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 2 

Abstract 25 

Humans make choices based on both reward magnitude and reward frequency. 26 

Probabilistic decision making is popularly tested using multi-choice gambling paradigms that 27 

require participants to maximize task payoff. However, research shows that performance in such 28 

paradigms suffers from individual bias towards the frequency of gains as well as individual 29 

differences that mediate reinforcement learning, including attention to stimuli, sensitivity to 30 

rewards and risks, learning rate, and exploration vs. exploitation based executive policies. Here, 31 

we developed a two-choice reward task, implemented in 186 healthy human subjects across the 32 

adult lifespan, to understand the cognitive and neural basis of payoff-based performance. We 33 

controlled for individual gain frequency biases using experimental block manipulations and 34 

modeled individual differences in reinforcement learning parameters. Simultaneously recorded 35 

electroencephalography (EEG)-based cortical activations showed that diminished theta activity in 36 

the right rostral anterior cingulate cortex (ACC) as well as diminished beta activity in the right 37 

parsorbitalis region of the inferior frontal cortex (IFC) during cumulative reward presentation 38 

correspond to better payoff performance. These neural activations further associated with specific 39 

symptom self-reports for depression (greater ACC theta) and inattention (greater IFC beta), 40 

suggestive of reward processing markers of clinical utility.  41 

 42 
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Introduction 46 

Cognitive and neural responses to reward and risk are quintessential to understanding 47 

human behavior. Gambling tasks predominantly form the experimental test beds for measuring 48 

reward and risk processing abilities in humans1,2. However, it is widely debated how well these 49 

tasks can separate decision-making based on frequency of gains/losses versus expected value, i.e. 50 

payoff of different choice-sets1,3,3–12.  51 

For instance, studies that have controlled for gain frequency in the Iowa Gambling Task 52 

(IGT) show that subject choices reflect their gain frequency preferences, which drive relatively 53 

immediate reinforcement based choice behavior, rather than expected values that benefit payoff in 54 

the long-term13–17. Additionally, many studies suggest that performance measures from gambling 55 

tasks are influenced by individual differences that are revealed within a reinforcement learning 56 

framework, e.g. sensitivity to rewards and risks, learning rate, and behavioral execution 57 

strategies18–22; prior neural studies of decision payoff have not fully accounted for these 58 

differences.  59 

In this study, we aimed to address the shortcomings of existing reward processing 60 

assessments in two ways. First, we accommodated for individual gain frequency bias while 61 

assessing advantageous payoff-based decision making. Specifically, we designed a two-choice 62 

paradigm that implements two separate blocks – a Δ0payoff block (baseline block) where two 63 

reward choice-options have equal payoffs and reward variance suitable for measuring the 64 

immediate gain frequency bias, and a Δpayoff block (difference block) where the two-choice 65 

options have unequal payoffs suitable for measuring payoff influences.  We thereby, teased apart 66 

measurements of immediate gain frequency biased response from long-term payoff (i.e. expected 67 
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value) based response to understand the distinct cognitive and neural mechanisms underlying 68 

payoff decisions.  69 

Second, we accounted for individual differences in reinforcement learning (RL) including 70 

attention to stimuli, sensitivity to rewards and risks, learning rate, and exploration vs. exploitation 71 

based executive policies, for understanding reward functions. In prior work, we have shown that 72 

reward and risk based processing can be explained within RL model frameworks23–27. RL models 73 

provide the ability to derive the underlying learning parameters forming the basis for individual 74 

differences in performance, including subjective sensitivity to risky or probabilistic outcomes24, 75 

time scale of reward prediction or outcome discounting rate contributing to reward sensitivity, 76 

exploration versus exploitation in individual responses28, influence of repeated choices on 77 

learning29 and levels of attention30,31. Uniquely, in this study, we model and account for these RL 78 

parameters while estimating the data-driven neural correlates for payoff relevant decisions. 79 

Finally, we predict individual variations in self-reported mental health based on the cognitive and 80 

neural correlates of payoff relevant responses.  We show that payoff relevant neural markers are 81 

sensitive to specific neuropsychiatric symptoms and thereby serve future clinical utility.  82 

  83 
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Results 84 
 85 
Reward paradigm disentangles payoff-based performance from gain frequency bias. 86 

Healthy adult subjects (N = 186, ages 18-80 years, 115 females) performed a two-choice 87 

gambling task, Lucky Door, which implemented two distinct blocks of choices; the Δ0payoff block 88 

delivered choice-sets with different gain frequencies but no differences in payoff, while the 89 

Δpayoff block delivered choice-sets with same gain frequencies as the earlier Δ0payoff block yet 90 

with long-term payoff (i.e. expected value) differences (Figure 1A). Specifically, the Δ0payoff 91 

block only varied the gain frequency associated with the choice doors, with one door leading to 92 

70% positive reward outcomes (Rare Loss or RareL door) while the other resulting in 70% 93 

negative reward outcomes (Rare Gain or RareG door), yet maintaining the same reward average 94 

or long-term expected value/ payoff (Supplementary Table 1). The Δpayoff block was presented 95 

in a random sequence order relative to the Δ0payoff block across subjects. It had the same gain and 96 

loss frequency setup as the Δ0payoff block (choices randomly positioned on the left or right side 97 

of the screen, Figure 1A), but the rewards associated with the RareG door resulted in a larger long-98 

term payoff than the RareL door. Participants executed 40 trials per block. The gain frequency bias 99 

(Bias) was computed from the Δ0payoff block as the difference between the proportion of RareL 100 

vs. RareG selections. Thus higher the preference for RareL to RareG door in the Δ0payoff block, 101 

higher is the gain frequency Bias. On the other hand, the payoff-based response (Perf) was 102 

computed as the difference between the proportion of RareG selections on the Δpayoff vs. 103 

