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Abstract9

Collecting network interaction data is difficult. Non-exhaustive sampling and com-10

plex hidden processes often result in an incomplete data set. Thus, identifying poten-11

tially present but unobserved interactions is crucial both in understanding the structure12

of large scale data, and in predicting how previously unseen elements will interact. Re-13

cent studies in network analysis have shown that accounting for metadata (such as14

node attributes) can improve both our understanding of how nodes interact with one15

another, and the accuracy of link prediction. However, the dimension of the object we16

need to learn to predict interactions in a network grows quickly with the number of17

nodes. Therefore, it becomes computationally and conceptually challenging for large18

networks. Here, we present a new predictive procedure combining a graph embedding19

method with machine learning techniques to predict interactions on the base of nodes’20

metadata. Graph embedding methods project the nodes of a network onto a—low21
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dimensional—latent feature space. The position of the nodes in the latent feature space22

can then be used to predict interactions between nodes. Learning a mapping of the23

nodes’ metadata to their position in a latent feature space corresponds to a classic—and24

low dimensional—machine learning problem. In our current study we used the Random25

Dot Product Graph model to estimate the embedding of an observed network, and we26

tested different neural networks architectures to predict the position of nodes in the27

latent feature space. Flexible machine learning techniques to map the nodes onto their28

latent positions allow to account for multivariate and possibly complex nodes’ meta-29

data. To illustrate the utility of the proposed procedure, we apply it to a large dataset30

of tourist visits to destinations across New Zealand. We found that our procedure31

accurately predicts interactions for both existing nodes and nodes newly added to the32

network, while being computationally feasible even for very large networks. Overall, our33

study highlights that by exploiting the properties of a well understood statistical model34

for complex networks and combining it with standard machine learning techniques, we35

can simplify the link prediction problem when incorporating multivariate node meta-36

data. Our procedure can be immediately applied to different types of networks, and37

to a wide variety of data from different systems. As such, both from a network science38

and data science perspective, our work offers a flexible and generalisable procedure for39

link prediction.40

Keywords: Random Dot Product Graphs, Machine Learning, link prediction, metadata, traits,41

predictive models, neural networks, graph embedding42
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Introduction43

Real-world network datasets are often largely incomplete due to non-exhaustive sampling or the44

presence of complex hidden processes making data collection difficult [6, 19]. As a result, accounting45

for incompleteness within data (e.g. “missing links”) is of key importance both to understand how46

different components in a system interact with one another and to accurately predict future trends in47

a system [8, 13, 24]. The action of predicting “missing links” or new links in a network is referred as48

link prediction in various fields [23, 24]. The most commonly used methods to tackle link prediction49

include topological approaches, Block Model-based methods and graph-embedding methods. In50

topological methods, certain metrics describing the structure of a network (e.g. network properties51

such node degree and various centrality measures) are used to predict interactions [23]. Block52

Models-based approaches, such as the probabilistic generative family of Stochastic Block Models53

(and variants), aggregate nodes into groups based on their similarity of interactions [15, 45]. Graph54

embedding methods on the other hand rely on projecting nodes onto an abstract latent feature55

space, so that the interaction probabilities depend on these latent features [2, 5, 43].56

Multiple studies have shown that incorporating node metadata as covariates can both deepen57

our understanding of the network structure [30, 32, 33, 40], and improve link prediction accuracy58

in large scale networks [17, 26, 30]. However, incorporating node metadata presents various chal-59

lenges. For instance, metadata diversity—i.e. whether the metadata variables are categorical or60

continuous—may require different modelling frameworks [3, 26]. Due to the high number of nodes61

in large networks, they can be considered as high dimensional objects: indeed, when the network is62

represented as a matrix, each node is an additional coordinate. Therefore, accounting for metadata63

at the node level may also make the computational requirements overly demanding, as the com-64

plexity of the problem scales with the square of the number of nodes. To date, most attempts to65

incorporate node metadata for link prediction purposes have focused on node-aggregating methods66

such as Stochastic Block Models and its variants [17, 26, 40, 41]. These methods make the prediction67

task more amenable by aggregating nodes into homogeneous groups. However, by doing so, they68

assume that all nodes within one group behave according to the same interaction probabilities, and69

thus are statistically indistinguishable [15, 45]. Unfortunately by disregarding the heterogeneity70

of interactions observed at the node level, such approaches oversimplify the network data. Here,71

we instead focus on using graph embedding methods which allows us to predict the interaction72
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probabilities of each node directly, rather than aggregating the nodes in groups.73

In our current study, we propose a new procedure that combines a graph embedding method74

with machine learning to predict interactions from nodes’ metadata. As the functional relationship75

between node metadata and the abstract latent feature spaces of a network is often unknown prior76

to data inspection, and can be very complicated, here we suggest using machine learning techniques77

to find an accurate mapping. In our procedure, we first use the graph embedding method to project78

nodes of the observed network on an abstract latent feature space at a lower dimensional space.79

By doing so, it allows us to learn a mapping from the nodes’ metadata to their abstract latent80

feature space (that we infer from the observed network) in an adequately low dimensional space.81

Because we move the problem from the original graph space to a lower dimensional feature space,82

our procedure simplifies the task of predicting interaction in large networks. Here, we specifically83

used neural networks as our machine learning technique to relate the observed nodes’ metadata onto84

the latent feature spaces of the observed network. The high flexibility of neural networks allowed us85

to account for the diversity of metadata. To illustrate the application of the proposed procedure in86

predicting interactions, we used a large dataset of tourist visits to destinations across New Zealand.87

