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Abstract 
 
RNA and protein levels correlate only partially and some transcripts are better correlated with their 
protein counterparts than others. This suggests that in aging and disease studies, some 
transcriptomics markers may carry more information in predicting protein-level changes. Here we 
applied a computational data analysis workflow to predict which transcriptomic changes are more 
likely relevant to protein-level regulation in striated muscle aging. The protein predictability of each 
transcript is estimated from existing large proteogenomics data sets, then transferred to new total RNA 
sequencing data comparing skeletal muscle and cardiac muscle in young adult (~4 months) mice vs. 
early aging (~20 months) mice. Aging cardiac and skeletal muscles both invoke transcriptomic 
changes in innate immune system and mitochondria pathways but diverge in extracellular matrix 
processes. On an individual gene level, we identified 611 age-associated signatures in skeletal and 
cardiac muscles at 10% FDR, including a number of myokine and cardiokine encoding genes. We 
estimate that about 48% of the aging-associated transcripts may predict protein levels well (r ≥ 0.5). In 
parallel, a comparison of the identified aging-regulated genes with public human transcriptomics data 
showed that only 35–45% of the identified genes show an age-dependent expression in 
corresponding human tissues. Finally, integrating both RNA-protein correlation and human 
conservation across data sources, we nominate 134 prioritized aging striated muscle signature genes 
that are predicted to correlate strongly with protein levels and that show age-dependent expression in 
humans. These prioritized signatures may hold promise to understanding heart and skeletal muscle 
physiology in human and mouse aging. 
 
Introduction 
 
Skeletal and cardiac muscles are highly specialized tissues that are associated with distinct functional 
declines during aging. In aged organisms, there is a progressive loss of skeletal muscle mass, function, 
and regenerative capacity. Sarcopenia leads to frailty, diminishes the capacity for locomotion, limits the 
physiological role of muscles to regulate systemic glucose metabolism, and is a strong independent 
predictor of mortality in the elderly (Landi et al., 2013; Moore et al., 2014). In parallel, age-associated 
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heart diseases are a leading cause of mortality and morbidity worldwide. Old age is associated with a 
decline in cardiac reserve, stress tolerance, metabolic and functional capacity, as well as the 
development of myocardial fibrosis that reduces the elasticity of the cardiac muscle (Lesnefsky et al., 
2016; Triposkiadis et al., 2019). Hence, existing evidence strongly points to striated muscle tissues as 
being key to preserving organismal function and promoting healthspan. Understanding the molecular 
mechanisms of aging hearts and skeletal muscles is an important component in the quest to mitigate 
and prevent prevalent morbidities in an aging world.  
 

Recent reports have surveyed the transcript level changes in the aging mouse skeletal muscle 
(Graber et al., 2021; Lin et al., 2018; Mikovic et al., 2018) or the heart (Bartling et al., 2019; Benayoun et 
al., 2019; Greenig et al., 2020). Separate studies have also determined the transcript (Timmons et al., 
2019; Tumasian et al., 2021) and protein abundance changes (Murgia et al., 2017; Ubaida-Mohien et 
al., 2019a) in aging human skeletal muscles. Despite progress however, significant knowledge gaps 
persist. Continued investigations are needed to establish consistent aging signatures in the heart and 
the skeletal muscle across multiple models, and to contrast tissue-specific signatures across the two 
major groups of striated muscles. Moreover, important questions remain unanswered on whether and 
how much of the detected transcriptome changes might be translated to the protein level.  

 
It is now established that transcript and protein levels correlate imperfectly across tissues and 

biological samples, where some transcripts may even be negatively correlated with the abundance of 
their protein counterpart (Franks et al., 2017; Jiang et al., 2020; Krug et al., 2020). Because proteins 
perform the overwhelming majority of biological processes, the results from transcriptomics data might 
be differentially relevant to biological processes based on how well they predict protein level. Recent 
large studies including GTEx (GTEx Consortium, 2020; Jiang et al., 2020), CPTAC (Krug et al., 2020; 
Mani et al., 2021), and GESTALT (Tumasian et al., 2021) have compared transcriptomics and 
proteomics data from matching tissues in large cohorts, and generally find moderate correlation 
between RNA and protein levels across samples. At present however, large-scale proteomics data of 
comparable depths remain far less accessible and common than transcriptomics data, hence there is 
intense interest in comparing across omics layers and identifying the transcriptomics signatures in 
aging and disease models that are translatable to the protein layer. 

 
Here we performed total transcriptomic analysis in the heart and the skeletal muscle to assess 

global gene expression features of striated muscle aging. We apply a computational data analysis 
workflow that: (i) estimates the degree to which the transcriptome changes may predict changes at the 
protein level; and (ii) co-analyzes public human transcriptomics data to prioritized conserved 
signatures in human tissues. This approach may be useful for prioritizing transcriptomics signatures 
that are likely relevant to protein-level regulation. 

 
Experimental 
 
Animals and tissue extraction 
All animal protocols were approved by the Institutional Animal Care and Use Committee at the 
University of Colorado School of Medicine. C57BL/6J mice were purchased from Jackson 
Laboratories (Bar Harbor, ME, USA) and housed in a temperature-controlled environment on a 12-h 
light/dark cycle and fed with normal diet and water ad libitum under National Institutes of Health (NIH) 
guidelines for the Care and Use of Laboratory Animals. Young adult mice (~4 months) and early aging 
mice (~20 months) mice (n=4, 2 male 2 female) were sacrificed, followed by measurement of body 
weight, heart weight and tibia length. The left cardiac ventricle and quadriceps femoris muscle were 
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collected and stored at –80 °C.  
 