Δ0payoff block. Therefore higher the preference for RareG door in Δpayoff block to RareG door 104 

in the Δ0payoff block, higher is the Perf. The RareG door was designed with greater payoff as 105 

choosing this door could selectively suggest payoff-based decision processing in subjects as 106 

opposed to simply choosing based on gain frequency in which case RareL should be preferred. 107 
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Given our specific focus on understanding advantageous long-term decisions measured by payoff-108 

based responses (Perf), we first wanted to understand which behavioral predictors significantly 109 

predicted Perf. We implemented a multivariate regression model of Perf using demographic (age, 110 

gender, race, ethnicity, socio-economic status (SES) and mental health (anxiety, depression, 111 

inattention and hyperactivity) predictors as per Table 1. Mental health was assessed using self-112 

reporting questionnaires detailed in our Methods section. The model also accounted for individual 113 

gain frequency Bias and order of block presentation. The overall Perf model was significant 114 

(R2=0.43, p<0.0001). Interestingly the only variable that significantly predicted Perf was Gain 115 

frequency Bias (Figure 1B, β=0.37 ±0.04, t(151)=9.18, p<0.0001, f2=0.58), showing that Bias can 116 

confound the understanding of payoff-based performance. Hereafter, we control for Bias in all 117 

payoff-relevant analyses below. 118 

  119 

Reinforcement Learning models capture task-payoff related performance and suggest 120 

individually differentiating learning parameters. 121 

We developed a reinforcement learning model for each subject that converged to their 122 

actual payoff-related performance (Figure 2). The motivation for building the RL model sprung 123 

from many folds of reasoning. First, it explains the converged behavioral dynamics in each 124 

participant sans experimental trial limitations. This is important since each choice in the task was 125 

associated with a probabilistic reward and subjects were presented with finite number of trials (40 126 

per block), yet we wanted to characterize the stabilized and representative decision-making 127 

dynamics for each subject. Second, it characterizes the individual differences in each participant 128 

in terms of computational parameters that manifest in learning and executive control. We 129 

particularly focused on five key parameters controlling reward processing, risk taking and decision 130 
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making, which included risk sensitivity factor, temporal reward discount factor, stimulus learning 131 

eligibility factor, inverse exploration index, and stimulus noise index (Figure 2, Table 1). Prior 132 

modeling studies have suggested that task behavior can be explained with greater accuracy when 133 

both the expected value (long-term average reward or payoff) and expected risk (reward variance) 134 

are considered for computing the utility that regulates the decisions. The risk sensitivity factor 135 

depicts how a subject trades off the accounting of reward variance from the reward average, higher 136 

factor values indicate risk aversiveness and lower levels indicate risk seeking nature of the subject 137 

(Table 1, model α). The temporal reward discount factor represents impulse control, with higher 138 

factor values depicting greater control (Table 1, model γ). Stimulus learning eligibility depicts the 139 

effects of repetitive choice on learning the underlying task’s reward structure and learning the link 140 

between the stimuli and their associated behavioral responses, lower factor values indicate 141 

increased decay associated with the infrequent choices (Table 1, model λ). The inverse exploration 142 

index marks the exploration/exploitation tradeoff with lower values indicative of greater 143 

exploration (Table 1, model β). Finally, the stimulus noise factor represents the noise in stimulus 144 

representation due to inadequate attention, greater factor values represent greater noise (Table 1, 145 

σ). We found that the individual subject RL models fit the actual behavior data significantly well 146 

(Figure 2B, Sum of squares cost optimization on the number of selections of each choice-door 147 

option in each block of the experiment, Spearman correlation between model predicted and actual 148 

Perf, ρ(185)=0.92, p<0.0001). 149 

 150 
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 151 
Figure 1. A)  Schematic of the Lucky Door Task. Participants fixated for 0.5 sec, then chose 152 
from one of two choice doors. Post-response, fixation reappeared for 0.5 sec, followed by 153 
presentation of the chosen door for 0.5 sec, then immediate gain or loss feedback provided for 154 
0.5 sec, and finally, cumulative feedback of all gains/losses up to the present trial shown for 0.5 155 
sec. B) Significant predictors of payoff-based performance, Perf. Gain frequency Bias (top 156 
panel, β=0.36 ±0.04, p<0.0001) significantly predict Perf.   157 
 158 
 159 

Demographics Median ± MAD 
Age 25.00 ± 14.87 
Gender n (%) 

Male 
Female 

 
71 (38.17) 
115 (61.83) 

Ethnicity n (%)  
Caucasian 116 (62.37) 

Black or African American 4 (2.15) 
Native Hawaiian, Pacific Islander 0 (0) 

Asian 37 (19.89) 
American Indian, Alaska Native 4 (2.15) 

Multi-racial 12 (6.45) 
Others 12 (6.45) 

Race n (%)  
Hispanic or Latino  25 (13.51) 

Not Hispanic or Latino  155 (83.78) 
Unknown 5 (2.70) 

SES 5.00 ± 1.34 
Mental Health Median ± MAD 
Anxiety 3 ± 2.88 
Depression 3 ± 2.76 
Inattention 4 ± 3.99 
Hyperactivity 3 ± 2.96 
Behavior Median ± MAD 
Model 𝛼 0.87 ± 0.13 
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Model 𝛾 0.90 ± 0.11 
Model 𝜆 0.54 ± 0.21 
Model 𝛽 22.94 ± 11.63 
Model 𝜎 1.64±0.23 
Perf -0.02±0.13 
Bias 0.10±0.21 

 160 
Table 1. Subject characteristics. Median ± MAD for subjects demographics variables, mental 161 
health self-report scores, and parameters from the reinforcement learning models. MAD: median 162 
absolute deviation, SES: socioeconomic status score. The normal threshold cut-off score for 163 
mental health symptoms is 5. For the reinforcement learning model, the parameter range was α Î 164 
(-1 1), γ Î (0 1), λ Î (0 1), β Î (0 50], σ Î [0.5 3]. 165 
  166 

