical dynamics away from some sort of83

critical point during these states, then mathematically precise84

identification of this critical point may be crucial for improving85

both our theoretical and clinical grasp on the neural correlates86

of consciousness.87

Here, we provide the first direct empirical evidence for the88

hypothesis (23) that during conscious states, cortical electrody-89

namics specifically operate near a mathematically well-defined90

critical point known as edge-of-chaos criticality, which is the91

phase transition from periodic/stable to chaotic/unstable dy-92

namics. Many systems (6–9, 24), including deep neural net-93

works (24) and echo state networks (8), have been shown to ex-94

hibit their highest capacity for information processing precisely95

at this specific critical point. In line with this well-replicated96

phenomenon, we show that excursions of low-frequency corti-97

cal activity away from this critical point during generalized98

seizures and GABAergic anesthesia induce both a loss of infor-99

mation in cortical dynamics as well as a loss of consciousness.100

We moreover show that lysergic acid diethylamide (LSD), a101

5-HT2A receptor agonist characterized as a hallucinogen or102

"psychedelic," may tune cortical dynamics closer to the edge-103

of-chaos critical point relative to normal waking states, which104

Fig. 1. Hypothesized relationship between consciousness, edge-of-chaos crit-
icality, and cortical information processing. We suggest that the electrodynamics
of the cortex may be poised near the edge-of-chaos critical point during conscious
states, and transition away from this specific critical point during unconscious states.
According to this hypothesis, transitions of cortical electrodynamics away from this
critical point - either into the chaotic phase (leading to dynamical instability) or into
the periodic phase (leading to hyper-stability) - should disrupt cortical information
processing and induce unconsciousness. In other words, we should expect to see an
inverse-U relationship between chaoticity and information processing in the cortex,
with cortical dynamics during conscious states near the top of this inverse-U (i.e.,
in the near-critical, information-rich regime), and we should moreover expect to see
cortical dynamics during unconscious states at either the bottom right of this inverse-U
(i.e., the unstable, information-poor regime) or at the bottom left of this inverse-U (i.e.,
the hyper-stable, information-poor regime) (1, 2, 21). Such an inverse-U relationship
between chaoticity and information processing has been observed in many other
dynamical systems (6–9), but remains to be empirically observed in the brain.

increases the information-richness of cortical activity. Finally, 105

we provide preliminary evidence that cortical electrodynamics 106

return to the vicinity of this critical point as patients with 107

disorders of consciousness (DOC) regain awareness, which 108

suggests that assessing the proximity of cortical dynamics 109

to edge-of-chaos criticality may be useful as a new clinical 110

biomarker of consciousness. We provide Matlab (R2020a) code 111

for our analysis in the hopes of facilitating further basic and 112

translational research along these lines. 113

Results 114

Mean-field dynamics. To empirically assess whether cortical 115

dynamics operate near the edge-of-chaos critical point during 116

conscious states, and whether this underpins the information- 117

richness of cortical dynamics during conscious states (Fig. 1), 118

we must first assess varying levels of chaoticity and information- 119

richness in a model of cortical electrodynamics, and then test 120

whether real data agree with the model’s predictions. The rea- 121

son we must first analyze a model is because a system’s level 122

of stability can only be detected with certainty in a simulation, 123

where noise and initial conditions can be precisely controlled. 124

For this reason, it is generally agreed (25) that empirical evi- 125

dence of varying levels of chaos in a biological system requires 126

comparison of real data to an accurate model of the biological 127

system of interest. Toward that end, we assessed the mean- 128

field model of macro-scale cortical electrodynamics developed 129

by Steyn-Ross, Steyn-Ross, and Sleigh (26) because it has been 130

shown to successfully model the low-frequency macro-scale 131

cortical electrodynamics of waking conscious (26), generalized 132

seizure (26–28), and GABAergic anesthesia (26, 29) states, 133

and thus can be compared to real recordings of large-scale 134

cortical electrodynamics across these diverse brain states. The 135

model is also unique in its inclusion of gap junction coupling 136

between cortical interneurons, which recent empirical work in 137
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zebrafish has shown is an important mechanism for the main-138

