Anti-SARS-CoV-2 potential of *Cissampelos pareira* L. identified by Connectivity map based analysis and in vitro studies

3

4 Madiha Haider^{a,b} Vivek Anand^{a,b} Dhwani Dholakia^{a,b} M. Ghalib Enayathullah^c Yash Parekh^c,

5 Sushma Ram^c Surekha Kumari^{d,b} Anmol^{d,b} Kiran Kumar Bokara^c Upendra Sharma^{d,b} Bhavana

6 Prasher^{*a,b,e} Mitali Mukerji ^{*a,b,e}

7

8 ^aGenomics & molecular medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi,

9 India-110007, ^bAcademy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India

10 201002, ^cCSIR-Center for Cellular and Molecular Biology, Hyderabad, Telangana, 500007,

11 India, ^dChemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology,

12 Palampur, Himachal Pradesh 176 061, ^eCentre of excellence for Applied developments of

- 13 Ayurveda prakriti and genomics, CSIR's Ayurgenomics Unit TRISUTRA, CSIR-IGIB, India
- 14

15 *Corresponding Authors

16 Genomics & molecular medicine, CSIR-Institute of Genomics and Integrative Biology, Delhi,

17 India-110007

18 Email: <u>bhavana.p@igib.res.in</u>

19 **Email:** <u>mitali@igib.res.in</u>**

20 ** Current address: Department of Bioscience & Bioengineering, Indian Institute of Technology

- 21 Jodhpur, NH 62, Karwar, Rajasthan 342037
- 22

23

24

25

26

27

28

29

29

30

31 Abstract:

32

33 **Background**: Viral infections have a history of abrupt and severe eruptions through the

- 34 years in the form of pandemics. And yet, definitive therapies or preventive measures are
- 35 not present.
- 36 **Purpose**: Herbal medicines have been a source of various antiviral compounds. An
- 37 accelerated repurposing potential of antiviral herbs can provide usable drugs and identify
- 38 druggable targets. In this study, we dissect the anti-coronavirus activity of *Cissampelos*
- 39 *pareira* L (*Cipa*). using an integrative approach.
- 40 **Methods**: We analysed the signature similarities between predicted antiviral agents and
- 41 *Cipa* using the connectivity map (<u>https://clue.io/</u>). Next, we tested the anti-SARS-COV-2
- 42 activity of *Cipa in vitro*. A three-way comparative analysis of *Cipa* transcriptome, COVID-19
- 43 BALF transcriptome and CMAP signatures of small compounds was also performed.
- 44 **Results**: Several predicted antivirals showed a high positive connectivity score with *Cipa*
- 45 such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of
- 46 SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its
- 47 prominent pure constituents e.g pareirarine, cissamine, magnoflorine exhibited 40-80%
- 48 inhibition. Comparison of genes between BALF and *Cipa* showed an enrichment of
- 49 biological processes like transcription regulation and response to lipids, to be
- 50 downregulated in *Cipa* while being upregulated in COVID-19. CMAP also showed that
- 51 Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and
- 52 negative connectivity with *Cipa*.
- 53

54 Keywords: Cissampelos pareira L., SARS-CoV-2, BALF, antivirus, whole plant extract,

- 55 Connectivity map
- 56
- 57 Abbreviations:
- 58 CMAP: Connectivity Map
- 59 BALF: Bronchoalveolar Lavage fluid
- 60 ESR1: Estrogen Receptor 1
- 61 ACE2: Angiotensin-converting enzyme 2
- 62 SARS: Severe Acute Respiratory Syndrome
- 63 MERS: Middle East respiratory syndrome
- 64 HDAC: Histone deacetylase
- 65
- 66

