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Summary 13 
 14 

Spatial transcriptomics (ST) is a powerful and widely-used approach for profiling genome-wide gene expression 15 
across a tissue with emerging applications in molecular medicine and tumor diagnostics. Recent spatial 16 
transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes that bind 17 
mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often not the 18 
case owing to bleed from nearby spots, an artifact we refer to as spot swapping. We propose SpotClean to adjust for 19 
spot swapping and, in doing so, to increase the sensitivity and precision with which downstream analyses are 20 
conducted.  21 
  22 

Spatial transcriptomics (ST) is a powerful and widely-used approach for profiling genome-wide gene 23 

expression across a tissue 1,2. In a typical ST experiment, fresh-frozen (or FFPE) tissue is sectioned 24 

and placed onto a slide containing spots, with each spot containing millions of capture 25 

oligonucleotides with spatial barcodes unique to that spot. The tissue is imaged, typically via 26 

Hematoxylin and Eosin (H&E) staining. Following imaging, the tissue is permeabilized to release 27 

mRNA which then binds to the capture oligonucleotides, generating a cDNA library consisting of 28 

transcripts bound by barcodes that preserve spatial information. Data from an ST experiment consists 29 

of the tissue image coupled with RNA-sequencing data collected from each spot. A first step in 30 

processing ST data is tissue detection, where spots on the slide containing tissue are distinguished 31 

from background spots without tissue. Unique molecular identifier (UMI) counts at each spot 32 

containing tissue are then used in downstream analyses (Supplementary Figure 1). 33 

 34 
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Ideally, a gene-specific UMI at a given spot would represent expression of that gene at that spot, and 35 

spots without tissue would show no UMIs. This is not the case in practice. Messenger RNA bleed 36 

from nearby spots causes substantial contamination of UMI counts, an artifact we refer to as spot 37 

swapping. Evidence for spot swapping is shown in Figure 1 in a tissue sample from postmortem 38 

human brain profiled as part of spatialLIBD, a project aimed at defining the spatial topography of 39 

gene expression in the six-layered human dorsolateral prefrontal cortex (DLPFC)3.  Specifically, 40 

Figure 1a shows that UMI counts at background spots (which are zero in the absence of 41 

contamination) are high compared with counts in tissue spots; and the counts decrease with 42 

increasing distance from the tissue (Figure 1b). Figure 1c shows the distribution of UMI counts for 50 43 

genes in a tissue region, a nearby background region, and a distant background region. As a result of 44 

expression similarity between the tissue and nearby background, tissue and background spots are not 45 

easily distinguished (Figure 1d). This is emphasized again in Figure 1f, where spots on the slide are 46 

colored by membership in the graph-based clusters shown in Figure 1e. Supplementary Figures 2-5 47 

show similar results from 16 additional datasets; and Supplementary Table 1 shows that the 48 

proportion of UMI counts in background spots ranges between 5% and 20% in most datasets. 49 

 50 

Figure 1, Supplementary Figures 2-5, and Supplementary Table 1 demonstrate that spot swapping 51 

occurs from tissue to background, but evaluating the extent of spot swapping from tissue spot to 52 

tissue spot is more challenging. While the SpotClean model provides an estimate (Supplementary 53 

Table 2), we also consider tissue-specific marker genes identified in the spatialLIBD project. In the 54 

absence of spot swapping, expression for a layer-specific marker should be high within that layer, and 55 

low (or off) in other layers. When spot swapping occurs, marker expression is relatively high in 56 

nearby layers. This is evident with GFAP, for example, a marker known to be up-regulated in white 57 

matter (WM) and in the first annotated layer of the DLPFC (Layer1). Supplementary Figure 6 shows 58 

high expression of GFAP in WM and Layer1 spots, as expected, but also relatively high expression in 59 

tissue spots adjacent to WM and Layer1, with GFAP expression decreasing as distance from WM (or 60 

Layer1) increases. While it is possible that some increase in marker expression in adjacent tissue 61 

spots may be due to the presence of WM (or Layer1) cells at those spots, we note that the rate of 62 

expression decay into the background spots (where no cells are present) is similar to the rate of decay 63 

into adjacent tissue regions. Consequently, the possible presence of WM (or Layer1) cells in adjacent 64 

tissue spots is not sufficient to fully explain the observed expression pattern. Similar results are 65 
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shown for a WM marker, MOBP (Supplementary Figure 6), as well as 13 additional markers 66 

