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ScSNVs expression  
To estimate the expression of the scSNVs we applied SCReadCounts as previously described [18]. 

For each cell, SCReadCounts tabulates the reference and variant counts of sequencing reads (nref and 
nvar, respectively) for genomic positions of interest, and computes the expressed Variant Allele Fraction 
(VAFRNA = nvar / (nvar + nref)) at a desired depth threshold (minimum number of reads covering the position, 
minR). For this particular analysis we estimated VAFRNA at minR=3. The distribution of VAFRNA for scSNVs 
called in 3 and more cells per dataset, for all cells with 3 and more reads at the corresponding position, 
is shown on Figure 4a. The majority of the scSNV positions had VAFRNA up to 0.2 across most of the 
cells. Note that this assessment includes also the cells with only reference reads at the SNV position 
(i.e. VAFRNA = 0). Such VAFRNA distribution is expected for SNVs present in a small proportion of cells (i.e. 
de novo SNVs). In contrast, biallelic pSNVs show VAFRNA distribution centered around 0.5, which is 
generally expected for the majority of the heterozygous germline SNVs (Figure 4b). 

 
To explore if cells bearing certain scSNVs have related gene expression features, we assessed the 

scSNV expression in the individual cells after graph-based cell-clustering. For this analysis we 
processed the scRNA-seq datasets as we have previously described [11,18]. Briefly, after alignment 
with STARsolo [12] and quality filtering, the gene-expression matrices were processed using Seurat [24] 
to normalize gene expression and correct for batch- and cell-cycle effects; the normalized gene 
expression values were then used to assign likely cell types using SingleR [25] (Methods). We then 

Figure 4. a. ScVAFRNA estimated at positions covered by a minimum of 3 sequencing reads (minR=3) for scSNVs called in 3 and 
more cells per dataset (y-axis). The majority of the positions have VAFRNA up to 0.2. Note that the plot is inclusive for all the cells with 
minR=3 in the corresponding position, including those covered with reference reads only. The percentage of cells with the 
corresponding VAFRNA is displayed on the x-axis b. ScVAFRNA estimated at positions covered by a minimum of 3 sequencing reads 
for biallelic pSNVs (y-axis). For most of the pSNVs VAFRNA distribution is centered around 0.5, which is expected for germline 
heterozygous SNVs not subjected to monoallelic expression.  
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visualized VAFRNA in the cells bearing scSNVs over the UMAP two-dimensional projections of the scRNA-
seq datasets; examples are shown on Figure 5.  

 

 
Some scSNVs showed different expression across the four treatment time-points. An example is 

rs1161976348 (5:17276721_G>A in the 3’-UTR of the gene BASP1), which appeared to be expressed in 
a higher proportion of cells at later time-points, and especially at t96 (Figure 5a). Other scSNVs (such as 
the novel intergenic SNV 10:96750923_T>C) showed relatively even distribution across the different cell 
types and clusters (Figure 5b). In contrast, the novel SNV positioned at 11:65440255_C>A in a non-
coding exon of the gene NEAT1 showed preferential expression in Macrophage-like cells (Figure 5c).  

Finally, we assessed if some of the scSNVs are correlated the expression of their harboring gene, 
for which we applied the linear regression model implemented in scReQTL [11]. For this analysis we 
used scSNVs detected in five and more cells (between 35 and 70 scSNVs per datasets). Across the four 
datasets, we identified a total of 20 cis-scReQTLs at significance level p<0.05 (Figure 6 and S_Figure 3).  

 
Discussion 
 
In this study we perform an initial assessment SNV calls for individual barcode stratified scRNA-seq 

alignments. Our analysis shows that this strategy identifies significantly higher number of SNVs as 
compared to variant calls on pooled/bulk scRNA-seq data. Furthermore, we find that SNVs called  