Total RNA sequencing 
To extract RNA, the tissues were cut into ~1 mm3 cubes on ice. Cold TRIzol (Invitrogen) was added at 
75 µL per mg tissue and tissues were homogenized on a bead mill homogenizer with 2.8 mm ceramic 
beads at 10 second duration, speed 5, 5 repeats. The samples were centrifuged at 16,000 g for 15 
minutes at 4 °C and the supernatant was transferred to RNase-free tubes. RNA extraction was 
performed using the Direct-zol RNA Miniprep Plus kit (ZYMO) following manufacturer’s instructions. 
Total RNA sequencing was performed on the tissues (~80M reads/ 20 Gbases, 151 nt PE, Zymo Ribo-
depleted library) using Illumina short-read sequencing on a NovaSeq 6000 platform. The data were 
mapped to the mouse genome GRCm38.p6 using STAR v.2.7.6a (Dobin and Gingeras, 2016). The 
mapped transcripts were assembled using Stringtie v.2.1.1 (Kovaka et al., 2019) against Gencode 
vM25 gff3 annotations. All sequencing data are available on GEO at GSE175854. 
 

Liquid chromatography and mass spectrometry 
To extract proteins, tissue pieces were lysed in RIPA buffer and Halt protease/phosphatase inhibitor 
(Thermo) with a hand-held homogenizer, followed by sonication and centrifugation at 16,000 g for 15 
minutes at 4 °C. Protein quantity was measured using BCA assay (Thermo), after which 100 µg of 
proteins were digested using a filter-assisted protocol as described (Manza et al., 2005). Digested 
peptides were desalted using C18 spin columns (Pierce). Label-free bottom-up mass spectrometry 
was performed using data dependent acquisition on an Orbitrap Q-Exactive HF connected to a Easy-
nLC 1200 nano-UPLC system using typical settings as described (Lau et al., 2019). Mass 
spectrometry raw data was converted to mzML using ThermoRawFileParser v.1.2 (Hulstaert et al., 
2020), and searched against UniProt SwissProt (The UniProt Consortium, 2018) reviewed Mus 
musculus database (retrieved 04/27/2021) with appended contaminant sequences using MSFragger 
v.3.2 (Kong et al., 2017), followed by post-processing using PeptideProphet and ProteinProphet in the 
Philosopher suite v.3.4.13 (da Veiga Leprevost et al., 2020) and label-free quantification with match-
between-runs using IonQuant v.1.5.5 (Yu et al., 2020).  
 

Retrieval and analysis of public expression data sets 
Human gene expression profiles are from GTEx v8 release (GTEx Consortium, 2020) data retrieved 
from the GTEx portal and normalized using variance stabilizing transformation (Love et al., 2014), then 
batch corrected with the aid of ComBat (Leek et al., 2012). CPTAC RNA-seq and mass spectrometry 
datasets for breast (Krug et al., 2020), ovarian (Hu et al., 2020b; Zhang et al., 2016), colorectal 
(Vasaikar et al., 2019; Zhang et al., 2014), lung adenocarcinoma (Gillette et al., 2020), and endometrial 
(Dou et al., 2020) cancer discovery studies were retrieved in accordance with the CPTAC data use and 
embargo policies using the cptac v.0.9.1 package  in Python 3.9. Statistical learning was performed 
using scikit-learn 0.24.2 (Lindgren et al., 2021). Transcriptomics data were standardized, after which 
data were split 80/20 into train and test sets. Prediction was performed using an elastic net for the sake 
of consistency with the CPTAC DREAM baseline model (Yang et al., 2020). Correlation coefficients, R2, 
and normalized root mean square error metrics were reported. 
 

Additional statistics and data analysis 
Data analysis was performed in R v.4.0.5 and Bioconductor v.3.12 (Huber et al., 2015) on an x86_64-
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apple-darwin17.0 (64-bit) platform. Statistical tests for sequencing reads were performed using 
DESeq2 v.1.30.1 (Love et al., 2014) using age and sex as factors after filtering low-read genes to retain 
17,003 genes in the heart and 16,231 genes in the muscle. Statistics for label-free proteomics data 
were performed using limma v.3.46.0 (Ritchie et al., 2015) with age and sex as factor. Cell type 
proportions were estimated with the aid of Seurat v.4.0.1 (Butler et al., 2018), the weighted non-
negative least square regression method in MuSiC v.0.1.1 (Wang et al., 2019), and Tabula Muris FACS 
mouse heart and muscle single-cell RNA sequencing data (Tabula Muris Consortium et al., 2018). 
Functional enrichment was performed with the aid of fgsea v.1.16.0 (Sergushichev, 2016) and MSigDB 
v.7.3 annotations (Liberzon et al., 2011) or ReactomePA v.1.9.4 (Yu and He, 2016) against Reactome 
annotations (Fabregat et al., 2018) loaded in the package. Comparison of correlation coefficients was 
performed using cocor v.1.1-3 (Diedenhofen and Musch, 2015). 
 