(Supplementary Figure 7). 67 

  68 

To more directly quantify the extent of spot swapping, we conducted chimeric experiments where 69 

human and mouse tissues were placed contiguously during sample preparation. For each experiment, 70 

we annotated the H&E images to identify species-specific regions, and we calculated the proportion 71 

of spot-swapped reads (mouse-specific reads in human spots, human-specific reads in mouse spots, 72 

and reads in background spots). This is a lower bound on the proportion of spot-swapped reads 73 

(LPSS) as it does not account for spot swapping within species (e.g. reads from human spot t bound 74 

by probes at human spot t'); LPSS ranges between 26-37% in these experiments (Supplementary 75 

Table 1).  Taken together, results from a comparison of tissue and background expression (Figure 1 76 

and Supplementary Figures 2-5), analysis of marker genes (Supplementary Figures 6-7), and the 77 

chimeric experiment (Supplementary Table 1 and Supplementary Figure 8) demonstrate that spot 78 

swapping affects UMI counts in ST experiments. This nuisance variability decreases the power and 79 

precision of downstream analyses (Figure 2b, Figure 2f-h, Supplementary Figure 9). 80 

 81 

The statistical methods developed to adjust for known sources of contamination in RNA-seq 82 

experiments4,5 do not accommodate the spatial dependence inherent in spot swapping, and, 83 

consequently, are not sufficient in this setting (Supplementary Section S1).   To adjust for the effects 84 

of spot swapping in ST experiments, we developed SpotClean. The approach is implemented in the R 85 

package R/spotClean. SpotClean was evaluated on simulated and case study data. In SimI, 86 

contaminated counts are generated assuming that local contamination follows a Gaussian kernel; 87 

SimII-IV relax the Gaussian assumption. In SimV, contaminated counts are simulated for genes 88 

having average expression that varies systematically across the slide. Supplementary Tables 3-6, 89 

which show the mean squared error (MSE) between true and decontaminated gene expression in 90 

simulated datasets, indicate that SpotClean provides better estimates of expression; and 91 

Supplementary Figure 10 demonstrates that SpotClean expression estimates lead to increased 92 

precision for identifying spatially varying genes. 93 

 94 

The benefits of SpotClean on downstream analyses are also illustrated in case study data. 95 

Specifically, SpotClean increases the specificity of marker gene expression, increases the power for 96 

identifying DE genes, and improves the accuracy of spot annotations.  Figure 2a shows that 97 
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SpotClean improves the specificity of GFAP in the spatialLIBD data by maintaining expression 98 

levels in WM and Layer1 and reducing spurious expression in the other layers.  Supplementary 99 

Figure 11 shows similar results for the 15 markers shown in Supplementary Figure 7. Figure 2b and 100 

Supplementary Figure 9 consider genes known to be differentially expressed (DE) between WM and 101 

Layer6 in raw and SpotClean decontaminated data; SpotClean results in increased fold-changes and 102 

smaller p-values for known DE genes. The chimeric datasets provide additional examples. In 103 

particular, Figure 2d shows that SpotClean reduces the proportion of spot-swapped UMI counts in the 104 

chimeric datasets. Similar results are shown in Figure 2e where we consider expression for human-105 

specific and mouse-specific genes at human-specific and mouse-specific spots. Data decontaminated 106 

via SpotClean shows reduced expression of human genes in mouse tissue, with no reduction in 107 

human tissue, and vice versa.  108 

 109 

There is considerable interest in applying spatial transcriptomics to personalized medicine, such as 110 

molecular profiling of patient tumor biopsies to guide diagnosis and precision therapy. SpotClean 111 

demonstrates substantial advantage in such applications where accurate spot annotation is crucial. 112 

Figure 2f shows a human breast cancer sample (ductal carcinoma), where the diagnosis and extent 113 

and invasiveness of tumor is typically estimated through evaluation of an H&E image by a 114 

pathologist. Spatial transcriptomics can provide additional information including identifying subtle 115 

collections of malignant cells, but accurate spot annotation is required for this information to be 116 

useful in clinical practice, and especially so as not to overcall tumor burden.  Figure 2f shows spots 117 

annotated using SpotClean data versus spots annotated using data that has not been decontaminated 118 

via SpotClean. The non-decontaminated data misidentifies many spots as malignant including those 119 

containing benign inflammatory cells surrounding the tumor whereas the SpotClean decontaminated 120 

data more closely resembles identification of malignant cells on the H&E image. Figure 2g-h show 121 

that without SpotClean, over 13% of the spots labelled malignant in the raw data are likely false calls 122 

due to spot swapping.  123 

 124 

Spatial transcriptomics provides unprecedented opportunity to address biological questions and 125 

enhance patient care, but artifacts induced by spot swapping must be adjusted for to ensure that 126 

maximal information is obtained from these powerful experiments. SpotClean provides for more 127 

accurate estimates of expression, thereby increasing the power and precision of downstream analyses. 128 