67 Introduction:

- 68 SARS-CoV-2, the severe acquired respiratory syndrome agent coronavirus 2, has taken
- 69 many lives in the past year and is continuing to create an unsafe environment. Along with
- 70 numerous mutations, fast transmission and a wide range of symptoms, lack of a definite
- 71 therapeutic intervention has made this virus all the more deadly. Many studies have been
- 72 conducted in order to recognize small compound therapeutics effective against SARS-CoV-
- 73 2. Interestingly, some estrogen receptor modulators and protein synthesis inhibitors
- 74 having potential antiviral against SARS-CoV2 have also been identified (1). It has been
- 75 shown that *ESR1* as a drug target can modulate certain coronavirus associated genes. A
- 76 group recently demonstrated the downregulation of *ACE2* by estrogen (2).
- 77
- 78 Cissampelos pareira L. is a commonly used hormone modulator which is used to treat
- 79 reproductive disorders and fever. It has also been found to inhibit three serotypes of
- 80 dengue (3) and its effect on various hormones has also been evidenced (4). In a previous
- 81 study we have observed that *Cipa* can act as both, a protein synthesis inhibitor and an
- 82 estrogen receptor inhibitor (5). Many of the drugs positively connected with *Cipa* have
- 83 been reported to be a potential antiviral agent. Since there were several overlaps between
- 84 the therapeutics predicted to be effective against SARS-CoV-2 and our formulation, we
- 85 decided explore the repurposing potential of *Cipa* for this current pandemic.
- 86
- 87 *Material and Methods:*

88 Transcriptome meta-analysis:

- 89 We obtained the raw RNA sequencing data from SARS-CoV-2 patients Broncho-alveolar
- 90 lavage fluid (BALF) 1 and 2 from the recent publications and analyzed them inhouse
- 91 (supplementary information 1.1). The gene expression data for *Cissampelos pareira* L. was
- 92 taken from (5), which can be accessed at GSE156445.
- 93

94 Functional enrichment and connectivity map of the differentially expressed genes.

- 95 The differentially expressed genes were analyzed for functional enrichment using enrichr
- 96 (6) and for similar signatures using clue.io (7). The results were then compared with *Cipa*
- 97 to find intersections between gene ontologies, enriched gene sets, and connectivity map
- 98 perturbations between upregulated genes of BALF 1 and 2 and downregulated genes of
- 99 *Cipa* and between downregulated genes of BALF 1 and 2 and upregulated genes of *Cipa*.
- 100 Enrichments were also done for the genes whose knockdown signatures score >90
- 101 connectivity with *Cipa* and then compared with the upregulated processes and gene sets in
- 102 SARS-CoV-2.
- 103
- 104 **Collection of plant material and preparation of extract for** *in vitro* **inhibition assays**:

- 105 Whole plant of *Cissampelos pareira* L was collected from the Palampur, HP, India (alt. 1350
- 106 m). The identification of the plant material was done by a taxonomy expert in CSIR-IHBT,
- 107 Palampur and a voucher specimen (no. PLP16688) was deposited in the herbarium of
- 108 CSIR-IHBT, Palampur, HP-176,061, India. The plant has been obtained and isolated as per
- 109 CSIR, India guidelines (details for extract preparation in supplementary information 1.2).
- 110 The pure molecules from roots of the plant were isolated as reported recently (8).
- 111

112 Cell culture, viral infection and drug treatment for inhibition of SARS-COV-2 by *Cipa*:

- 113 The effect of PE50 and PER was tested against the SARS-CoV2 (ASTM, 2015) in a 96-well
- 114 tissue culture plates that was seeded with Vero Cells 24 h prior to infection with SARS-
- 115 CoV2 (Indian/a3i clade/2020 isolate) in BSL3 facility. After treatment, RNA was isolated
- 116 using MagMAXTM Viral/Pathogen Extraction Kit (Applied Biosystems, Thermofisher)
- 117 according to the manufacturer's instructions. The details of the experiment and RNA
- 118 isolation protocol are given in the supplementary information 1.3.
- 119

120 **TaqMan Real-time RT-PCR assay for Detection of SARS-CoV-2:**

- 121 The detection of genes specific to SARS-CoV2 was done using COVID-19 RT-qPCR Detection
- 122 Kit (Fosun 2019-nCoV qPCR, Shanghai Fosun Long March Medical Science Co. Ltd.)
- according to the manufacturer's instructions (details in supplementary information 1.4).
- 124 The calculations for the relative viral RNA content and log reduced viral particles was
- 125 calculated using the linear regression equation obtained using the RNA extracted from the
- 126 known viral particles by RT-qPCR, using N, E and ORF1ab genes specific to SARS CoV2
- 127 virus. from the test sample (9).
- 128
- 129
- 130 Results:
- 131

132 Cissampelos pareira L. shows high positive connectivity with small compounds

133 predicted to inhibit SARS-CoV-2.