 167 
Figure 2. A) Reinforcement Learning model schematic representing the stimulus, value 168 
function and choice selection modules. The model results for number of selections associated with 169 
each of the choice door stimuli in each task block are compared against the actual selections made 170 
by each subject, for purposes of model optimization. The model uses the utility, U, associated with 171 
each choice response for making the decision, where the utility is a function of reward average and 172 
reward variance associated with choices. The decision in the model is taken using the SoftMax 173 
probability, P, of making the choices. Model parameters are highlighted as α (model agent’s 174 
sensitivity to outcome reward variance), γ (temporal reward discounting), λ (influence of repeated 175 
choice on learning and decision-making), β (agent’s exploration and exploitation index), and σ 176 
(noisy stimulus, x, representation from mean, μ, due to inadequate attention). B) Model outcomes 177 
fit the actual behavior data for Perf (payoff-based decisions, Spearman ρ(185) = 0.92, 178 
p<0.0001).  179 
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 180 

Right rostral anterior cingulate cortex and inferior frontal cortex code for decision making 181 

payoff. 182 

 Participants performed the reward task with simultaneous EEG that was analyzed in the 183 

theta (3-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) frequency bands in cortical source space 184 

parcellated as per the Desikan-Killiany regions of interest32. To identify the neural correlates 185 

underlying expected value i.e. payoff-based performance (Perf), we modeled these as predictors 186 

of Perf using robust multivariate linear regression accounting for gain frequency Bias that 187 

determined Perf (Figure 1), and the five RL model parameters (α, γ, λ, β and σ; Figure 2).  188 

Neural activations from three relevant trial periods were investigated: immediately post-189 

presentation of selected choice but prior to reward (0-500 ms selected choice period), during 190 

presentation of trial reward (0-500 ms reward period), and during presentation of the cumulative 191 

reward up to that trial in the trial sequence (0-500 ms cumulative reward period); neural activations 192 

were the relative difference in activity on Δpayoff vs. Δ0payoff block RareG trials. Taking the 193 

relative block difference allowed non-task related individual EEG differences to cancel out, and 194 

relative responses to the RareG door were important for analysis because this door choice resulted 195 

in a larger long-term payoff than the other (RareL) door in the Δpayoff block. Family-wise error-196 

rate corrections were applied for multiple comparisons. 197 

Independently observed significant neural correlates of Perf are shown in Supplementary Table 198 

2. We further accounted for these multiple independently significant neural predictors within a 199 

unified multivariate model for Perf that also included the significant Bias, and RL model parameter 200 

covariates. The results of this multivariate model showed theta activity in the right rostral anterior 201 

cingulate cortex (ACC) during the cumulative reward period (β=-43.74 ± 13.49, t(173)=-3.24, 202 
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p=0.001 f2=0.01) and beta activity in the right parsorbitalis region of the inferior frontal cortex 203 

(IFC) also during the cumulative reward period (β=-74.88 ± 22.97, t(174)=-3.26, p=0.001, f2=0.03) 204 

as the most significant independent predictors of payoff-based decisions (Figure 3A-B); activity 205 

in the selected choice presentation period and the immediate reward period did not survive multiple 206 

comparisons. It is noteworthy that activity that occurs during the cumulative reward feedback is 207 

linked most strongly with performance linked with expected value.  208 

Additionally, we checked whether these specific neural activity regressions showed any 209 

interactions with age and gender, but no interactions were found (all p>0.55). The scalp 210 

topographic activations corresponding to these neural source profiles are shown in 211 

Supplementary Figure 1.  212 

Separately, we also investigated the neural correlates for gain Bias as differential activity towards 213 

frequent gains versus frequent losses on the Δ0payoff block. We controlled for RL parameters in 214 

these analyses as well and found Bias activations to be unique from Perf. Predictors of Bias 215 

included left superior frontal theta (β=-48.53 ± 15.09, t(171)=-3.21, p=0.001, f2=0.02), and right 216 

rostral ACC alpha (β=-685.81 ± 201.26, t(170)=-3.41, p=0.0008, f2=0.06) during the cumulative 217 

reward feedback period (Supplementary Figure 2).  218 

 219 

Neural correlates of payoff decision processes predict subjective mental health. 220 

We next investigated whether the neural correlates of payoff decisions are relevant to 221 

subjective mental health by modeling anxiety, depression, inattention and hyperactivity self-report 222 

scores as the dependent variables in robust multivariate regression models. All demographic 223 

variables (age, gender, race, ethnicity, SES), all RL model parameters (α, γ, λ, β and σ), task 224 

performance variables of Perf and Bias as well as the two cumulative reward-processing neural 225 
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correlates (right rostral ACC theta; right IFC beta) were included in each model as independent 226 

predictors. 227 

The overall model for each symptom score was significant with false discovery rate (fdr, p<0.05) 228 

correction applied for multiple comparisons: anxiety (R2=0.24, p=0.001), depression (R2=0.20, 229 

p=0.012), inattention (R2=0.19, p=0.03), and hyperactivity (R2=0.18, p=0.03).   230 

Amongst demographics, age negatively predicted anxiety (β=-0.02±0.004, t(149)=-5.04, 231 

p<0.0001, f2=0.17), depression (β=-0.01±0.004, t(149)=-3.52, p=0.0006, f2=0.08) and inattention 232 

(β=-0.01±0.004, t(142)=-3.69, p=0.0003, f2=0.10). Moreover, a multiracial origin negatively 233 

predicted inattention in subjects (β=-0.65±0.32, t(142)=-2.06, p=0.04, f2 all races=0.03). No other 234 

demographics were significant predictors of mental health symptoms. Amongst the RL model 235 

variables, reward discount factor (γ), which represents impulse control, negatively predicted 236 

inattention (β=-0.96±0.48, t(142)=-2.02, p=0.04, f2=0.03) as well as hyperactivity scores (β=-237 

0.97±0.44, t(149)=-2.20, p=0.03, f2=0.04), and the stimulus decay factor positively predicted 238 

hyperactivity (β=0.99±0.50, t(149)=1.98, p=0.049, f2=0.03). Notably, neural correlates of payoff 239 

performance also significantly predicted symptom scores: cumulative reward related rostral ACC 240 

theta activity positively predicted depression (β=304.83±153.92, t(149)=1.98, p=0.049, f2=0.07); 241 

and right IFC beta activity positively predicted inattention (β=697.84±324.08, t(142)=2.15, 242 

p=0.03, f2=0.03, Figure 3 C-D). Finally, the overall regression models for depression and 243 

inattention symptom scores were improved when taking the significant neural correlates into 244 

account vs. not (regression models compared with and without neural parameters for Depression: 245 