Overall, our results showed that the proposed predictive procedure accurately predict interactions88

in large networks using both the knowledge from the observed network and the nodes’ metadata.89

Moreover, the proposed procedure also allowed us to predict interactions for new nodes better than90

at random.91

Materials and methods92

In this article we focus on bipartite networks—i.e. networks that feature nodes of two types and93

with interactions (or links) that only occur between the different set of nodes. In the following94

sections, we describe: 1) the adopted network modelling procedure: first describing the Random95

Dot Product Graph model, then explaining how to infer, from an observed network, the position96

of its nodes in the latent space, and finally how to relate the nodes’ metadata to the nodes in97

their latent space using a machine technique; 2) an application to empirical network data; 3) the98

sensitivity and performance analyses we conducted to validate the proposed procedure.99
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The Random Dot Product Graph model100

Random Dot Product Graphs (RDPGs) are a class of Latent Position Models [14] developed to101

analyse social networks [31, 47], and then extended to many other applications and types of networks102

[3, 9, 25, 37, 43]. To describe interactions in a network, such models assume that the probability of103

observing an interaction between two nodes is a function of the nodes’ features [31, 47]. Here, we104

specifically use the RDPG implementation of Young and Scheinerman [47] to predict interactions105

in a bipartite context.106

We define a bipartite network G as two distinct sets of nodes, V and P containing M and107

N nodes respectively, that is where V = {v1, ..., vn} and P = {p1, ..., pm} respectively; and a set108

of links, E, between the sets of nodes—i.e. (vi, pj) ∈ E. We denote such a bipartite network as109

G(V, P,E). The bipartite network can be further represented as an adjacency matrix, where G is110

represented as the matrix A ∈ {0, 1}M×N , where Aij = 1 if (vi, pj) ∈ E and Aij = 0 otherwise.111

In a bipartite RDPG model, each node vi and pj is assigned a vector of latent features xi ∈ Rd
112

and yj ∈ Rd. We call d the dimension of the network’s latent feature space, and the vectors xi113

and yj indicate the positions of the nodes vi and pj , respectively, in the network’s latent feature114

space. The bipartite RDPG model further treats links as independent Bernoulli variables: two115

nodes interact with a probability equal to the dot product of their latent vectors, in formula:116

Pr((vi, pj) ∈ E) = xi · yj . (1)

In matrix notation, we can represent the latent positions of all the nodes in V and P as the rows117

of a matrix V and the columns of a matrix P, respectively. As a result, the matrix of probabilities118

of interactions between the two node types in the network can be written as the matrix product119

VP.120

For the matrix product to have meaning, the two matrices V and P need to have compatible121

dimension, which is satisfied if the latent feature spaces for V and P are equidimensional (that is,122

if the vectors xi and yj have the same number of coordinates). Moreover, for the matrix prod-123

uct to represent probabilities, the products must be in the [0, 1] range, which imposes additional124

geometric constraints in the latent feature spaces. Lastly, it is worth noting that any orthogonal125

transformation—e.g. a rotation—of V and P would result in an equivalent matrix of interaction126
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probabilities: this will limit us to be able to infer the latent feature spaces up to an orthogonal127

transformation. Thus, we should refrain from reading any meaning in the absolute position of a128

node in the latent feature space.129

Inferring the position of nodes in the latent feature space130

In theory, neither the nodes’ positions in the latent feature space, nor the dimension of the latent131

feature space are observable. Thus, we need to infer them from the observed network. To do so, we132

can exploit the adjacency spectral embedding—which is the truncated Singular Value Decomposition133

(SVD) of a network adjacency matrix—to obtain an unbiased estimate of the nodes’ positions in134

the network’s latent feature spaces [37].135

The full rank SVD of an observed adjacency matrix A is given by three matrices L, Σ, and R136

such that A = L×Σ×RT , with L and R real orthogonal matrices, and Σ a diagonal matrix whose137

entries are the singular values of A in decreasing order. As the sets of nodes V and P contain M138

and N nodes respectively, the matrices L, Σ, and R will have dimensions M ×S, S×S, and N ×S,139

respectively, where S = min (M,N). To compute the SVD of a matrix, we used the default svd140

function in R [35], which performed well for the large visitation data set described in later sections.141

(Note that fast algorithms that allow the decomposition of very large matrices such as in Liang142

et al. [22] and Zhou and Li [48] also exist if needed). We then used the profile-likelihood elbow143

criterion of Zhu and Ghodsi [49] to estimate an adequate dimension d ≤ S for the latent feature144

space.145

Let d be the chosen dimension for the observed network latent feature space. We denote L̂, Σ̂,146

and R̂ as the d-truncations of L, Σ, and R, respectively. We obtain them by retaining all the rows147

and the first d columns of L and R, and the first d rows and columns of Σ. We then compute the148

d-dimensional bipartite adjacency embedding of A as149

V ≈ V̂ = L̂
√

Σ̂

P ≈ P̂ =
√

Σ̂R̂T ,

(2)

where
√

Σ̂ is a d× d diagonal matrix defined by the square root of the d greatest singular values of150

