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Abstract 
Spontaneous preterm birth (sPTB) is a leading cause of maternal and neonatal morbidity and mortality, 
yet both its prevention and early risk stratification are limited. The vaginal microbiome has been 
associated with PTB risk, possibly via metabolic or other interactions with its host. Here, we performed 
untargeted metabolomics on 232 vaginal samples, in which we have previously profiled the microbiota 
using 16S rRNA gene sequencing. Samples were collected at 20-24 weeks of gestation from women with 
singleton pregnancies, of which 80 delivered spontaneously before 37 weeks of gestation. We find that 
the vaginal metabolome correlates with the microbiome and separates into six clusters, three of which 
are associated with spontaneous preterm birth (sPTB) in Black women. Furthermore, while we identify 
five metabolites that associate with sPTB, another five associate with sPTB only when stratifying by race. 
We identify multiple microbial correlations with metabolites associated with sPTB,  including intriguing 
correlations between vaginal bacteria that are considered sub-optimal and metabolites that were 
enriched in women who delivered at term. We propose that several sPTB-associated metabolites may be 
exogenous, and investigate another using metabolic models. Notably, we use machine learning models 
to predict sPTB risk using metabolite levels, weeks to months in advance, with high accuracy. We show 
that these predictions are more accurate than microbiome-based and maternal covariates-based models. 
Altogether, our results demonstrate the potential of vaginal metabolites as early biomarkers of sPTB and 
highlight exogenous exposures as potential risk factors for prematurity. 
 

Introduction 
Preterm birth (PTB), childbirth before 37 weeks of gestation, is the leading cause of neonatal death, and 
may lead to a variety of gastrointestinal, neurological, and other lifelong morbidities1,2. Despite extensive 
medical and research efforts to prevent PTB and ameliorate its consequences, its prevalence remains high 
both globally and specifically in the United States1. PTB also reflects a significant racial disparity, 
manifesting in a substantially higher risk for PTB in Black women compared to non-Hispanic white 
women3. Spontaneous preterm birth (sPTB), preterm birth not arising due to medical indication, accounts 
for two thirds of all PTBs, yet despite extensive study, methods for early prediction, prevention or 
treatment of sPTB are lacking1,4–6. 

The human microbiome is a strong biomarker of many complex diseases7–11, often predicting host 
phenotypes even better than host genetics12. The vaginal microbiome, specifically, is a promising area of 
research for early diagnosis of sPTB: studies in multiple cohorts, clinical settings, and populations have 
found it to be associated with sPTB and other adverse pregnancy outcomes13–18. However, while multiple 
associations have been shown, a clear consensus on the relationship between the vaginal microbiome 
and sPTB has yet to emerge19. Several studies of the vaginal microbiome have reported associations 
between sPTB and microbial diversity or microbiome community state types (CSTs), but many of these 
associations have not generalized across cohorts14,15,17–19. Some of these discrepancies may be linked to the 
underlying structure of the population studied. For example, Callahan et al.14 found lower Lactobacillus 
and higher Gardnerella abundances to be associated with sPTB risk in a low risk, predominately white 
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cohort, but not in a high risk, predominantly African American cohort14. In addition, our knowledge of 
specific mechanisms underlying potential host-microbiome interactions in sPTB is lacking. 

Metabolites produced or modified by the microbiome have emerged as a prominent factor with 
potential local and systemic effects on the host20–23. Metabolomics enables the measurement of thousands 
of small molecules present in an ecosystem, and has revealed intriguing new insights on host-
microbiome and other interactions in a variety of contexts, from colorectal cancer24 to diabetes25. A few 
studies of the vaginal metabolome have shown that it is associated with sPTB26,27. However, they had a 
limited sample size, and were not paired with measurements of the microbiome. Such paired 
microbiome-metabolome studies have yielded potential mechanistic insights in other pathologies, 
including inflammatory bowel disease28 and HPV infection29. The associations reported between both the 
vaginal microbiome and sPTB and the metabolome and sPTB highlight the need for paired analysis in 
order to advance our understanding of the role of this ecosystem in pregnancy outcomes. 

Here, we measured the levels of 748 metabolites from vaginal samples collected in the second 
trimester of 232 pregnant women, for whom the composition of the microbiota was previously 
characterized using 16S rRNA gene amplicon sequencing15. We show that the vaginal metabolome 
partially corresponds to CSTs, and reveal novel associations between metabolites measured early in 
pregnancy and subsequent sPTB. Exploring the potential origins of some of these metabolites, we 
propose that some are of an exogenous source, suggesting a novel risk factor and potential targets for 
novel prevention strategies. Finally, we demonstrate that the vaginal metabolome, measured early in 
pregnancy, can accurately predict subsequent preterm birth in held-out samples, and show that it is more 
accurate than prediction based on microbiome or clinical data. Our results demonstrate a promising new 
approach for studying potential causes of prematurity as well as for early risk stratification, and highlight 
the need to study environmental exposures as a potential factor in sPTB. 
 

