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Flapping, flexible insect wings deform during flight
from aerodynamic and inertial forces. This deformation
is believed to enhance aerodynamic and energetic
performance. However, the predictive models used
to describe flapping wing fluid-structure interaction
(FSI) often rely on high fidelity computational solvers
such as computational fluid dynamics (CFD) and
finite element analysis (FEA). Such models require
lengthy solution times and may obscure the physical
insights available to analytical models. In this work,
we develop a reduced order model (ROM) of a
wing experiencing single-degree-of-freedom flapping.
The ROM is based on deformable blade element
theory and the assumed mode method. We compare
the ROM to a high-fidelity CFD/FEA model and a
simple experiment comprised of a mechanical flapper
actuating a paper wing. Across a range of flapping-
to-natural frequency ratios relevant to flying insects,
the ROM predicts wingtip deflection five orders of
magnitude faster than the CFD/FEA model. Both
models are resolved to predict wingtip deflection
within 30% of experimentally measured values. The
ROM is then used to identify how the physical
forces acting on the wing scale relative to one
another. We show that, in addition to inertial and
aerodynamic forces, added mass and aerodynamic
damping influence wing deformation nontrivially.
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1. Introduction
Insects leverage flexible, flapping wings to realize flight. Unsteady aerodynamic forces generated
by flapping wings allow insects to hover or advance forward [1], while aerodynamic and inertial
asymmetries caused by differences in left-right flapping kinematics enable insects to perform
complex aerial maneuvers [2]. Through a combination of experimental, analytical and numerical
studies, tremendous progress has been made over the past several decades to characterize
the aeromechanics of insect flight during hovering [3–5], climbing [6–8] and maneuvering [9–
11]. More recently, the wing structure itself has garnered attention, where structural features
such as venation, corrugation, and camber have been determined to augment aerodynamic
performance [12–15].

During flight, insect wings deform under both aerodynamic and inertial-elastic forces [16].
The fluid and structural physics are tightly coupled, where aerodynamic forces influence
how the wing deforms and resulting wing deformation influences the surrounding flow field.
Computational methods, typically computational fluid dynamics (CFD) coupled to finite element
analysis (FEA) based solvers, have been used to simultaneously resolve the instantaneous wing
shape and surrounding flow field [12,17–24]. While direct computational methods can provide
accurate estimates of flapping wing dynamics, they often require computational times on the
order of hours to days to generate solutions. Both CFD and FEA face computational challenges,
and their individual challenges are compounded when the two computational solvers are coupled
together. CFD necessitates the Navier-Stokes equations be solved across a discretized fluid
domain [25], which may result in tens of thousands of conditions that must be satisfied at
each time interval of analysis. From the structural perspective, the large rotational kinematics of
flapping wings give rise to centrifugal forces that periodically influence the wing’s stiffness [26].
Centrifugal effects require that the FEA stiffness matrix be updated at each interval of analysis
if the angular velocity is not constant. The high computational resources demanded by direct
computational methods therefore render them unsuitable for parametric studies that consider
variable wing geometry, kinematics or structural properties. Moreover, reliance on computational
models may obscure the physical phenomena governing (e.g., aerodynamic drag, added mass,
etc.) wing deformation.

In this regard, analytic models may be preferable to computational models because (1) they
provide physical insights into flapping wing dynamics, and (2) in some cases, can identify
response trends more quickly due to lower solution times. The most commonly used analytic
models in flapping wing literature are based on quasi-steady blade element theory (BET) [27]. BET
assumes that a wing can be discretized into chordwise strips (blade elements). Based on known
flapping kinematics and measured or estimated aerodynamic coefficients, thin airfoil theory is
used to predict aerodynamic forces and moments acting on a single blade element, and these
differential forces are integrated over the wing surface to estimate total aerodynamic forces. BET
is often restricted to describing the aerodynamics of rigid wings, though Wang et al. developed
a fluid-structure interaction (FSI) model based on BET to estimate the aerodynamics of twistable
wings [28]. Other researchers have used Theoderson’s unsteady aerodynamic model to predict
flapping forces of flapping wings [29–31]. Kodali et al. derived an analytical FSI model of a flexible
pitching, plunging wing based on Theoderson’s model. Their model predicted wingtip deflection
with reasonable accuracy compared to experimental and numerical findings [32]. However,
Theodorsen’s model is based on inviscid assumptions, and may be limited in contexts where
drag influences wing loading considerably; in these cases, BET may perform more favorably than
Theoderson’s model.