A.151
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Figure 1: Using a Random Dot Product Graph Framework to predict interactions in a bipartite network.
Note that here we use our case study—i.e. the travelling patterns of visitors to touristic destinations—to
illustrate the framework. We first consider the travelling patterns of visitors as network data. In (1), the
bipartite representation of travelling patterns of visitors: nodes are of two types—circles represent visitors
and squares represent places, and links indicate a trip travelled by a given visitor to a given place. Here the
solid lines represent the observed links. In (2), we first estimate the position of nodes within the observed
bipartite network using a Singular Value Decomposition on the adjacency matrix representing the visitor–
place interaction matrix. As a result, we obtain two latent feature spaces: a visitor latent feature space and
place latent feature space. Note that here we show the embeddings of nodes of both visitors and places,
respectively, in a latent feature space of dimension d = 2. We then relate the nodes’ metadata directly to
their latent feature spaces. To do so, we use machine learning techniques to find the relationship between the
two. To further predict new interactions in the network using observed metadata of new visitors and new
places respectively—the models used to find the relationship of the metadata to the latent feature spaces are
used. By doing so, we can project the new visitor and new place into the respective latent trait spaces LD1
and LD2. Finally, in (3), using the dot product, we are able to predict the probability of interaction between
the new visitor and the new place added to the visitation network. Here, the dotted lines represent the new
predicted links.
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Predicting interactions using the nodes’ metadata via the latent feature space152

Given the positions of all nodes in the latent feature spaces, the RDPG model completely determines153

the interaction probabilities between all nodes in the network. This implies that, if we were able to154

go from a node’s metadata to its position in the network’s latent feature space, we would be able155

to estimate its interaction probabilities with all other nodes in the network.156

Let us consider the simplest scenario where we have a one-dimensional latent feature (in other157

words, the latent feature space is a vector with one coordinate, d = 1) and real valued metadata158

for the nodes in V and P . We can learn a mapping from the metadata to the latent space by159

fitting a linear regression model with the positions of nodes vi in the latent feature space, xi ∈ R,160

as dependent variables and the metadata vectors mi as independent predictor variables. Let β0 and161

β be the estimated intercept and vector of slope parameters for the linear model. The resulting162

model allows us to get the position of node vi in the predicted latent feature space: x∗i ∈ R. We163

can then estimate the interaction probabilities of vi via the dot product of x∗i with the positions164

of the nodes in P ’s latent feature space. Similarly, we can use the inferred linear model to predict165

the latent features of a new node added to the network—i.e. a node which was previously not166

observed vn+1—from the node’s metadata as followed: xn+1 = β0 + mn+1 · β. Then, to estimate167

the interaction probabilities of vn+1, we proceed with the dot product of xn+1 with the positions of168

the nodes in P ’s latent feature space.169

The latent feature space of large empirical networks is multivariate (even if not very large,170

1 < d � min(M,N)). In general, nodes’ metadata are of different types—i.e. categorical and171

continuous. Finally, the relationship between metadata and latent features is often non-linear.172

Fortunately, a variety of statistical and machine learning approaches exist to solve the task of173

predicting a d-dimensional real valued vector from another vector (potentially larger and mixed174

valued). In particular, neural networks approaches can be used [12, 38]. In our application, we175

compare the performance of a classic linear regression, using ordinary least squares, and different176

neural network architectures.177

To conclude, we have seen that we can use: a truncated SVD to estimate the latent feature178

spaces of nodes in a bipartite network, a variety of statistical and machine learning approaches to179

predict the latent features from the nodes’ metadata, and a simple dot product to predict interaction180

probabilities from latent features for nodes (Figure 1). In the next section, we apply our procedure181
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to a large network of tourist-place visitation data deploying both linear models and two different182

neural network architectures.183

Predicting tourist destinations from visitors and places metadata184

To test the presented procedure, in this section we describe its application to visitation data rep-185

resenting the travel destinations of tourists across New Zealand. We specifically show how one can186

use visitor and place metadata, respectively, to estimate the interaction probabilities for visitors187

to travel to places within the country. We further show how one can potentially use the proposed188

procedure to predict new interactions—i.e. when new visitors and places are added to the visitation189

network—using only the respective nodes’ metadata and knowledge from the existing network.190

Visitation data191

To get an overview of the visitors’ travelling patterns across New Zealand, we extracted data192

from two national surveys conducted by the New Zealand Ministry of Business, Innovation and193

Employment (MBIE): The International Visitor Survey [28] and the Domestic Travel Survey [27].194

The International Visitor Survey (IVS) targeted international visitors departing New Zealand at195

the 4 main international airports (Auckland, Wellington, Christchurch and Queenstown) whereas196

the Domestic Travel Survey (DTS) contacted domestic travellers via phone interviews about their197

recent trips. Both surveys record the list of places to which each visitor travelled during their trip198

within New Zealand. This accounted for a total of 189942 visitors travelling to 2616 places across199

the country. Note that these numbers refer to only visitor and places for which the complete set of200

metadata were available (Table 1 Supplementary Information).201

Node attributes: visitor and place metadata202

Visitor metadata includes age, gender, activity type, and the mode of transportation used during203

their trip (Table 1). These characteristics are present for both the Domestic Travel Survey and the204

International Visitor Survey. As the survey data only had the name of places visited by travellers,205

we had to define the attributes of the different places within the visitation data. In general, places206

across New Zealand can be categorised based on the ownership of the land or the type of activities207

performed on those lands. Therefore, to identify the land type of each place within the visitation208
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data, we used the geospatial maps provided by Land Information New Zealand [20] to map the209

places extracted from the different national surveys. For example by doing the latter, this allowed210

us to distinguish whether a particular place was categorised as a recreational site or national heritage211

site (Table 1).212

Predicting visitor-place interactions in visitation network using node metadata213