tenance of criticality in electric neural activity (30). Using139

this model, we generated 10-second simulations of macro-scale140

cortical electrodynamics corresponding to waking conscious,141

generalized seizure, and GABAergic anesthesia states (using142

parameter ranges identified in past studies - see Materials143

and Methods), and additionally performed a parameter sweep144

on the model to generate dynamics from 773 non-biologically145

specific states in order to more broadly assess the relationship146

between proximity to edge-of-chaos criticality and information-147

richness (see Materials and Methods). For each biologically148

specific and non-biologically specific state, we calculated the149

largest Lyapunov exponent, which is a mathematically formal150

measure of chaoticity that can only be accurately estimated151

in simulations, of the deterministic component of the model’s152

dynamics (i.e., with the model’s noise inputs turned off - see153

Materials and Methods). Note that a largest Lyapunov expo-154

nent of 0 corresponds to edge-of-chaos criticality, a positive155

largest Lyapunov exponent corresponds to chaos/instability,156

and a negative largest Lyapunov exponent corresponds to pe-157

riodicity/stability. Finally, to assess the information-richness158

of the model’s behavior, we calculated the Lempel-Ziv com-159

plexity of its full dynamics (with noise inputs turned on) using160

three variants of Lempel-Ziv complexity (see Materials and161

Methods). As a measure of the compressibility of a time-series162

(31), Lempel-Ziv complexity directly quantifies the amount of163

non-redundant information in a time-series, as compressibility164

is mathematically lower-bounded by the amount of unique165

information in a signal (32). While there are several measures166

of information-richness (e.g. Shannon entropy), we here use167

Lempel-Ziv complexity both because it can be accurately esti-168

mated from short, noisy, nonlinear time-series, and because169

the Lempel-Ziv complexity of cortical electrodynamics has170

been shown to consistently drop during unconscious states -171

see Frohlich et al (33) for an in-depth discussion of the rela-172

tionship between Lempel-Ziv complexity and consciousness,173

including a critical assessment of purported dissociations be-174

tween Lempel-Ziv complexity and conscious vs. unconscious175

brain states.176

Consistent with the prediction that the cortex generates177

information-rich dynamics during conscious states by operat-178

ing near the edge-of-chaos critical point, we found that the179

Lempel-Ziv complexity of the model’s simulated electrodynam-180

ics (with noise inputs) was maximal when the deterministic181

component of its dynamics were poised near this critical onset182

of chaos (red vertical line in Fig. 2A), and that the model’s183

simulation of the conscious, waking state was near this crit-184

ical, information-rich regime. The model specifically placed185

waking, conscious cortical dynamics on the chaotic/unstable186

side of this critical edge (black circle in Fig. 2A). Moreover,187

as predicted, the model exhibited a general inverse-U rela-188

tionship between chaoticity and information-richness, with189

the amount of non-redundant information generated by its190

dynamics falling both in the chaotic/unstable phase (bottom191

right of the inverse-U) and in the periodic/stable phase (bot-192

tom left of the inverse-U), similar to what has been shown in193

many other systems (6–9, 34). To quantitatively confirm this194

qualitative result, we used Simonsohn’s two lines statistical195

test of a U-shaped relationship, which accepts a null hypothe-196

sis of no U-shaped relationship if either of two opposite-sign197

regression lines (one for high and one for low values of the x198

variable) are statistically insignificant - see Simonsohn (35) 199

for details on this test. The two lines test failed to reject 200

the null hypothesis no U-shaped relationship between largest 201

Lyapunov exponents and univariate, joint, or concatenated 202

Lempel-Ziv complexity (Table 1). Finally, we note that the 203

mean-field model specifically placed GABAergic anesthesia in 204

the strongly chaotic/unstable phase and placed generalized 205

seizures in the periodic/stable phase, even though both simu- 206

lated states led to information loss (Fig. 2A) and increased 207

spectral power at low frequencies (SI Appendix, Fig. S1). 208

Such predictions of varying degrees of chaoticity in real 209

biological systems have historically been difficult to test, but 210

recent mathematical developments in nonlinear time-series 211

analysis now allow for accurate detection of chaoticity from 212

noisy time-series data. In particular, the modified 0-1 chaos 213

test has emerged as a robust measure of instability from noisy 214

recordings (25, 36–40) (see Materials and Methods). Given 215

a recorded time-series, the 0-1 chaos test outputs a statistic 216

K, which estimates the degree of chaoticity of a (predom- 217

inantly) deterministic signal on a scale from 0 to 1; lower 218

values indicate periodicity/stability and higher values indicate 219

chaos/instability. In order to specifically assess the chaoticity 220

of low-frequency cortical electrodynamics (as simulated in the 221

mean-field model), we low-pass filtered all time-series data in 222

this study before applying the modified 0-1 chaos test. While 223

low-pass filter cutoffs are often selected at canonical frequency 224

bands, recent work has shown that this approach can induce 225

spurious oscillations when no such oscillations are present, and 226

can moreover obfuscate natural but meaningful variance in 227

oscillation frequencies across channels, subjects, and species; 228

for these reasons, to select low-pass filter cutoffs for every 229

channel in every trial, we used the data-driven "Fitting Oscil- 230

lations and One Over F" or "FOOOF" algorithm, which helps 231

identify real channel-specific oscillations and their respective 232

frequencies based neural power spectra (41). We then applied 233

the modified 0-1 chaos test to these low-pass filtered signals 234

(see Materials and Methods for more details). In addition, we 235

verified that the majority of signals analyzed in this paper 236

were generated by predominantly deterministic processes (SI 237

Appendix, Tables S1-S2), which is an important assumption 238

of the modified 0-1 chaos test. Finally, where applicable, our 239

statistical analyses included these selected low-pass filter fre- 240

quencies as a covariate, in order to ensure that our results are 241

driven by the stability of low-frequency cortical oscillations, 242

rather than by their frequencies. 243

Confirming the ability of the modified 0-1 chaos test to 244

detect varying levels of chaoticity from real time-series data, 245

we found that its K-statistic, when applied to the model’s sim- 246

ulated dynamics (with noise inputs turned on) after low-pass 247

filtering using the FOOOF algorithm, was strongly correlated 248

with the ground-truth largest Lyapunov exponent of the de- 249

terministic component of the mean-field model’s dynamics 250

(which can only be estimated in simulations) (r=0.84, p<10−4
251

Bonferroni-corrected; partial correlation ρ=0.82 after control- 252

ling for selected low-pass filter frequencies, p<10−4 Bonferroni- 253

corrected), and that this correlation was robust to high levels 254

of both white and pink (1/f) measurement noise (Tables S3- 255

S4). The K-statistic of these low-pass filtered signals was 256

likewise correlated with the stochastic Lyapunov exponents 257

of the model (i.e., with Lyapunov exponents calculated for 258

partially stochastic simulations with identical noise inputs) 259
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Fig. 2. Predictions relating brain states, information processing, and the crit-
icality of low-frequency cortical electrodynamics, and the testability of those
predictions in real data. A We calculated both the largest Lyapunov Exponent
(ground-truth instability) and Lempel-Ziv complexity (information-richness) of 10-
second mean-field simulations of low-frequency cortical electrodynamics during wak-
ing conscious (black circle), generalized seizure (pink cross), and GABAergic anesthe-
sia (brown asterisk) states. We also performed a parameter sweep of the mean-field
model to more generally assess the relationship between the information-richness of
its dynamics and the proximity of those dynamics to this critical point (see Materials
and Methods); each small gray dot represents the result of a single 10-second simula-
tion with a unique parameter configuration that did not correspond to a biologically
specific brain state. We found that all three measures of information-richness peak
near the edge-of-chaos critical point (red vertical line), and that the simulated waking
conscious dynamics are near this critical, information-rich regime. Importantly, waking
cortical dynamics are here predicted to lie on the unstable side of this critical point. All
three information measures drop in both the chaotic/unstable phase (positive largest
Lyapunov exponent), where GABAergic anesthesia cortical dynamics are predicted
to lie, and also in the periodic/stable phase (negative largest Lyapunov exponent),
where generalized seizure dynamics are predicted to lie. B The modified 0-1 chaos
test (see Materials and Methods), when applied to the low-pass filtered simulated
dynamics of the mean-field model, accurately tracks the chaoticity of those dynamics
and is able to recapitulate the ground-truth inverse-U relationship between chaoticity
and information-richness. This validates the ability of the modified 0-1 chaos test
to empirically evaluate these specific predictions relating consciousness, informa-
tion processing, and the proximity of low-frequency cortical electrodynamics to the
edge-of-chaos critical point in real cortical recordings.

(r=0.83, p<10−4; partial correlation ρ=0.81 after controlling260

for selected low-pass filter frequencies, p<10−4). Moreover, the261

K-statistic was able to recapitulate the inverse-U relationship262

between chaoticity and Lempel-Ziv complexity in the model,263

as shown qualitatively in Fig. 2B. As was the case for the264

ground-truth largest Lyapunov exponents, Simonsohn’s two265

lines test quantitatively confirmed the inverse-U relationship266

between the K-statistic and univariate, joint, and concate-267

nated Lempel-Ziv complexity (Table 1). These results indicate268

that we can use the 0-1 test’s K-statistic to empirically test,269

for the first time, the above-mentioned predictions relating270

consciousness, information-richness, and cortical instability271

relative to the edge-of-chaos critical point in real recordings272

of macro-scale cortical electrodynamics.273

Cortical electrodynamics confirm mean-field predictions. We274

therefore applied the modified 0-1 chaos test to low-frequency275

activity extracted from surface electrocorticography (ECoG)276

Fig. 3. Transitions of low-frequency cortical electrodynamics away from the
edge-of-chaos critical point induce a loss of information in cortical dynamics
during unconscious states. We applied the modified 0-1 chaos test to ECoG and
MEG recordings from humans and macaques across different brain states in order
to empirically assess the predicted relationship between proximity to edge-of-chaos
criticality, consciousness, and the information-richness of cortical dynamics. Here,
each marker represents the median estimated chaoticity and information-richness of
cortical dynamics across each individual subject’s trials, normalized to the median of
their normal waking baseline. The observed inverse-U relationship between stability
and information-richness, with cortical dynamics during conscious states at the top of
this inverse-U, validates the prediction that cortical dynamics operate near the edge-of-
chaos critical point during conscious states, transition deeper into the chaotic/unstable
phase under GABAergic anesthesia, and transition into the periodic/stable phase
during generalized seizures. These results support our hypothesis that these transi-
tions away from edge-of-chaos criticality during unconscious states induce a loss of
information in electrical cortical activity. Moreover, the counter-intuitive reduction of
chaoticity coinciding with increased information-richness in the LSD state supports
our prediction that waking cortical dynamics operate on the chaotic side of this critical
point. See SI Appendix, Fig. S4 for statistical analysis of within-subject results.

recordings of the cortical electrodynamics of two macaques 277

and five human epilepsy patients during normal waking states, 278

of two macaques and three human epilepsy patients under 279

GABAergic (propofol, or propofol and sevoflurane) anesthesia, 280

and of two human epilepsy patients experiencing generalized 281

seizures; we further applied this test to magnetoencephalog- 282

raphy (MEG) recordings of the cortical electrodynamics of a 283

third human epilepsy patient experiencing a generalized seizure. 284

We also applied the 0-1 chaos test to the low-frequency compo- 285

nent of MEG recordings of the cortical electrodynamics of 16 286

human subjects under the influence of either a saline placebo or 287

LSD, as psychedelics are the only known compounds to reliably 288

increase the information-richness of cortical electrodynamics 289

(1, 2, 42, 43), and are thought to do so by tuning cortical 290

dynamics closer to some critical point (2, 44). Psychedelics 291

therefore allow us to test a specific and counter-intuitive pre- 292

diction of this chaos-vs-information processing framework: if 293

cortical electrodynamics during normal waking states do in- 294

deed lie on the chaotic side of the edge-of-chaos critical point 295

(as the mean-field model predicts), then psychedelics should, 296

counter-intuitively, increase the information-richness of corti- 297

cal activity by reducing the chaoticity of cortical dynamics, as 298

those dynamics approach the edge-of-chaos critical point from 299

the unstable side of the edge (where normal waking dynamics 300

are predicted to lie). 301

Confirming our predictions, our empirical analysis yielded 302

an inverse-U relationship between chaoticity and information- 303

richness (as measured by three variants of Lempel-Ziv com- 304

plexity) in our recordings of cortical electrodynamics, with 305

conscious states at the top of this inverse-U, as shown qual- 306

itatively in Fig. 3. To confirm this result quantitatively, we 307

applied Simonsohn’s two lines test to the median of each sub- 308

ject’s K-statistic and Lempel-Ziv complexity over all trials 309

from their altered states (seizure, anesthesia, LSD), normal- 310
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ized to their own normal waking baseline (as shown in Fig. 3).311