- 134
- 135 To assess which among the numerous small compounds predicted to have antiviral
- 136 potential against SARS-CoV2 in various studies might have similar signatures among the
- 137 same cell lines as *Cipa*, we queried the connectivity map. We observed 7 small compounds
- to possess high signature similarity with *Cipa*. These include emetine (99.61), anisomycin
- 139 (99.58), cycloheximide (99.86), homoharringtonine (99.51), apcidin (86.32), ruxolitinib
- 140 (91.54), and sirolimus (95.45). These small compounds were predicted using different
- 141 methods in 4 different studies (Table 1).
- 142
- 143

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448155; this version posted June 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

144 Cipa whole extract and single molecule constituents can inhibit SARS-COV-2 in vitro

145

146 Since metanalysis highlighted an inhibitory potential of *Cipa* against SARS-COV-2, we tested

147 the effect of whole plant and root extracts of *Cipa* in Vero cell culture assays infected with

148 SARS-CoV-2. The relative viral RNA (%) was calculated by considering the values averaged

- 149 from N (Nucleoprotein), ORF1ab (19 non-structural proteins, NSP1-16), and E (Envelope)
- 150 viral genes. The whole plant aqueous extract showed a definite antiviral activity, evidenced
- 151 by decreased relative viral RNA content with a reduction by 57% at 100µg/ml where the
- 152 viral particle number reduced from 10^{5.9} to 10^{5.6} (Figure 1A-C).
- 153
- 154 Next, we wanted to see whether the *Cipa* pure constituents can inhibit SARS-COV-2. The
- total alkaloid content in the extract was 46.4 mg/g with cissamine (18.6 mg/g) being the
- 156 major one, followed by magnoflorine (12.9 mg/g). The pure molecules namely hayatinin
- 157 (US-50), salutaridine (US-DR-CP-2), cissamine (US-CP-3), pareirarine (US-CP-5),
- 158 magnoflorine (US-CP-7), aqueous whole plant extract (PE), 50% hydroalcoholic whole
- 159 plant extract (PE50) and 50% hydroalcoholic root extract (PER) were tested against SARS-
- 160 CoV2 at 200 μ M concentration showed relative viral RNA (%) to 44, 58, 45, 16, 63, 24, 2
- and 2 respectively in comparison with the virus control (Figure 1D).
- 162

163 Cipa transcriptome oppositely regulates several biological pathways compared to 164 COVID-19 infected patient BALF transcriptome

165

166 We looked for the differentially expressed genes which were common between *Cipa* and

- 167 BALF samples from two studies (10, 11), hereby referred to as BALF-1 and BALF-2
- 168 respectively. We observed that 39 genes were common between *Cipa* and BALF-1 and
- 169 BALF-2, out of which 29 showed an opposite expression (Table S1). Individually, 134 genes
- 170 were common between *Cipa* and BALF-1, and 174 genes common between *Cipa* and BALF-
- 171 2. Upon functional enrichment analysis we observed that the genes enriched for regulation
- 172 of vascular endothelial growth were upregulated in both BALF-1 and 2 datasets while
- being downregulated by *Cipa*. Similarly, while regulation of gene expression was
- upregulated by *Cipa* it was downregulated in BALF-1 and BALF-2 data sets (Figure 2A-C).
- 176 The connectivity map analysis of the gene signatures of BALF-1 and BALF-2 comparison
- 177 with *Cipa* results revealed a number of small compounds that had high positive scores with
- 178 *Cipa* and negative scores with either BALF transcriptomes. We observed several small
- 179 compounds having opposite signature similarities between *Cipa* and BALF. Triciribine,
- torin-1 and VU-0365114-2 were three compounds with negative scores for *Cipa* and
- 181 positive scores for both BALF 1 and 2 (Figure 2D). Also, knockdown signatures of a number
- 182 of genes were found to exhibit opposing scores between Cipa and BALF transcriptomes.
- 183 Some of these include, MICALL1, CRK, FKBP1A, CBX4, and FGR10P (Figure 2E).

184

185 Discussion:

- 186
- 187 SARS-COV-2 has shown a very diverse set of clinical presentations in various populations
- 188 and among genders within the same population. It has been shown that estrogen can
- regulate the expression of ACE-2 receptors (2). Since *Cipa* appears to have *ESR1*
- 190 modulatory effects (5), and has been shown to have antiviral potential (3), we
- 191 hypothesized it may have inhibitory effect on the novel coronavirus. CMAP analysis of *Cipa*
- 192 transcriptome signatures highlights several small compounds having been predicted to
- 193 have inhibitory activity against SARS-CoV-2. Among these, emetine, homoharringtonine,
- and cycloheximide are known translation inhibitors. These have also been shown to inhibit
- 195Zika and Ebola (12), SARS and MERS (13), and Newcastle disease virus (14). Apcidin, an
- 196 HDAC inhibitor has been predicted to inhibit SARS-CoV-2 in a recent study (15).
- 197