Here we are particularly interested to test our predictive procedure in two different contexts: pre-214

dicting interaction probabilities of nodes present in the observed network, which we refer as “ob-215

served” nodes, and predicting interaction probabilities of nodes that we artificially removed from216

the original data set, which we refer as “new” nodes. Artificially removing nodes from the observed217

network allows us to further test the ability of the proposed predictive procedure to predict inter-218

action probabilities of out-of-sample nodes—i.e. when either new visitors or places are added to the219

network—using their metadata. As such, we split the visitation data into a training and a validation220

set. The training set contains the observed nodes and validation set contains the new nodes. As the221

validation data serves as the new data, we made sure that the validation set contained both visitors222

and places identities not present in the training data set. Note that we build the observed visitation223

network from the interaction data contained in the training set and computed its adjacency matrix.224

In the rest of this section, we explain our predictive procedure in detail. The procedure involves225

three key steps: (1) we perform a Singular Value Decomposition of the adjacency matrix of the226

observed network to compute the position of the observed nodes (from the training data) in their227

latent feature space; (2) we use the training data to first fit regression models that predict the228

nodes’ positions in the latent feature space as a function of the nodes’ metadata; then, we use the229

fitted models to predict the position of the nodes from the validation data in their latent feature230

space; (3) we use these predicted positions to estimate the interaction probabilities of nodes in the231

validation set.232

(1) We computed the Singular Value Decomposition (SVD) of the training network’s adjacency233

matrix AT . Then, truncating the SVD, we computed the positions of the observed visitor and place234

nodes in their respective latent feature spaces, V̂T and P̂T respectively:235

AT ≈ L̂
√

Σ̂×
√

Σ̂R̂T := V̂T P̂T (3)
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(2) We fit three different types of multivariate regression models on the training data set. Let236

vT and pT be the metadata for visitor and places nodes in the training set, then the regression237

modelling task is to find a pair of function f̄ and ḡ such that f̄ (vT ) and ḡ (pT ) best approximate238

V̂T and P̂T respectively, where f̄ and ḡ are part of some family of functions f̄ ∈ {f} and ḡ ∈ {g}.239

For sake of clarity, f̄ and ḡ are function from the space of metadata (visitor nodes’ and place nodes’240

metadata respectively) to the space of latent features (for visitors and places respectively).241

Namely, we fit: a) a linear regression—where we used a linear function to relate directly the242

metadata to the latent feature space (specified as in Table S3); b) a multilayer perceptron (MLP)—243

i.e. a neural network with one dense hidden layer of 200 nodes using a rectified linear unit (ReLU) as244

our activation function; and c) a neural network with two dense hidden layers (NN) of 250 nodes each245

and the ReLU activation function. Due to the variety of data types—i.e. varying from categorical246

to continuous variables (Table S2)—and the high flexibility of neural networks in solving regression247

and classification problems [16], we compared two learning rates: a constant learning rate of 0.01248

and a time-based decay—where the initial learning rate (0.01) decreased by 0.0001 after each epoch.249

We used the Mean Absolute Error to measure the distance between the predicted and estimated250

latent features and assess the accuracy of the model training (refer to Table S4 to see the results251

obtained using other metrics). To monitor the training of the different models and ensure that252

they were not overfitting, we split the training data set into two sets: a training set (70 % of the253

training set) and a test set (30 % of the training set). We trained all the regression models on the254

training set and evaluated their accuracy on the test set. We used Google’s deep learning software255

TensorFlow [1] and Keras [7] implemented in Python 2.7 [44] to fit all the aforementioned models256

using the adaptive moment estimation (Adam) optimiser [18] with 30 epochs and a batch size of 20.257

We then used the fitted multivariate regression models to predict the positions of the nodes from258

the validation data set in the latent feature space, V̄V and P̄V respectively. The predicted values259

V̄V and P̄V are functions of the nodes’ metadata:260

V̄V := f̄ (vV )

P̄V := ḡ (pV ) ,

(4)

where vV and pV are the metadata for visitor and places nodes in the validation set, and f̄ and ḡ261

are the function obtained from the training data.262
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(3) Using the nodes’ positions V̄V and P̄V obtained by the models in (2), we estimated the263

interaction probabilities for all nodes present in the validation data and the nodes in the training264

data set by multiplying the matrices containing the nodes’ position in their respective latent feature265

spaces:266

Pr ((vV , pT ) ∈ E) := V̄V P̂T

Pr ((vT , pV ) ∈ E) := V̄T P̂V

(5)

where, with some abuse of notation, Pr ((vV , pT ) ∈ E) and Pr ((vT , pV ) ∈ E) are the matrices of267

interaction probabilities between visitor nodes in the validation set and places nodes in the training268

set, and between visitor nodes in the training set and places nodes in the validation set.269

Specific pairwise interaction probabilities can be estimated multiplying the vector of the pre-270

dicted latent feature position of new nodes (inferred from the regression methods) to the latent271

features position vectors (estimated from the SVD) for all observed nodes present in the observed272

network, that is, using the dot product. For example, considering a new visitor node n with meta-273

data vn, a predictive function f̄ , and a known place node p, whose position in the latent feature274

space (as obtained by SVD in step 1) is xp, the interaction probability between n and p is:275

Pr ((n, p) ∈ E) := f̄ (vn) · xp. (6)

Sensitivity and performance analysis of predictive procedure276

We calculated the probability of interaction between the nodes in the test set as:277