The test failed to reject the null hypothesis of no inverse-U312

relationship between the normalized K-statistic and both uni-313

variate and concatenated Lempel-Ziv complexity, but not joint314

Lempel-Ziv complexity (Table 1). Moreover, as predicted,315

our within-subject analyses showed significant increases in316

chaoticity coinciding with significant drops in Lempel-Ziv com-317

plexity in the anesthesia state; small but significant reductions318

in chaoticity coinciding with significant increases in Lempel-319

Ziv complexity in the LSD state; and significant reductions320

in both chaoticity and Lempel-Ziv complexity during gen-321

eralized seizures (SI Appendix, Fig. S4). Furthermore, we322

observed that the degree of reduction in chaoticity during323

the LSD state relative to placebo (assessed by normalizing324

each subject’s median K-statistic during their LSD state by325

their median during their normal waking state, as in Fig. 3)326

was significantly correlated with subjects’ behavioral ratings327

(see Materials and Methods) of the intensity of the LSD ex-328

perience (partial correlation ρ=0.55,p=0.033, controlling for329

differences between placebo and LSD states in the median330

frequency at which signals were low-pass filtered). In order to331

assess whether median estimated chaoticity varied significantly332

across brain states, independently of the frequency at which333

signals were low-pass filtered, we performed a cross-subject334

non-parametric (permutation-based, 1000 permutations) anal-335

ysis of covariance (ANCOVA), with median K-statistic as336

the response variable, brain state (i.e. normal waking, gen-337

eralized seizure, anesthesia, or LSD) as the group label, and338

median frequency at which signals were low-pass filtered as339

the covariate. We observed significant variation in estimated340

chaoticity across states (F=61.765,p=0.001) with no effect341

of either median low-pass filter frequency (F=0.116,p=0.752)342

or interaction between median low-pass filter frequency and343

estimated chaoticity (F=0.214,p=0.959). The same result344

was obtained for chaoticity estimates normalized to each sub-345

ject’s individual normal waking baseline (as reported in Fig.346

3) (F=130.202,p=0.001), again with no effect of either me-347

dian low-pass filter frequency (F=0.188,p=0.661) or interac-348

tion between median low-pass filter frequency and estimated349

chaoticity (F=0.414,p=0.922). Furthermore, our analyses of350

surrogate time-series not only suggest that low-frequency cor-351

tical electrodynamics are predominantly deterministic, but352

also show no difference in the level of stochasticity of cortical353

dynamics across brain states (SI Appendix, Tables S1-S2),354

which suggests that these between-condition differences were355

likely driven by changes in the relative stability of cortical356

dynamics across different brain states as predicted, rather357

than to changing levels of intrinsic noise in cortical networks.358

Finally, we compared the low-frequency power spectral densi-359

ties of our real and simulated cortical electrodynamics, and360

observed spectral changes that were consistent across our real361

and simulated data (SI Appendix, Figs. S1-S3), which lends362

further support to the model’s prediction of increased or de-363

creased chaoticity relative to the edge-of-chaos critical point364

in these different states.365

Edge-of-chaos criticality is a potential clinical biomarker of366

consciousness. The above findings support the hypothesis367

that the low-frequency electrodynamics of the cortex during368

conscious states are poised near the edge-of-chaos critical point,369

and specifically operate on the unstable side of this critical370

point. This implies that use of the modified 0-1 chaos test371

Fig. 4. Criticality predicts consciousness. A Using our new time-series measure
of criticality (derived from the 0-1 chaos test - see Materials and Methods), we esti-
mated the proximity of low-frequency cortical dynamics to edge-of-chaos criticality in
12 subjects for whom data were available from both conscious and unconscious states
(namely, five GABAergic anesthesia subjects, three generalized seizure subjects, and
four DOC patients). Our criticality measure includes a parameter α, which we here
set to 0.85, based on our parameter analysis (see SI Appendix, Fig. S5). Estimates
of proximity to edge-of-chaos criticality were significantly higher (p< 10−4 before
Bonferroni correction for comparisons at multiple values of α, and p=0.0157 after
Bonferroni correction) in conscious states than in unconscious states (significance
was tested using a right-tailed Wilcoxon rank-sum test). B Cross-trial, within-subject
medians of univariate Lempel-Ziv complexity were significantly higher (p=0.003) dur-
ing conscious states than during unconscious states. See SI Appendix, Fig. S6
for comparisons using joint and concatenated Lempel-Ziv complexity. C Across the
waking (blue square) and non-waking (red circle) states of all 12 subjects exhibit-
ing transitions between consciousness and unconsciousness, cross-trial medians
of estimated proximity to edge-of-chaos criticality (with α=0.85) were significantly
correlated with cross-trial medians of univariate Lempel-Ziv complexity (partial cor-
relation ρ=0.66, p< 10−4, controlling for median frequency at which signals were
low-pass filtered). See SI Appendix, Fig. S6 for comparisons using joint and concate-
nated Lempel-Ziv complexity. D As was the case for our cross-subject analysis (A),
our within-subject, cross-trial analysis revealed significant increases in our critical-
ity measure (with α=0.85) in four DOC patients as they recovered consciousness.
Significance was assessed using a left-tailed overlapping block bootstrap test (which
controls for dependencies across data points by preserving local time-series autocor-
relations) with a block size of three trials (30 seconds of recording), to test against the
null hypothesis that median estimated proximity to criticality during conscious states
is not greater than median estimated proximity to criticality during unconscious states.
Circles correspond to cross-trial medians, and errorbars indicate standard error of
the median (estimated by taking the standard deviation of a bootstrap distribution of
sample medians) * p<0.05, ** p<0.01.
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Table 1. Results of Simonsohn’s Two-Lines Test of a U-shaped rela-
tionship (35). The test confirmed the U-shaped relationship (across
different states of the mean-field model of cortical electrodynam-
ics) between all three measures of Lempel-Ziv complexity (LZc) and
chaoticity, as measured by both ground-truth largest Lyapunov ex-
ponents (LLE) and the K-statistic of the modified 0-1 chaos test. The
test also confirmed the U-shaped relationship (across subjects) in
our cortical recordings between chaoticity, as measured by the K-
statistic, and both univariate and concatenated Lempel-Ziv complex-
ity. P-values were Bonferroni-corrected for multiple comparisons
against the same set of either largest Lyapunov exponents (LLE) or
K-statistic values.

Simonsohn’s Two-Lines Test Results

Regression Line 1 Regression Line 2
Simulation data
LLE vs Univariate LZc b=0.1, z=5.65, p< 10−4 b=-0.06, z=-5.44, p< 10−4

LLE vs Joint LZc b=0.4, z=11, p< 10−4 b=-0.08, z=-8.39, p< 10−4

LLE vs Concatenated LZc b=0.29, z=8.89, p< 10−4 b=-0.08, z=-6.98, p< 10−4

K vs Univariate LZc b=0.71, z=11.76, p< 10−4 b=-0.28, z=-11.99, p< 10−4

K vs Joint LZc b=1.79, z=25.4, p< 10−4 b=-0.32, z=-11.66, p< 10−4

K vs Concatenated LZc b=1.49, z=21.49, p< 10−4 b=-0.36, z=-12.62, p< 10−4

Empirical data
K vs Univariate LZc b=0.26, z=10.74, p< 10−4 b=-1.03, z=-8.42, p< 10−4