  129 
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Figures 130 

 131 
Figure 1: Data from the human dorsolateral prefrontal cortex profiled in the spatialLIBD experiment, 132 
sample LIBD_151507. (a) UMI count densities for tissue and background spots show relatively high counts 133 
in the background. (b) UMI total counts in the background decrease with increasing distance from the tissue; 134 
the perimeter delineating tissue and background is shown in white. (c) Counts of the top 50 genes from a 135 
select tissue region (upper), from a nearby background region (middle), and from a distant background 136 
region (bottom) show the similarity between expression in tissue spots and nearby background spots due to 137 
spot swapping from tissue to background, an effect that decreases as distance from the tissue increases. The 138 
positions of the three regions are shown in Supplementary Figure 2. (d) Tissue and background spots are 139 
not distinguished visually via UMAP. (e) Graph-based clustering of all spots identifies 9 clusters. (f) Spots 140 
on the slide are colored by their cluster membership shown in (e). Black arrows highlight areas of spot 141 
swapping of signal from tissue to background. Spots on the perimeter (shown in white) have been removed 142 
from the summaries shown here to ensure that the effects shown are not due to spots on the tissue-143 
background boundary. The H&E image for this dataset is shown in Supplementary Figure 2.    144 
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 145 
Figure 2: Data from the spatialLIBD study, sample LIBD_151507 (panels a and b); the chimeric 146 
experiment, sample HM-1 (panels c-e); and a human breast cancer study, sample human_breast_2 147 
(panels f-h).  (a) Known annotation of different layers of the human dorsolateral prefrontal cortex 148 
(left); layer-specific marker gene expression in the raw (middle) and SpotClean decontaminated 149 
(right) data show that SpotClean provides improved specificity of marker gene expression for GFAP, 150 
a marker for WM and Layer1, and for SNAP25, a neuronal marker up-regulated in Layer2-Layer6. 151 
(b) An analysis of genes known to be differentially expressed (DE) between WM and Layer6 in raw 152 
and SpotClean decontaminated data shows that SpotClean results in increased fold-changes and 153 
smaller p-values for the majority of known DE genes. (c) Species annotation of sample HM-1, a 154 
chimeric tissue of human skin and mouse duodenum. Spots annotated as mixtures were removed 155 
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prior to calculating the summaries in panels (d) and (e) in an effort to ensure that the effects shown 156 
are not due to spots containing a mixture of the two species. (d) The proportion of spot-swapped UMI 157 
counts from all human genes (human-specific UMIs in background or mouse spots) are shown left for 158 
raw (salmon) and SpotClean decontaminated (turquoise) data; the proportion of spot-swapped UMI 159 
counts from all mouse genes (mouse-specific UMIs in background or human spots) are shown right. 160 
Note that there may be spot swapped UMIs within species (e.g. reads from human spot t bound by 161 
probes at human spot t'), but they cannot be identified in this experiment. (e) Scaled expression 162 
(UMIs are scaled so that each row sums to 1) for the top 100 human genes and top 100 mouse genes 163 
in the top 100 human spots and top 100 mouse spots. The top 100 human or mouse genes (spots) are 164 
those genes (spots) with highest total UMI counts. Data decontaminated via SpotClean shows 165 
reduced expression of human genes in mouse tissue, with no reduction in human tissue; and vice 166 
versa. (f) Malignant spot composition as estimated via SPOTlight is shown for the raw data (upper 167 
left) and SpotClean decontaminated data (upper middle). The raw data identifies many spots as 168 
malignant whereas the SpotClean decontaminated data more closely resembles the annotations 169 
derived from the H&E image (upper right). The inserts highlighted in the upper panel are shown in 170 
the lower panel. (g) Spearman correlations between average expression in the malignant scRNA-seq 171 
cells and spot-specific expression were calculated. Boxplots of correlations are shown for 265 172 
strongly non-malignant spots, 216 questionably malignant spots (spots labelled malignant in the raw 173 
data, but not the SpotClean decontaminated data), and 546 strongly malignant spots. Correlations 174 
with non-malignant scRNA-seq cells are also shown. The correlations show that expression in the 175 
questionably malignant spots more closely resembles that in non-malignant cells suggesting that the 176 
malignant classification in the raw data at these spots is likely false due to spot swapping. (h) The 177 
UMAP plot further demonstrates that the questionably malignant spots are likely false positives as 178 
their expression more closely resembles that at non-malignant spots. 179 
  180 
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DATA AVAILABILITY    181 