Pr ((vtest, ptest) ∈ E) := V̄testP̄test = f̄ (vtest) ḡ (ptest) (7)

where vtest and ptest are the nodes in the test set, V̄test and P̄test are the predicted latent features278

positions, vtest and ptest are the nodes metadata, and f̄ and ḡ are the trained predictive functions.279

To assess the performance of the overall predictive procedure, we calculated the sensitivity—i.e.280

the ratio of correctly predicted links to observed links, and the accuracy—i.e. the ratio of correctly281

predicted observed links (True Positive) and correctly absent links (True Negative)—in our test282

data [42].283
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Furthermore, to evaluate and assess the performance of the different combinations of RDPG-284

regression models in correctly predicting the observed interactions, we used the Area Under Curve-285

Receiver Operator Curve (AUC-ROC) to evaluate the performance of the different combinations.286

To do so, we calculated the rate of True Positives—i.e. predicting an interaction when it is actually287

present—and False Positives—i.e. predicting an interaction when it is actually absent—at different288

thresholds varying from 0 to 1. AUC-ROC is used as a measure to assess the ability of different289

models to distinguish between a True Positive and a False Positive. For instance when 0.5 < AUC ≤290

1, this indicates that the predictive model is performing well—i.e. the model effectively distinguishes291

a True Positive from a False Positive—whereas 0 ≤ AUC < 0.5 indicates that the predictive model292

is not effectively distinguishing between True Positives and False Positives.293

Results294
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Figure 2: Identifying an adequate dimension d of network data. A) The scree plot represents the singular
values of the adjacency matrix of the visitation network in decreasing order of d. The x-axis shows the
singular value index, and the y-axis indicates the singular values. B) Cumulative plot showing the percentage
variability explained with the increasing singular value indexes. The x-axis again shows the singular value
index and the y-axis indicates the percent of variance explained. Using Zhu and Ghodsi [49]’s likelihood
criteria, we picked d = 6 as indicated by the red dotted line. This dimension explains 70 % of the variability
of the visitation network data.

For the training visitation dataset (number of visitors = 136910, number of links = 636497), the295

Zhu and Ghodsi [49]’s profile-likelihood criterion indicated a six dimensional latent feature space296

(d = 6) as adequate. This accounted for approximately to 70 % variability of the visitation network297

data (Figure 2).298
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Figure 3: Training of regression models over time when projecting observed visitor metadata onto the latent
feature space using an adaptive moment estimation (Adam) optimiser run with 30 epochs and a batch size of
20. The plot shows the model validation—i.e. the subset of training visitation dataset used—to validate the
three different models in finding the best mapping from the node metadata to the latent feature space. The
x-axis indicates the epochs. The y-axis indicates the Mean Absolute Error (MAE), which is the cost function
used to measure the accuracy of model predictions—i.e. it measures the distance between the estimated
latent feature space (SVD) and the predicted latent feature space. The red line shows the learning rate of
the linear regression model (Baseline), the green line indicates the learning rate of the multilayer perceptron
model (MLP), and the blue line indicates the neural network with two hidden layers (NN). The plot shows
that both the MLP model and NN model performed better than the Baseline model.

Overall we found that the neural networks performed better than the linear regression model in299

finding the best mapping from the node metadata to the latent feature spaces. More specifically,300

for the visitor metadata, we found that the neural network with two hidden layers (Mean Squared301

Error (MSE) = 0.0009) and multilayer perceptron performed (MSE = 0.0010) better compared to302

the linear regression model (MSE = 0.0014) using a constant learning rate (Figure 3). We found303

similar patterns for the Time-based learning rate (Figure S1).304

For the place metadata, we found that the the multilayer perceptron model (MSE = 0.125)305

and linear regression model (MSE = 0.141) performed better than the neural network with two306

hidden layers (MSE = 0.143) (Figure 4). We also observed similar patterns for models run with the307

Time-based learning rate (Supplementary Information).308

The predictive procedure we proposed performed significantly better than at random (Table S5).309

Comparing the different latent feature prediction models, we found that the dot product of the310

visitor linear regression model and the place MLP (model 2: neural network with one hidden layer)311

performed better with AUC = 0.736, followed by dot product of the visitor MLP and the place312

MLP model with AUC = 0.701 (Table 3).313
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Figure 4: Training of regression models over time when projecting observed place metadata onto the latent
feature space using an adaptive moment estimation (Adam) optimiser run with 30 epochs and a batch size of
20. The plot shows the model validation—i.e. the subset of training visitation dataset used—to validate the
three different models in finding the best mapping from the node metadata to the latent feature space. The
x-axis indicates the epochs. The y-axis indicates the Mean Absolute Error (MAE), which is the cost function
used to measure the accuracy of model predictions—i.e. it measures the distance between the estimated latent
feature space (SVD) and the predicted latent feature space. The red line shows the learning rate of linear
regression model (Baseline), the green line indicates the learning rate of the multilayer perceptron model
(MLP), and the blue line indicates the neural network with two hidden layers (NN). Here the MLP model
seems to perform better than the baseline and NN models.