K vs Joint LZc b=0.12, z=1.99, p=0.137 b=-1.38, z=-6.55, p< 10−4

K vs Concatenated LZc b=0.33, z=6.01, p< 10−4 b=-1.25, z=-10, p< 10−4

to assess the proximity of cortical electrodynamics to edge-of-372

chaos criticality, or to the unstable side of this phase transition,373

may be clinically useful as a novel tool for monitoring depth374

of anesthesia or diagnosing and monitoring emergence from375

disorders of consciousness - a group of conditions for which376

new biomarkers are sorely needed (45). Toward that end, we377

here introduce a novel time-series estimate c of proximity to378

edge-of-chaos criticality, based on a nonlinear transformation379

of the K-statistic (see Materials and Methods). Our measure380

c includes a parameter α, set between 0 and 1, such that c will381

approach 1 as the K-statistic approaches α, and will approach382

0 as the K-statistic approaches either 0 (periodicity) or 1383

(strong chaos). Note that α values nearer to 0 will bias our384

criticality measure to assign higher values to systems on the385

stable side of the edge-of-chaos critical point, while α values386

nearer to 1 will bias our measure to assign higher values to387

systems on the chaotic side of the critical point.388

To test the diagnostic utility of this new criticality measure389

c, we applied our chaos analysis pipeline (i.e. low-pass filtering390

at a frequency determined by the FOOOF algorithm followed391

by application of the modified 0-1 chaos test) to clinical EEG392

data recorded from four traumatic brain injury patients as they393

recovered consciousness (see Materials and Methods). Degree394

of consciousness was assessed using the Glasgow Coma Scale395

(GCS) as part of conventional bedside neurobehavioral testing.396

Following prior work (46, 47), data were split into conscious397

and unconscious states based on the verbal and motor sub-398

scores of the GCS. Patients were considered conscious if either399

their GCS verbal sub-score was greater than or equal to four400

(meaning that they could answer questions) or if their motor401

sub-score was greater than or equal to five (meaning that402

they displayed clearly purposeful movement). We considered403

patients unconscious if their verbal sub-score was less than four404

and motor sub-score was less than five, though we note that405

this criterion cannot differentiate between unconsciousness406

and unresponsiveness/disconnectedness.407

To test the utility of our criticality measure as a biomarker408

of consciousness, we converted the median K-statistics of these409

four patients in their unconscious and conscious states, along 410

with the median K-statistics of our five anesthesia subjects 411

and three generalized seizure subjects in their waking and 412

unconscious states, to our new criticality estimate c, using 19 413

unique values of its parameter α ranging from 0.05 to 0.95 in 414

steps of 0.05. For each value of α, we performed a cross-subject, 415

right-tailed Wilcoxon rank-sum test to compare estimates of 416

proximity to edge-of-chaos criticality in conscious versus uncon- 417

scious states. Before correcting for multiple comparisons, esti- 418

mates of criticality were significantly higher during conscious 419

states for all α values between 0.65 and 0.85; after conserva- 420

tive Bonferroni-correction, c at α=0.85 remained significantly 421

higher across subjects during conscious states than during 422

unconscious states (p< 10−4 before Bonferroni correction, 423

p=0.016 after Bonferroni correction) (SI Appendix, Fig. S5) 424

(Fig. 4A). A cross-subject Wilcoxon rank-sum test revealed no 425

significant difference in the median low-pass filter frequencies 426

selected by the FOOOF algorithm in conscious vs unconscious 427

states (p=0.795), while right-tailed Wilcoxon rank-sum tests 428

showed that, across subjects, consciousness corresponded to 429

significantly higher values of univariate Lempel-Ziv complexity 430

(p=0.003) (Fig. 4B) and concatenated Lempel-Ziv complexity 431

(p=0.0265) (SI Appendix, Fig. S6) but not joint Lempel-Ziv 432

complexity (p=0.107) (SI Appendix, Fig. S6). Furthermore, 433

after controlling for the median frequency at which signals 434

were low-pass filtered across these twelve subjects (four DOC 435

patients, five anesthesia subjects, and three generalized seizure 436

subjects), our criticality measure c (at α=0.85) was signifi- 437

cantly correlated with cross-trial median univariate Lempel-Ziv 438

complexity (partial correlation ρ=0.66, p< 10−4) (Fig. 4C) 439

and concatenated Lempel-Ziv complexity (ρ=0.66, p< 10−4) 440

but not with joint Lempel-Ziv complexity (ρ=0.36, p=0.093) 441

(SI Appendix, Fig. S6); these correlations support the hypoth- 442

esis that proximity to the edge-of-chaos critical point mediates 443

the information-richness of cortical electrodynamics as well 444

as consciousness. Finally, we used a one-tailed block boot- 445

strap test (block size = 30 seconds of data), which controls for 446

the non-independence of successive time-points by preserving 447

local time-series autocorrelations, to test for within-subject 448

increases in c as patients recovered consciousness. We found 449

significant increases in c for all four DOC patients (Fig. 4D), 450

which supports the potential diagnostic utility of this new 451

criticality measure. Significant within-subject increases in 452

univariate Lempel-Ziv complexity were also observed within 453

all four DOC patients as they regained consciousness, but not 454

in joint or concatenated Lempel-Ziv complexity (SI Appendix, 455

Fig. S7). 456

Discussion 457

In this paper, we present the first empirical evidence that 458

cortical electrodynamics exhibit a high information-carrying 459

capacity during conscious states by operating near the math- 460

ematically specific critical point separating periodicity and 461

chaos. Our evidence was based on the first application (to 462

our knowledge) of the recently developed modified 0-1 chaos 463

test to neural electrophysiology data. Many systems, includ- 464

ing deep neural networks (24), have been shown to exhibit 465

their highest information-processing capacity when poised near 466

this transition from periodicity/stability to chaos/instability 467

(6–9, 34), likely because dynamics near this critical point op- 468

timally balance stability with flexibility and responsiveness 469
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to inputs (48). Both our simulation and empirical results470