Raw sequence data for the 3 human-mouse chimeric experiments are available at GEO (accession 182 

number: GSE178221). Links to 14 public spatial transcriptomics datasets are available in 183 

Supplementary Table 7. The human breast cancer single-cell RNA-seq data from Chung et al.6  is 184 

available at GEO (accession number: GSE75688).  185 

 186 

CODE AVAILABILITY    187 

The R package SpotClean is available at https://github.com/zijianni/SpotClean and will be submitted 188 

to Bioconductor. Codes for simulation and real data analyses as well as processed data can be found at 189 

https://github.com/zijianni/codes_for_SpotClean_paper. 190 
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ONLINE METHODS 209 
 210 
Versions: The following software and packages were used in the analysis: R-4.0.2; R/SpotClean-211 

0.99.0; R/SoupX-1.5.0; R/celda-1.5.11; R/Seurat-3.2.2; R/scran-1.17.20; R/SPOTlight-0.1.7; 212 

R/reticulate-1.16; Python-3.7.4; Python/spatialde-1.1.3; FastQC-0.11.7; MultiQC-1.9; Space Ranger-213 

1.2.2; Loupe Browser-4.2.0.  214 

 215 

SpotClean:  Let 𝐾𝐾 be the total number of spots, 𝐺𝐺 be the set of genes, 𝐼𝐼𝑡𝑡 be the set of tissue spots 216 

with cardinality |𝐼𝐼𝑡𝑡| = 𝐾𝐾𝑡𝑡, and 𝐼𝐼𝑏𝑏 be the set of background spots with cardinality |𝐼𝐼𝑏𝑏| = 𝐾𝐾𝑏𝑏 where 217 

𝐾𝐾𝑡𝑡 + 𝐾𝐾𝑏𝑏 = 𝐾𝐾. The true (i.e., uncontaminated) UMI counts are given by {𝑌𝑌𝑔𝑔,𝑡𝑡}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡  and observed 218 

counts by 𝒟𝒟 = {𝑋𝑋𝑔𝑔,𝑗𝑗}𝑔𝑔∈𝐺𝐺,𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏.  As our interest here is to characterize the extent of spot swapping, 219 

we introduce the missing variable 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑗𝑗 to be the UMI count for gene g leaving tissue spot t and 220 

binding to tissue (or background) spot 𝑗𝑗.  Likewise we define 𝑆𝑆𝑔𝑔,𝑡𝑡 to be the UMI count arising from 221 

gene g in tissue spot t that remain at that spot and thus are not subject to bleeding.  We decompose  222 

𝑌𝑌𝑔𝑔,𝑡𝑡 into a sum: 𝑌𝑌𝑔𝑔,𝑡𝑡 = 𝑆𝑆𝑔𝑔,𝑡𝑡 + 𝐵𝐵𝑔𝑔,𝑡𝑡, where 𝐵𝐵𝑔𝑔,𝑡𝑡 = ∑ 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑘𝑘𝑘𝑘∈𝐼𝐼𝑡𝑡  counts all bleed-outs from spot 𝑡𝑡 to other 223 

spots 𝑘𝑘 ≠ 𝑡𝑡.  Extending notation, we set 𝑌𝑌𝑔𝑔,𝑏𝑏 = 𝑆𝑆𝑔𝑔,𝑏𝑏 = 𝐵𝐵𝑔𝑔,𝑏𝑏 = 0 for background spots 𝑏𝑏 ∈ 𝐼𝐼𝑏𝑏 since 224 

background spots do not express mRNA.  With these missing variables defined, we note that the 225 

measured count 𝑋𝑋𝑔𝑔,𝑗𝑗 = 𝑆𝑆𝑔𝑔,𝑗𝑗 + 𝑅𝑅𝑔𝑔,𝑗𝑗 where 𝑅𝑅𝑔𝑔,𝑗𝑗 = ∑ 𝐵𝐵𝑔𝑔,𝑘𝑘,𝑗𝑗𝑘𝑘∈𝐼𝐼𝑡𝑡   represents UMI counts received at spot 𝑗𝑗 226 

due to spot swapping.  We leverage this missing-data formulation by flexibly modeling the 227 

component counts with independent Poisson distributions, which are known to be effective for UMI 228 

counts7.   229 

 230 

For a collection of spot and gene-specific parameters, as well as global parameters controlling the 231 

swapping rates, we parameterize the distributions as:  𝑆𝑆𝑔𝑔,𝑡𝑡 ∼ Poisson �𝜇𝜇𝑔𝑔,𝑡𝑡�1 − 𝑟𝑟𝛽𝛽�� and 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑗𝑗 ∼232 