Discussion314

In the current study, we present a new predictive procedure which allows us to use both the nodes’315

metadata and the knowledge gained from the observed network to predict interactions in large316

scale networks. More specifically, we showed how to extend the RDPG model—which is a graph317

embedding method—with a combination of statistical and machine learning techniques. Doing so318

allowed us to directly relate the nodes’ metadata to their corresponding latent feature spaces. To319

further illustrate the application of the presented procedure on real world data, we used a large320

data set of tourist travelling patterns within New Zealand. Overall, we showed that the predictive321

procedure works in a real-world context with an accuracy of AUC = 0.736, which indicates that the322

procedure performed better than at random. Moreover, we showed that our procedure also allowed323

us to predict interactions for new nodes added to the network.324

To our knowledge, few studies have focused on exploiting the nodes’ metadata to predict in-325

teractions using graph-embedding methods. Most research including node metadata to predict326

interactions have used node-aggregating methods [26, 40, 41]. However, such approaches assume327

that all nodes belonging to a given group behave identically, ignoring that certain nodes within the328
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given group might be interacting with other nodes in the network to different extents. We instead329

propose using a predictive procedure based on the RDPG model combined with a machine learning330

algorithm to account for the heterogeneity of interactions observed at the node level. Moreover,331

using the truncated SVD allows us to represent an observed network at a lower dimension, which332

simplified the task of directly relating the observed nodes’ metadata to the estimated latent feature333

spaces (obtained from the truncated SVD). Using the inferred relationship of nodes’ metadata and334

the estimated latent feature spaces from the neural networks, we can predict the position of both335

observed and new nodes in a predicted latent feature space using only the nodes’ metadata and336

knowledge form the observed network. Then, using the statistical properties of the RDPG model,337

we can proceed to predict interactions at the node level in a network by simply calculating the dot338

product of the given node to the other nodes present in the network [4, 25, 37].339

Machine learning techniques such as neural networks are increasingly popular tools in various340

applications due to their high predictive accuracy [29, 46]. Here, we used neural networks to relate341

the nodes’ metadata to their latent feature spaces obtained from a truncated SVD. Various studies342

suggest that deeper neural networks—i.e. neural networks with a high number of hidden layers—tend343

to outperform shallow neural network in a wide variety of tasks [12, 16]. While both of the neural344

network architectures we tested outperformed the linear regression model in mapping the nodes’345

metadata onto the latent feature spaces, our results showed that the linear regression model (for346

the visitors’ metadata) and the neural network with one hidden layer (for the places’ metadata)347

outperformed the the neural network with two hidden layers in predicting links. This therefore348

suggests that simpler models can outperform deeper neural networks in at least some situations.349

Note, however, that the main purpose of our study was not to find the absolute best neural network350

architecture, and hence we do not expect further studies to necessarily confirm this result.351

Metadata are known to be good proxies from which to predict interactions in a network [17,352

30, 32, 33, 41]. However, node metadata can be of varied type—i.e. categorical and continuous353

variables, and these variables might not have linear relationships to the latent feature space; these354

factors together necessitate different modelling frameworks [3, 26]. Here, we showed that the high355

flexibility of neural networks (or other machine learning algorithms) enabled the identification of356

an accurate mapping from the visitors’ metadata onto the visitors’ latent feature space and from357

the places’ metadata to the places’ latent feature space, respectively. As the functional relationship358
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between nodes’ metadata and their position in the latent feature space can be very complicated,359

neural network methods are a promising approach to learn it.360

While each step of the presented procedure is robust, there might be many sources of error.361

In the current study, we only present an exploratory analysis of a bipartite network to predict362

interactions in a visitation network using both node types’ metadata. Rather than attempting to363

find the optimal dimension of our network data, we instead chose d according to the Zhu and Ghodsi364

[49]’s profile-likelihood criterion. We selected d a priori, based only on the topological structure of365

the network. It could be interesting to further explore whether using a different procedure to select366

the dimension of the latent space improves the accuracy of link prediction. Indeed, a posteriori367

selection (trying to identify which dimension d grants a higher prediction accuracy) is another368

possibility, but may require substantially greater computational effort.369

The way in which we split our training and test set implies that the observed and new nodes’370

metadata are sampled from the same distribution. Therefore, the models learn a relevant mapping371

of the new nodes into a suitable region of the latent feature space. However, if this is not the case,372

and the metadata of the new nodes is completely different from the one of the observed nodes,373

nothing guarantees a good placement in the latent feature space. How to deal with new nodes with374

“surprising” metadata is an open problem.375

In addition, we assumed all the nodes’ metadata could be informative when predicting inter-376

actions. As a result, we learnt a mapping from the nodes’ full metadata to their respective latent377

feature spaces obtained from the truncated SVD. However, we know that not all of the metadata378

is necessarily informative, specially when predicting interactions [11, 32]. Therefore, further inves-379

tigating the relationship between the nodes’ metadata and the latent feature space obtained from380

the truncated SVD should be done to understand whether certain node metadata are affecting the381

link prediction accuracy in the presented procedure.382

Moving forward, it would be interesting to extend the current procedure to account for missing383

data in: 1) the interaction probability matrix—i.e. distinguishing new and absent interactions—and384

2) the metadata—i.e. when some of the nodes’ metadata are missing. One can imagine a scenario385

where a survey was carried out, and a person did not complete the full survey. If we were to have the386

metadata of that particular person, we could potentially interpolate some of their answers. Similarly,387

in the case where data is extracted from an experimental set up, data might be missing as a result of388
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failed experiments. Accounting for such missing information can be particularly important. In this389

direction, deeper or dedicated neural network architectures, such as the ones in Smieja et al. [39]390

and Przewikeźlikowski et al. [34], could be used. More recently, Lerique et al. [21] have used a neural391

network approach to find the joint embedding of metadata and the network structure to predict the392

interaction probabilities. However, one the main limitations of the latter approach is the need to393

find an optimal dimension for the both the nodes’ metadata and the network data. Using a machine394

learning approach to learn a mapping of nodes’ metadata directly to their interaction probabilities395

in large networks remains a hard problem when performed in a very high dimensional space. Here396

we showed that we can simplify that problem by exploiting the properties of a well understood397

statistical model for complex networks, the Random Dot Product Graph model, and combining it398

with standard machine learning techniques. The RDPG model grants us a robust estimation of399

a low dimensional network embedding (the nodes’ latent feature spaces) and a convenient way to400

estimate its dimension. As in other examples [36], promising results are obtained not by abandoning401

a model-based approach to science but by merging it with machine learning techniques.402
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Table 1: Summary of node metadata used