Fstat=3.92, p=0.049; Inattention: Fstat=4.64, p=0.03).  246 
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 247 

 248 
Figure 3: Neural correlates of payoff-based decision making in humans. Payoff based 249 
performance is negatively predicted by (A) right rostral anterior cingulate cortex (ACC) theta 250 
activity in the cumulative reward period, and by (B) right parsorbitalis (IFC) beta activity in the 251 
cumulative reward period. (C) Payoff performance related rostral ACC theta positively predicted 252 
depression and (D) parsorbitalis beta predicted inattention symptoms. The scatters are presented 253 
on an adjusted axis as obtained from the multivariate robust regression models. The x-axes in all 254 
cases are 10-3 source activity units.  255 
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Discussion 256 

Reinforcement learning models suggest human choices ideally tend to maximize long-term 257 

beneficial outcomes23,24,26,33,34. However, many existing neuropsychological measures of decision-258 

making that optimize for long-term payoffs don’t reliably estimate the participant’s ability to 259 

integrate rewards and make foresighted decisions, and instead suffer from biases to immediate 260 

outcome frequencies16,19,35,36. In our paradigm, we can disentangle gain frequency biases from 261 

payoff-based decision-making by introducing a Δ0payoff block with no payoff difference between 262 

choice options wherein decisions are purely based on gain frequency15. Comparing choices within 263 

the Δpayoff experimental block, designed to have similar reward distribution structure as the 264 

Δ0payoff block but differing only on the long-term outcome between options, allows measurement 265 

of individual long-term payoff sensitivity. Therefore, our study by its very design is able to perform 266 

this important distinction to tease apart individual payoff-based performance from bias towards 267 

gain frequency, and further leverage these measures to inform mental health behaviors.  268 

The behavioral outcomes of our experiment varied based on individual subject characteristics. 269 

Payoff-based performance was significantly related to individual bias for observed frequency of 270 

gains; this is in line with prior studies of decision-making but wherein gain frequency decisions 271 

are often conflated with expected value1,15. We further modeled subjective differences using 272 

reinforcement learning (RL) models, and extracted sensitivity to rewards and risks in the outcomes 273 

(α), reward discounting rates through time (γ), attention levels (σ), explorative tendency during 274 

behavior (β), and repetitive behavior effects on general learning dynamics (λ) to explain each 275 

subject’s behavior. Using the RL model outputs, we were able to account for individual differences 276 

when identifying the payoff performance related neural correlates.  277 
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We focused on three different time periods of the task, the first associated with processing of the 278 

selected choice, the ensuing reward presentation period and the cumulative reward period to 279 

understand how neural dynamics in these periods affect payoff-based performance. The selected 280 

choice period captures the processing associated with presentation of the chosen door after the 281 

actual decision period. We did not analyze the actual decision period since two different choice 282 

options are shown on the screen during this period and the signal associated with every choice 283 

option was difficult to explicitly assess. Accounting for demographics, gain frequency Bias and 284 

RL-model informed differences in learning and behavioral execution, the significant neural 285 

correlates of payoff sensitive performance were found in critical frontal executive regions of the 286 

right rostral anterior cingulate cortex (ACC) and inferior frontal cortex (IFC) during the cumulative 287 

reward period. Relatedly, most earlier studies on probabilistic reward processing have suggested 288 

medial prefrontal cortex (mPFC) to be a core region mediating decision performance1–3,37–39. 289 

More specifically, analyses showed theta activity in right rostral ACC negatively correlated with 290 

payoff-based performance. This finding is aligned with prior evidence for reward-based theta 291 

processing40–42 and its widely studied relationship to long-term risk or uncertainty. This may be 292 

one reason why we observe a negative relationship between rostral ACC theta during cumulative 293 

reward presentation and effective payoff, Perf, whose magnitude inversely relates to uncertainty 294 

but positively to choice utility43–46. 295 

Similarly, right IFC (parsorbitalis) negatively correlated with the payoff performance, specifically 296 

in the beta spectral band during the cumulative reward feedback period. Many inhibitory control 297 

studies suggest that increased beta activity in this region during action stopping plays an important 298 

role in behavioral inhibition. Our results at the least suggest that decisions for advantageous 299 

choices may significantly interact with the stopping circuit for successful behavior47–50. Moreover, 300 
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our findings observed during the cumulative reward feedback period may suggest facilitation of 301 

accurate response with optimal speed and inhibitory control in the next-trial51.   302 

In our study we also found that neural correlates of payoff-based performance are distinct from 303 

correlates of gain frequency bias. We found the medial prefrontal cortex, especially, left superior 304 

frontal theta and right rostral ACC alpha coded for bias-related activity. These areas had been 305 

previously suggested to play significant roles in probabilistic decision making52–59 and our study 306 

by its ability to tease apart payoff-performance and bias, is able to also distinguish the underlying 307 

neural correlates.  308 

Translational neuroscience studies show that reward based decision processing deficits are found 309 

in depression and in attention disorders, leading to difficulty in reward integration and foresighted 310 

choice-behaviors23,60–65. It is precisely such individuals who then focus on the immediate reward 311 

outcome in the short-term, characterized by a prolonged attenuation of temporal discounting of 312 

rewards66,67. Interestingly, rostral ACC activity in our paradigm during the cumulative reward 313 

feedback period that is a negative correlate of payoff performance, was a positive predictor 314 

depression scores—a link that is also supported by prior work68,69. Related research also suggests 315 

that rostral ACC theta activity is a significant pretreatment marker for depression treatment 316 

outcomes70. Additionally, right IFC beta activity during the cumulative reward feedback period 317 

showed a positive relationship to inattention scores, suggesting that decreased activity enables 318 

pursuit for maximal payoff with high attention, possibly by enabling flexibility in stopping 319 

impulsive decisions. These results are still limited by our study in healthy adults and need to be 320 

replicated in clinical populations. 321 

Altogether, our study presents the importance of controlling for biases for immediate reward 322 

frequency and individual differences in learning while assessing advantageous, i.e. foresighted 323 
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decision-making ability in humans. Our findings of payoff-relevant right rostral ACC theta activity 324 

and right IFC beta activity, both in the cumulative reward-related feedback period, are important 325 

for clinical translational application, especially for depression, and attention problems, and also 326 

suggests plausible neural targets for reward processing based interventions.  327 