Results & Discussion 
 

Global features and pathways in aging heart and muscle 
 
We first acquired total RNA sequencing data on the total transcriptome changes in the heart 

and the skeletal muscle between young adult vs. early aging mice (4 vs. 20 months) (n=4 each) 
(Supplementary Table S1). The transcriptome profiles in each organ is distinguishable by sex, and 
shows more separation by ages in female than in male animals (Fig. 1A). On a global level, we 
considered the cellular pathways that are involved with age-associated gene expression changes 
using the fast gene set enrichment analysis (FGSEA) algorithm. In both tissues, aging is associated 
with a positive enrichment of genes involved in innate immune system and neutrophil degranulation 
(FGSEA P.adj 1.4e–3 heart; 1.0e–2 muscle) as well as GPCR ligand binding terms (P.adj 8.5e–2 heart; 
3.1e–3 muscle); and a negative enrichment of genes involved in the respiratory chain (P.adj  3.8e–3 
heart; 6.7e–3 muscle), citric acid cycle (P.adj 4.2e–3 heart; 8.1e–3 muscle), and translation (P.adj 
6.9e–2 heart; 1.1e–2 muscle) (Figure 1B). Comparable processes were enriched using WikiPathways 
and KEGG terms as annotations (Supplementary Figure S1). A major discrepancy between the two 
types of muscle involves genes functioning in extracellular matrix organization and collagen 
degradation, which are up-regulated in aging hearts but down-regulated in aging tissues.  

 
Closer inspection of the fold-changes of genes making up the leading edges of FGSEA-

enriched terms show a concomitant down-regulation of genes in electron transport and translation 
pathways and up-regulation of innate immune system genes (Supplementary Figure S2A–C). 
Although muscle contraction genes are implicated in both tissues during aging, we find that the up-
regulated genes differ, with Sln, Myl7, and Myl4 most prominently induced in the heart as opposed to 
Myh6 and Myl2 in the skeletal muscle (Supplementary Figure S2D), whereas we also observed 
individual genes in extracellular matrix organization changed in opposite directions as the pathway 
enrichment results suggest (Supplementary Figure S2E). 

 
Taken together, the pathway-level analysis suggests that during normal heart and skeletal 

muscle aging, gene expression changes are consistent with a rerouting of gene expression from 
mitochondrial metabolism and protein synthesis usage toward inflammatory and matricellular 
functional components, although the changes in extracellular matrix appeared to diverge between the 
two striated muscle. Our results also add to a chorus of recent findings that implicate the innate 
immune system in muscle aging (Graber et al., 2021; Lin et al., 2018; Ubaida-Mohien et al., 2019b) and 
other tissues (Benayoun et al., 2019). 
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Figure 1: Transcriptome changes in young adult mice vs. early aging mice. A. Principal component analysis of 
normalized gene counts in the left ventricle (top) and quadriceps femoris (bottom) show separation by sex and age. B. 
Enriched pathways in aged vs. adult gene expression in two tissues. C-D. Normalized read counts showing sex and age 
expression among selected differentially expressed aging genes in (C) the heart and (D) the skeletal muscle (FDR 10%).  
 

Transcriptomic signatures in striated muscle aging  
 

We next considered the signatures implicated in aging at an individual gene level. We found 
358 differentially expressed coding genes in old vs. adult hearts and 276 in skeletal muscles of 
identical animals at 10% FDR (Supplementary Data S1–S2). Among the induced genes, we found 
genes that are previously associated with age-associated diseases as well as genes not previously 
associated with aging tissues. Among the genes of interest, nuclear receptor subfamily 4 group A 
member 1 (Nr4a1) and mothers against decapentaplegic homolog 3 (Smad3), were both significantly 
decreased in aging skeletal muscle (Nr4a1 logFC –0.73, P.adj 3.8e–4; Smad3 logFC –0.44, P.adj 
2.1e–2). A recent large-scale meta-analysis of 739 human skeletal muscle transcriptomes from 
endurance or resistance exercise interventions pinpointed the human SMAD3 and NR4A1 genes as a 
central hub of acute response to exercise in the skeletal muscle (Amar et al., 2021). Both SMAD3 and 
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NR4A1 are acutely up-regulated after exercise, contradirectional to the observed age-associated 
repression here. Smad3 interacts with Stat3, which in skeletal muscle may function to regulate muscle 
mass (Chao et al., 2012), whereas Nr4a1 may function to regulate mitochondrial biogenesis (Chao et 
al., 2012), hinting at potential connections of these genes to the benefits of exercise in delaying age 
associated muscle and mitochondrial loss. 

 
Results on an individual-gene level were less conserved with other studies that compared 

young and aging mice than pathway changes. For instance, Lin et al. (Lin et al., 2018) and our data 
both found strong changes in immune regulation, but Lin et al. reported a strong decrease in Fkbp5 in 
aging skeletal muscle which was not recapitulated in this study. Instead, we found a significant 
decrease in Fkbp4 (Figure 1D) in aging skeletal muscle. Similarly, although both work noted an 
upregulation of muscle contraction genes in aging, the specific genes overlap only partially, with Lin et 
al. reported upregulation of Myh7, Myh3, Tnnt1, among others, and the present data are represented 
by Myo5a, Tpm2, and Tnnt2 (Supplementary Data S2). Lastly, among the top 20 positively age-
correlated and top 20 negatively age-correlated human genes in the NIA GESTALT study (Tumasian 
et al., 2021), we observed evidence for 5 being recapitulated here (up-regulated: Skap2, Cfap61, 
Kcnq5; down-regulated: Myl1, Casq1 at 15% FDR). These across-study differences can plausibly arise 
from the use of arbitrary significance cutoffs as well as a combination of differences in study design, 
organism models, technical variations, and stochastic gene regulations. We hypothesize that both 
individual-gene level and pathway level changes contain complementary information into the 
molecular mechanisms of aging, which should be taken into account when multiple studies are 
compared in meta-analyses. 