Poisson �𝜇𝜇𝑔𝑔,𝑡𝑡𝑟𝑟𝛽𝛽 ��1 − 𝑟𝑟𝛾𝛾�𝑤𝑤𝑡𝑡,𝑗𝑗 +  𝑟𝑟𝛾𝛾
1
𝐾𝐾
� � where 𝑟𝑟𝛽𝛽 is the bleeding rate; 𝑟𝑟𝛾𝛾 is a distal and 1 − 𝑟𝑟𝛾𝛾 is a 233 

proximal contamination rate.  By taking the global bleeding rate 𝑟𝑟𝛽𝛽 ∈ [0,1],  it follows that the 234 

uncontaminated counts follow: 𝑌𝑌𝑔𝑔,𝑡𝑡 ∼ Poisson�𝜇𝜇𝑔𝑔,𝑡𝑡� for target parameters 𝜇𝜇𝑔𝑔,𝑡𝑡 whose estimates 235 

constitute statistical estimates of the uncontaminated counts. Likewise for measured counts,  𝑋𝑋𝑔𝑔,𝑗𝑗 ∼236 

Poisson�𝜂𝜂𝑔𝑔,𝑗𝑗�, for induced gene and spot parameters. We define 𝑤𝑤𝑡𝑡,𝑗𝑗  by a weighted Gaussian kernel:  237 

𝑤𝑤𝑡𝑡,𝑗𝑗 = 𝐾𝐾�𝑑𝑑𝑡𝑡,𝑗𝑗,𝜎𝜎�/∑ 𝐾𝐾�𝑑𝑑𝑡𝑡,𝑗𝑗′,𝜎𝜎�𝑗𝑗′   where 𝑑𝑑𝑡𝑡,𝑗𝑗 is the physical Euclidean distance between spots 𝑡𝑡 and 𝑗𝑗 238 
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measured in pixels in the slide image, σ is the kernel bandwidth, and 𝐾𝐾(𝑑𝑑,𝜎𝜎) = 𝑒𝑒�−𝑑𝑑2/2𝜎𝜎2� is a 239 

Gaussian kernel8.  240 

 241 

Parameter estimation: Plug-in estimates obtained by minimizing the residual sum of squares (RSS) 242 

between observed total counts and their expected values are used to estimate 𝑟𝑟𝛽𝛽 , 𝑟𝑟𝛾𝛾, and 𝜎𝜎. 243 

Specifically,  244 

 �𝑟𝑟𝛽𝛽� , 𝑟𝑟𝛾𝛾� ,𝜎𝜎�, {𝜇𝜇⋅𝑡𝑡�}𝑡𝑡∈𝐼𝐼𝑡𝑡� = argmin
𝑟𝑟𝛽𝛽 ,𝑟𝑟𝛾𝛾,𝜎𝜎,{𝜇𝜇⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡

� �𝑋𝑋 ⋅𝑗𝑗 − 𝜂𝜂 ⋅𝑗𝑗�
2

𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏
 245 

where 𝑋𝑋⋅𝑗𝑗, 𝜂𝜂⋅𝑗𝑗 , 𝜇𝜇⋅𝑗𝑗 are the summations of 𝑋𝑋𝑔𝑔,𝑗𝑗 , 𝜂𝜂𝑔𝑔,𝑗𝑗, 𝜇𝜇𝑔𝑔,𝑗𝑗 among all genes, respectively. To reduce 246 

computational complexity, 𝜎𝜎� is taken as the minimum RSS calculated over a grid of candidate values. 247 

Explicit gradients are calculated for 𝑟𝑟𝛽𝛽 and 𝑟𝑟𝛾𝛾 and estimates are obtained by L-BFGS-B gradient 248 

descent9. Details are provided in Supplementary Section S2.  Since this optimization problem is not 249 

necessarily convex, it is important to choose appropriate initial values. For the initial values {𝜇𝜇⋅𝑡𝑡
(0)}𝑡𝑡∈𝐼𝐼𝑡𝑡  250 

of {𝜇𝜇⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡, we use the observed total UMI counts {𝑋𝑋⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡  in tissue spots and scale them up so that 251 

they sum to the total UMIs in the data. The initial bleeding rate, 𝑟𝑟𝛽𝛽
(0), is the average expression in 252 

background spots divided by the average expression in all spots; and the initial distal contamination 253 

rate, 𝑟𝑟𝛾𝛾
(0), is defined by average expression in the 25th-50th percentile of all background spots divided 254 

by average expression in all background spots.  255 

 256 

With estimates 𝑟𝑟𝛽𝛽� , 𝑟𝑟𝛾𝛾� ,𝜎𝜎� of the global parameters, true expression levels �𝜇𝜇𝑔𝑔,𝑡𝑡�𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡
 are readily 257 

estimated using an expectation-maximization (EM) algorithm10. Details are provided in 258 