198 In vitro experiments for viral inhibition of SARS-COV-2, reveal that all whole plant extracts

199 of *Cipa* (aqueous and alcoholic) could inhibit the virus at least up to 60%. Hydroalcoholic

- 200 whole plant extract showed an inhibition of 98%. The single molecule constituents of Cipa
- 201 could also inhibit the viral particles, with pareirarine showing the highest inhibition of
- 202 80%. This showed that *Cipa* does have the potential to inhibit SARS-CoV-2 virus *in vitro*.
- 203 Interestingly, the highest inhibition is shown by the whole plant hydroalcoholic extract
- 204 which comprises of various small compound constituents. This suggests a synergistic effect
- 205 of the constituents towards viral inhibition.
- 206

207 We also found that the signatures of the transcriptomic changes in *Cipa* treated MCF7 cells

- 208 and BALF from patients' lungs, have interesting overlaps. Among the connected small
- 209 compounds triciribine, torin-1 and VU-0365114-2, triciribine has been shown to inhibit
- 210 Human Immunodeficiency virus sera types 1 and 2 (16). Another study has shown that VU-
- 211 0365114-2, which is a muscarinic acetylcholine receptor M5 inhibitor, has repurposing
- 212 potential against SARS-CoV-2 (17). While mTOR inhibitor torin-1 may modulate immune
- 213 activity and enhance antiviral response, even against SARS-COV-2 (18).
- 214
- 215 Conclusion

216 In summary, we report here a framework applicable for repurposing of herbal

- 217 formulations using an integrated multi-pronged approach using transcriptome-based
- 218 connectivity mapping, *in vitro* validation and conjoint analysis with disease signatures. We
- 219 demonstrate the potential repurposing of *Cissampelos pareira* L for sars-cov-2 using this
- 220 approach.
- 221

222 Acknowledgements:

223 The authors would like to thank Dr. Rakesh Mishra (director-CCMB) for facilitating and

- support for SARS-CoV-2 infection model. The authors acknowledge research fellowship
- support to MH (University Grants Commission), DD (Department of Biotechnology) SK
- 226 (CSIR) and Anmol (DST-INSPIRE).
- 227
- Funding: Council of Scientific and Industrial Research (CSIR) TRISUTRA (MLP-901) and
- 229 Center of Excellence on Applied Developments in Ayurveda, Prakriti and Genomics, grant
- 230 by Ministry of AYUSH (GAP0183), Govt. of India.
- 231
- 232

233 Conflict of Interest Statement:

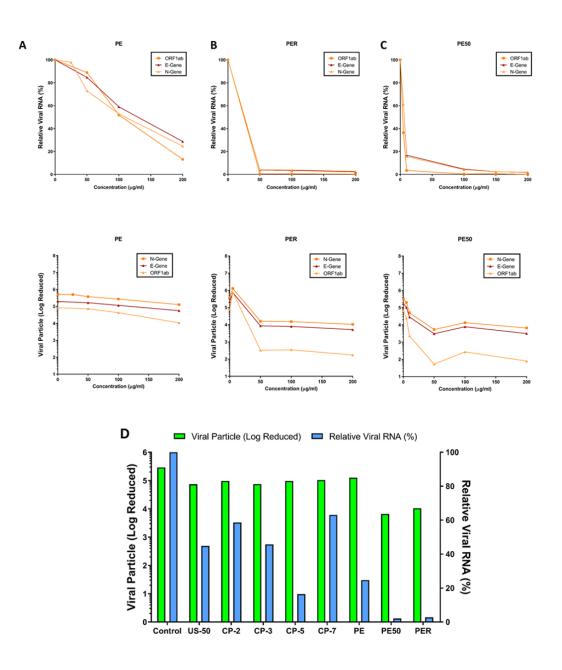
- 234 The authors declare no conflict of statement
- 235
- 236