 
 Interestingly, we identified a constellation of genes coding for secreted proteins, which was not 

the focus of prior reports in aging mice. For instance, in the heart, inactive carboxypeptidase-like 
protein X2 (Cpxm2) encodes a secreted protein that is induced in aging hearts (logFC 1.1, DESeq2 
P.adj 9.1e–15). Likewise induced is EGF-containing fibulin-like extracellular matrix protein 1/fibullin 3 
(Efemp1) (logFC 1.25, P.adj 2.7e–15), which encodes an extracellular matrix protein that may be 
cleaved into a secreted peptide and that binds with EGF receptor (Figure 1C). Very recently, the NIA 
GESTALT study has also found human EFEMP1 to be positively correlated with age in the skeletal 
muscle (Tumasian et al., 2021). In the normal aging muscle, osteocrin (Ostn) encodes a secreted 
hormone musclin that acts as an exercise induced myokine (Subbotina et al., 2015) but also functions 
in the heart where it may protect against apoptosis and inflammation (Hu et al., 2020a). In the analyzed 
animals, Ostn is induced in normal aging animals but most prominently in females (Figure 1D) (logFC 
3.3, P.adj 8.0e–4). Bdnf encodes a myokine that is induced by exercise and regulates energy 
metabolism at least in female mice (Yang et al., 2019); we found dimorphic expression with higher 
expression in female and which is further induced in aged tissues (logFC 0.9, P.adj 5.9e–4). Other 
secreted factor encoding genes changed in aging include Gdf11 (logFC 1.76, P.adj 9.5e–2) in skeletal 
muscle as well as Vegfd (logFC 0.85, P.adj 5.8e–2), Frzb (logFC 0.69 P.adj 9.3e–2), Sfrp1 (logFC 
0.62, P.adj 6.6e–3), Fstl4 (logFC 0.57, P.adj 3.6e–3), and Fgf13 (logFC –0.27, P.adj 4.8e–2) in the 
heart (Supplementary Data S1–2). 
 

We identified 20 common coding genes that are differentially expressed in aging in both tissues 
at 10% FDR (Fig. 2A). The shared genes show strong positive correlations (Spearman’s correlation 
coefficient r 0.65, P 0.0032) with the exception of one outlier (predicted gene Gm50364), which is 
repressed in the muscle and induced in the normal aging heart (Fig. 2B). Among the common genes, 
formin-1 (Fmn1) codes for a myofibril differentiation factor that plays a role in the formation of 
adherens junction and is increased in aged muscles and hearts. Myeloid leukemia factor 1 (Mlf1) codes 
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for a protein that may serve as a negative regulator of cell cycle exit and is suppressed in both aging 
hearts and muscles.  
 

 
 
Figure 2: Shared aging signatures in aged cardiac and skeletal muscle. A. Bar chart showing the adjusted P values (x-
axis) and log2 fold-changes (log2FC; fill color) of the 20 aging associated genes identified in both tissues. B. Scatter plot 
showing a comparison of fold changes (aged vs. young adult) and a robust positive correlation (Spearman’s correlation 
coefficient ⍴ 0.65, P 0.0032) between the two tissues. X-axis: log2 fold-change in skeletal muscle; y-axis: log2 fold-
change in the heart. Error bars: standard error of log2 fold-change; line: best-fit linear curve. 
 

To assess whether the gene expression changes were due to changes in cell type 
compositions, we decomposed the bulk RNA-seq read count matrices into individual cell types derived 
from single-cell sequencing data using weighted non-negative least square methods 
(Supplementary Figure S3). We found no evidence of substantial changes of overall cell type 
proportion, suggesting the observed transcriptomic changes are unlikely due to wholesale changes in 
cell population in young adult vs. aged hearts and muscles. 

RNA-protein correlation and predictability of protein-level changes 
 

To estimate whether the effect of aging transcriptome changes is potentially translated to 
proteomic changes, we first applied a statistical learning method against one of the largest 
proteogenomics data sets in existence to train a model to predict protein levels using their cognate 
transcript levels as proxy (see Methods). The correlation coefficients, R2 values, and normalized root 
mean square errors (NRMSE) values between the transcript-predicted protein level and empirical mass 
spectrometry-measured protein levels across subjects are taken as the protein predictability of a 
transcript for each gene. In total, we estimated the protein predictability of 11,896 transcripts 
(Supplementary Data S3). We found a large range of predictability where the predicted-actual 
Pearson’s correlation coefficients ranged from –0.822 to 0.999 (interquartile range 0.18–0.54) 
(Figure 3A-B). A small portion of transcripts (4.5%) had negative correlation with protein levels. The 
median r of all genes is 0.374 which is comparable to previously reported RNA-protein correlation in 
comparable data sets (Eicher et al., 2019; Li et al., 2019; Yang et al., 2020) and in human tissues (Jiang 
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et al., 2020).  
 