Based on this review, the first objective of this research is to develop a reduced-order FSI
model of a flapping wing experiencing single-degree-of-freedom (SDOF) rotation. Aerodynamic
drag is appreciable when the wing is undergoing SDOF rotation. The fluid model is based
on BET, but because it permits elastic deformation, we refer to it as deformable blade element
theory (DBET). The analytical model provides insights into the physics governing flexible wing
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aerodynamics and expands upon the research in [33]. The second objective of this work is to
validate the reduced-order model against experimental results as well as solutions generated via
high-fidelity coupled CFD/FEA. This allows us to quantitatively compare accuracy and solution
times achievable by both low and high-order models. While the SDOF flapping kinematics in
this work are simplified from the multiple-degree-of-freedom (MDOF) wing kinematics of flying
insects, this work is a foundational step towards reduced-order modeling of FSI in wings subject
to more realistic motions.

The remainder of this manuscript is organized as follows. First, we derive the reduced-
order FSI model based on DBET and the assumed mode method (AMM). Next, we detail the
high-fidelity coupled CFD/FEA used to predict wing deformation. We then present a simple
experiment to assess the accuracy of both models. We conclude by discussing insights gained
from the DBET model and comment on its efficiency relative to the computational model.

2. Theory
Here, we present two models capable of resolving the deformation of a wing experiencing
SDOF rotation. The first model is low-fidelity and semi-analytical, whereas the second model
is high-fidelity and computational. The objective of this research is to compare the accuracy
and computation times achievable by both models. Note that the following FSI frameworks are
general and applicable to a range of wings and SDOF flapping kinematics; for this reason, the
simulation parameters specific to experimental validation are presented in Section 3.

(a) Reduced-Order Modeling
The reduced-order FSI model is based upon AMM and DBET. The structural and aerodynamic
drag models originated in [33], however this previous work did not compare the ROM to high-
fidelity coupled CFD/FEA. This research further advances the previous ROM by incorporating
added mass, which we show influences the wing’s perceived stiffness and increases aerodynamic
loading.

(i) Structural Model

The motion of a flapping wing can be modeled as a superposition of elastic deformation on top of
larger rigid body rigid body rotation. Rigid body rotation is generally an active or controlled

α

eY

eZ

ey

ez

W (y, t)

y

R

dF

Figure 1. An xyz reference frame rotates with the rigid body rotation of the wing, where α denotes the wing’s flap angle.

Within the rotating reference frame, the wing experiences small out-of-plane deflection W (y, t), where y is the axial

location of a point on the wing. The wing is subject to an aerodynamic force per unit area dF . Gray region shows a

deformed state of the wing.
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degree-of-freedom, whereas elastic deformation occurs passively under internal and external
forces. Provided elastic deformation is small, it can be treated as a summation of vibration mode
shapes multiplied by their modal responses, also called modal participation factors. The benefit to
formulating the structural model in terms of modal coordinates instead of physical coordinates is
that the wing’s mode shapes are independent of dynamic inputs. They can be pre-computed prior
to dynamic simulation based on knowledge of the structure alone. Further, we can truncate higher
modes that do not contribute meaningfully to wing deformation (e.g., modes that correspond to
natural frequencies substantially outside of the range of input frequencies), which reduces the
computational time required to solve the structural model.

We establish a reference frame that rotates with the rigid body rotation of the wing (Fig. 1).
An inertial XY Z coordinate system undergoes a rotation of magnitude α, where α is the wing’s
flapping angle. The resulting xyz coordinate system has an angular velocity Ω, where

Ω = α̇ex (2.1)

where ˙denotes a derivative with respect to time and en denotes a unit vector in the n direction.
Within the xyz frame, we draw a position vector R from a fixed point of rotation to a differential
mass element dm (Fig. 1), where

R = yey +W (y, t)ez (2.2)

Above, y denotes the planar coordinates of the differential mass and W (y, t) describes and a
small out-of-plane elastic deformation. In-plane deformation and twisting about the y axis are
neglected. The out-of-plane deformation can be expanded via the separation principle such that