suggest that waking cortical dynamics specifically operate on471

the chaotic/unstable side of this phase transition, which sup-472

ports the decades-old conjecture that the waking brain might473

utilize weak dynamical chaos in the service of efficient infor-474

mation processing (49), particularly during conscious states475

(21). From a computational perspective, it is reasonable that476

evolution would have tuned waking, conscious cortical dynam-477

ics to the chaotic side of this critical point, because traversing478

this critical point into the chaotic phase coincides with a479

transition from narrow-band to broadband, multi-frequency480

oscillations (50), a phenomenon which has been exploited in481

the engineering context to enable frequency multiplexing (i.e.,482

carrying of information at multiple frequencies) (51); tellingly,483

such frequency multiplexing is thought to be ubiquitous in484

mammalian neurodynamics during normal waking states (52).485

Note that this finding that cortical electrodynamics operate486

on the chaotic side of criticality during normal waking states487

is fully consistent with the hypothesis that conscious cortical488

electrodynamics operate on the "ordered" side of criticality,489

because, as mentioned in the Introduction, chaos is in fact the490

"ordered" phase of a dynamical system with respect to this491

critical point (21) (see SI Appendix, Supplementary Note 1).492

This result is also consistent with findings that cortical dy-493

namics operate near the critical onset of neuronal avalanches;494

this is because the neuronal avalanche critical point is distinct495

from the edge-of-chaos critical point and likely occurs within496

the weakly chaotic regime of neural networks (17), precisely497

where our results suggest cortical dynamics lie during normal498

conscious states.499

We further present evidence that transitions of cortical500

electrodynamics away from the edge-of-chaos critical point -501

either deeper into the chaotic/unstable phase, as our evidence502

suggests is the case for GABAergic anesthesia, or into the peri-503

odic/stable phase, as our evidence suggests is the case for gen-504

eralized seizures - precipitate a loss of information-richness in505

cortical dynamics and unconsciousness. These results are con-506

sistent with previous findings of a loss of empirical signatures507

of criticality during these states of unconsciousness (4, 13, 14),508

but go beyond prior analyses in specifying whether dynamics509

in these states are sub-critical or super-critical with respect to510

a specific, mathematically well-defined critical point (in this511

case, the edge-of-chaos critical point). Finally, we present evi-512

dence that psychedelics may increase the information-richness513

of cortical electrodynamics by moderately stabilizing cortical514

activity, i.e., by approaching the edge-of-chaos critical point515

from the chaotic/unstable side of the edge. This result not only516

supports prior findings suggesting a transition closer to criti-517

cality in the LSD state (44), but also confirms the model-based518

prediction that normal waking cortical dynamics specifically519

operate on the unstable side of the edge-of-chaos critical point.520

We note that our finding of increased instability during521

GABAergic anesthesia may appear to conflict with a prior522

report by Solovey and colleagues of increased stability in the523

cortical dynamics of macaques during propofol anesthesia (53).524

This seeming discrepancy rests on differing notions of sta-525

bility, as well as different assumptions about data: Solovey526

and colleagues defined stability in terms of the eigenvalues of527

regression matrices estimated from ECoG recordings, a notion528

of stability which only indicates that a process will not diverge529

to infinity, and which further assumes that data are both linear530

and stochastic (an assumption not supported by our analyses 531

- see SI Appendix, Tables S1-S2). In contrast, we assessed sta- 532

bility in terms of sensitivity to perturbations/inputs, and also 533

used time-series analysis tools which do not assume linearity, 534

and which therefore capture features of data that cannot by 535

definition be captured by linear analysis tools such as autore- 536

gressive models. It is also worth noting that two out of the four 537

ECoG data sets used in the report by Solovey and colleagues 538

were the same as the macaque anesthesia data used here (data 539

were downloaded from the same repository - see Materials and 540

Methods), and yet we found robust increases in instability in 541

the anesthetized state for these two macaques, as we did in 542

our three human anesthesia subjects (Fig. 2, SI Appendix, Fig. 543

S4). While the finding that GABAergic anesthetics destabilize 544

cortical electrodynamics may be counter-intuitive, this possi- 545

bility is further suggested by prior observations of disrupted 546

long-range cortical phase coherence during propofol anesthesia, 547

which is a key prediction of this anesthesia-as-chaos mean-field 548

model (54). 549

We note that although our criticality measure c increased in 550

all four DOC patients as they regained consciousness, estimates 551

of chaoticity were significantly higher (within-subject) during 552

unconsciousness in only three out of four of the patients (simi- 553

lar to the GABAergic anesthesia state) and were significantly 554

lower during unconsciousness in the fourth patient (similar 555

to generalized seizures) (SI Appendix, Fig. S7). This may 556

imply that disorders of consciousness constitute a heteroge- 557

neous set of conditions with respect to the stability of cortical 558

electrodynamics, a possibility we hope to explore more fully in 559

future work. We further note one important limitation in our 560

analysis of DOC patients, which is the potential confounding 561

effect of drugs administered to the patients: patients were 562

occasionally administered several painkillers and anesthetics 563

on the same day as GCS assessments and EEG data collection 564

(SI Appendix, Table S5) (Materials and Methods). We were 565

unable to ascertain the precise timing of drug administration 566

relative to behavioral assessments and, as such, we cannot rule 567

out the possibility that observed differences in cortical sta- 568

bility/criticality in unconscious states versus conscious states 569

in these DOC patients were possibly driven by the effects of 570

these drugs on their cortical electrodynamics. Moreover, our 571

sample size of DOC patients who regained consciousness was 572

small (n=4), and so the utility of our criticality measure c 573

as a biomarker of consciousness in patients with disorders of 574

consciousness warrants validation in a larger dataset. Along 575

the same lines, if this framework is to be used in the aid of 576

diagnosis, then it will be imperative to develop additional 577

methods for estimating changing levels of chaoticity in cortical 578

electrodynamics. This might be achieved, for example, by 579

observing the consistency of cortical responses to external 580

stimuli (e.g. in response to transcranial magnetic stimulation) 581

- a possibility we plan to explore in future work. 582

Finally, we note that it would be fruitful to further study 583

neural computation near the edge-of-chaos critical point on 584

a more theoretical level. While important advances have 585

been made along these lines, for example in establishing re- 586

lationships between this critical point and the trainability 587

of deep neural networks (24), information complexity (6–9), 588

Bayes-optimal perceptual categorization (55), and combina- 589

torial optimization (56), much theoretical work remains to 590

be done to understand the implications of these findings for 591
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neural computation. If the electrodynamics of the cortex dur-592

ing conscious states operate near this critical point, as our593

work suggests, then improving our theoretical understanding594

of computation at the onset of chaos will also improve our un-595

derstanding of how, precisely, neural computation is disrupted596

in unconsciousness.597

Materials and Methods598

Mean-Field Model Equations of Cortical Electrodynamics. We here599

study the mean-field model of Steyn-Ross, Steyn-Ross, and Sleigh600

(26). The model allows for straightforward manipulation of both601

the strength and balance of postsynaptic inhibition and excitation,602

which have long been thought to be key in tuning neural dynam-603

ics to chaotic (57), critical (58), and information-rich (58) states.604

Furthermore, the model is unique in its inclusion of gap junction605

coupling between inhibitory interneurons, which recent empirical606

work in zebrafish has shown are also likely important for tuning607

neural dynamics toward and away from criticality (30).608

The model simulates GABAergic anesthesia (e.g. propofol or609

sevoflurane) as an increase in cortical inhibition coupled with a mild610

decrease in gap junction coupling between inhibitory interneurons,611

based on findings that GABAa agonists (59), and GABAergic anes-612

thetics more specifically (60), inhibit gap junction communication613

(59, 60), and that these compounds also increase postsynaptic inhi-614

bition by prolonging inhibitory postsynaptic potentials (61). The615

model treats waking conscious states as a balance between excitation616

and inhibition, with strong gap junction coupling between inhibitory617

interneurons, which yields weak chaos (near edge-of-chaos critical-618

ity) in the model’s deterministic component (Fig. 2A), arising from619

interacting Turing (spatial) and Hopf (temporal) instabilities. Fi-620

nally, a strong reduction of inhibitory gap junction coupling results621

in a Hopf bifurcation that produces periodic dynamics reminiscent622

of whole-of-cortex, generalized seizures (26). This is consistent with623

observations of increased seizure frequency following either genetic624

ablation (62) or drug-induced reduction (63) of gap junction cou-625

pling between inhibitory interneurons. See Steyn-Ross, Steyn-Ross,626

and Sleigh (26) for full details on model parameters.627

The mean excitatory and inhibitory potentials Ve and Vi of each628

simulated neural population in the mean-field model, positioned at629

a location −→r = (x, y), are described by:630

τb
δVb(−→r , t)

δt
=V rest

b + ∆V rest
b − Vb(−→r , t)

+ [ρeψeb(−→r , t)Φeb(−→r , t) + ρiψib(−→r , t)Φib(−→r , t)]

+DbbO
2Vb(−→r , t)

[1]

631

where presynaptic to postsynaptic directionality is indicated by the632

right arrow, the subscript e indicates a presynaptic excitatory neural633

population, the subscript i indicates a presynaptic inhibitory neural634

population, and the subscript b indicates either a postsynaptic exci-635

tatory or postsynaptic inhibitory neural population. The bracketed636

term in Eq. 1 represents voltage inputs via chemical synapses, and637

the final term in Eq. 1 represents voltage inputs from diffusive gap638

junction coupling. O2 is the 2D Laplacian operator. Dbb represents639

the strength of diffusive gap junction coupling between adjacent640

neurons, such that Dee is gap junction coupling between excitatory641

populations and Dii is gap junction coupling between inhibitory642

populations. Because there is far more abundant gap-junction cou-643

pling between inhibitory interneurons than excitatory neurons (64),644

Dee is set to Dii/100. Dii is one of the key biological parameters645

we vary. For a given excitatory or inhibitory neural population,646

V rest
b is the mean resting potential, τb is the soma time constant,647

and ρb is the strength of chemical synapse coupling, which is scaled648

by the following reversal-potential function ψab:649

ψab(−→r , t) =
V rev
a − Vb(−→r , t)
V rev
a − V rest

b

[2]650

which equals one when a neuron is at its resting potential and equals651

0 when the membrane potential equals the reversal potential. For652

excitatory AMPA receptors, V rev
e = 0 mV, and for inhibitory GABA 653

receptors, V rev
i = -70 mV. The Φab functions in Eq. 1 describe 654

postsynaptic spike-rate fluxes: 655(
δ

δt
+ γe

)2
Φeb(−→r , t) =γ2

e [Nα
ebφ

α
eb(
−→r , t) +Nβ

eb
Qe(−→r , t)

+ φsc
eb(
−→r , t) + φα,het

eb
(−→r , t)],

[3] 656

657(
δ

δt
+ γi

)2
Φib(−→r , t) = γ2

iN
β
ib
Qi(−→r , t) [4] 658

where the α superscript corresponds to inputs from long-range 659

myelinated axons: Nα
eb is the number of axonal inputs to a pop- 660

ulation and φαeb is long-range spike-rate flux. The β superscript 661

corresponds to inputs from short-range chemical synapses, such that 662

Nβ
eb

is the number of local chemical synapses in a neural population. 663

Qe,i is the local spike-rate flux, and φα,het
eb

is a heterogeneous flux 664

input. φsc
eb is white noise, taken to represent random inputs to the 665

cortex from subcortical sources (e.g. sensory inputs); note that 666

the inclusion of a noise term means that the above equations are 667

stochastic differential equations, and that analyses of the ground- 668

truth chaoticity of the model (i.e. its largest Lyapunov exponent) 669

are performed exclusively using the non-stochastic components of 670

the model equations; estimates of chaoticity using the 0-1 test (see 671

below) are performed with the model’s noise input turned on, so as 672

to better assess the viability of detecting changing levels of chaotic- 673

ity in real cortical recordings. γi is the inhibitory rate constant and 674

γe is the excitatory rate constant, which we vary so as to the study 675

the effect of excitation and inhibition on chaos in the model. See 676

Steyn-Ross, Steyn-Ross, and Sleigh (26) for more details on the 677

model equations. Other than the inhibitory gap-junction coupling 678

strength Dii, the excitatory rate constant γe, and the inhibitory 679

rate constant γi (all of which we vary in our parameter sweep), 680

all parameters in our simulations are unchanged from the original 681

model, and are taken from the empirical literature (26). Dii was 682

varied from 0.1 to 0.7 in steps of 0.2, and both γe and γi were varied 683

from 0.945 to 1.05 in steps of 0.005. Of the 1,936 resulting simu- 684

lations, 1,160 yielded flat, non-oscillatory activity, likely reflecting 685

stable fixed points of the model; these fixed point solutions were 686

excluded from all analyses, because these non-oscillatory solutions 687

would likely yield high estimates of Lempel-Ziv complexity simply 688

due to the information-richness of the noise perturbations rather 689

than of the underlying system dynamics. This left 776 unique model 690

simulations of oscillatory behavior. Based on prior work (26), the 691

waking conscious simulation corresponded to γe = 1, γi = 1, and 692

Dii = 0.7. The anesthesia simulation corresponded to γe = 1, γi 693

= 1.015, and Dii = 0.5, and the seizure simulation corresponded 694

to γe = 1, γi = 1, and Dii = 0.1. The nearest-to-criticality and 695

maximally information-rich state of the model (see SI Appendix, 696

Figs. S1, S3) corresponded to γe = 1.04, γi = 1, and Dii = 0.5. 697

The model equations were integrated using a forward time center 698

spaced first-order Euler method, with an integration step of 0.2 ms. 699

Simulated electrodynamics were then downsampled to a sampling 700

frequency of 500 Hz, and the final 10 seconds (i.e. 5,000 time-points) 701

were extracted from the downsampled data, so as to perfectly match 702

the length and sampling frequency of the ECoG and MEG datasets 703

analyzed in this paper. 704

Lempel-Ziv Complexity. Lempel-Ziv complexity is a measure of the 705

size of a signal following Lempel-Ziv compression, and thus tracks 706

the amount of non-redundant information in a signal (31). To 707

compute Lempel-Ziv complexity, a continuous recording must first 708

be discretized. Following prior work (42, 65), we binarized both 709

our simulated and recorded data by thresholding at the mean of 710

the signal’s instantaneous amplitude, which is the absolute value of 711

the analytic signal; the analytic signal is s(t) + is̃(t), where s(t) is 712

the original time-series signal, i is the imaginary unit, and s̃(t) is 713

the Hilbert transform of s(t). We then computed three measures 714

of Lempel-Ziv complexity: 1) the median univariate Lempel-Ziv 715

complexity across all recorded channels ("Univariate LZc"), 2) the 716

joint Lempel-Ziv complexity between all channels, using the method 717

described by Zozor and colleagues (66), and 3) the Lempel-Ziv 718

complexity of all channels concatenated, time-point by time-point, 719

into a single string, following the method described by Schartner 720
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and colleagues (42, 65). Typically, Lempel-Ziv complexity is then721