Figure 5. Two-dimensional UMAP projections with quantitative visualization (red) of scSNVs VAFRNA. Light-blue colour indicates that the 
position is covered by at least 3 unique sequencing reads bearing the reference nucleotide; thereby signifying non-0 expression at the 
position. a. SNV rs1161976348 (5:17276721_G>A) in the 3’-UTR of the gene BASP1. Higher proportion of cells appear to express the 
SNV at later time-points post anti-cancer treatment, especially at t96. b. Novel intergenic SNV (10:96750923_T>C) showing relatively 
even distribution across the different cell types and clusters of the 4 post-treatment time-points. c. Novel SNV positioned at 11:65440255 
(C>A) in a non-coding exon of the gene NEAT1, expressed preferentially in the Microphages. 
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exclusively in the individual alignments (and not in the pooled/bulk scRNA-seq data) possess several 
striking characteristics. First, scSNVs are substantially enriched in previously undescribed variants.  This 
finding is not surprising, as scSNVs are seen in up to 5% of the cells in a datasets (most often in only 
one cell) and thus are likely to indicate de novo arising variants. De novo SNVs are likely to arise in most 
of the normal and tumor cells [26], but are only possible to be retained in the germline in germline tissues. 
Therefore, scSNVs are unlikely to be reported in DbSNP, where the vast majority of SNVs are called from 
pooled germline DNA datasets. Hence, calling scSNVs can facilitate studies on the occurrence and the 
evolution of de novo genetic variants. We note that here we cannot exclude the possibility for RNA-
editing origin of some of the SNVs. However, we find the probability for RNA-editing as low since none 
of these loci was listed in RNA-editing databases, and, also because we remove from our analysis 
repeated regions (Methods), which are known to harbour the vast majority of RNA-editing events. 
 Second, we find that the scSNVs are significantly enriched in coding variants, and especially in 
stop-codon and missense substitutions. This is likely to be related to different rates of mutations’ 
generation, repair, and positive or negative selection. This observation definitely requires scRNA-seq 
studies focused on mutation dynamics and evolution, and exploiting multiple heterogeneous sample 
sources. 
 Third, we find that some scSNVs might affect the expression of their harbouring gene, and 
thereby, possibly exert downstream effects. In this study we find 20 significant cis-scReQTLs. This 
number is expected given the input size (up to 70 SNVs and up to 3000 cells per dataset), and, based 
on our previous studies is likely to be significantly higher in larger datasets [11,18].  

Overall, our study indicates an immense potential of SNV assessment from individual cell scRNA-
seq data and emphasizes on the need of cell-level variant assessment approaches and tools. Given the 
growing accumulation of scRNA-seq datasets, cell-level variant assessment are likely to significantly 
contribute to the understanding of the cellular heterogeneity and the relationship between genetics and 

Figure 6. Significant cis-scReQTLs at FDR<0.05. 
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functional phenotypes. Finally, cell-level variant assessments from scRNA-seq can be highly informative 
in cancer where they can help elucidate somatic mutations evolution and functionality. 

 
Methods 
 
Sequencing datasets 
The sequencing datasets were freely available from the NCBI Sequence Read Archive (SRA) 

under the accession numbers SRR5945460 (MCF7, targeted exome), SRR5945478 (MCF7, whole 
genome), and SRR10018149, SRR10018150, SRR10018151, SRR10018152 (MCF7 treatment, t0, t12, 
t48 and t96, respectively). MCF7 cells culturing and treatment is described in details in the original study 
[19]. Briefly, to follow transcriptional changes during treatment, MCF7 cells were exposed to 500 nM of 
bortezomib (Selleckchem, S1013) and collected before treatment (t0), after 12 h of exposure (t12), after 
48 h of exposure (t48) or after 72 h of exposure followed by drug wash and 24 h of recovery (t96). Single 
cells were processed through the Chromium Single Cell 3′ Solution platform using the Chromium Single 
Cell 3′ Gel Bead, Chip and Library Kits (10X Genomics). Libraries were sequenced on an Illumina 
NextSeq 500 platform. 

Data processing 
Alignment, barcode and UMI processing, generation of individual scRNA-seq alignments 
The targeted exome and the whole genome sequencing reads were aligned to the latest version 

of the human genome reference (GRCh38, Dec 2013) using BWA v.0.7.17 default settings [27]. The 
pooled sequencing reads form the scRNA-seq datasets were aligned using the STARsolo module of 
STAR v.2.7.7a in 2-pass mode with transcript annotations from the assembly GRCh38.79 [12,28]. 
STARsolo integrates read mapping,  read-to-gene assignment, cell barcode demultiplexing and unique 
molecular identifier (UMI) collapsing [12]. To generate individual cell alignments we adopted a publicly 
available python script which splits the pooled scRNA-seq alignments based on cellular barcode [21].  