W (y, t) =

∞∑
k=1

φk(y)qk(t) (2.3)

where φk(y) is the wing’s kth mode shape normalized with respect to the wing’s mass and qk is
the corresponding time-dependence, or modal participation factor to be determined. φk(y) is a
static quantity and can be determined either via modal analysis in FEA or analytically for simple
structures. The velocity Ṙ of the differential mass is

Ṙ =Ω × R + Ṙxyz (2.4)

where Ṙxyz is the differential mass velocity referenced from the rotating frame. The kinetic energy
T of the entire wing is

T =
1

2

∫
m

Ṙ · Ṙ dm (2.5)

which can be represented in modal coordinates as

T =
1

2

[
α̇2

(
Ixx+

∞∑
k=1

q2k

)
+ α̇

∞∑
k=1

(
2λkqk + q̇2k

)]
(2.6)

where Ixx is the wing moment of inertia about x and λk is an inertial constant defined by λk =∫
m yφk dm. The wing’s potential energy U is

U =

∫
V
S(W,W ) dV (2.7)

where S is a symmetric, quadratic strain energy density function and V is the wing’s volume. By
applying Lagrange’s equation, we arrive at the equation governing modal response qk as

q̈k + (ω2
k − α̇

2)qk =−α̈λk +Qk (2.8)

where ωk is the wing’s kth natural frequency in vacuo andQk includes all non-conservative modal
forces to be determined. The above equation is linear and time-varying, where the wing stiffness
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is influenced by its angular rate of rotation through a phenomena called centrifugal softening.
Lastly, a general physical force dF per unit area is converted to the kth modal force by

Qk =

∫
S
(dF · φkez) dS (2.9)

where S is the surface over which the force acts. In the following sections, we determine the modal
forces Qk associated with aerodynamic drag and added mass via DBET.

(ii) Aerodynamic Drag

Due to simplified SDOF flapping kinematics, the wing will produce negligible lift and drag
becomes the dominant aerodynamic force. Assuming drag acts only in the z direction and does
not vary over the wing’s chord, the drag per unit area is dFD is

dFD =−1

2
CDρf (Ṙ · ez)2 sgn(Ṙ) ez (2.10)

where CD is an empirical drag coefficient and ρf is fluid density. CD typically varies with respect
to the wing’s angle of attack, but in this case can be treated as a constant since the wing’s angle of
attack is always π/2 or 3π/2 because in a static fluid air is only moved normal to the wing surface.
Expanding this expression in terms of Ṙ and the expansion in Eq. 2.3 gives

dFD =−1

2
CDρf

[
α̇2y2 + 2α̇y

∞∑
k=1

q̇kφk

]
sgn(Ṙ) ez +O(W 2) (2.11)

where we neglect terms of O(W )2 because deformation is small. Projecting the physical drag
force into the modal domain via Eq. 2.9 yields two modal force terms. The first modal force term
is

QD,k =−
1

2
CDρf α̇

2Γk sgn(Ṙ) (2.12)

where Γk is a constant defined by Γk =
∫
y b(y)y

2φk dy and b(y) is the wing chord. QD,k depends
only on the rigid body rotation of the wing and is not significantly affected (besides the sgn term)
by elastic deformation. We therefore refer to QD,k as rigid body drag. The second modal force
term is

Qζ,k =CDρf α̇

∞∑
r=1

Ψk q̇r sgn(Ṙ) (2.13)

where Ψk is a constant defined by Ψk =
∫
y b(y)yφrφk dy, and r is a new modal index inclusive

of k. Unlike the aerodynamic loading term, Qζ,k is a function of the wing’s elastic deformation
velocity as well as its rigid body rotation. It effectively behaves as a time-periodic aerodynamic
damping term that attenuates the elastic oscillations of the wing. For this reason, we refer to Qζ,k
as aerodynamic damping hereafter.

(iii) Added Mass

Added mass is a phenomena where a volume of air displaced by an accelerating structure
increases the effective inertia of that structure. Insect wings have a low surface density and high
surface area, so added mass cannot safely be neglected. In this section, we derive an expression
to incorporate added mass into the FSI model.