normalized to provide a single value between 0 and 1. We compared722

several different normalization approaches, and found that the723

approach most robust against changes to a signal’s spectral profile724

was to divide the Lempel-Ziv complexity of a signal by the Lempel-725

Ziv complexity of a phase-randomized surrogate of that signal (SI726

Appendix, Fig. S8), following Brito and colleagues (67); note that727

phase-randomized surrogates were generated independently for each728

channel-x-trial in all recordings for the calculation of the Lempel-729

Ziv complexity measures. All measures of Lempel-Ziv complexity730

reported in this paper were normalized in this fashion, and were731

calculated for data low-pass filtered at 45 Hz. Data were low-pass732

filtered at 45 Hz to avoid potential confounds introduced by muscle733

activity at higher frequencies.734

Calculating Largest Lyapunov Exponents in the Mean-Field Model.735

The ground-truth chaoticity of a system is determined by its largest736

Lyapunov exponent, which is the rate of divergence between initially737

similar trajectories in a system’s phase space. A positive largest738

Lyapunov exponent means that a system is chaotic, because it739

indicates exponential divergence of initially similar system states. A740

negative largest Lyapunov exponent indicates periodicity, because741

it indicates exponentially fast convergence of initially similar states.742

A largest Lyapunov exponent near 0 corresponds to edge-of-chaos743

criticality, and near-0 exponents indicate that a system is near744

the edge-of-chaos critical point. The larger the largest Lyapunov745

exponent, the more strongly chaotic the system is. Following Steyn-746

Ross, Steyn-Ross, and Sleigh (26), we estimate the largest Lyapunov747

exponent of the mean-field model by simulating two runs of its748

deterministic component (i.e., with its noise inputs turned off), with749

slightly different initial conditions. The divergence between the750

excitatory firing rate of run 1 Q(1)
e and run 2 Q(2)

e is estimated751

as their summed squared-difference ε(t) down the midline of the752

simulated cortical grid:753

ε(t) =
Nx∑
i=1

(Q(1)
e (xi, t)−Q(2)

e (xi, t))2/εmax [5]754

where εmax is a normalization parameter, which equals the maximum755

possible difference between the two runs:756

εmax = Nx

(
max(Q(1)

e )−min(Q(2)
e )
)2

[6]757

where Nx=120, i.e. the number of simulated neural populations758

in the cortical sheet. The rate of divergence between the two runs759

ε(t) is directly related to the largest Lyapunov exponent Λ of the760

system:761

ε(t) = ε(0)exp(Λt) [7]762

where ε(0) is the distance between the two runs at t = 0. The largest763

Lyapunov exponent can therefore be estimated by measuring the764

slope of lnε(t)-versus-t. A positive slope indicates a positive largest765

Lyapunov exponent (and therefore chaotic dynamics), a negative766

slope indicates periodicity, and a flat slope indicates edge-of-chaos767

criticality.768

Extracting Low-Frequency Cortical Activity. The mean-field model769

described above specifically simulates the low-frequency (<4 Hz)770

component of macro-scale electric cortical oscillations. To compare771

the model results against real data, we therefore extracted the772

low-frequency component of both our simulated and real cortical773

signals. Although different frequencies of cortical electrodynamics774

have historically been studied at fixed, canonical frequency bands,775

with choices of oscillation center frequencies and bandwidths varying776

across studies, there is growing evidence that these center frequen-777

cies and bandwidths vary considerably as a function of age, brain778

state, subject, and species, and that low-pass filtering at fixed canon-779

ical frequencies can therefore produce spurious oscillations where no780

oscillations exist (41). Given that our analyses span diverse brain781

states, species, and imaging modalities, it was important to identify782

subject-, trial-, and channel-specific neural oscillation frequencies.783

We therefore identified low-frequency neural activity for each chan-784

nel, for each trial, using the recently developed "Fitting Oscillations785

and One Over F" or "FOOOF" algorithm, which automatically786

parameterizes neural signals’ power spectra (41). The algorithm 787

fits a neural power spectrum as a linear combination of the back- 788

ground 1/f component with oscillations at specific frequencies that 789

rise above this background 1/f component as peaks in the power 790

spectrum. The algorithm fits the spectral power P as: 791

P = L+
N∑
n=0

GN [8] 792

where L is the background 1/f power spectrum, and each Gn is a 793

Gaussian fit to a peak rising above the 1/f background: 794

Gn = a ∗ exp(
−(F − c)2

2w2 ) [9] 795

where a is a given oscillation’s amplitude, c is its center frequency, 796

w is its bandwidth, and F is a vector of input frequencies. The 1/f 797

background component L is modeled as an exponential in semilog- 798

power space (i.e. with log power values as a function of linear 799

frequencies): 800

L = b− log(k + Fχ) [10] 801

where b is a broadband power offset, χ is the spectral slope, k 802

controls the "knee" at which the 1/f power spectrum bends, and F 803

is a vector of input frequencies. 804

To specifically extract the low-frequency component of neural 805

oscillations, we set the input frequency range F to 1-6 Hz. The 806

FOOOF algorithm then identifies the center frequencies and band- 807

widths of putative oscillations that rise above the 1/f background 808

within this frequency range. For all channels-x-trials in our data, we 809

extracted the lowest frequency oscillation identified by the algorithm, 810

by low-pass filtering at the high-frequency end of the bandwidth of 811

the slowest identified oscillation. If the FOOOF algorithm failed to 812

identify an oscillation in the 1-6 Hz range for a particular channel 813

in a particular trial, then data for that channel in that trial were 814

excluded from further analysis. Across all datasets, the mean fre- 815

quency selected using this approach was 3.27 Hz, with a standard 816

deviation of 0.48 Hz. We then low-pass filtered all signals using 817

EEGLAB’s two-way least-squares FIR low-pass filtering, where 818

the filter order was set to 3x sampling rate
lowpass frequency cutoff (the default of 819

EEGLAB). Note that using the FOOOF algorithm improved our 820

ability to track chaoticity in the mean-field model of cortical electro- 821

dynamics, where the ground truth chaoticity is known (SI Appendix, 822

Tables S3-S4), and that estimates of the chaoticity of data low-pass 823

filtered using the FOOOF algorithm were stable across different 824

simulations (SI Appendix, Fig. S9), which validates its utility in 825

tracking chaoticity in real low-frequency cortical electrodynamics. 826

The Modified 0-1 Test for Chaos. The 0-1 chaos test was developed 827

by Gottwald and Melbourne (36) as a simple tool for testing whether 828

a discrete-time system is chaotic, using only a single time-series 829

recorded from that system. Gottwald and Melbourne provided an 830

early modification to the test, which made it more robust against 831

measurement noise (37). Dawes and Freeland added additional 832

modifications to the test, improving its ability to distinguish between 833

chaotic dynamics and strange non-chaotic or quasiperiodic dynamics 834

(39). The modified 0-1 test takes a univariate time-series φ, and 835

uses that time-series to drive the following two-dimensional system: 836

p(n+ 1) = p(n) + φ(n)coscn
q(n+ 1) = q(n) + φ(n)sincn

[11] 837

where c is a uniformly distributed random variable bounded between 838

0 and 2π. For a given c, the solution to Eq. 1 yields: 839

pc(n) =
n∑
j=1

φ(j)cosjc

qc(n) =
n∑
j=1

φ(j)sinjc

[12] 840

If the time-series φ is periodic, the motion of p and q is bounded, 841

while if the time-series φ is chaotic, p and q display asymptotic 842
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Brownian motion. The time-averaged mean square displacement of843

p and q is844

Mc(n) =
1
N

N∑
j=1

([pc(j + n)− pc(j)]2 + [qc(j + n)− qc(j)]2) + σηn.