  328 
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Methods 329 
 330 
Participants. 198 adult human subjects (age mean ± standard deviation 35.44 ± 20.30 years, range 331 
18-80 years, 115 females) participated in the study. All participants provided written informed 332 
consent for the study protocol approved by the University of California San Diego institutional 333 
review board (UCSD IRB #180140). Twelve of these participants were excluded from the study 334 
as they had a current diagnosis for a psychiatric disorder and current/recent history of psychotropic 335 
medications for a final sample of 186 healthy adult participants. All participants reported 336 
normal/corrected-to-normal vision and hearing and no participant reported color blindness. For 337 
older adults >60 years of age, participants were confirmed to have a Mini-Mental State 338 
Examination (MMSE) score >26 to verify absence of apparent cognitive impairment (Arevalo-339 
Rodriguez et al. 2015). All data was collected prior to COVID-19 period of restricted research. 340 
 341 
Surveys. All participants provided demographic information by self-report including age, gender, 342 
race (in a scale of 1 to 7: Caucasian; Black/African American; Native Hawaiian / Other Pacific 343 
Islander; Asian; American Indian / Alaska Native; More than one race; Unknown or not reported) 344 
and ethnicity; socio-economic status (SES) was measured on the Family Affluence Scale from 1 345 
to 9 (Boudreau and Poulin, 2008), and any current/past history of clinical diagnoses and 346 
medications were reported. For older adults >60 years of age, participants completed the Mini-347 
Mental State Examination (MMSE) and scored >26 to verify absence of apparent cognitive 348 
impairment71. All participants completed subjective mental health self-reports using standard 349 
instruments, ratings of inattention and hyperactivity obtained on the Adult ADHD Rating Scale 350 
(New York University and Massachusetts General Hospital. Adult ADHD-RS-IV with Adult 351 
Prompts. 2003; : 9–10), Generalized Anxiety Disorder 7-item scale GAD-772 and depression 352 
symptoms reported on the 9-item Patient Health Questionnaire, PHQ-973. Symptoms for these 353 
psychiatric conditions were measured because they have been related to changes in reward 354 
processing74–76.  355 
 356 
Task Design. We investigated a two-choice decision-making task that enabled a rapid assessment 357 
and was easy to understand across the adult lifespan. In this task that we refer to as Lucky Door,  358 
participants chose between one of two doors, either a rare gain door (RareG, probability for gains 359 
p=0.3, for losses p=0.7) or a rare loss door (RareL, probability for losses p=0.3, for gains p=0.7). 360 
Participants used the left and right arrow keys on the keyboard to make their door choice. Door 361 
choice was monitored throughout the task. Additionally, in two separate blocks, we investigated 362 
whether the overall expected value (payoff) of the choice door can influence individual behavior. 363 
In the baseline block with Δ0payoff (no-payoff difference), the two choice doors did not differ in 364 
payoff (RareL door, p=0.3 for -70 coins and p=0.7 for +30 coins, payoff=0; RareG door, p=0.3 for 365 
+70 coins and p=0.7 for -30 coins, payoff=0). In the experimental difference block with Δpayoff 366 
(payoff difference), expected value or payoff was greater for the RareG door (p=0.3 for +60 coins, 367 
p=0.7 for -20 coins, payoff=+40) than for the RareL door (p=0.3 for -60 coins, p=0.7 for +20 coins; 368 
payoff=-40). Manipulation of payoff, with greater expected value tied to the RareG door, allowed 369 
for investigating individual propensities to prioritize long-term (or cumulative) vs. short-term (or 370 
immediate) rewards. The RareG door was assigned greater payoff because choosing this door 371 
could selectively suggest payoff-based decision processing in subjects as opposed to simply 372 
choosing based on gain frequency in which case RareL should be preferred. 40 trials were 373 
presented per block and block order was randomized across participants; two practice trials 374 
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preceded the main Δpayoff / Δ0payoff blocks. Figure 1A shows a schematic of the task stimulus 375 
sequence and Figure 1B shows the reward distribution that was shuffled and updated after every 376 
10 trials had been sampled from that set.  377 

The Lucky Door task was deployed in Unity as part of the assessment suite on the BrainE 378 
(short for Brain Engagement) platform77. The Lab Streaming Layer (LSL78) protocol was used to 379 
time-stamp each stimulus/response event during the task. Study participants engaged with the 380 
assessment on a Windows 10 laptop sitting at a comfortable viewing distance.  381 
 382 
Electroencephalography (EEG). EEG data was collected simultaneous to the Lucky Door task 383 
using a 24-channel SMARTING device with a semi-dry and wireless electrode layout (Next 384 
EEG — new human interface, MBT). Data were acquired at 500 Hz sampling frequency at 24-bit 385 
resolution. Cognitive event markers were integrated using LSL and data files were stored in xdf 386 
format. 387 
 388 
Behavioral analyses. Task speeds were calculated as log(1/RT), where RT is response time in 389 
seconds. We computed the PayOff sensitive performance response (Perf) as the difference in 390 
proportion selection of the RareG door between the Δpayoff and the Δ0payoff blocks; RareG vs. 391 
RareL EVs differed only in the Δpayoff block. We computed Gain frequency bias (Bias) as the 392 
difference in proportion selection between the RareG and RareL doors in the Δ0payoff block where 393 
the payoff for both the doors was the same. While Perf is indicative of subjective payoff based 394 
selection of advantageous choices, Bias is indicative of inherent valence based selection of choices. 395 
For N fraction of responses in each block, we calculated:  396 
 397 