Variant call 
For all DNA and RNA datasets variant call was performed applying the HaplotypeCaller module 

of GATK v.4.2.0.0, in parallel with Strelka2 v.2.9.10; both tools were used under their default settings 
[14,15]. For RNA datasets the HaplotypeCaller was preceded by assignment of read groups using the 
GATK module AddOrReplaceReadGroups, followed by splitting reads that contain Ns in their cigar string 
with the GATK module SplitNCigarReads [14]. For the initial comparisons that included the DNA 
datasets, no filtering was applied on the SNV calls from the pooled or bulked variant calls. The SNV calls 
from the individual alignments were filtered according to the following criteria using bcftools v.1.10.2 
[29]: QUAL (Phred-scaled probability) > 100, MQ (mapping quality) > 60, and QD (quality by depth) > 2. The 
same filtering was applied on the SNV calls from pooled alignments for the analyses of distribution on 
novel SNVs and functional annotations. SNV loci were annotated using SeattleSeq v.16.00 (dbSNP build 
154), and SNV loci positioned in repetitive regions were removed. Thus processed SNV calls were 
subjected on the above described analyses. 

Gene expression estimation from scRNA-seq data 
To estimate gene expression, we used the read count matrices with the row gene counts per cell 

generated by STARsolo. We normalized and scaled the expression data using the sctransform function 
as implemented in Seurat v.3.0 [24,30], which stabilizes the gene expression variance using regularized 
negative binomial regression, and outlines the most variable genes. The sctransform function integrates 
the previous Seurat functions NormalizeData, ScaleData, and FindVariableFeatures. The cell-feature 
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distributions were than plotted to identify and filter out outliers and low-quality cells, which we defined 
after examination of the cell features distribution (S_Figure 4). Specifically, based on the cells’ and 
features’ distribution, we have filtered out: (1) cells with mitochondrial gene expression over between 
7.5% and 15%, (2) cells with less than 1000 genes, and (3) cells with more than between 4500 and 5500 
detected genes (to remove potential doublets). The Seurat processed gene expression values were also 
used to remove batch effects and cell cycle effects (S_Figure 5), as well as for cell types assessments 
and cis-scReQTLs (See below).  

Cell type assessments 
To define similarity of the MCF7 clusters with known cell types, we used SingleR v.1.0.5 [25]. 

SingleR assigns cellular identity by comparison to reference whole transcriptome expression data sets 
of pure cell types. SingleR correlates the expression profile of each single cell to whole-transcriptome 
expression data from established cell types (BluePrint + ENCODE datasets). To select the expression 
profile most similar to the tested cells, the analysis is rerun iteratively, using only the top cell types from 
the previous step until only one cell type is retained. Comparing our datasets against 259 bulk RNAseq 
profiles representing 24 main cell types and 43 subtypes, SingleR identified the following cell types: 
CD4+ T-cells, Epithelial cells, Macrophages, Endothelial cells, Erythrocytes, Keratinocytes, Plasma cells, 
and Mesanglial cells (S_Figure 6).  

VAFRNA estimation 
Single cell level VAFRNA is assessed from the pooled scRNA-seq alignments using scReadCounts 

v.1.1.4 as we have previously described [18]. Briefly, provided barcoded scRNA-seq alignments and 
genomic loci and alleles of interest, SCReadCounts tabulates, for each cell, the reference and variant 
read counts (nref and nvar, respectively), and generates a cell-SNV matrix with the absolute nref and nvar 
counts, and a cell-SNV matrix with the VAFRNA estimated at a user-defined threshold of minimum number 
of required sequencing reads (minR). For the herein presented analysis, we used minR> 3.  

Correlation between VAFRNA and Gene Expression 
For each scSNV called in more than 5 cells, we performed analysis for a correlation between the 

VAFRNA and the gene expression (cis-scReQTL) of the harbouring gene using scReQTL as previously 
described [11]. Briefly, the VAFRNA were correlated to the normalized gene expression values of the most 
variable genes using a linear regression model as implemented in Matrix eQTL [31]. The top 15 principal 
components of the gene expression were used as covariates. Cis-correlations were annotated as 
previously described for the bulk ReQTLs [32]. Briefly, because scReQTLs are assessed from transcripts, 
we assign cis-correlation based on the co-location of the SNV locus within the transcribed gene, using 
the gene coordinates.  

Statistical analyses 
Throughout the analysis we used the default statistical tests (with built-in multiple testing correc-

tions) implemented in the used software packages (Seurat, SingleR, Matrix eQTL), where p-value of 0.05 
was considered significant, unless otherwise stated. For estimation of significant scReQTL, we applied 
FDR as implemented in the Matrix eQTL package. Specifically, once Matrix eQTL discovers a set of 
significant gene-SNP pairs, it estimates a corresponding q-value (FDR) for each of them using Benja-
mini–Hochberg procedure under the assumption that the tests are independent or positively correlated 
[31,33].  
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