Supplementary Section S3. For the initial values of true expressions {𝜇𝜇𝑔𝑔,𝑡𝑡
(0)}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡 , we use the 259 

observed UMI counts {𝑋𝑋𝑔𝑔,𝑡𝑡}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡  and scale up each gene so that their summations are equal to the 260 

gene summations in all spots.  261 

 262 

Estimation of spot-level contamination rate: For tissue spot 𝑡𝑡, let 𝑐𝑐𝑡𝑡 be the proportion of 263 

contaminated UMIs from total observed UMIs. We estimate 𝑐𝑐𝑡𝑡 using the estimated contamination 264 

received in 𝑡𝑡 over its estimated contaminated total counts from model fitting: 𝑐𝑐𝑡𝑡� =265 

𝐸𝐸��∑ ∑ 𝐵𝐵𝑔𝑔,𝑡𝑡′,𝑡𝑡𝑔𝑔𝑡𝑡′∈𝐼𝐼𝑡𝑡−{𝑡𝑡} �

𝐸𝐸�(𝑋𝑋⋅𝑡𝑡)  . Validation of this estimate is provided in Supplementary Figure 12. 266 
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Analysis of publicly available case study datasets: We downloaded UMI count matrices for 14 267 

publicly available datasets, of which 12 came from 10x Visium and 2 came from Slide-seqV22; links 268 

are provided in Supplementary Table 7. For each Visium dataset considered, the count matrix was 269 

normalized via scran11, following the Seurat12 pipeline for dimension reduction, clustering, and 270 

visualization. Seurat functions FindVariableFeatures(nfeatures = 4000), ScaleData(), RunPCA(), 271 

RunUMAP(), FindNeighbors(), and FindClusters() were applied under default settings. For each 272 

Slide-seqV2 dataset, we inspected total UMI counts of all spatial barcodes in the raw count matrix. 273 

 274 

Application of SoupX, DecontX, and SpotClean: Default parameters were used for SpotClean and 275 

DecontX. Since SoupX requires manual input of clusters, we first applied the Seurat pipeline on the 276 

raw tissue UMI count matrix to get cluster labels, with functions NormalizeData(), 277 

FindVariableFeatures(), ScaleData(), RunPCA(), FindNeighbors(), FindClusters() applied under 278 

default settings. Parameters for SoupX (soupRange in estimateSoup(), tfidfMin and soupQuantile in 279 

autoEstCont()) were manually tuned when the default settings failed. Some datasets did not run even 280 

after parameter tuning; results from these datasets are marked as NA.  SpotClean decontaminates 281 

genes with average expression above 1, high variance as determined by Seurat's 282 

FindVariableFeatures() function, or both. All methods were applied to these same set of genes. In the 283 

simulated data, we force all methods to decontaminate all genes since there are relatively few (1000 284 

or 3000 genes depending on the simulation). 285 

 286 

Identification of marker genes and DE genes: The spatialLIBD project presented in Maynard et 287 

al.3 consists of spatial expression in the six-layered dorsolateral prefrontal cortex (DLPFC).  The 288 

authors identified a number of marker genes for distinct layers of the DLPFC. In addition to these, we 289 

also considered marker genes from a single-cell RNA-seq study of Alzheimer's disease13where 290 

markers differentiating between known cell types were identified. The markers shown here were 291 

selected from these papers if they were highly expressed (in the upper 25th percentile) in the 292 

spatialLIBD datasets.  We also evaluate the genes reported as DE between WM and Layer6 in 293 

Maynard et al.3. We filtered their list of DE genes and considered those genes having FDR<=10-4.  294 

From those, we chose the top 100 highest expressors in the raw data, sorted by fold change, and 295 

selected the top 10 for each dataset. For the DE analysis, raw and decontaminated tissue matrices 296 

were normalized using scran11; for each gene, p-values were obtained from a two-sample two-sided t-297 
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test between the 354 spots in WM and the 486 spots in Layer6. Summary statistics for the tests in 298 

Figure 2b are reported in Supplementary Tables 8-9.  299 

 300 

Human-mouse chimeric experiment: Fresh sections of normal human skin tissue were obtained 301 

with consent during routine dermatologic surgery under University of Wisconsin School of Medicine 302 

and Public Health Institutional Review Board (Approval #2010-0367). On the same day, fresh mouse 303 

tissue was harvested. All mouse husbandry and experimental procedures were performed in 304 

accordance and compliance with policies approved by the University of Wisconsin Research Animals 305 