We found that poor predictors (r ≤ 0.3) are enriched in pathways involving major multiprotein 

complexes, including Reactome Translation (P.adj 1.9e–62), mRNA Splicing (P.adj 4.4e–24), and 
Respiratory electron transport (P.adj 2.8e–15) terms. Good predictors (r ≥ 0.7) are enriched in 
Reactome Biological oxidations (P.adj 1.9e–6), Extracellular matrix organization (P.adj 2.1e–4), and 
Metabolism of lipids (P.adj 7.8e–3) terms (Supplementary Data S4). This agrees with emerging 
themes from cancer and normal tissue studies. For instance, a large-scale GTEx survey of 32 normal 
human tissues has found that secreted proteins and proteins in multi-protein complexes are generally 
poorly predictable from transcripts (Jiang et al., 2020), presumably because of additional post-
translational constraints on their steady state levels. This corroborates that different proteins exhibit a 
wide range of predictability by proxy transcripts, and hence different transcripts have different intrinsic 
value in reflecting actual protein abundance states across tissues, and moreover, predictions of RNA-
protein agreement might be transferable across to different samples and based on basic biophysical 
constraints. For example, long-half-life housekeeping proteins are usually more predictable from 
transcripts whereas the abundance of multi-protein complex members are buffered by complex 
stoichiometry and assembly. 
 

Validation … Snyder and GESTALT 
 
 

 
Figure 3: Predictability of protein-level from across-sample transcript variance. To estimate whether the quantified 
transcript changes might translate to the proteome, we considered the predictability of protein levels from their proxy 
transcripts on a gene-wise basis in large proteogenomics datasets. A. An elastic net is applied to 717 samples with 
matching transcriptomics and mass spectrometry data in the CPTAC collection. The average correlation (top) and R2 values 
(bottom) between predicted and actual protein levels across samples in each of 10,693 genes are shown. B. Examples of 
an aging signature whose protein abundance across samples is well predicted by its proxy transcript (Anxa1) in matching 
samples and one that is poorly predicted (Uqcrc1). Each data point is one CPTAC sample. Brown: train set; blue: test set. 
 

To further verify the potential impact of the transcriptome signatures on the proteome, we 
performed in-house exploratory proteomics analyses of identical tissues from identical animals using 
label-free quantitative tandem mass spectrometry (Supplementary Data S5). In total, we acquired 
the MS1 label-free quantity of 1,254 distinct proteins in the heart and the skeletal muscle identified 
with ProteinProphet protein probability ≥ 0.95. We identified 58 and 76 proteins with nominal limma P 
≤ 0.05 and |logFC| ≥ 0.5 in the heart and the skeletal muscle, respectively, although only 6 proteins 
reached adjusted P ≤ 0.1, presumably due to the limited depth and breadth of the proteomics profile 
performed here. Nevertheless, pathway analysis using FGSEA against MSigDB revealed an enrichment 
of similar annotation terms to the transcriptomics data, including Reactome Extracellular matrix 
organisation (FGSEA permutation P: 3.5e–4) and Innate immune system (P: 0.053) terms, suggesting 
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the mass spectrometry experiment was able to capture a representative footprint of the aging 
proteomes in these tissues. 

 
Not unexpectedly, we found there is a robust correlation between RNA and protein relative 

abundance across genes within a tissue (Pearson’s r: 0.51 heart; 0.46 muscle) (Figure 4A). There was 
a modest decrease in correlation of RNA and protein levels in aged samples as previously reported, but 
in our data this difference was not significant (Fisher’s z P: 0.49 heart 0.46 muscle). The correlation 
between RNA and proteins weakens significantly when correlations across samples are considered 
(Pearson’s r: 0.18 heart; 0.14 muscle) (Figure 4B). This reflects the distinction between RNA-protein 
correlation across genes vs. across samples, and corroborates mounting evidence that show although 
abundant proteins tend to have abundant transcripts, transcript changes are imperfectly correlated to 
proteins due to post-transcriptional activation (Franks et al., 2017). Nevertheless, when only age-
differentially expressed transcripts (10% FDR) were compared, we observed a general concordance in 
the directionality of protein changes (Figure 4C). Notably, RNA-protein correlation is higher among 
transcripts with nominal changes (DESeq2 P ≤ 0.1) that had higher estimated protein prediction (1 ≥ r ≥ 
0.5) than those with lower prediction (0 ≤ r ≤ 0.5) (correlation 0.42 vs. 0.11; cocor P 1.5e–3) 
(Supplementary Figure S4). The analysis therefore corroborates the transferability of the learned 
model and offers supportive evidence for the adaption of predicted RNA-protein correlations as one 
optional method to help prioritize discovered transcript signatures. 
 