    (1) 398 

 399 
Reinforcement Learning (RL) Model. We simulated a RL model24,29 to estimate 5 different 400 
parameters for each participant, including, risk sensitivity (α); reward discount factor (γ); stimulus 401 
learning eligibility (λ); exploration index (β); stimulus noise (σ).  402 
The risk sensitivity parameter (α) measures how much the expected uncertainty associated with 403 
the door is accounted for in the computation of utility for decision making, the smaller the 404 
parameter value α Î (-1 1), α → -1 the higher is risk seeking, while a larger value, α → 1 indicates 405 
high risk aversiveness.   406 
The reward discounting factor (γ) represents discounting of rewards through time in subjects, 407 
lower values γ Î (0 1), γ → 0 suggest impulsiveness in decisions accounting for immediate rewards 408 
alone for decision processing while higher values, γ → 1 suggest long term integration of rewards 409 
for decisions.  410 
The learning eligibility trace factor (λ) represents the extent of decay associated with the infrequent 411 
presentation of stimulus that affects the learning updates, lower values λ Î (0 1), λ → 0 suggest 412 
heavy loss of stimulus information for not being presented for a trial thereby causing lossy learning 413 
update, while higher values, λ → 1 suggest conservation of stimulus information for learning in 414 
any trial.  415 
The exploration index (β) measures the randomness associated with choice selection policy, lower 416 
values β Î (0 50], β → 0 suggest exploration while higher values, β → ¥ suggest exploitation 417 
based on utility for decision making. 418 

Perf = NexptRareG − NbaseRareG
Bias = NbaseRareG − NbaseRareL
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The stimulus noise (σ) measures the randomness associated with stimulus representation as 419 
attended and perceived by the subject, lower values, σ Î [0.5 3], σ → 0 suggest sharper 420 
representation while higher values, σ → ¥ suggest noisier representation. 421 

The simulation agent had reward distributions as in the real experiment but scaled down 422 
by multiplying with a factor 0.1, and varying with blocks (Δpayoff, Δ0payoff) that were randomly 423 
ordered. There were as high as 10000 trials in each block for letting model performance converge.  424 
 425 
The agent has to choose between two doors each of which (stimulus, s) was represented by a radial 426 
basis function (Φi) as below: 427 

    (2) 428 

Here, the μs and σ denotes the mean (s ∈ [1 2]; door1 = 1; door2 = 2) and standard deviation 429 
(stimulus noise), respectively.  430 
 431 
The door stimulus is multiplied with the weight matrix wv for computing its value function, Q, and 432 
wr for constructing its risk function, √h.  433 
 434 
Utility associated with any state at a trial, t, is the combination of value and risk function79,80, where 435 
the risk function is modulated by a risk sensitivity factor α. Higher the α, higher the risk 436 
aversiveness of the subject. 437 

 where 438 

         (3) 439 

 440 
The door choice selection is performed using the SoftMax principle defined as below. According 441 
to SoftMax, the probability for choosing a door at trial, t, is P(s,t): 442 

         (4)  443 

Here, n is the total number of doors available, and β is the exploration index. Values of β tending 444 
to 0 make the choices almost equiprobable and is more exploratory whereas the β tending to ∞ 445 
makes the choice selection identical to exploitative choice selection. 446 

After choice selection, the weight functions are updated using principles below. The choice value 447 
function Q at trial t+1 for door, s, may be expressed as, 448 

         (5)  449 

where ηQ is the learning rate of the value function (0 < ηQ < 1) for the stimulus variable, Φ’(s) = 450 

Φs = exp
−(x − µs )

2

σ 2

U (s,t) =Q(s,t) −α h(s,t)

Q( s,t ) = wv( s,t )Φ( s )
h( s,t ) = wr( s,t )Φ( s )

P( s,t ) = exp( βU( s,t ))
exp( βU( i,t ))

i=1

n∑

Qt+1( s,t ) =Qt( s,t )+ηQδΦ' e
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Φ(s)e, i.e., scaled by current eligibility trace, e, associated with the stimulus. The variable e is 451 
decayed to e*λ*γ at every trial, where λ is the inverse decay parameter, and γ is the reward discount 452 
factor, for all the stimuli, but for the currently chosen e, it is further facilitated by an addition of 1, 453 
e(t+1) = e(t) + 1. 454 

Δ is the temporal difference error represented as  455 

        (6)  456 

where r is the reward associated with taking an action, a, for stimulus, s, at time, t, and γ is the 457 
reward discount factor. Similar to the value function, the risk function h has an incremental update 458 
as defined by the below equation. Optimizing the risk function in addition to the value function is 459 
shown to capture human behavior well in a variety of cognitive tasks involving reward-punishment 460 
sensitivity, risk sensitivity, and time scale of reward prediction24,81.  461 

     (7) 462 
where ηh is the learning rate of the risk function (0 <ηh< 1), and ξ is the risk prediction error 463 
expressed by the below equation.  464 

     (8) 465 
   466 

For simplicity, we model as ηh = ηQ =0.1 as an initial optimization for our subjects for η provided 467 
a median of 0.1. The weights wv and wr are set to a small random number from set [-0.0005 0.0005] 468 
at trial = 1. The weights are normalized by dividing by their norm.  469 
 470 
The cost function optimizes the frequency of selections of rare gain and rare loss options in 471 
Δ0payoff and Δpayoff blocks for every subject after running the simulation agent for 10 instances 472 
of twenty thousand trials each, and inferring the optimal parameters for every participant in our 473 
study using fmincon function in MATLAB. Cost function = sum of squares of the difference actual 474 
( Proportion# RareGexpt + Proportion# RareLexpt + Proportion# RareGbase + Proportion# RareLbase) 475 
– simulated actual ( Proportion# RareGexpt + Proportion# RareLexpt + Proportion# RareGbase + 476 
Proportion# RareLbase). Optimization is carried out for the 5 parameters, risk sensitivity (α); reward 477 
discount factor (γ); stimulus decay (λ); exploration index (β); stimulus noise (σ), using fmincon(). 478 
We ran fmincon() 100 times to choose the parameter set with least cost for any subject. The 479 
simulated Perf measures correlated with the actual values significantly (Spearman correlation, 480 
ρ(185) = 0.92, p<0.0001, Figure 2B). 481 
 482 
We also performed sensitivity analyses for our models, by systematically varying one of the five 483 
parameters at a time for about 200 different initial points linearly spaced within the boundary 484 
specific for each parameter boundary(α) = [-0.99 0.99], boundary(γ) = [0.01 0.99], boundary(λ) = 485 
[0.01 0.999], boundary(β) = [0.001 5], boundary(σ) = [0.5 3]. The other 4 parameters were kept at 486 
the median computed over the set of subjective parameter values each optimized using fmincon() 487 