Node type Metadata Data type Classes

Visitor Gender Categorical Male, Female

Visitor Age Categorical
Age group: < 20, 21–25,
26–34, 35–39, 40–44, 45–49,
50–51, 64–69, > 70

Visitor Activity type Categorical

Hiking, Site-seeing, Wa-
ter activities, Museums and
other heritage sites, Visiting
family, Work purposes

Visitor Mode of transportation Categorical
Car, Van, Boat, Tour bus,
Bus, Helicopter, Aeroplane

Place Place geolocation Continuous
Latitude and Longitude of
locations

Place Place type Categorical
Heritage site, Crown Pro-
tected area, Town, Village,
Recreational site

Place Regional Council Categorical

Northland, Auckland,
Waikato, Bay of Plenty,
Gisborne, Hawke’s Bay,
Taranaki, Manawatu-
Wanganui, Wellington,
Tasman/Nelson, Marl-
borough, West Coast,
Canterbury, Otago, South-
land, and Areas Outside
Regional Council

Table 2: Summary of number of visitors and places used for the different steps of the predictive procedure

Dataset Analysis No. of visitors No. of places
Full training set SVD 101656 430
Model training set Neural Network 71159 301
Model test set Neural Network 30497 129
Validation set Neural Network,

Dot Product
88286 (43662 new) 360 (120 new)
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Table 3: Accuracy of model predictions obtained from RDPG-regression procedure. The table indicates the
Area Under Curve (AUC) values for each model calculated using Mean Absolute Error as the cost function
to measure the distance between the estimated latent feature spaces and the predicted latent feature space.

Place

V
is

it
or

Baseline MLP NN
Baseline 0.630 0.736 0.699

MLP 0.645 0.701 0.665
NN 0.653 0.699 0.670
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Supplementary Information519

Visitation data520

Table S1: Summary of visitation data extracted from national surveys

Organisation Survey Years Places Visitors Visitor-Place interactions
MBIE IVS 1997 - 2016 548 110 750 89 309 500
MBIE DTS 1997 - 2008 2 426 84 891 473 070 000

To get an overview of the visitors’ travelling patterns across New Zealand, we extracted data521

from three national surveys conducted by the New Zealand Ministry of Business, Innovation and522

Employment (MBIE) and Department of Conservation (DOC): The International Visitor Survey523

[28], the Domestic Travel Survey [27] and the National Survey of New Zealanders [10] (Table 1).524

The International Visitor Survey (IVS) targets international visitors departing New Zealand at the525

4 main international airports (Auckland, Wellington, Christchurch and Queenstown) whereas the526

Domestic Travel Survey (DTS) contacts the domestic travellers via phone interviews about their527

recent trips. Both surveys record detailed information about the trips travelled by each visitor.528

Note that as in the current study we focused on testing our predictive framework, we selected529

only visitors and places with the complete set of information. We therefore resulted with 189942530

visitors (out of 195641) and 2616 places (out of 2974).531

Table S2: Summary of node metadata used for neural networks

Node type Metadata Data type Output type
Visitor Age Categorical Single label with multiple classes
Visitor Gender Categorical Binary
Visitor Activity type Categorical Multiple labels with multiple classes
Visitor Mode of transportation Categorical Single label with multiple classes
Place Place geolocation Continuous Numerical values
Place Place type Categorical Multiple labels with multiple classes
Place Regional Council Categorical Single label with multiple classes
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Mapping node metadata to latent feature spaces532

Table S3: Regression models used to predict position of nodes using observed metadata

Metadata Model
Visitor xn = β0 + βAgex1 + βGenderx2 + βActivitiesx3 + βTransportx4
Place ym = β0 + βRegiony1 + βPlacetypey2 + βLatitudey3 + βLongitudey4

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.10.447991doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447991
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epochs

A
cc

ur
ac

y

i) Cost function: Mean Squared Error (MSE)

Epochs

A
cc

ur
ac

y

ii) Cost function: Mean Absolute Error (MAE)

Epochs

A
cc

ur
ac

y

iii) Cost function: Cosine Similarity (COS)

Figure S1: Accuracy of model training when projecting visitor metadata onto the latent feature space using
adaptive moment estimation (Adam) optimiser with 100 epochs and a batch size of 20. Here, exploratory
analysis are carried out using the Time-based decay learning rate—where the initial learning rate (0.01)
decrease by 0.0001 after each epoch. Note that we also used three different cost functions during the model
training: Mean Squared Error (MSE), Mean Absolute Error (MAE) and Cosine Similarity (COS) to measure
the distance between the estimated latent feature space (truncated SVD) and the predicted latent feature
space obtained from the regression models.
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Figure S2: Accuracy of model training when projecting place metadata onto the latent feature space using
adaptive moment estimation (Adam) optimiser with 100 epochs and a batch size of 20. Here, exploratory
analysis are carried out using the Time-based decay learning rate—where the initial learning rate (0.01)
decrease by 0.0001 after each epoch. Note that we also used three different loss functions during the model
training: Mean Squared Error (MSE), Mean Absolute Error (MAE) and Cosine Similarity (COS) to measure
the distance between the estimated latent feature space (truncated SVD) and the predicted latent feature
space obtained from the regression models.
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Predicting interaction using observed node metadata533