Added mass is proportional to the differential mass’s out-of-plane acceleration az given by

az = [yα̈+

∞∑
k=1

φk(q̈k − qkα̇2)]ez (2.14)

From [34], the added mass force per unit length dFam for a thin two-dimensional wing section is
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dFam =−azπρf

[
b(y)

2

]2
(2.15)

Substituting az into the above and converting the physical force to the modal domain through
Eq. 2.3 yields three terms. The first added mass term is

Qam,k =−α̈
∞∑
k=1

τk (2.16)

where τk = πρf
∫
y[b(y)/2]

2yφk dy. Similar to rigid body drag, this added mass term is a function
of rigid body rotation only and is not influenced by the elastic deformation of the wing. We will
refer to this term as rigid body added mass. The second added mass term is

QS,k = α̇2
∞∑
k=1

µkqk (2.17)

where µk = πρf
∫
y[b(y)/2]

2φ2k dy. Interestingly, QS,k is influenced both by the wing’s angular
velocity as well as its instantaneous shape. Similar to the centrifugal softening observed in the
structural model, this term modulates the wing’s stiffness periodically; for this reason, we refer
to QS,k as added mass stiffness. The final added mass term is

QM,k =−
∞∑
k=1

µk q̈k (2.18)

where QM,k is proportional to the acceleration resulting from structural deformation. This term
adds to the perceived mass of the wing if the wing is vibrating in air, and thus we refer to it as
added mass inertia. Due to added mass inertia, the natural frequencies of the wing are lower in
air than in vacuum.

(b) Computational Modeling
Numerical studies focused on flapping wings often rely on CFD and FEA. The accuracy of
these direct numerical models is generally assumed to be better than that of their reduced-order
counterparts, though at the expense of greater computational costs. Here, we develop a two-way
coupled CFD and FEA model to predict the dynamic response of the flapping wing. This high-
fidelity computational model enables us to incorporate dynamic phenomena neglected by the
DBET model, such as unsteady aerodynamics and structural non-linearity. For our model, we use
Siemens’ Star-CCM+ (v15.04.008) CFD package and Dassault Systèmes Abaqus 2019 (6.19-1) FEA
package interfaced via Co-simulia.

CFD calculates the pressure on the wing’s surface and surrounding flow field by solving the
Navier-Stokes equations. In order to resolve turbulence without requiring untenable computation
times, we rely on a Spalart-Allmaras (SA) model to close the Reynolds-averaged Navier-Stokes
(RANS) equations. RANS formulations are the most commonly used methods for modeling
turbulent flows, and the SA model was chosen for its efficiency as a one-equation model as well
as its efficacy in aerodynamic and transient flows. We use a Chimera mesh approach to account
for the larger rigid-body rotation of the flapping wing [35]. This method uses multiple meshes
(Fig. 2) – one that rotates with the wing (the overset mesh) and another that remains stationary
and describes the entire fluid domain (the background mesh). Interpolation between the boundary
of the overset mesh and the background mesh allows the conservation of mass and momentum
to be maintained across both regions. In addition to the large prescribed rotations, there is a
significant deformation on the wing due to its flexibility. To account for this deformation, our
overset mesh region uses a radial basis function (RBF) mesh morphing method to stretch and
compress elements around the wing as it deforms. These meshing methods allow the CFD model
to run dynamically without the requirement of remeshing the domain at each timestep.
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We used Abaqus FEA to resolve wing deformation resulting from aerodynamic loads
interpolated onto the wing from the Star-CCM+ simulation and the prescribed rotational
kinematics. The FEA model incorporates nonlinear geometric effects to account for the large
displacements associated with our prescribed flapping profile. To apply the flapping kinematics
to the FEA model, we imposed pinned boundary conditions along the wing’s root edge. The root
edge was prescribed a periodic angular displacement consistent with the rotation amplitudes and
frequencies described in the simulation parameters section. We use an implicit solver to calculate
the spatiotemporal deformation field at each time step.

Lastly, the CFD and FEA models are integrated via Abaqus Co-simulia. This allows for
communication between the structural and fluid solvers at each timestep. Abaqus leads the
time marching by first applying the prescribed kinematics described above, then resolving the
structural deformation of the wing. The wing’s new geometry and rigid body rotation are
then sent to Star-CCM+ in terms of its nodal displacements. Star-CCM+ applies the imported
displacements to its wing geometry and uses the displacements for the initiation of the RBF
morphing of the overset mesh. The fluid domain in Star is resolved based on the impact of the
wing’s rotation and deformation on the fluid, and then the shear and normal pressures on the
wing surfaces are exported and sent back to Abaqus. Finally, the wing’s structural deformation
is resolved in Abaqus, and the process repeats until a quasi-steady state response and desired
physical time are reached.