Research and Compliance committee (Protocol #M5131). Three mixed species tissue blocks were 306 

then prepared under cold conditions as follows and frozen over a bed of dry ice and stored at - 80°C 307 

in optimal tissue cutting (OCT) medium until they were ready to use:  308 

 309 

HM-1: Duodenum from a 10-week-old C57BL/6J mouse as casing to a 4 mm punch section 310 

“cylinder” of human skin  311 

HM-2: Colon from a 10-week-old C57BL/6J mouse as casing to a 4 mm punch section “cylinder” of 312 

human skin  313 

HM-3: Heart from a 10-week-old C57BL/6J mouse encasing a 4 mm punch section “cylinder” of 314 

human skin  315 

 316 

Visium Spatial Transcriptomics: The Visium Spatial Tissue Optimization Slide & Reagent kit 317 

(10X Genomics) was used to optimize permeabilization conditions for the chimeric tissue according 318 

to manufacturer’s protocol and yielded an optimal tissue permeabilization time of 12 minutes. The 319 

Visium Spatial Gene Expression Slide & Reagent kit (10X Genomics) was used to generate 320 

sequencing libraries. Sections were cut at 10 μm thickness and mounted onto Visium slide capture 321 

areas, stained with H&E, digitally imaged, and then permeabilized for library preparation. 322 

Sequencing libraries were prepared following the manufacturer’s protocol. Initial quality control of 323 

the libraries was by analysis of 2x150 MiSeq data for each sample. The libraries were then sequenced 324 

on a NovaSeq 6000 (Illumina), with 29 bases from read 1 and 101 from read 2, at a depth of 500k-325 

600k reads per spot. The actual depth was 455652, 440024, 538709 reads per spot for sample HM-1, 326 

HM-2, HM-3, respectively. 327 

 328 
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Alignment and pre-processing in the chimeric experiment:  The sequencing quality of each 329 

sample was evaluated using FastQC14 and MultiQC15. All FastQ files passed quality control. Tissues 330 

were manually aligned using the Loupe Browser. Reads were aligned to the GRCh38+mm10 331 

reference genome (refdata-gex-GRCh38-and-mm10-2020-A  from 332 

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) and gene 333 

expression was quantified using Space Ranger under default parameters.  Following alignment, we 334 

considered only those reads labeled confidently mapped by SpaceRanger; confidently mapped reads 335 

are reads that map uniquely to a gene. We refer to a gene as a human gene if it has prefix GRCh38; a 336 

mouse gene has prefix mm10. UMI counts were normalized for differences in total counts across 337 

species by scaling total UMI counts in mouse to match total UMI counts in human.   338 

Genes having average expression <0.01 were removed. 339 

 340 

Human and mouse tissue spot annotation in the chimeric experiment:  Tissue spots were labelled 341 

as human, mouse, or histopathological mixture based on visual inspection of the H&E images. A 342 

histopathological mixture spot is one with tissue contributions from both species that can be visually 343 

verified in the H&E stained image. A pure human or pure mouse spot was relabeled as a 344 

computational mixture spot if the spot label differed from the majority of UMIs. Specifically, a 345 

human (or mouse) spot was labelled as a computational mixture if the total UMI counts from mouse 346 

(human) exceeded the median of total UMI counts across all mouse spots (human spots). Both 347 

histopathological or computational mixture spots were removed prior to analyses in an effort to 348 

ensure that the effects shown are not due to spots containing a mixture of the two species. 349 

 350 

Lower bound on the proportion of spot swapped reads (LPSS): Spot swapped reads include reads 351 

from one tissue spot binding background probes (tissue-to-background) as well as reads at one tissue 352 

spot binding probes at another tissue spot (tissue-to-tissue). It is not possible to directly measure 353 

tissue-to-tissue swapping in most cases. However, the chimeric experiment provides some insight 354 

into the extent of spot swapping tissue-to-tissue. We define LPSS in the chimeric experiment as the 355 

proportion of misclassified reads (mouse reads in human spots, human reads in mouse spots, and 356 

reads in background spots). This is a lower bound as it does not account for spot swapping within 357 

species (e.g. reads from human spot t bound by probes at human spot t'). 358 

 359 
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Cell type decomposition of the human breast cancer data:  For cell type decomposition, we 360 

applied SPOTlight16 to the Visium human breast cancer data (referred to here as human_breast_2; 361 

details on this data are provided in Supplementary Table 7). SPOTlight16  requires single-cell RNA-362 