Table S4: List of model predictions obtained using the dot product of inferred latent feature spaces (obtained
from regression models)

Model no. Visitor Place Learning rate
1A Baseline Baseline Constant
1B Baseline Baseline Time-based
2A Baseline MLP Constant
2B Baseline MLP Time-based
3A Baseline NN Constant
3B Baseline NN Time-based
4A MLP Baseline Constant
4B MLP Baseline Time-based
5A MLP MLP Constant
5B MLP MLP Time-based
6A MLP NN Constant
6B MLP NN Time-based
7A NN Baseline Constant
7B NN Baseline Time-based
8A NN MLP Constant
8B NN MLP Time-based
9A NN NN Constant
9B NN NN Time-based
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Table S5: Accuracy of model predictions obtained from RDPG-regression framework. The table indicates
the Area Under Curve (AUC) values for each model calculated using three different metrics which was used
to measure the distance between the estimated latent feature spaces and the predicted latent feature space:
Mean Squared Error (MSE), Mean Absolute Error (MAE) and Cosine Similarity (COS).

Model MSE MAE COS
1A 0.495 0.630 0.511
1B 0.530 0.538 0.729
2A 0.733 0.736 0.509
2B 0.584 0.699 0.574
3A 0.584 0.699 0.574
3B 0.610 0.636 0.516
4A 0.712 0.645 0.510
4B 0.620 0.576 0.720
5A 0.668 0.701 0.532
5B 0.550 0.646 0.516
6A 0.620 0.665 0.610
6B 0.576 0.590 0.516
7A 0.632 0.653 0.515
7B 0.502 0.615 0.719
8A 0.721 0.699 0.488
8B 0.537 0.657 0.499
9A 0.500 0.670 0.570
9B 0.601 0.604 0.530
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Cost
function

A) Constant learning rate B) Time-based learning rate 

Figure S3: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 1 (dot product
of visitor baseline and place baseline models) using A) Constant learning rate and B) Time-based learning
rate. Note that rate of recovering False Positive and True Positive are both calculated at thresholds varying
from 0 to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True
Positives and False Positives. We also report the model predictions obtained using different metrics: Mean
Squared Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue)
which measures the distance between the estimated latent feature space and the predicted latent feature
spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S4: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 2 (dot product
of visitor Baseline and place MLP models) using A) Constant learning rate and B) Time-based learning rate.
The x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note
that rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0
to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives
and False Positives. We also report the model predictions obtained using different metrics: Mean Squared
Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which
measures the distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S5: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 3 (dot product
of visitor Baseline and place NN models) using A) Constant learning rate and B) Time-based learning rate.
The x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note
that rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0
to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives
and False Positives. We also report the model predictions obtained using different metrics: Mean Squared
Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which
measures the distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S6: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 4 (dot product
of visitor MLP and place Baseline models) using A) Constant learning rate and B) Time-based learning rate.
The x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note
that rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0
to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives
and False Positives. We also report the model predictions obtained using different metrics: Mean Squared
Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which
measures the distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S7: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 5 (dot product
of visitor MLP and place MLP models) using A) Constant learning rate and B) Time-based learning rate.
The x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note
that rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0
to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives
and False Positives. We also report the model predictions obtained using different metrics: Mean Squared
Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which
measures the distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S8: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 6 (dot product
of visitor MLP and place NN models) using A) Constant learning rate and B) Time-based learning rate. The
x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note that
rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0 to 1. The
dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives and False
Positives. We also report the model predictions obtained using different metrics: Mean Squared Error (MSE
- in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which measures the
distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S9: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 7 (dot product
of visitor NN and place Baseline models) using A) Constant learning rate and B) Time-based learning rate.
The x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note
that rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0
to 1. The dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives
and False Positives. We also report the model predictions obtained using different metrics: Mean Squared
Error (MSE - in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which
measures the distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S10: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 8 (dot product
of visitor NN and place MLP models) using A) Constant learning rate and B) Time-based learning rate. The
x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note that
rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0 to 1. The
dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives and False
Positives. We also report the model predictions obtained using different metrics: Mean Squared Error (MSE
- in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which measures the
distance between the estimated latent feature space and the predicted latent feature spaces.
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A) Constant learning rate B) Time-based learning rate 

Cost
function

Figure S11: Measuring the performance of predictive framework using the AUC-ROC. The plot shows the
accuracy of predictions obtained from the dot product in predicting interactions for the model 9 (dot product
of visitor NN and place NN models) using A) Constant learning rate and B) Time-based learning rate. The
x-axis indicates the False Positive Rate (FPR) and y-axis indicates the True Positive Rate (TPR). Note that
rate of recovering False Positive and True Positive are both calculated at thresholds varying from 0 to 1. The
dotted line indicates an AUC = 0.5 where a model does not distinguish between True Positives and False
Positives. We also report the model predictions obtained using different metrics: Mean Squared Error (MSE
- in red), Mean Absolute Error (MAE - in green) and Cosine Similarity (COS - in blue) which measures the
distance between the estimated latent feature space and the predicted latent feature spaces.
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