 
Figure 4: Correlation between RNA and protein levels from identical tissues. A. Scatter plot showing the within-
sample across-gene comparisons in the heart (left) and the skeletal muscle (right) for commonly quantified RNA and their 
proteins. Fill color: data frequency within bin. B. Scatter plot showing across-sample comparisons between RNA and 
proteins in the aging vs. young adult heart (left) and skeletal muscle (right). C. Log fold-change comparison at the RNA (x-
axis) and protein (y-axis) level among commonly quantified proteins and transcripts with significant age-associated 
transcript level differences. Line: best-fit linear curves for the heart (red) and the skeletal muscle (blue). Error bars: standard 
errors of logFC. 
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Conservation of identified striated muscle aging signatures in human 
 

Because specific genes and pathways may underlie aging processes in different organisms, we 
next estimated the extent to which the identified mouse aging transcriptome features are translatable 
to humans. To do so, we analyzed the age vs. expression relationship of GTEx v8 human 
transcriptomics data. In total, we retrieved 17,382 RNA sequencing samples including 432 heart left 
ventricle, 429 atrial appendage, and 803 skeletal muscle transcriptomes, and performed stepwise 
normalization for technical, tissue, and donor batches (Supplementary Figure S5A–E). We then 
compared whether the normalized gene expression of each gene signature is correlated with donor 
age groups in different tissues in humans. We found overall there are complex trends between 
identified age-associated signatures with human gene expression-age group relationship. Only 35% 
(107/305) and 44% (97/217) of the analyzed aging genes in the mouse heart and the skeletal muscle, 
respectively, had significant age-expression relationship in GTEx v8 (ANOVA P ≤ 0.01), suggesting not 
every identified signature is potentially conserved across species (Supplementary Figure S6). On a 
global level, up-regulated genes in normal aging mouse hearts are significantly more likely to be 
positively correlated in expression with donor age groups in human heart left ventricle (Wilcoxon P: 
8.0e–5) and atrial appendage (P: 2.8e–2) samples but not in the other compared human tissues 
including the kidney cortex (P: 0.33) or liver (P: 0.27). Moreover, this correlation is not existent when 
only sexually dimorphic (sex-differentially expressed at 10% FDR) genes in the mouse are compared in 
human hearts (Wilcoxon P: 0.87 for heart - atrial appendage and 0.95 for heart - left ventricle). This 
global relationship is considerably subdued for genes that are differentially regulated in aging muscle, 
which may suggest that the aging signatures in this tissue are more specific to species or otherwise 
show non-linear change over the lifespan (Supplementary Figure S5). 

 
Incidentally, the age-expression relationships of signature genes are often not preserved in 

other tissues despite the gene being expressed at appreciable levels. For example, Efemp1 is induced 
in aging in the mouse data here, and is positively correlated with age group in GTEx v8 human heart 
and skeletal muscle tissues but not in the kidney or the liver, despite the human EFEMP1 gene being 
expressed at a similar baseline level in those tissues (Figure 5A). To corroborate this incidental 
observation, we acquired and analyzed RNA sequencing data from the kidney of identical animals 
(Supplementary Data S6). The data corroborated that there are no significant changes in Efemp1 
(logFC 0.20, P.adj 0.28). Likewise, Fkpb4 is not significantly changed in the kidneys of aging humans 
in GTEx v8 or the RNA-seq data of identical animals (logFC 0.03, P.adj 0.92) (Figure 5B); Sod3 is 
correlated with age in human hearts and muscles but not kidney, whereas we also found no significant 
changes in mouse kidney in our RNA-seq data (logFC 0.00, P.adj 1.00) (Figure 5C). Taken together, 
the results suggest that normal aging signatures exhibit tissue specificity, both across skeletal and 
cardiac muscles as well as between striated muscles and other organs, as well as potential species 
specificity, and a selection strategy might be employed to prioritize aging signatures that show 
expression trends in humans. 
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Figure 5: Conserved age-expression profiles of selected signatures in humans. Box plots showing GTEx v8 human 
normalized RNA expression levels across age groups in decadal brackets in four GTEx v8 human tissues (left to right) heart 
left ventricle, heart atrial appendage, skeletal muscle, and kidney cortex for A. Efemp1, B. Fkbp4, and C. Sod3. P values: 
ANOVA. Asterisks within plots denote Tukey’s post-hoc for individual group comparison. *: Tukey P < 0.05; **: P ≤ 0.01; 
***: P ≤ 0.001; ****: P ≤ 0.0001. 
 

Integrating information from both RNA-protein correlation and human conservation, we ranked 
the identified aging signatures based on how well the transcript-predicted across-sample protein 
values reflect empirical protein levels (r ≥ 0.5), and moreover selected signatures that show a 
significant correlation with age group in human GTEx v8 tissues (ANOVA P ≤ 0.01). This combined 
analysis led to 134 of the prioritized age-associated signatures that are potentially more likely to have 
bonafide relevance in the biology of aging tissues at the protein levels (Figure 6). 
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Figure 6: Prioritized age-associated signatures. List of 134 prioritized aging signatures in the heart, skeletal muscle, 
and those common to both tissues. Top: paired bars represent –log10 P.adj in the heart and the skeletal muscles, 
respectively. Row 2–4: the prioritized signatures had CPTAC RNA-protein correlation r ≥ 0.5 and ANOVA P ≤ 0.01 in GTEx 
v8 transcript expression against age groups in GTEx v8 heart left ventricle or skeletal muscle transcriptomes.  