Results 
Vaginal microbiota and metabolome from a large pregnancy cohort 
We used mass spectrometry to profile 232 vaginal samples collected between 20-24 weeks of gestation 
from women with singleton pregnancies (Methods). The microbiota of these women was previously 
characterized from the same double shaft swab used in this study15. We included all women with 
available samples who had a subsequent spontaneous preterm delivery in the parent cohort15 (sPTB; N 
= 80), as well as similar controls who delivered at term (TB; N = 152; Table 1). As expected, a higher 
fraction of women who delivered preterm had a history of PTB compared to those who delivered at term 
(42.5% vs. 19.2%, respectively, Fisher’s exact p = 3x10-4). 

We quantified 748 unique metabolites, of which 637 could be named (Methods). Metabolites 
belonged to diverse biochemical classes, including amino acids, lipids, nucleotides, carbohydrates and 
xenobiotics. Most metabolites (549) were measured in over 50% of the cohort, and 108 metabolites were 
present in all samples (Fig. S1). We have previously shown that similar metabolite measurements are in 
excellent agreement with measurements performed by an independent certified medical laboratory30. 
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 sPTB TB 
Difference 
(p value)  

N 80 152  
Race [N (%)]   0.417 
  Black 57 (71.25%) 116 (76.3%) 0.568 
  White 21 (26.25%) 30 (19.7%) 0.331 
  Other 2 (2.5%) 6 (4%) 0.666 
Nulliparous [N (%)] 29.0 (36.2%) 55.0 (36.2%) 0.894 
PTB history [N (%)] 34 (42.5%) 28 (19.2%) 0.0003 
GA at delivery [median 
weeks [range]] 34 [21-36] 39 [38-39] <1e-10 
BMI [kg/m2 mean±SD] 30.1±7.8 30.6±7.2 0.65 
Age [years mean±SD] 29±6 28±6 0.28 

 
Table 1: Cohort characteristics. sPTB, spontaneous preterm birth; TB, term birth; BMI, body mass 
index; GA, gestational age; p - Fisher’s Exact or Mann-Whitney U test.  
 
The vaginal metabolome partially preserves CST structure  
The vaginal microbiome clusters to well-defined community state types (CSTs)31. We demonstrated the 
same for this cohort15 (PERMANOVA p < 0.001 for separation between CSTs; Fig. 1a), and investigated 
whether the vaginal metabolome space recapitulates this structure. While the metabolome is separated 
by CSTs (p < 0.001; Fig 1b), and is generally associated with the microbiome (Mantel p < 0.001), specific 
CSTs are not as well separated. While women with microbiomes characterized as CST I, dominated by 
Lactobacillus crispatus, and CST IV, characterized by diverse anaerobes, are well separated from the rest 
of the cohort in their metabolite measurements (PERMANOVA p < 0.001 for both), neither the metabolite 
measurements from women with CSTs IV-A and IV-B, nor CSTs II and III, were well separated from one 
another (p = 0.169 and p = 0.171, respectively). Overall, these results demonstrate a strong but imperfect 
correspondence between the vaginal microbiome and metabolome spaces.  
 
Metabolome-clusters associate with sPTB 
While the metabolome is significantly clustered to CSTs, this clustering is not perfect. We therefore 
performed de novo clustering of the metabolome using k-medoids clustering, and revealed six 
“metabolite-clusters” (MCs A-F; Methods; Fig. 1c, S2,3; Table S1). We find that amino-acid-related 
metabolites are overrepresented among metabolites significantly associated with MC-A, MC-B, and MC-
D (Mann-Whitney U p < 0.05) compared to other MCs (Fisher’s exact p = 4.3x10-8, p = 0.0011, p = 1.8x10-8, 
respectively; FDR < 0.1 for all) and that xenobiotics are overrepresented among metabolites associated 
with MC-C (Fisher’s exact p = 0.0014, FDR < 0.1). We further show that while three MCs are mostly paired 
with Lactobacillus dominated CSTs (57%-93% for MC A-D), MC-F is composed entirely of CST IV, and 
MC-D and E are evenly split (50-52% CST IV;  Fig. 1d, S4a). Reciprocally, we found various enrichments 
of CSTs in MCs (Fig. 1d, S4b) as well as enrichments for white women in MC-B and Black women in 
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MC-F (p = 0.049 and p = 0.044, respectively; Fig. 1e). These results demonstrate that the correspondence 
between the vaginal metabolome and microbiome is imperfect, and somewhat corresponds to 
Lactobacillus dominance. 