237 References:

- 2381.D. E. Gordon, *et al.*, A SARS-CoV-2 protein interaction map reveals targets for drug239repurposing. *Nature* (2020) https://doi.org/10.1038/s41586-020-2286-9.
- 240 2. K. E. Stelzig, *et al.*, Estrogen regulates the expression of SARS-CoV-2 receptor ACE2 in
 241 differentiated airway epithelial cells. *Am. J. Physiol. Cell. Mol. Physiol.* **318**, L1280–
 242 L1281 (2020).
- 2433.R. Sood, *et al.*, Cissampelos pareira Linn: Natural Source of Potent Antiviral Activity244against All Four Dengue Virus Serotypes. *PLoS Negl. Trop. Dis.* **9**, 1–20 (2015).
- 4. M. Ganguly, M. Kr Borthakur, N. Devi, R. Mahanta, Antifertility activity of the
 methanolic leaf extract of Cissampelos pareira in female albino mice. *J. Ethnopharmacol.* **111**, 688–691 (2007).
- M. Haider, *et al.*, Transcriptome analysis and connectivity mapping of
 Cissampelos pareira L. provides molecular links of ESR1
 modulation to viral inhibition. *bioRxiv*, 2021.02.17.431579 (2021).
- M. V Kuleshov, *et al.*, Enrichr: a comprehensive gene set enrichment analysis web
 server 2016 update. *Nucleic Acids Res.* 44, W90-7 (2016).
- A. Subramanian, *et al.*, A Next Generation Connectivity Map: L1000 Platform and the
 First 1,000,000 Profiles. *Cell* (2017) https://doi.org/10.1016/j.cell.2017.10.049.
- 8. V. Bhatt, *et al.*, Chemical profiling and quantification of potential active constituents
 responsible for the antiplasmodial activity of Cissampelos pareira. *J. Ethnopharmacol.* 262, 113185 (2020).
- L. Caly, J. D. Druce, M. G. Catton, D. A. Jans, K. M. Wagstaff, The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. *Antiviral Res.* (2020) https://doi.org/10.1016/j.antiviral.2020.104787.
- Y. Xiong, *et al.*, Transcriptomic characteristics of bronchoalveolar lavage fluid and
 peripheral blood mononuclear cells in COVID-19 patients. *Emerg. Microbes Infect.* 9,
 761–770 (2020).

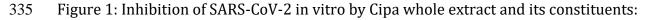
264 265	11.	Z. Zhou, <i>et al.</i> , Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. <i>Cell Host Microbe</i> 27 , 883-890.e2 (2020).
266	12.	S. Yang, <i>et al.</i> , Emetine inhibits Zika and Ebola virus infections through two molecular
267		mechanisms: inhibiting viral replication and decreasing viral entry. <i>Cell Discov.</i> 4 , 31
268		(2018).
269	13.	J. Dyall, <i>et al.</i> , Repurposing of clinically developed drugs for treatment of Middle East
270		respiratory syndrome coronavirus infection. <i>Antimicrob. Agents Chemother.</i> 58 ,
271		4885–4893 (2014).
272	14.	HJ. Dong, <i>et al.</i> , The Natural Compound Homoharringtonine Presents Broad
273		Antiviral Activity In Vitro and In Vivo. Viruses 10 (2018).
274	15.	K. Liu, et al., Clinical HDAC Inhibitors Are Effective Drugs to Prevent the Entry of
275		SARS-CoV2. ACS Pharmacol. Transl. Sci. 3, 1361–1370 (2020).
276	16.	R. G. Ptak, et al., Inhibition of Human Immunodeficiency Virus Type 1 by Triciribine
277		Involves the Accessory Protein Nef. Antimicrob. Agents Chemother. 54, 1512 LP –
278		1519 (2010).
279	17.	Z. Wang, et al., Identification of Repurposable Drugs and Adverse Drug Reactions for
280		Various Courses of COVID-19 Based on Single-Cell RNA Sequencing Data. ArXiv,
281		arXiv:2005.07856v2 (2020).
282	18.	Y. Zheng, R. Li, S. Liu, Immunoregulation with mTOR inhibitors to prevent COVID-19
283		severity: A novel intervention strategy beyond vaccines and specific antiviral
284		medicines. <i>J. Med. Virol.</i> 92 , 1495–1500 (2020).
285	19.	S. Micholas, S. Jeremy C., Repurposing Therapeutics for COVID-19: Supercomputer-
286		Based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human
287		ACE2 Interface. <i>chemRxiv</i> (2020) https://doi.org/10.26434/chemrxiv.11871402.v4.
288	20.	Y. Zhou, <i>et al.</i> , Network-based drug repurposing for novel coronavirus 2019-
289		nCoV/SARS-CoV-2. <i>Cell Discov.</i> 6 , 14 (2020).
290		
291		
292		
293		
294		
295		
296		
297		
298		
299		
300		
301		
302		
303		
304		
305		
306		