δ = r + γ maxs' Q( s',t )−Qt( s,t )

ht+1( s,t ) = ht( s,t )+ηhξΦ' e

ξ = δ 2 − ht( s,a,t )
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as mentioned above (Supplementary Figure 3). These analyses confirmed Perf and Bias 488 
measures to be sensitive to the range of the five core RL model parameters.   489 
 490 
Neural data processing. 491 

We applied a uniform processing pipeline to all EEG data acquired simultaneous to the 492 
Lucky Door task. This included: 1) data pre-processing, 2) computing event related spectral 493 
perturbations (ERSP) for all channels, and 3) cortical source localization of the EEG data filtered 494 
within relevant theta, alpha and beta frequency bands. 495 

 496 
1) Data preprocessing was conducted using the EEGLAB toolbox in MATLAB82. EEG data was 497 
resampled at 250 Hz, and filtered in the 1-45 Hz range to exclude ultraslow DC drifts at <1Hz and 498 
high-frequency noise produced by muscle movements and external electrical sources at >45Hz. 499 
EEG data were average referenced and epoched to the chosen door presentation during the task, 500 
in the -.5 sec to +1.5 sec time window (Figure 1). Any missing channel data (one channel each in 501 
6 participants) was spherically interpolated to nearest neighbors. Epoched data were cleaned using 502 
the autorej function in EEGLAB to remove noisy trials (>5sd outliers rejected over max 8 503 
iterations; 0.91± 2.65% of trials rejected per participant). EEG data were further cleaned by 504 
excluding signals estimated to be originating from non-brain sources, such as electrooculographic, 505 
electromyographic or unknown sources, using the Sparse Bayesian learning (SBL) algorithm83,84, 506 
https://github.com/aojeda/PEB) explained below in the cortical source localization section. 507 
 508 
2) For ERSP calculations, we performed time-frequency decomposition of the epoched data using 509 
the continuous wavelet transform (cwt) function in MATLAB’s signal processing toolbox. 510 
Baseline time-frequency (TF) data in the -250 ms to -50 ms time window prior to chosen door 511 
presentation were subtracted from the epoched trials (at each frequency) to observe the event-512 
related synchronization (ERS) and event-related desynchronization (ERD) modulations85. Time-513 
frequency decompositions of the chosen door evoked neural activity showed that most electrodes 514 
had significant ERS and ERD signatures at the channel level, with ERS predominant in the 515 
theta/alpha frequencies and ERD predominant in the beta frequency range (Supplementary 516 
Figure 1).  517 
 518 
3) Cortical source localization was performed to map the underlying neural source activations for 519 
the ERSPs using the block-Sparse Bayesian learning (SBL) algorithm83,84 implemented in a 520 
recursive fashion. This is a two-step algorithm in which the first-step is equivalent to low-521 
resolution electromagnetic tomography (LORETA)86. LORETA estimates sources subject to 522 
smoothness constraints, i.e. nearby sources tend to be co-activated, which may produce source 523 
estimates with a high number of false positives that are not biologically plausible. To guard against 524 
this, SBL applies sparsity constraints in the second step wherein blocks of irrelevant sources are 525 
pruned. Source space activity signals were estimated and then their root mean squares were 526 
partitioned into (1) regions of interest (ROIs) based on the standard 68 brain region Desikan-527 
Killiany atlas32 shown in Supplementary Figure 4, using the Colin-27 head model87 and (2) 528 
artifact sources contributing to EEG noise from non-brain sources such as electrooculographic, 529 
electromyographic or unknown sources; activations from non-brain sources were removed to clean 530 
the EEG data. Cleaned subject-wise trial-averaged EEG data were then specifically filtered in theta 531 
(3-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) bands and separately source localized in each of 532 
these bands to estimate their cortical ROI source signals. The source signal envelopes were 533 
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computed in MatLab (envelop function) by a spline interpolation over the local maxima separated 534 
by at least one time sample; we used this spectral amplitude signal for all neural analyses presented 535 
here. We focused on selected choice based processes in the 0-500 ms period in all frequency bands, 536 
reward processes during 0-500 ms after immediate reward presentation, and 0-500 ms after 537 
cumulative reward presentation (Figure 1).  538 
 539 
Statistical Analyses  540 

We fit robust multivariate linear regression models in MATLAB to investigate the 541 
behavioral relationships between the Perf measure and demographic variables – age, sex, race, 542 
ethnicity and SES, after controlling for Bias and order of block presentation. The response variable 543 
was log-transformed for normality and we identified significant factors contributing to the main 544 
effects. Similarly, we investigated the relationships between each of the mental health factors – 545 
anxiety, depression, inattention, hyperactivity and Perf measure after controlling for Bias .and 546 
demographic variables. For regression models, we report the overall model R2 and p-value, and 547 
individual variable 𝛽 coefficients, t-statistic, degrees of freedom, and p-values. Effect sizes (Selya 548 
et al. 2012), 0.02 small, 0.15 medium, 0.35 large were calculated as f2 = (R2FullModel- 549 
R2RestrictedModel)/(1- R2FullModel). 550 

Channel-wise theta, alpha, beta ERS and ERD modulations for significant spectral activity 551 
were computed relative to baseline by first processing for any outliers; any activations greater than 552 
5MAD from the median were removed from further analyses. The significant average activity 553 
across all trials were found by performing t-tests (p<0.05) across subjects, followed by false 554 
discovery rate (FDR, alpha = 0.05) corrections applied across the three dimensions of time, 555 
frequency, and channels88.  556 