A previous analysis of the same cohort showed that CST IV-A is associated with subsequent sPTB 
only among white women15 (Fisher’s exact p = 0.047; Fig. 1f, S4c). We therefore performed the same 
stratified test using MCs. Interestingly, while CSTs are associated with sPTB only in white women, we 
find that MCs are associated with sPTB in Black women, with a significant association with MC-A, MC-
B, and MC-D (p = 0.029, p = 0.013, p = 0.015, respectively; Fig. 1g, S4d). Taken together, our results 
demonstrate that the general metabolome structure in our cohort better captures associations with 
prematurity in Black women than the general microbiome structure. 

 

Figure 1 | Vaginal metabolome clusters are associated with preterm birth. a-c, UMAP ordination 
of microbiome (a; N = 503) and metabolomics data (b,c; N = 232), colored by community state types 
(CSTs; a,b) or de-novo clustering of metabolites data (metabolites clusters [MCs]; Methods; c). The 
vaginal microbiome and metabolome are significantly separated by CSTs (PERMANOVA p < 0.001 for 
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both), yet the separation is less clear in the metabolome. d, The fraction of women whose metabolite 
profiles clustered to each MC, shown for each CST separately. e, Similar to d but shown for Black and 
white women separately. f, The fraction of white (top) and Black (bottom) women whose microbiomes 
belonged to each CST, separated by pregnancy outcome. As previously shown15, CST IV-A is enriched 
for sPTB among white women (p = 0.047). g, Similarly as f, for the fraction of women whose 
metabolomes clustered to each MC. We show a significant association of sPTB with MC-A, B and D 
among Black women (p = 0.029, p = 0.013, p = 0.015, respectively). p - Fisher’s exact. 

 
Multiple metabolites associate with sPTB 
Having demonstrated that the global metabolome structure associates with sPTB, we next investigated 
its associations with the levels of specific metabolites. We find five metabolites that are significantly 
associated with sPTB (Mann-Whitney U p < 0.05, FDR < 0.1; Fig. 2a). Three of these, all higher in women 
who delivered preterm (p < 10-3, FDR < 0.1 for all; Fig. 2a), appear to be of exogenous source: ethyl 
glucoside (ethyl beta-glucopyranoside; p = 1.9x10-4), an alkyl glucoside used as a surfactant in cosmetic 
products32; tartrate (p = 4.8x10-4), used, along with its products, in the food, pharmaceutical, and cosmetics 
industries33,34; and diethanolamine (DEA; p < 10-10), commonly used in personal care and cosmetic 
products35, and which was shown, in mice, to cause liver and kidney tumors36, as well as induce apoptosis 
in fetal hippocampus cells, decrease neural progenitor cell mitosis in the hippocampus, and reduce litter 
size in a dose dependent manner37. We note, however, that due to the nature of our metabolomic 
measurements, the levels of these metabolites in the vaginal ecosystem may be different than those 
observed in previous studies. 

We further find lower levels of the amine choline in women with subsequent sPTB (p = 5.5x10-4, 
FDR < 0.1; Fig. 2a,b). Choline is an essential nutrient required for membrane phospholipids and 
neurotransmitter synthesis38, and lower choline levels were previously found in cord blood from 
premature infants39. Choline is also a precursor of betaine40, a metabolite mainly involved in 
osmoregulation40 which was also negatively associated with sPTB (p = 0.007, FDR = 0.14; Fig. 2b). DEA is 
known to disrupt several enzymes and transporters involved in choline metabolism41, and its dermal 
administration in mice was reported to deplete hepatic stores of choline37,42. We therefore propose that 
the high levels of the exogenous chemical DEA, which was higher in samples from women who delivered 
preterm, may be linked to the lower choline and betaine levels that we found (Fig. 2b,c). Taken together, 
these results highlight a potential role of exogenous metabolites in prematurity, potentially from 
environmental exposures via hygienic and cosmetic products.   
 