[13]845

where ηn is a uniformly distributed random variable between [− 1
2 ,

1
2 ]846

and σ controls the amplitude of the added random variable ηn. We847

set σ to 0.5 and normalized the standard deviation of all signals848

to 0.5, based on our previously published analyses (25) of the849

effect of different parameter values for 0-1 test performance across850

diverse datasets. To compute the degree of chaos using a single851

statistic K, the 0-1 test calculates the growth rate of the mean852

squared displacement of the two-dimensional system in Eq. 5 using853

a correlation coefficient:854

Kc = corr(n,Mc(n)) [14]855

K is computed for 100 different values of c, uniformly randomly856

sampled between 0 and 2π, and the output of the test is the median857

K across different values of c. As the length of a time-series is858

increased, this median K value will approach 1 for chaotic systems,859

and will approach 0 for periodic systems, and will track degree of860

chaos for finite-length time-series (36–39). For both our real and861

simulated cortical activity, we calculated K for every channel in a862

trial, and estimated that trial’s level of chaoticity as the median863

K-statistic across all channels in that trial.864

The 0-1 test is designed to detect and track chaos in discrete-time865

systems, and thus signals recorded from non-time-discrete processes866

(like neural electrodynamics) must first be transformed into discrete-867

time signals before application of the test (38). Two approaches have868

been proposed for signal time-discretization prior to application of869

the test: downsampling (38), or taking all local minima and maxima870

of a continuous signal (40). We here used the latter approach for871

all datasets (real and simulated), as it yielded best correspondence872

to the ground-truth in our mean-field simulations (SI Appendix,873

Tables S3-S4).874

A New Time-Series Estimate of Proximity to Edge-of-Chaos Critical-875

ity. With an eye toward clinical applications of this edge-of-chaos876

criticality framework in the study of unconsciousness, we here intro-877

duce a new time-series estimate of proximity to the edge-of-chaos878

critical point, based on the K-statistic outputted by the modified879

0-1 chaos test (see above). This new measure c is defined as follows:880

c =
{
K
α

K < α

1− K−α
1−α K ≥ α [15]881

where K is the output of the 0-1 chaos test and α is a parameter882

that takes on a value between 0 and 1. This criticality measure c will883

approach 1 as K approaches α, and will approach 0 as K approaches884

either 0 (periodicity) or 1 (strong chaos). As noted in the Results,885

precise choice of α may bias c toward either periodic near-critical or886

chaotic near-critical dynamics (i.e., to dynamics on either the stable887

or unstable side of the edge-of-chaos critical point), and thus the888

optimal value of α for potential clinical assessments of consciousness889

using c will need to be determined by further empirical work.890

Epilepsy Data. Surface ECoG data from nine epilepsy patients were891

downloaded from the European Epilepsy Database (68). Of these,892

only two subjects experienced fully generalized seizures (in both893

cases, seizures were focal with secondary generalizations). Subject894

1 was a 42 year old male with epilepsy caused by right cortical895

dysplasia, and who was receiving the anticonvulsant medication896

lamotrigine. The subject had six intracranial electrode strips (26897

electrodes in total) placed over right lateral temporal cortex to898

monitor seizure focus. Subject 2 was a 14 year old female with899

cryptogenic epilepsy (i.e. unknown cause) who was receiving the900

anticonvulsant medications valproate and topiramate; the subject901

had one grid and six electrode strips (96 electrodes total) placed902

over left temporal and lateral left temporal cortex to monitor seizure903

focus. Signals from both subjects were recorded at a sampling rate904

of 1024 Hz. Data were demeaned, detrended, and bandstop filtered905

at 50 Hz and harmonics (the line noise frequency in Europe). Data906

were resampled to 500 Hz, divided into 10-second trials, and re- 907

referenced to the common average. For the seizure state, we only 908

included trials for which seizures were fully generalized across all 909

channels for the entire trial duration. The data were then visually 910

inspected for artifacts. Data from electrodes with consistent motion 911

or drift artifacts were removed, and 10-second trials with large 912

motion artifacts spanning multiple electrodes were removed. 913

Additionally, a magnetoencephalograpy (MEG) recording of 914

one patient’s generalized absence seizure, previously published by 915

Dominguez and colleagues (69), was re-analyzed. Data were pro- 916

vided by D.M.M. Note that MEG datasets were recorded for two 917

other epilepsy patients by Dominguez and colleagues, but that these 918

were for tonic seizures; the muscle convulsions during these tonic 919

episodes produced large motion artifacts in the MEG data, which 920

rendered analysis of low-frequency periodicity impossible. These 921

datasets were therefore not analyzed. The patient whose data were 922

re-analyzed in the present paper (Seizure Subject 3 in SI Appendix, 923

Figs. S1-2) was an 18 year-old female who was receiving a low 924

dose of valproate, and with no reported structural abnormalities or 925

prior brain surgery. Data from this patient were recorded at 625 Hz 926

using a CTF Omega 151 channel whole-head system (CTF Systems, 927

Port Coquitlam, British Columbia, Canada). Data were split into 928

10-second trials, demeaned, detrended, and bandstop filtered at 60 929

Hz and harmonics (the line noise frequency in Canada, where data 930

were collected). Data were then visually inspected. Consistently 931

motion or drift artifact-affected channels were removed, and trials 932

with large motion artifacts across channels were removed. Data 933

were then downsampled to 500 Hz. We then ran an independent 934

components analysis on the data, and removed components that 935

corresponded to ocular or cardiac artifacts. 936

See SI Appendix, Fig. S10 for 10-second time-traces of these 937

subjects’ cortical electrodynamics during generalized seizures. 938

Human Anesthesia Data. Surface ECoG recordings from three hu- 939

man epilepsy patients given propofol anesthesia prior to surgical 940

resection of their epileptic focus were analyzed. Data were collected 941

at the University of California at Irvine, Medical Center. All pa- 942

tients provided informed consent in accordance with the local ethics 943

committees of the University of California, Irvine (University of 944

California at Irvine Institutional Review Board Protocol Number 945

2014-1522) and University of California, Berkeley (University of Cal- 946

ifornia at Berkeley Committee for the Protection of Human Subjects 947

Protocol Number 2010-01-520), and provided written consent before 948

data recording. Electrode placement was determined only by clinical 949

criteria (Ad-Tech, SEEG: 5 mm inter-electrode spacing; Integra, 950

Grids: 1 cm, 5 or 4 mm spacing). ECoG data were recorded using 951

a Nihon Kohden recording system (256 channel amplifier, model 952

JE120A), analogue-filtered above 0.01 Hz and digitally sampled at 953

5 kHz. 954

Patient 1 (Human Anesthesia Subject 1 in SI Appendix, Figs. 955

S1-2) was a right-handed 25 year-old female with a diffuse lesion 956

in the right supplementary motor area. The patient had one 8x8 957

grid placed over the right frontal lobe, covering superior temporal 958

gyrus, postcentral gyrus, inferior parietal lobule, superior temporal 959

gyrus, precentral gyrus, middle frontal gyrus, inferior frontal gyrus, 960

and middle temporal gyrus; and two 2x5 anterior interhemisphere 961

bilateral grids and two 2x8 posterior interhemisphere bilateral grids 962

covering superior frontal gyrus and medial frontal gyrus, for a total of 963

116 cortical contacts. See SI Appendix, Fig. S11 for MRI scans with 964

Patient 1’s cortical grids. The patient received 100 mg of propofol 965

and 100 mcg of fentanyl prior to surgical resection of their epileptic 966

focus. Their "waking conscious" data consisted of the twenty minutes 967

prior to anesthetic induction, and their "anesthesia" data consisted 968

of the twenty minutes following the loss of responsiveness to verbal 969

commands. 970

Patient 2 (Human Anesthesia Subject 2 in SI Appendix, Figs. 971

S1-2) was a 46 year-old, right-handed female with a lesion in the left 972

supplemantary motor area. The patient had one 8x8 grid placed 973

over the left frontal lobe, covering middle temporal gyrus, superior 974

temporal gyrus, inferior frontal gyrus, middle frontal gyrus, superior 975

frontal gyrus, precentral gyrus, superior temporal gyrus, postcentral 976

gyrus, and inferior parietal lobule; one 2x8 strip placed over left 977

medial cortex, covering left medial frontal gyrus, left cingulate gyrus, 978

and left superior frontal gyrus; and one 2x8 strip placed over right 979

medial cortex, covering right medial frontal gyrus, right cingulate 980
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gyrus, and right superior frontal gyrus, for a total of 96 contacts. See981