 

Non-coding genes in striated muscle aging 
 

Lastly, although the focus of this study is to prioritize protein correlation of coding gene 
signatures, not all transcripts function only through their translation products, and non-coding RNAs 
play important roles in virtually all aspects of biology. As we acquired total ribosomal-depleted RNA 
abundance data, we also explored the changes of non-coding RNAs in aging hearts and muscles 
including non-poly-A+ transcripts. From the data, we found 19 noncoding genes to be differentially 
expressed with age in the heart and 36 in the muscle at 10% FDR, with 3 overlapping. Grouping into 
gene category annotations suggests that the differentially expressed non-coding genes included 
sense, anti-sense, and intergenic long non-coding RNAs (lncRNAs), as well as small nucleolar RNAs 
and processed pseudogenes (Figure 7A).  The non-coding RNAs were manually inspected for read 
mapping and strand specificity. We recapitulated changes in two maternally imprinted lncRNAs Meg3 
and Riat, which were previously found using qPCR array to be decreased in skeletal muscle over the 
lifespan (Mikovic et al., 2018)), although Meg3 was also found to be increased in senescent endothelial 
cells (Boon et al., 2016). We also identified additional age-regulated lncRNAs. In the muscle, Plet1os is 
also decreased (logFC –1.41, P.adj 8.8e–10) (Figure 7B), whereas Foxo6os is decreased in aging 
(logFC –0.63, P.adj 0.002), and was previously found to be depressed in insulin resistant muscle 
(Figure 7C). In the heart, the lncRNA Mhrt is located on the opposite strand of mouse Myh7 and has 
been associated with the regulation of Myh6/Myh7 ratios as well as protection against pathological 
cardiac remodeling (Han et al., 2014) ; in the data, we found Mhrt to be drastically reduced (logFC –
0.44, P.adj 2.7e–7) in aged hearts. Among the age-regulated lncRNAs, five (Neat1, Plet1os, Foxo6os, 
Peg13, Mhrt) were previously found to have potential translatability in smProt (Hao et al., 2018) or 
engaged in ribosomes in the mouse heart (van Heesch et al., 2019), suggesting a possibility that they 
may be translated. A growing number of microproteins are known to be translated in striated muscles. 
Future work combining transcriptomics and proteomics approaches might determine whether they are 
differentially regulated in aging or participate in associated pathophysiological processes. 
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Figure 7 Non-coding RNA signatures in aging striated muscles. A. Bar charts of differentially expressed annotated 
non-coding RNAs in the heart (top) and the skeletal muscle (bottom). Colors denote Gencode vM25 annotation gene 
biotype. B-C. Examples and genome tracks of two long non-coding RNAs Plet1os (B) and Foxo6os (C) that are 
differentially expressed in aging skeletal muscle. 
 
Conclusion 
 

This study examined the aging transcriptome profiles in skeletal and cardiac muscles. In total, 
we identified over 600 differentially expressed transcripts in the heart and the skeletal muscles of 20 
months vs. 4 months aged mice. Our results add to mounting evidence that point to extracellular 
matrix, mitochondrial, and innate immunity processes as distinguishing factors in aging tissues. 
Notably, our results also point to a number of age-associated gene encoding for secreted signals, 
suggesting age-associated myokines and cardiokines present a promising avenue for further 
understanding the molecular mechanisms of heart and muscle aging. A number of identified signatures 
are specific to striated muscles aging while unchanged over age in other tissues, and hence may be 
particular to muscle aging processes.  

 
We devised a computational workflow that transfers the predicted correlation between 

transcript and protein levels trained from a large data set as a means to prioritize potential age-
associated signatures in a current small-scale data. About 48% of identified aging signatures are 
predicted to correlate well with the abundance of their protein counterparts. The performance of this 
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transfer learning approach is expected to benefit from the continued accrual of additional data in 
closely related tissues and species. Further comparison to public human transcriptomes data showed 
that only 35–45% of the aging signatures show age-dependent expression in corresponding human 
tissues, prompting us to prioritize a subset of signatures that may be more likely conserved in humans. 
We suggest that this computational data analysis approach may be applied to future transcriptomics 
studies in aging and disease to help prioritize potentially biologically relevant and human translatable 
signatures. 
 