Metabolite associations with sPTB interact with race and sPTB timing 
As the global metabolome structure shows differences between Black and white women, we performed 
the same association analysis while stratifying by race. Interestingly, we detect five additional 
metabolites negatively associated with sPTB (Mann–Whitney U p < 0.05; FDR < 0.1; Fig 2a). In Black 
women, these include glycerophosphoserine (p = 3x10-5), which was previously reported to be altered in 
preeclampsia43; spermine (p = 2.4x10-4), which has immuno-modulatory roles in the gut23, and was 
increased in the blood of preterm infants44; hydroxybutyl carnitine (p = 2.6x10-4), a ketocarnitine involved 
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in lipid metabolism and which has been shown to be depleted in the blood of low birth weight full-term 
neonates45,46; and glutamate gamma-methyl ester (p = 4.9x10-4), a derivative of glutamate and a precursor 
of the inhibitory neurotransmitter GABA. Tyramine, a biogenic amine with neuromodulator activity47, 
was significantly lower in samples from white women who delivered preterm (p = 2.8x10-4; Fig. 2a). 
Tyramine was shown to colocalize with synaptic vesicles in the mouse uterine plexus, highlighting a 
possible role in uterine contractions48,49. Altogether, these results highlight the potential connection 
between vaginal metabolites, metabolite levels in various reproductive organs, and preterm delivery. 
 

 

Figure 2 | Vaginal metabolites associate with subsequent preterm delivery. a, Heatmap showing 
statistically significant associations (Mann-Whitney U p < 0.05) between specific metabolite 
measurements and birth outcomes, stratified by maternal race, and colored by significance and 
direction of association. Only metabolites with at least one association with FDR < 0.1 are shown. 
Metabolites are sorted by their average signed (direction of fold change) log p-value. b, Box and swarm 
plots (line, median; box, IQR; whiskers, 1.5*IQR) of three metabolites with significant associations with 
sPTB. p - Mann-Whitney U. c, Illustration summarizing some of the literature regarding the three 
metabolites shown in b. Diethanolamine (DEA), which is associated with sPTB, was shown to inhibit 
choline uptake41. Choline and betaine, both associated with TB, are important for membrane lipid 
synthesis and osmoregulation38,40. d, Same as a, with stratification by gestational age at birth (GAB), 
performed among Black women. Middle legend applies to a and d. 
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Earlier preterm deliveries are associated with worse maternal and neonatal outcomes1. Therefore, 
we next investigated associations between vaginal metabolites and subsequent very and extremely 
preterm deliveries (gestational age at birth <32 and <28 weeks, respectively). Due to the high proportion 
of Black women among pregnancies delivering prior to 32 and 28 weeks (21 of 26 and 14 of 15, 
respectively), we performed this analysis only among Black women. We identify 12 metabolites that are 
associated only with these earlier sPTBs (Fig. 2d). The phospholipids palmitoyl sphingomyelin and 
palmitoyl dihydro sphingomyelin were both negatively associated with extremely PTB (p = 0.00087 and 
p = 0.0011, respectively). Phospholipids, however, and specifically palmitoyl sphingomyelin, were 
recently found to be increased in placental tissue of sPTB deliveries50. Citraconate, a derivative of citric 
acid, was likewise negatively associated with extremely PTB (p = 0.0014), and was previously found to 
have significantly lower concentrations in placental mitochondria of women with severe preeclampsia51. 
Ethylenediaminetetraacetic acid (EDTA) was one of two metabolites increased in extremely and very 
PTB (p = 0.0008 and p = 1.5x10-4, respectively). EDTA is another metabolite that can be found in cosmetic 
products, where it acts as a chelating agent52. Potentially at different concentrations that those measured 
here, EDTA has also been shown to be cytotoxic in vaginal epithelial cells, in which it provokes an 
inflammatory response52,53, and is teratogenic, causing fetal gonadal dysgenesis in rats at non-
maternotoxic doses52,54,55. We note that while EDTA is also present in the buffer in which our samples 
were collected, this is unlikely to explain the observed association. Overall, we find that the associations 
between metabolites and sPTB interact with both race and timing of sPTB, and detect an additional 
xenobiotic that is associated with sPTB.    
 
Functional metabolite sets are enriched with sPTB-associated metabolites 
In addition to identifying specific metabolites with strong associations with sPTB, we next checked 
whether certain functional groups of metabolites (e.g. KEGG pathways56) are enriched for associations 
with sPTB, compared to all other metabolites, even if changes to any specific metabolite are small in scale 
(Fig. S5; Methods). We find significant sPTB-associated deviations in metabolites related to proline and 
arginine metabolism (p = 0.0018, FDR < 0.1; Fig. S5). This set includes spermine, which has been shown 
to be derived from proline57, and was lower in Black women that delivered preterm (Fig. 2a). Proline 
itself comprises about a quarter of the amino acid residues of collagen58, and is therefore integral to the 
extracellular matrix. It is also converted to arginine and metabolized to form polyamines, which are 
important for placental angiogenesis59, but have also been associated with CST IV60. Both disordered 
placental angiogenesis and extracellular matrix remodeling have been associated with preterm birth61, 
possibly reflecting these changes in proline and arginine metabolism.  