SI Appendix, Fig. S11 for MRI scans with Patient 2’s cortical grids.982

The patient received 140 mg of propofol and 50 mcg of fentanyl983

prior to surgery; at loss of consciousness, the patient received 50984

mg of the muscle relaxant rocuronium; four minutes after loss of985

consciousness, the patient began receiving sevoflurane (another986

GABAergic anesthetic) for maintenance of anesthesia; note that987

the predictions of the mean-field model regarding the anesthesia988

state still hold for a combination of propofol and sevoflurane, as989

the model predictions should pertain to any GABAergic anesthetic.990

The patient’s "waking conscious" data consisted of the 19 minutes991

prior to anesthetic induction, and their "anesthesia" data consisted992

of the 16.8 minutes following the loss of responsiveness to verbal993

commands.994

Patient 3 (Human Anesthesia Subject 3 in SI Appendix, Figs. S1-995

2) was a 20 year-old right-handed female who had previously received996

a left temporal lobectomy. The patient had one 4x8 grid placed997

over left frontal cortex, with contacts over middle frontal gyrus,998

Brodmann area 9, inferior frontal gyrus, superior temporal gyrus,999

middle temporal gyrus, precentral gyrus, and superior frontal gyrus;1000

another 4x4 grid over left frontal cortex, with contacts over the1001

orbital gyrus, inferior frontal gyrus, middle frontal gyrus, superior1002

frontal gyrus, rectal gyrus, and superior temporal gyrus; a 2x61003

grid over the temporal lobe, with contacts over the fusiform gyrus,1004

inferior temporal gyrus, and middle temporal gyrus, as well as four1005

contacts over the declive and one over the tuber of the cerebellum;1006

and one 8x8 grid with contacts over parts of parietal, temporal,1007

and occipital cortices, including postcentral gyrus, precentral gyrus,1008

inferior parietal lobule, superior parietal lobule, Brodmann area1009

40, Brodmann area 7, supramarginal gyrus, and superior temporal1010

gyrus, for a total of 124 surface electrodes. See SI Appendix,1011

Fig. S11 for MRI scans with Patient 3’s ECoG grids. The patient1012

received 150 mg of propofol and 100 mcg of fentanyl prior to surgical1013

resection of their epileptic focus. Their "waking conscious" data1014

consisted of the eight minutes prior to anesthetic induction, and1015

their "anesthesia" data consisted of the 10.17 minutes following the1016

loss of responsiveness to verbal commands.1017

Signals for all three patients were recorded at a sampling rate of1018

1,000 Hz. Epileptic activity was assessed by an experienced neurol-1019

ogist (R.T.K) and removed. Data were split into 10-second trials,1020

demeaned, band-stop filtered at 60 Hz and harmonics (the line1021

noise frequency in the United States, where data were collected), de-1022

trended, downsampled to 500 Hz, and re-referenced to the common1023

average. Data were then visually inspected for artifacts. Data from1024

electrodes with consistent drift or motion artifacts were removed,1025

and 10-second trials with large motion artifacts spanning multiple1026

electrodes were removed.1027

Macaque Anesthesia Data. Open-source ECoG recordings spanning1028

the left cortices (including occipital, parietal, temporal, and frontal1029

lobes) of two male macaques were downloaded from Neurotycho.org1030

(70). See SI Appendix, Fig. S11 for an MRI scan showing the1031

electrode placement of Macaques 1 and 2. Data were collected1032

during awake/resting and propofol anesthesia states. The macaques1033

were seated with head and arm movement restricted. Macaque 11034

(Macaque Anesthesia Subject 1 in SI Appendix, Figs. S1-2) was1035

intravenously administered 5.2 mg/kg of propofol, and Macaque 21036

(Macaque Anesthesia Subject 2 in SI Appendix, Figs. S1-2) was1037

intravenously administered 5 mg/kg of propofol. Loss of conscious-1038

ness was determined by the emergence of low-frequency oscillations1039

and the cessation of responses to physical stimuli. All data for the1040

propofol condition are from the macaques’ unconscious state, and1041

all data from the awake condition are from the macaques’ eyes-open1042

state (i.e., data for which the eyes were covered were excluded).1043

Signals were recorded at a sampling rate of 1,000 Hz. Data were1044

split into 10-second trials, demeaned, band-stop filtered at 50 Hz1045

and harmonics (the line noise frequency in Japan, where data were1046

collected), detrended, downsampled to 500 Hz, and re-referenced1047

to the common average. Data were then visually inspected for1048

motion artifacts. Data from electrodes with consistent artifacts1049

were removed, and 10-second trials with artifacts spanning multiple1050

electrodes were removed.1051

Human Lysergic Acid Diethylamide Data. Previously published (71)1052

MEG recordings of nineteen humans following intravenous admin-1053

istration of either 75 µg of lysergic acid diethylamide (LSD) or 1054

a saline placebo were re-analyzed. These data were provided by 1055

S.M. and R.C. Data from three subjects were excluded because 1056

of persistent motion or drift artifacts in their MEG signal across 1057

most trials. Of the sixteen remaining subjects, three were females, 1058

and the average age was 32.06 (with a standard deviation of 7.71 1059

years). Due to the slow pharmacodynamics of LSD, MEG data were 1060

recorded four hours after drug administration. Subjects lay in a 1061

supine position during data acquisition. MEG signals were recorded 1062

using a CTF 275-channel radial gradiometer system with a sampling 1063

frequency of 1200 Hz. After the MEG recordings were collected, 1064

visual analogue scale ratings of the intensity of the LSD experience 1065

(on a scale from 0 to 20 in increments of 1) were presented to sub- 1066

jects on a projection screen visible from inside the scanner, which 1067

the subjects completed via button press (see Carhart-Harrris et al 1068

(71) for more details). MEG data were split into 10-second trials, 1069

demeaned, detrended, and bandstop filtered at 50 Hz and harmon- 1070

ics (the line noise frequency in the United Kingdom, where data 1071

were collected). Data were then visually inspected. Consistently 1072

motion or drift artifact-affected channels were removed, and trials 1073

with large motion artifacts across channels were removed. Data 1074

were then downsampled to 500 Hz. We then ran an independent 1075

components analysis on the data, and removed components that 1076

corresponded to ocular or cardiac artifacts. 1077

Clinical DOC data. Data were collected from four traumatic brain 1078

injury (TBI) patients admitted at the UCLA Ronald Reagan Uni- 1079

versity Medical Center intensive care unit (ICU). Several criteria 1080

were applied for participation in the study in order to limit the 1081

investigation to those patients recovering from unconsciousness. 1082

Inclusion criteria: Glasgow Coma Scale (GCS) score ≤ 8 or an 1083

admission GCS score of 9-14 with computed tomography (CT) evi- 1084

dence of intracranial bleeding. Exclusion criteria: GCS > 14 with 1085

non-significant head CT, history of neurological disease or TBI, and 1086

brain death. The UCLA institutional review board approved the 1087

study. Informed consent was obtained according to local regula- 1088

tions. To manage symptoms and/or reduce cerebral metabolism, 1089

medications were administered to patients as needed, noted on a 1090

daily basis and sorted into appropriate categories: propofol, bar- 1091

biturates, benzodiazepines, opioids, and dissociative anesthetics. 1092

Behavioral assessments were performed several times daily in the 1093

ICU and used the GCS to assess patients’ conscious state. EEG 1094

data were recorded continuously (Cz reference) at a sampling rate 1095

of 250 Hz for several days or longer while patients were in the ICU. 1096

After data acquisition with Persyst software (Persyst Development 1097

Corporation, Solana Beach, CA, USA), data were exported in EDF 1098

format to MATLAB (The MathWorks, Inc., Natick, MA, USA) for 1099

analysis. 1100

To analyze patients during periods of both high responsiveness 1101

(conscious) and minimal responsiveness (unconscious), we extracted 1102

60 minutes of EEG from 13 channels common to all patients (Fp1, 1103

Fp2, F7, F8, T3, C3, Cz, C4, T4, T5, O1, O2, T6) at timepoints 1104

corresponding to consciousness, defined as GCS motor score ≥ 5 or 1105

GCS verbal score ≥ 4 (46, 47), and unconsciousness. EEG sections 1106

were spaced a minimum of 12 hours apart according to the following 1107

procedure, applied separately for conscious and unconscious data: 1108

1) sorting each patient’s GCS scores from or high to low (conscious) 1109

or low to high (unconscious), 2) appending the highest (conscious) 1110

or lowest (unconscious) score to a second list, and 3) crawling down 1111

the first list of GCS scores and adding each timepoint that was 1112

at least 12 hours from any timepoint on the second list to the 1113

second list. 60-minute EEG sections were then extracted from the 1114

second list’s timepoints in order to sample the desired periods of 1115

consciousness and unconsciousness. Data were split into 10-second 1116

trials, demeaned, detrended, and re-referenced to the common 1117

average. Data were then visually inspected for artifacts. Data from 1118

electrodes with consistent drift or motion artifacts were removed, 1119

and 10-second trials with large motion artifacts spanning multiple 1120

electrodes were removed. We then ran an independent components 1121

analysis on the data to remove ocular or cardiac artifacts. 1122
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