3. Experimental Methods
We developed a simple experiment to evaluate the accuracy of the flapping wing FSI models.
We used a mechanized rotation stage to prescribe flapping kinematics to a thin paper wing. Wing
deformation was recorded via high-speed videography and wingtip displacement was calculated
relative to the rigid body rotation of the wing using motion capture.

The mechanized rotation stage (Fig. 3) used for all experiments is summarized in [33]. Flapping
trials were filmed with a high-speed video camera (Krontech, Chronos 2.1-HD) at 2996 frames per
second with a spatial resolution of 1280 x 512 pixels; see supplementary material for a video of

Figure 2. Background mesh (dimensions labeled) and overset mesh (grey) of the fluid domain in Star-CCM+. The

rectangular wing is seen in dark grey within the overset mesh. The background mesh must be large enough to

accommodate flapping kinematics, while the overset mesh must accommodate the out-of-plane deformation of the wing.
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Figure 3. Mechanized SDOF rotation stage used to drive the rigid body rotation of the flexible wing.

the wing flapping at 10 Hz. The experiment was back-lit using a Godox SL-200W LED studio
light. Recordings were post-processed in MATLAB. The tip of the flexible wing and the reference
plate were tracked in a world frame using the DLTdv digitizing tool from the Hedrick lab [36].
We placed a thick metal plate behind the flexible paper wing to serve as a reference for the
wing’s rigid body. The rotation angle was measured from the center of rotation and the tip of the
reference plate. The out-of-plane displacement of the flexible wing was determined with respect to
a rotating coordinate system attached to the reference plate. We identified wingtip displacement
for three consecutive flapping periods and then fit the wingtip displacement as a function of
time using a fifth order Fourier series. We compared curve-fitted wingtip displacement to model
predictions.

(a) Experimental & Simulation Parameters
All simulation properties are summarized in Tab. 1. The paper wing’s length, chord width and
surface area are similar to that of a Hawkmoth Manduca sexta forewing, though the paper wing
weighs about four or five times as much; about 200 mg for the paper wing compared to 40 mg for
the moth wing [37]. M. sexta are a common model organism in the study of flapping wing flight.

Experimental studies show that M. sexta flap at about 1/3 the natural frequency of their
forewing [38], and research suggests this flapping-to-natural frequency ratio is aerodynamically
and energetically beneficial as well [39–42]. Consequently, we wanted to ensure experiments
encompassed the 1/3 flapping-to-natural frequency ratio. We measured the first natural
frequency of the wing by displacing it and allowing it to freely vibrate. Free vibration was
recorded using a laser vibrometer (Polytec, PSV-400). The first natural frequency was 30.1 Hz,
which includes the effect of added mass. Based on this finding, we selected a flapping frequency
range from 8 - 12 Hz at 1 Hz increments with a target amplitude of around 60◦. Actual
experimental rotation amplitudes varied between 52 - 58◦; we used these measured rotation
amplitudes to populate models.

Both DBET and computational models require a representation of the wing structure. For the
DBET model, we use analytical expressions to calculate the wing’s natural frequencies and mode
shapes [43]. We retained only a single vibration mode. For the computational model, we used
Abaqus FEA. The wing was assumed to be isotropic and homogeneous. It was discretized into
2560 eight node brick elements (4 through thickness, 640 over the surface), which was sufficient
for the wing’s first three natural frequencies to converge (Fig. S1). The first natural frequency
occurred at 31.6 Hz and corresponded to the bending mode (Fig. 4 ). Prior wing characterization
in vacuo suggests added mass will reduce this natural frequency by about 1.2 Hz, bringing it
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Table 1. Simulation parameters.