Consistent with the association we found between tyramine levels and term births among white 
women (Fig. 2a), we find a global deviation of metabolites related to the endocrine system among white 
women (p = 0.0046, FDR < 0.1; Fig. S5). We further identify lipid-metabolism-related metabolites to be 
enriched for associations with early sPTB among Black women (p = 0.0021 and p = 0.0048 for very and 
extremely PTB, respectively, FDR < 0.1; Fig. S5), potentially related to other alterations in lipid 
metabolism reported in women who delivered preterm62,63. Notably, we identify a global enrichment of 
xenobiotic metabolites associated with sPTB among Black women (p = 0.006, FDR < 0.1; Fig. S5). This is 
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consistent with our finding of exogenous metabolites associated with sPTB in this population, and could 
potentially be related to the higher burden of exogenous and environmental exposures in Black 
communities64,65, which have been identified as potential drivers of preterm birth66–69. In all, our analyses 
highlight multiple metabolites associated with sPTB, and that these associations interact with both race 
and sPTB severity. 
 
A network of microbe-metabolite associations in sPTB 
To obtain further insights regarding potential microbial sources of metabolites altered in sPTB, we next 
investigated associations between the absolute abundances of various microbial species and metabolites 
associated with sPTB (Fig. 2a; Methods). Our results replicate several known associations, such as those 
between Dialister species or Enterococcus faecalis and tyramine60,70 (Spearman ρ > 0.54, p < 10-5 for all; Fig. 
3a, S6), as well as evidence for choline metabolism genes in Gardnerella vaginalis71 and Corynebacterium 
aurimucosum72 (ρ = 0.34, p < 10-6 and ρ = 0.40, p = 0.0004, respectively). Additionally, higher concentrations 
of tyramine were previously found in bacterial vaginosis (BV)60,73,74, supporting many of the associations 
we find with bacteria that are also associated with BV (Fig. 3a). Finally, we observe a positive correlation 
between C. aurimucosum and spermine (ρ = 0.27, p = 0.02), and it has been shown that spermine and its 
precursor spermidine are the key polyamines in several Corynebacterium species75,76.  

We find the strongest and most numerous microbe-metabolite correlations for tyramine (35 
associations, Spearman 0.27 < ρ < 0.73; Fig. 3a) which was higher in term deliveries among white women 
(Fig. 2a). Eight out of the 35 tyramine-correlated microbes are also correlated with choline, which was 
enriched in term deliveries across all women (Fig. 2a). Interestingly, many of the species positively 
correlated with metabolites associated with term delivery, including Atopobium vaginae, G. vaginalis, 
Sneathia sanguinegens, C. aurimucosum, Mobiluncus curtisii, Actinomyces neuii, Ureaplasma urealyticum, 
Gemella haemolysans, several Prevotella species, Candidatus Lachnocurva vaginae (BVAB177), BVAB2 and 
BVAB3 were previously reported to be associated with negative outcomes, such as BV31,78–81, preterm 
birth14–16,18,82 and other adverse pregnancy82–84 and neonatal85 outcomes. We find a similarly paradoxical 
negative correlation between Staphylococcus epidermidis, previously shown to be associated with BV86 and 
late-onset sepsis in preterm neonates87, and both tartrate and ethyl glucoside (ρ = -0.28, p = 0.00069; ρ = -
0.26, p = 0.0015, respectively; Fig. 3a), which were positively associated with sPTB. These results suggest 
the existence of a potential beneficial metabolic effect for some microbial populations that were so far 
considered dysbiotic.  
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Figure 3 | Microbe-metabolite correlations and metabolic models suggest sources for sPTB-
associated metabolites. a, A network of microbial correlations with metabolites associated with sPTB. 
Ellipses, microbial species; blue and red diamonds, metabolites enriched in TB and sPTB, respectively; 
blue and red edges, negative and positive Spearman correlations with FDR < 0.05, |ρ| > 0.25, 
respectively (edge width corresponds to the median ρ). See Fig. S6 for the same network without 
grouped nodes. b,c, Box and swarm plots (line, median; box, IQR; whiskers, 1.5*IQR) of tyramine 
levels, as measured (b) and predicted with metabolic models (Methods; c), comparing preterm and 
term deliveries and stratifying by maternal race. White women who delivered preterm had lower 
measured vaginal levels of tyramine (p = 0.0002), yet our metabolic models predict higher, albeit non-
statistically significant, microbiome production of tyramine in women who delivered preterm (p = 0.16 
and p = 0.24 for all and white women, respectively). p, Mann-Whitney U. d, Tyramine production 
derived from microbiome metabolic models (NMPC; Methods; y-axis) plotted against measured 
tyramine levels (x-axis) and colored by race and birth outcome (legend). While our models are generally 
accurate for tyramine (Spearman ρ = 0.63, p < 10-10 across all women), the accuracy for white women 
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who delivered preterm was significantly lower (Spearman ρ = 0.15, p = 0.01 for comparing correlation 
strength vs the correlation in other women), suggesting a non-microbial interaction. 