Finally, there are several limitations pertaining to the experimental results here. For instance, the 
aging animals (20 months) used here are comparatively younger than the C57BL6/J mice in some 
other studies (22–28 months)  (Bartling et al., 2019; Graber et al., 2021; Greenig et al., 2020; Mikovic et 
al., 2018), which might decrease the sensitivity of age-associated signatures and omit signals that only 
appear in very elderly animals (Graber et al., 2021). Second, only a label-free proteomics experiment of 
limited depth was performed as our major goal was to compare transcriptomics and proteomics fold 
change. Future work using deep quantitative proteomics comparison with common stable isotope 
labeling mass spectrometry techniques may help reveal specific proteomics features of aging that are 
not apparent at the transcript level, or identify non-canonical translation products using 
proteogenomics methods. 
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Supplementary Figure S1. Additional aging associated pathways. A–B. Significantly enriched pathways in aging heart 
and skeletal muscles against A. WikiPathways and B. KEGG annotations. Pathway names are printed as given in MSigDB 
files. X-axis: –log10 FGSEA P.adj values; fill color: enrichment score. 
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Supplementary Figure S2. Heat maps of genes in selected enriched Reactome pathways. A–E. The heat maps show the 
log2 fold-changes (logFC) of aged vs. young adult mice in the heart and the skeletal muscle. Up to 50 leading edge genes 
responsible for FGSEA enrichment in each tissue are shown for A. respiratory electron transport; B. innate immune system; 
C. translation; D. muscle contraction; E. extracellular matrix organization. Fill color: logFC; missing values are in dark grey. 
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Supplementary Figure S3. Estimation of cell type proportions. A–B. UMAP projection of Tabula Muris mouse (A) heart 
and (B) skeletal muscle FACS single-cell RNA sequencing data, with clusters found using the multilevel-refined Louvain 
algorithm implemented in Seurat. C. Tentative assignment of cell identity in the clusters was performed by manual 
interpretation of the top markers found by Seurat in each cluster, several examples of which are shown here. D–E. 
Estimated cell proportion from the bulk RNA-sequencing data in young adult (green) vs. early aging (purple) heart (D) and 
skeletal muscle (E).  
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Supplementary Figure S4. Transcripts with higher protein predictability show greater RNA-protein correlation in 
aging changes. Frequency scatter plot showing the correlation between RNA and protein level fold-changes in 20 months 
vs. 4 months in both tissues. X-axis: measured log2 fold change (logFC) at the transcript level in this study; y-axis: 
measured logFC at the protein level in this study. Left: transcripts with low predicted correlation with protein levels; right: 
transcripts with high predicted correlation with protein levels. Only transcript with nominal changes in this study (DESeq2 P 
≤ 0.1) are included. Color: data point frequency within bin.  
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Supplementary Figure S5. Normalization and batch correction of GTEx v8 data. From upper left to lower right, scatter 
plots showing the first two principal components of GTEx v8 transcriptome data: (A) raw counts; (B) variance stabilization 
transformed counts; (C) after ComBAT batch correction against two technical variables (extraction batch SMNABTCH and 
sequencing batch SMGEBTCH); (D) after ComBAT batch correction against tissue biological characteristics (ischemia time 
SMTSISCH); (E) after ComBAT batch correction against donor characteristics (death Hardy scale DTHHRDY). Each data 
point represents one tissue transcriptome. Color: GTEx v8 sample tissue metadata (SMTS).  
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Supplementary Figure S6. Age-expression relationships in human GTEx v8 data for the identified age-associated 
transcripts. Each bar chart shows the correlation coefficients between relative expression and age groups in 9 GTEx v8 
human tissues for each of the differentially expressed genes in the mouse (A) heart and (B) skeletal muscle identified in this 
study. X-axis: differential transcripts in 20 months vs. 4 months mice; y-axis GTEx v8 correlation between expression and 
donor age group; fill-color: log2 transcript fold-change (logFC) in this study.  
 
 
 

ID 
Dissectio
n Date Sex DOB 

Age 
(wks) 

Body 
Mass 
(g) 

Heart 
Mass (mg) 

Atrium 
Mass (mg) 

LV 
Mass 
(mg) 

RV Mass 
(mg) 

Tibia Length (mm) (3 
repeated measures) 

Avg. 
Tibia 

HW/BW 
(mg/g) 

LV/tibia 
(mg/mm)  

RV/tibia 
(mg/mm) 

O12-F 5/15/19 F 9/19/17 86  39.73 159.9 15.7 103.1 36.8 18.50 18.50 18.43 18.48 4.02 5.58 1.99 
O11-F 5/15/19 F 9/19/17 86  33.39 127.3 9.8 85.4 34.9 18.64 18.60 18.60 18.61 3.81 4.59 1.88 
Y15-F 5/9/19 F 1/15/19 16  21.29 103.9 6.9 72.8 20.6 17.83 17.77 17.75 17.78 4.88 4.09 1.16 
Y14-F 5/9/19 F 1/15/19 16  22.17 107.4 6.1 75.7 23.9 18.01 17.95 17.98 17.98 4.84 4.21 1.33 
O14-M 5/15/19 M 9/19/17 86  42.85 181.1 15.3 109.9 60.3 18.11 18.12 18.10 18.11 4.23 6.07 3.33 
O17-M 5/16/19 M 9/19/17 86  37.31 150.9 9.0 104.7 34.8 18.33 18.32 18.29 18.31 4.04 5.72 1.90 
Y20-M 5/14/19 M 1/15/19 17  31.75 127.6 7.8 95.2 24.5 18.15 18.10 18.11 18.12 4.02 5.25 1.35 
Y19-M 5/14/19 M 1/15/19 17  30.53 135.8 10.2 94.7 31.1 18.16 18.14 18.17 18.16 4.44 5.22 1.71 

 
Supplementary Table S1. Animals used in the study. Dates of birth (DOB), dissection, heart weights, and tibia lengths are 
shown. LV: left ventricle; RV: right ventricle. 
 
Supplementary Data 
 
Supplementary Data S1 (.txt): DESeq2 output for all transcript comparisons (20 months vs. 4 
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months) in the heart. 
 
Supplementary Data S2 (.txt): DESeq2 output for all transcript comparisons (20 months vs. 4 
months) in the skeletal muscle. 
 
Supplementary Data S3 (.txt): Correlation coefficients and R2 between transcript-predicted and 
empirical protein level data for 11,896 transcripts in CPTAC samples in the trained model. 
 
Supplementary Data S4 (.xlsx): Enriched Reactome terms among transcripts that predict proteins 
poorly (r ≤ 0.3) or relatively well (r ≥ 0.5) 
 
Supplementary Data S5 (.xlsx): Ionquant output label-free quantitative data of proteins in the heart 
and the skeletal muscle 
 
Supplementary Data S6 (.txt): DESeq2 output for all transcript comparisons (20 months vs. 4 
months) in the kidney. 
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