For computing source level activity correlates of the behavioral Perf measure, we first 557 
found the difference in RareG door specific neural activations between Δpayoff and Δ0payoff 558 
blocks in three frequency bands – theta, alpha and beta and in three trial periods – selected choice 559 
(before reward), reward and cumulative reward time periods. We again used robust linear 560 
regression fits for identifying individual ROIs that relate to the Perf measure accounting for Bias 561 
that significantly affect the payoff decisions, as well as the five RL model parameters (α, γ, λ, β 562 
and σ). The results were family-wise error rate corrected for multiple comparisons for 3 trial 563 
periods and 3 frequency bands (FWER correction, p<0.0055). The independently identified ROIs 564 
(Supplementary Table 2) were further factored in a unified multivariate linear regression model 565 
to account for comparisons across ROIs; significant ROIs in this multivariate model were reported 566 
(p<0.05) after controlling for Bias, and the five RL model parameters. Similar steps were used for 567 
computing the source level activity correlates for the gain Bias measure. We first found the 568 
difference in RareL and RareG door specific neural activations in the Δ0payoff blocks in three 569 
frequency bands – theta, alpha and beta and in the three trial periods corresponding to selected 570 
choice, reward and cumulative reward. We then used robust linear regression fits for identifying 571 
individual ROI activations that relate to the Bias measure accounting for Perf  that significantly 572 
affect the payoff decisions, as well as the five RL model parameters (α, γ, λ, β and σ). The results 573 
were family-wise error rate corrected for multiple comparisons for 3 trial periods and 3 frequency 574 
bands (FWER correction, p<0.0055). The independently identified ROIs were further factored in 575 
a unified multivariate linear regression model to account for comparisons across ROIs; significant 576 
ROIs in this multivariate model were reported (p<0.05) after controlling for Perf, and the five RL 577 
model parameters (Supplementary Figure 2). 578 
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Additionally, we used robust multivariate linear regressions to model the self-reported symptoms 579 
of Anxiety, Depression, Inattention, Hyperactivity using predictors of demographic variables, 580 
Perf, Bias, RL model parameters along with the identified neural correlates of Perf above.  581 
Adjusted responses from robust multivariate models were plotted using the plotAdjustedResponse 582 
function in MATLAB.  583 
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Supplementary material 584 
  585 
 586 

 Δpayoff Δ0payoff 
 RareL RareG RareL RareG 

1 20 -20 30 -30 
2 20 -20 30 -30 
3 20 -20 30 -30 
4 20 -20 30 -30 
5 20 -20 30 -30 
6 20 -20 30 -30 
7 20 -20 30 -30 
8 -60 60 -70 70 
9 -60 60 -70 70 
10 -60 60 -70 70 

sum -40 40 0 0 
average -4 4 0 0 
variance 1493.33 1493.33 2333.33 2333.33 

 587 
Supplementary Table 1. Reward distributions for the door choices in the Δpayoff and 588 
Δ0payoff blocks. The two door choices in either block were RareG (rare gains and frequent losses) 589 
and RareL (rare losses and frequent gains). RareG/RareL distributions had the same sum, average 590 
and variance in the Δ0payoff block, and different sum and averages but same variance in the 591 
Δpayoff block. Payoff (expected value) for RareG/RareL were the same in the Δ0payoff block and 592 
greater for RareG relative to RareL in the Δpayoff block.  593 
  594 
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 595 
 596 

Epoch Freq ROI 𝛽  𝛽  SE tstat pValue 
Selected choice alpha caudalanteriorcingulate R  -184.58 60.32 -3.06 2.58E-03 
Selected choice beta lingual L  -29.87 10.34 -2.89 4.35E-03 

Reward beta superiorfrontal L  -80.41 28.57 -2.81 5.48E-03 
Reward beta superiorfrontal R  -115.88 34.43 -3.37 9.46E-04 

CumuReward theta rostralanteriorcingulate R -44.41 13.71 -3.24 1.44E-03 
CumuReward beta parsorbitalis R  -79.67 23.05 -3.46 6.96E-04 
CumuReward beta superiorfrontal L  -95.63 32.76 -2.92 4.00E-03 
CumuReward beta superiorfrontal R  -105.19 33.21 -3.17 1.83E-03 
CumuReward beta supramarginal R  -38.85 7.46 -5.21 5.44E-07 

       
 597 
Supplementary Table 2: ROIs sensitive to Payoff-based decision-making performance (Perf) 598 
during selected choice presentation: 0-500 ms selected choice period; Reward: 0-500 ms 599 
immediate reward period and CumuReward: 0-500 cumulative reward period.   600 
  601 
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 602 

 603 
Supplementary Figure 1: (A) Grand-averaged spectral perturbations at scalp channels FP2 and 604 
F8 representing the event-related synchronizations and desynchronizations, closest in proximity 605 
to the identified Perf activations in the right rostral anterior cingulate cortex, and right pars 606 
opercularis, respectively. (B) Corresponding Perf scalp topographies, as differences in RareG 607 
trial activations between the Δpayoff and the Δ0payoff blocks for the relevant (500 ms-averaged) 608 
theta and beta activations are shown. 609 
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  611 
Supplementary Figure 2: Neural correlates of Gain frequency bias-based decision making. 612 
Bias based performance was negatively predicted by left superior frontal cortex theta activity in 613 
the cumulative reward period, and by right rostral anterior cingulate cortex (ACC) alpha activity 614 
in the cumulative reward period. 615 
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 618 
 619 
Supplementary Figure 3. Sensitivity analysis results for each model meta-parameter, α, γ, λ, β, 620 
σ, presented in rows and their simulation-derived model Perf and gain frequency Bias outcomes 621 
presented as corresponding columns. Only one parameter was varied at a time while the other 622 
parameters were held to their population median.  623 
 624 
 625 
  626 

P
er

f 
   

   

B
ia

s 
   

   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.11.447974doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.447974


 30 

 627 
 628 
Supplementary Figure 4. Cortical source regions as per the Desikan-Killiany atlas (Desikan et 629 
al., 2006). 630 
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