Wing Parameters
Variable Description Value Unit
L Length 5 cm
w Width 2 cm
t Thickness 0.017 cm
ρ Density 1.2 g/cm3

EDBET Young’s modulus (DBET) 9.5 GPa
ECOMP Young’s modulus (Computational) 9.085 GPa
f Flap frequency 8 - 12 Hz
α0 Flap angle 0.9-1.01 Rad

Fluid Models
Variable Description Value Unit
∆t Time step 1 ms
ρf Air Density 0.001250 g/cm3

CD Drag Coefficient 3.4 -
µa Dynamic Viscosity of Air 1.855× 105 Pa-s

Dimensions of the background mesh (L ×W × H) 160 X 50 X 200 mm
Mean element length of the background mesh 1.2 mm
Number of elements in the background mesh 641,817 -
Dimensions of the overset mesh (L ×W × H) 40 X 80 X 60 mm
Mean element length of the overset mesh 0.6 mm
Mean element length of the wing surface 0.6 mm
Number of prism layers off the wing 5 -
Prism-layer growth rate 1.5 -
Number of elements in the overset mesh 535,653 -

into close agreement with the experimentally measured value [33]. Note that natural frequencies
calculated via FEA are typically higher than those calculated by analytically; we therefore used
different Young’s modulus to ensure both computational and DBET models have the same wing
natural frequencies (Tab. 1).

The background mesh region of the CFD model was sized to enclose the wing’s full flapping
motion and the major flow structures leaving the wing’s surface. The overset mesh region around
the wing was sized to enclose the total wing deformation and included additional clearance to
minimize the creation of malformed or warped elements during the RBF morphing step. In order
to increase the accuracy of the pressure calculation on the surface of the wing, prism-layers at a
finer resolution were added with the default growth rate of 1.5. An appropriate element size was
determined by monitoring the maximum aerodynamic moment of the wing. The average element
length was decreased while ensuring that cells along the boundary of the overset mesh were never
smaller than half those of the neighboring background mesh cells to minimize numerical diffusion
across the Chimera boundary. Results of the mesh convergence can be seen in (Fig. S2), with a total

Figure 4. First vibration mode of the wing superimposed on undeformed wing geometry.
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number of elements of above one million being considered sufficiently converged relative to the
computational time required. After conducting the mesh convergence, a time-step convergence
study was also performed, resulting in a time-step of 1 ms, and seen in (Fig. S2). Monitoring the
aerodynamic moment and tip deflection, a total of 0.5 sec were simulated to ensure the results
were periodically steady.

4. Results
In this section, we investigate wingtip deflection measured experimentally and compare it to
that calculated via DBET and computational FSI models. First, consider the experimental results.
Wingtip deflection is shown as a function of stroke phase for flapping frequencies between 8-12
Hz in Fig. 5. Peak wingtip deflections range from 0.69 cm at 8 Hz to 1.83 cm at 12 Hz, representing
deflections with magnitudes of 15 - 37% of the wing length. For all frequencies, maximum
peak deflection is delayed from the transition between the upstroke and downstroke. The delay
between stroke transition and peak deflection increases with flap frequency. Because inertial
forces are proportional to the angular acceleration, this delay likely results from aerodynamic
effects. The wing deforms primarily at the flapping frequency, but also experiences a lesser
response at three times the flapping frequency. The displacement waveform qualitatively changes
with flapping frequency, suggesting the third harmonic response is sensitive to flap frequency and
does not scale proportionally to the first harmonic response.

To quantitatively compare model predictions to experimental findings, we curve fitted steady-
state wingtip displacements using a fifth-order Fourier series considering three subsequent
wingbeats for experimental measurements and the final wingbeat simulated for DBET
and computational models. From the curve-fitted data, we calculated the overall wingtip
displacement and first and third harmonic magnitudes as a function of flap frequency (Fig. 6). No
other harmonics contributed significantly to wing deformation. Note that for the experimental
case, overall wingtip displacement varied modestly between the upstroke and downstroke
(Fig. 5). This occurred due to a weight imbalance of the wing clamping mechanism, which caused
the prescribed rotation to overshoot slightly more on the downstroke than on the upstroke. We
averaged maximum displacements on the upstroke and downstroke for the experimental case in
order to make better comparisons against the models.

DBET and computational models predicted the wing response fairly well. Across the
considered frequency range, the DBET and computational models captured peak displacements
within 13% and 30%, respectively. In agreement with the experiment, both models showed
that the wing deformed at its flap frequency and three times its flap frequency. The DBET and
computational models had maximum magnitude errors of 16% and 34% at the first harmonic and
72% and 63% at the third harmonic. The largest magnitude errors occur at the highest flapping
frequency considered, while the error at reduced frequencies was much lower for both models.