 
 As many of the associations between metabolites and sPTB were modulated by race, we next 

investigated whether the associations in our network are likewise influenced. We find that nine of the 75 
microbe-metabolite associations we detected were significantly different (Fisher’s R-to-z p < 0.05; 
Methods) between Black and white women, although a different direction of association was detected in 
only four of these (Fig S7). Specifically, G. vaginalis, A. vaginae, and three other species that were 
positively associated with tyramine, had significantly stronger associations in Black women (p < 0.02 for 
all). Recent studies show that biofilm interactions between G. vaginalis and other microbes, including A. 
vaginae88,89, may contribute to BV, suggesting that the differences in tyramine associations between Black 
and white women may be related to differences in community structure and microbial interactions. 
Taken together, however, we find a relatively small effect of race on microbe-metabolite correlations.    
 
Microbiome metabolic models support microbial production of tyramine 
To gain some mechanistic insight into the correlations we found, we next used community-level 
metabolic models90 to predict the metabolic output of each microbiome sample (community net maximal 
production capability90 [NMPC]; Methods). These models combine genetic and biochemical knowledge 
to generate predictions of metabolite output, using only microbial relative abundances91. We focused on 
tyramine, which was one of two sPTB-associated metabolites represented in our models (the other, 
choline, had no predicted microbial production) and which previous studies suggest is produced by 
vaginal microbes60,74,92. Following genomic curation of our metabolic models (Methods), the  predictions 
of our models were highly accurate (Spearman ρ = 0.63 between tyramine NMPC and its metabolomic 
measurements, p < 10-10, N = 229 predictions). When examining samples from white women, we find that 
while the measured levels of tyramine were enriched in TB (Mann-Whitney U p = 0.00028; Fig. 3b), its 
predicted output by the microbiome was not, and was even somewhat higher in sPTB (p = 0.24; Fig. 3c). 
This stems from a lower accuracy in tyramine predictions in white women who delivered preterm 
(Spearman ρ = 0.15 versus ρ = 0.65, p = 0.01 for difference in ρ’s; Fig. 3d), suggesting a non-microbial 
effect on tyramine levels among white women and providing a potential explanation to the 
aforementioned paradoxical microbial associations with tyramine (Fig. 3a). Our results demonstrate the 
utility of metabolic models in potentially discerning microbial from non-microbial effects.  
 
Early prediction of sPTB risk using the vaginal metabolome 
Early diagnosis of pregnancies with high risk for prematurity is crucial for the development of 
prevention and intervention strategies, yet is largely still lacking1,4–6. We therefore explored whether we 
can use our microbiome and metabolome data, collected at weeks 20-24 of gestation, to predict sPTB. Of 
note, prediction was of deliveries occurring up to 19 weeks after the samples were taken. We trained 
predictive models and evaluated them on held-out samples using multiple different draws of 10-fold 
cross-validation, with strict train-test sterility (Methods). As a benchmark, we constructed models using 
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clinical data (age, BMI, race, parity status, history of sPTB and nulliparity), which obtains limited 
accuracy (auROC = 0.62, auPR = 0.45; Fig. 4a,b), similar to that obtained in past studies4. Using microbial 
abundances, we are able to only slightly improve prediction accuracy (auROC = 0.63, auPR = 0.49; p = 
0.36 for comparison of auROC with clinical model; Methods; Fig. 4a,b).  

Notably, using metabolomics data, we were able to generate a model with superior accuracy 
(auROC = 0.79; auPR = 0.63; p < 10-10 and p = 2x10-8 for comparison of auROCs with clinical and 
microbiome models, respectively; Methods; Fig. 4a,b). Lastly, a model combining clinical, microbiome, 
and metabolomics data obtains similar accuracy to the model which used only metabolomics data 
(auROC = 0.77, auPR = 0.63; p = 0.24 for comparison of auROC with metabolomics model; Fig. S8a,b), 
with metabolomics-based features as the most prominent contributors to the model (9 of 10 most 
predictive features; Fig. S8c). This suggests that metabolite measurements are a sufficient representation 
of information contained in these three data types. Our metabolomics-based model is superior or similar 
in accuracy to several previously-published models, such as those using amniotic fluid metabolomics 
(auROC = 0.65-0.70, N = 24)93, maternal serum metabolome and clinical data (auROC = 0.73, N = 164)94, 
maternal urine and plasma metabolomics (auROC = 0.69-0.79, N = 146)95, cell-free blood RNA 
measurements (auROC = 0.81, N = 38)96, or vaginal protein biomarkers (auROC = 0.86, N = 150, sPTB N 
= 11)97, many of which have small sample sizes, lack demographic diversity, or focus on high-risk cohorts. 
Overall, our results demonstrate the promising utility of vaginal metabolites as early and accurate 
biomarkers of spontaneous preterm birth. 