307 *Table and Figures:*


- 308 Table 1. Connectivity scores of small compounds with repurposing potential against SARS-
- 309 CoV-2 as predicted by various studies.
- 310

Compounds	Score	Reference	
Emetine	99.61		
Chloroquine	-45.51		
mefloquine	-3.93		
Amodiaquine	-13.11		
Gemcitabine	1.59		
Tamoxifen	-23.6		
Toremifene	-17.23		
Terconazole	-14.17		
Anisomycin	99.58	(Dyall et al., 2014)(13)	
cycloheximide	99.86		
Homoharringtonine	99.51		
Fluspirilene	-35.73		
Thiothixene	-1.66		
Fluphenazine	17.51		
Chlorpromazine	-77.85		
Triflupromazine	-0.35		
Clomipramine	-11.65		
Imatinib	-1.34		
Dasatinib	-75.92		
Vidarabine	-2.82	(Micholas and Jeremy C., 2020)(19)	
eriodictyol	-13.82		
phenformin	1.23		
Apicidin	86.32		
Haloperidol	-0.74		
Entacapone	6.41		
Metformin	4.37	— (Gordon et al., 2020)(1)	
H-89	-82.31		
Ribavirin	7.17		
Midostaurin	48.43		
Ruxolitinib	91.54		
Daunorubicin	-73.76		
Captopril	13.92		
Chloramphenicol	-21.3		

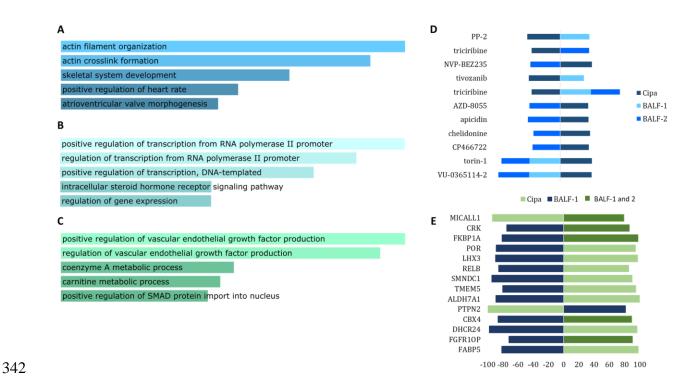
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448155; this version posted June 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.


	Lineralid	17.20	
	Linezolid	17.29	
	Irbesartan	1.09	 (Y. Zhou et al., 2020)(20)
	Equilin	22.26	
	Mesalazine	7.09	
	Mercaptopurine Paroxetine	6.02 -1.84	
	Sirolimus	95.45	
	Carvedilol	-13.58	_
	Dactinomycin	-39.25	_
	Eplerenone	10.74	-
	Oxymetholone	-2.34	_
311	oxymetholone	2.51	
312			
313			
314			
315			
316			
317			
318			
319			
320			
321			
322			
323			
324			
325			
325 326			
327			
327			
329			
330			
331			
332			

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448155; this version posted June 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

333

334


Relative viral RNA % and Log reduction in viral particles in vero cells upon treatment at 50,

- 337 100, 150 and 200µg of A) whole plant aqueous extract (PE), B) root extract (PER) and C)
- 338 hydro-alcoholic extracts (PE50) of Cipa. D) Sars-cov-2 viral titers inhibition by Cipa
- 339 constituents CP-2 Salutaridine, CP-3 Cissamine, CP-5 pareirarine, CP-7 Magnoflorine, PE

340 aqueous extract, PE50 50% hydroalcoholic extract and PER root extract.

341

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448155; this version posted June 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

344 Figure 2: Comparative analysis of Cipa with BALF-1 and BALF-2 transcriptome: Functional

- enrichment of genes common between A) Cipa and BALF-1, B) Cipa and BALF-2 and C)
- Cipa, BALF-1 and BALF-2. D) Small compound signatures common between all three, the
- 347 space on the left of the vertical axis indicates negative signatures while the one on the right
- 348 indicates positive signatures. E) Genetic signatures common between all three, the space on
- 349 the left of the vertical axis indicates negative signatures while the one on the right indicates
- 350 positive signatures.
- 351
- 352
- 353
- 354
- 355