Both models captured qualitative changes in the wing response. Each predicted that the
first harmonic magnitude grows monotonically with respect to flap frequency. The experiment
showed that the third harmonic magnitude experiences a local maximum and subsequently
decreases. The peak in the third harmonic response indicates resonance, where the resonance
condition may occur from an aerodynamic force coinciding with the wing’s first natural
frequency. Previous work suggests this resonance may occur even in a vacuum due to the
interaction of inertial forces with the wing’s periodically varying stiffness. Within the flapping
frequency range considered, the DBET and computational model predicted a monotonic increase
of the third harmonic magnitude. However, the slope of the third harmonic response suggests that
its magnitude may decrease at flap frequencies exceeding 12 Hz. In general, the computational
model captures the timing of the deformation waveform more accurately relative to the DBET
model.
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Figure 5. Wingtip displacements calculated via DBET and computational models are compared to experimental

measurements for flapping frequencies 8 - 12 Hz. Displacements are shown as a function of stroke phase over two

flapping cycles. Gray regions indicate downstroke and white regions indicate upstroke.

5. Discussion
Experimental results suggest that both the DBET and computational models are accurate within a
range of flapping-to-natural frequency ratios and wingtip displacements relevant to larger flying
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Figure 6. Peak wingtip displacement, as well as first and third harmonic magnitude components of wingtip displacement,

as a function of flap frequency measured experimentally and as predicted by DBET and computational models.

insects. The DBET model solves for wing deformation faster than the computational model; using
a workstation with 32GB of DDR4 RAM, an Intel i9-9900K 3.6GHz CPU (4 processing threads in
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Figure 7. DBET model predictions of the steady-state inertial and aerodynamic forces acting on the experimental wing

flapping at 10 Hz. Added mass stiffness and inertia are small compared to the forces pictured and are omitted for clarity.
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the CFD model), the DBET model solves in about 30 ms per wingbeat whereas the computational
model solves in about 8.9×106 ms per wingbeat. This represents a 5 order of magnitude difference
between the solution times achievable by DBET and computational methods. Given the level
of accuracy achieved, the DBET framework is therefore a promising development that could
underpin more complex flapping wing FSI models.

While economical, the DBET model has limitations that may make computational modeling
desirable in some contexts. First, the computational model resolves the entire flow structure
surrounding the deforming wing whereas the DBET model does not. As a result, computational
models are more appropriate for capturing certain fluid phenomena such as clap-and-fling or
vortex shedding. Second, the 3D computational model can capture pressure variations along the
chord width. Indeed, pressure varied along the wing chord throughout the stroke cycle, though
these pressures were symmetric about the wing’s centerline and did not cause it to twist. Third,
the DBET framework does not account for in-plane stretching or geometric nonlinearity, though
experimental results do not indicate these factors contribute significantly to the wing’s structural
response. Lastly, while DBET provides a significant tool in the analysis of flapping wings,
more complex fluid dynamics could be incorporated to improve the accuracy of these models,
particularly as they are scaled to accommodate MDOF kinematics. Because the computational
models can calculate the full fluid dynamics of a system, they will allow for better tuning of
parameters that can account for phenomena, such as dynamic stall, in the future.

Despite these limitations, the semi-analytical nature of the DBET model allows us to interpret
it in order to better understand the physics governing wing deformation. For example, DBET
can be used to evaluate the forces acting on the wing and how these forces scale relative to one
another. Understanding this physical scaling can elucidate the influence wing deformation has on
different flying insects, particularly those with variable wing lengths or aspect ratios and flapping
amplitudes. Derived expressions for inertial and aerodynamic forces can also be used to better
understand how deformation affects other physics relevant to flight, such as power expenditures.

In what follows, we use the DBET model to investigate the forces responsible for wing
deformation. The forces acting on the experimental wing flapping at 10 Hz, estimated via the
DBET model, are shown as a function of stroke phase in Fig. 7.

(a) Aerodynamic Drag vs. Inertia
Research suggests that deformation in Hawkmoth M. sexta wings, which are of comparable size
to the experimental wing, is dominated by inertial forces [16]. Rigid body drag was the largest
aerodynamic force acting on the wing during our experiment. The magnitude ratio between rigid
body drag force FD and inertial force FI scales with∣∣∣∣∣∣∣∣FDFI