We next checked whether microbiome- and metabolomics-based predictors are more capable at 
predicting early sPTB, which is associated with higher morbidity and mortality1. We therefore evaluated 
the same models, without retraining, for predicting extremely (<28 weeks) and very (<32 weeks) PTB. 
While our metabolites-based model maintains similar accuracies across different sPTB timings (auROC 
of 0.76 and 0.78 for extremely and very PTB, respectively, compared to auROC of 0.79 for all sPTB, p > 
0.20 for both; Fig. 4c), our microbiome-based model shows substantially higher accuracy for predicting 
extremely PTB (auROC of 0.75 and 0.70 for extremely and very sPTB, respectively, compared to auROC 
of 0.63 for all sPTB, p = 1.5x10-4 and p = 2.3x10-3, respectively; Fig. 4d). Interestingly, these results reflect 
the potentially increased involvement of the vaginal microbiome in earlier sPTBs1,99.  
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Figure 4 | Metabolomics-based prediction of subsequent spontaneous preterm birth. a,b, 
Receiver operating characteristic (ROC, a) and Precision-recall (b) curves comparing sPTB prediction 
accuracy for models based on clinical (auROC = 0.62, auPR = 0.45), microbiome (auROC = 0.63, 
auPR = 0.49) and metabolomics (auROC = 0.79, auPR = 0.63) data. N = 232 for all. Shaded lines show 
results from five independent and random 10-fold cross-validation draws (Methods). c,d, Same as a, 
for early sPTB prediction based on metabolomics (c) and microbiome (d) data. Microbiome data shows 
significant improvement in predicting extremely PTB (<28 weeks of gestation; auROC of 0.75 
compared to 0.70 and 0.63 for very and all sPTB, respectively), while metabolomics data show similar 
performance across sPTB severity (auROC 0.76-0.79 for all). e, Effect on total prediction (SHAP-
based98; x-axis) for the 10 most predictive metabolites in our metabolomics-based predictor, sorted 
with descending importance. Each dot represents a specific sample, with the color corresponding to 
the relative level of the metabolite in the sample compared to all other samples.  
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Interpretation of predictive models reveals novel contributing features 
To interpret our predictive models and obtain insights into the features they use, we performed feature 
attribution analysis (using SHAP98) allowing us to infer the contribution of each feature towards the final 
prediction for each sample (Table S2). As expected, six of the ten most predictive metabolites, namely 
diethanolamine, tyramine, ethyl-glucoside, citraconate/glutaconate, mannose, and the unidentified 
metabolite X-25858, were also identified in our association analysis, with a similar direction of association 
(Fig. 2, 4e).  

In addition to these previously identified associations, our metabolomics-based model also relies 
on proline, with lower proline levels contributing towards sPTB prediction (proline is the fifth strongest 
feature; Fig. 4e). Taken together with the significant enrichment that we observed in sPTB associations 
among metabolites related to arginine and proline metabolism (Fig. S5), the strong predictive power of 
proline further suggests a role for extracellular matrix remodeling and polyamine metabolism in sPTB. 
Lastly, our analysis indicates that low levels of imidazoleacetate, orotidine, and trans-urocanate also 
contributed to sPTB predictions (Fig. 4e). Urocanic acid was previously shown to be increased in 
amniotic fluid of women who delivered preterm100. Additionally, both trans-urocanate and 
imidazoleacetate are derivatives of the amino acid histidine, and were correlated with it in our cohort (ρ 
= 0.33, p = 7.5*10-7 and ρ = 0.37, p = 5.1*10-9, respectively). Histidine levels were previously found to be 
lower in both second trimester amniotic fluid of women who delivered preterm101 and in urine from 
preterm infants102.   

A similar analysis, performed on our microbiome-based predictor, has also captured previously-
detected associations between various vaginal microbes and sPTB15, including those of Mobiluncus 
mulieris, S. sanguinegens, and of Lactobacillus, Streptococcus, and Dialister species (Fig. S8d). We further 
identify a new association with Finegoldia magna, an anaerobic gram-positive species whose levels 
contributed to prediction of sPTB (Fig. S9d). This replicates results from a previous study, which showed 
that F. magna was more prevalent in women who delivered preterm103. These results highlight the 
interpretability of our models and their reliance on complex, non-linear interactions of metabolites with 
both sPTB and other features, enabling us to expose associations not detected by univariate analyses.   
 