seq data to use as a reference; for this, we used the human breast cancer single-cell RNA-seq data 363 

from Chung et al.6  SPOTlight16 was applied to the raw data under default settings to estimate the cell 364 

type composition of every spot; SPOTlight16 was also applied to the SpotClean decontaminated data 365 

under default settings. Note that since tumor cell populations are heterogeneous, and spots contain 366 

multiple cells, most spots containing malignant cells will also contain non-malignant cells. Following 367 

clinical practice, we label a spot as malignant if there is any evidence of malignancy. Specifically, we 368 

annotate spots as malignant if the estimated malignant cell composition exceeds 10%, which 369 

corresponds to approximately 1 malignant cell in the spot since the estimated number of cells in a 370 

spot is approximately 10 in Visium data16. We further define non-malignant spots as "strongly non-371 

malignant" if the non-malignant cell composition exceeds 95%, and "strongly malignant" if the 372 

malignant cell composition exceeds 30% in both raw and decontaminated data. "Questionably 373 

malignant" is used to refer to spots called malignant in the raw data, but not the SpotClean 374 

decontaminated data. Spearman correlations between the expression of each spot and the average 375 

expression of malignant cells in the reference single-cell data were calculated to measure the 376 

similarity of each spot group (strongly non-malignant, strongly malignant, or questionably malignant) 377 

to malignant cells; the same was done to measure similarity of each spot group to non-malignant 378 

cells. Boxplots in Figure 2g demonstrate the median, upper and lower quartile, range without outliers, 379 

and outlier values of the Spearman correlations for each group of spots using default plotting 380 

functions. The Seurat pipeline, as described previously, was applied under default settings to the 381 

decontaminated data to produce the UMAP plot.  In the H&E image, tissue spots were labelled as 382 

malignant and non-malignant based on visual inspection. 383 

 384 

Simulations:  SimI simulates the spot swapping effect to get contaminated UMI counts given an 385 

input dataset. Specifically, starting from an input UMI count matrix of real data, 3000 genes with 386 

highest total UMI counts were selected. Expression for these genes was scaled to target the same 387 

average UMI total counts (average taken over spots) across input datasets. Denote the resulting 388 

matrix by {μ𝑔𝑔,𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡 . The bleeding rate 𝑟𝑟𝛽𝛽 and distal contamination rate 𝑟𝑟𝛾𝛾 were estimated from the 389 

input data, using the same approach as described for obtaining initial values in SpotClean. The spot 390 
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distances �𝑑𝑑𝑡𝑡,𝑗𝑗�𝑡𝑡∈𝐼𝐼𝑡𝑡,𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏
were calculated based on the spot coordinates in the H&E image of the 391 

input dataset; the contamination radius, 𝜎𝜎,  was set to 10; and the weights which describe the 392 

proportion of UMIs swapping locally from tissue spot t to any spot j, 𝑤𝑤𝑡𝑡,𝑗𝑗, is given by a Gaussian 393 

kernel. The expected contamination of gene 𝑔𝑔 from tissue spot 𝑡𝑡 to spot 𝑗𝑗 is then given by 394 

𝜇𝜇𝑔𝑔,𝑡𝑡𝑟𝑟𝛽𝛽 ��1 − 𝑟𝑟𝛾𝛾�𝑤𝑤𝑡𝑡,𝑗𝑗 +  𝑟𝑟𝛾𝛾
1
𝐾𝐾
�. Summing contamination from all tissue spots to spot 𝑗𝑗 and adding the 395 

UMIs that stay at j,  𝜇𝜇𝑔𝑔,𝑗𝑗(1 − 𝑟𝑟𝛽𝛽), gives the expected observed expression 𝜂𝜂𝑔𝑔,𝑗𝑗. Simulated counts for 396 

gene 𝑔𝑔 in spot 𝑗𝑗 are sampled from Poisson�𝜂𝜂𝑔𝑔,𝑗𝑗�. 397 

 398 

Additional simulations are similar, but proximal contamination weights are not given by a Gaussian 399 

kernel. Rather, SimII, SimIII, and SimIV assume proximal contamination weights are given by a 400 

Linear, Laplace, and Cauchy kernel, respectively.  401 

 402 

For SimV, starting from a UMI count matrix of real data, we select the top 5000 most highly 403 

expressed genes; any gene having average expression less than 0.1 is removed. SpatialDE17 is then 404 

applied using default settings; the top 500 highest expressed genes with q-value <=0.01 are identified 405 

as true spatially variable (SV) genes. For each SV gene, we simulate a matched non-SV gene by 406 

sampling independent Poisson counts parameterized by the average expression of the SV gene.  407 

 408 
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