∣∣∣∣∣∣∣∣∝ α0ρfL

ρs
(5.1)

where ρs is the wing’s mass per unit area and α0 is the flapping amplitude. Intuitively,
deformation will be dominated by inertial forces in heavy wings and aerodynamic forces
in lightweight wings. Inertial forces increase linearly with wing length, while aerodynamic
forces scale quadratically. Consequently, longer wings experience greater aerodynamic loading.
When rotation amplitudes are much less than one radian, inertial forces tend to overwhelm
aerodynamics. Specific to our wing and flapping amplitude, FI is approximately two times
greater than FD (Fig. 7). However, the surface density of the paper wing is about 4-5 times larger
than that of an M. sexta wing of comparable size. Adjusting the wing’s surface density to 20% its
original value inverts this trend, where FD now exceeds FI by 2.5 times. Based on this simplified
analysis, we conjecture that if the complex wing structure and flapping kinematics were taken
into account, the aerodynamic and inertial forces contributing to M. sexta wing deformation are
similar in magnitude.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 11, 2021. ; https://doi.org/10.1101/2021.06.11.448136doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448136


(b) Aerodynamic Drag vs. Aerodynamic Damping
Though rigid body drag dominates the remainder of the aerodynamic forces in most cases, there
are instances where aerodynamic damping is appreciable. If the wing’s elastic response occurs
primarily at the flapping frequency, the ratio between rigid body drag FD and aerodynamic
damping Fζ is proportional to ∣∣∣∣∣∣∣∣FDFζ

∣∣∣∣∣∣∣∣∝ α0L
3∫

y yW (y) dy
(5.2)

If we assume the deformed shape is a bending mode represented by W (y) = β
Ly

2, where β is the
ratio between the wingtip deflection and wing length, this simplifies to∣∣∣∣∣∣∣∣FDFζ

∣∣∣∣∣∣∣∣∝ α0

β
(5.3)

This expression demonstrates the significance of the relative magnitudes of the wing’s rigid
body motion and elastic deformation. For a fixed rotation amplitude of 1 radian, aerodynamic
damping will exceed rigid body drag only when wingtip deflection exceeds the length of the
wing, a condition which is physically unrealistic in flight. However, for a much smaller rotation
amplitude, the wingtip deflection could easily exceed 10% of wing length if the wing was highly
flexible. For the experimental parameters in this work, β ranges about 0.15 - 0.37, where rigid
body drag is larger than aerodynamic damping but on the same order of magnitude.

This scaling behavior between rigid body drag and aerodynamic damping has interesting
implications at resonance. Most insects flap below the first natural frequency of their wings [44],
but superharmonic resonance, or resonance induced by higher-order harmonics of aerodynamic
forces, may occur if the insect flaps at an integer quotient of its wing’s natural frequency.
Indeed, prior work suggests flapping at 1/3 of the wing’s natural frequency may confer
energetic and aerodynamic benefits [40,41]. However, these benefits would diminish if wing
deformation becomes excessive. The above scaling suggests that aerodynamic damping may
restrict unfavorable levels of deformation, since β becomes large in these contexts. In our own
experiment, we found that aerodynamic damping overwhelms viscous damping of the wing
structure. Thus, aerodynamic damping may play a more substantial role in attenuating large
deformations relative to viscous damping inherent to the structure.

(c) Aerodynamic Drag vs. Added Mass
After rigid body drag and aerodynamic damping, rigid body added mass is the last fluid forcing
term of significance at these length scales (Fig. 7). The magnitude ratio between rigid body drag
FD and rigid body added mass FAM is proportional to∣∣∣∣∣∣∣∣ FDFAM

∣∣∣∣∣∣∣∣∝ α0L

b
(5.4)

Rigid body added mass is greater in short, fat wings, whereas rigid body drag is greater in longer,
more slender wings. Because rigid body added mass scales linearly with length and rigid body
drag quadratically, wings with low rotation amplitudes are more influenced by the former. Added
mass may also drastically lower the natural frequency of insect wings. Modal analysis in air and
in vacuo shows that added mass reduces the first natural frequency of the M. sexta forewing by
30% [45]. The wing’s effective kth natural frequency ωeff,k satisfies

ω2
eff,k =

ω2
k

1 + µk
(5.5)

where for a cantilever beam, µk is proportional to
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µk ∝
bρf
ρs

(5.6)

The reduction of the wing’s fundamental frequency from added mass is therefore sensitive to the
ratio between the density of air and the wing’s surface density. This explains why the fundamental
frequency of the M. sexta forewing is more greatly influenced by added mass compared to the
paper wing used in our experiment.
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