Discussion 
In this study, we measured the levels of 748 vaginal metabolites in a cohort of 232 pregnant women. We 
show that the vaginal metabolome largely separates by microbial community state types, but that de 
novo clustering of the metabolome reveals clusters enriched for sPTB among Black women. We further 
identify multiple metabolites that are associated with sPTB, with differences between Black and white 
women and between early and late preterm births. Our results highlight several exogenous metabolites 
with strong associations with sPTB, which we suggest to be the result of environmental exposures. Using 
microbe-metabolite associations, we uncover intriguing interactions between metabolites associated 
with term birth and potentially suboptimal microbes, and propose a non-microbial source for tyramine 
levels in white women. Finally, we demonstrate that supervised learning models trained on 
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metabolomics data can accurately predict subsequent sPTB, potentially paving the way to new diagnostic 
panels.  

To obtain insights into microbial metabolism of tyramine by the microbiome, we used 
community-scale metabolic models. These models have important limitations. Major efforts were made 
to curate models for gut microbes, yet such models are still missing for some vaginal microbes, and may 
lack representation of niche-specific metabolic capabilities. Another limitation stems from the resolution 
of 16S rRNA gene sequencing, which identifies taxa at the species or genus level, precluding the tailoring 
of models to specific strains present in each sample. Despite these limitations, our models provided 
accurate predictions of tyramine levels, and offered insights regarding its sources in the context of its 
association with preterm delivery.  

We detected a group of metabolites that was largely independent from the microbiome, and 
which prior literature suggests to be of exogenous source, potentially from cosmetic or hygienic 
products. Our results coincide with recent studies which raise concern regarding environmental 
exposures in pregnant women104–106, and demarcate the presence of these chemicals in the reproductive 
tract. We found that in general, enrichment of sPTB associations among xenobiotics was evident mostly 
in Black women, potentially reflecting disparities in environmental and exogenous exposures. Such 
exposure patterns could differ between cohorts, and could potentially underlie the association between 
racial disparities in prematurity rates and racial differences in the vaginal microbiome15,107,108. Further 
study is warranted to identify the sources of these metabolites and confirm their effects on the host, 
microbiome, and pregnancy outcomes.  

Our predictive modeling approach has several noteworthy limitations. Our use of a case-control 
cohort enriched for preterm deliveries limits our ability to assess population-level predictive value, and 
further validation is required in prospective studies. Furthermore, as our cohort was focused on sPTB, 
we are unable to assess if our models are specific to sPTB or are detecting a general risk for adverse 
pregnancy outcomes. Additionally, the untargeted panels we used do not measure metabolite 
concentrations, and further studies are needed for developing diagnostic panels. A larger sample size, 
and combination with other sources of data, such as maternal urine or serum metabolomics, vaginal 
metagenomics, or cell free RNA measurements, could further improve prediction accuracy. 
Nevertheless, our results demonstrate the potential of vaginal metabolites to serve as early biomarkers 
of preterm delivery and to potentially enable the personalization of treatment and prevention strategies.  
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Methods 
Study design and cohort description 
We analyzed banked samples from the previously collected and described Motherhood & Microbiome 
(M&M) cohort15. This cohort was approved by the Institutional Review Board at the University of 
Pennsylvania (IRB #818914) and the University of Maryland School of Medicine (HP-00045398), and all 
participants provided written informed consent. The M&M cohort recruited 2,000 women with a 
singleton pregnancy prior to 20 weeks of gestation. Women were followed to delivery, and spontaneous 
preterm birth was defined as delivery before 37 weeks of gestation with a presentation of cervical dilation 
and/or premature rupture of membranes. Of these, the vaginal microbiota of 503 women was 
characterized via 16S rRNA gene amplicon sequencing (V3-V4 region) of vaginal swabs collected 
between 20 to 24 weeks of gestation, and total bacterial load was assessed using the TaqMan® BactQuant 
assay15. For this study, we selected, out of women with available microbiome data, all available samples 
from women who delivered preterm (N = 80), in addition to samples from 152 controls who delivered at 
term. The selected samples were replicates of those used for 16S rRNA gene sequencing, collected using 
a double shaft dacron swab. 
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Metabolomics profiling and preprocessing 
Metabolite levels were measured from vaginal swabs by Metabolon Inc. (Durham, NC, USA), using an 
untargeted LC/MS platform as previously described27,109,110. Metabolite measurements were volume 
normalized, followed by robust standardization30 of the log (base 10) transformed values (subtracting the 
median and dividing by the standard deviation calculated while clipping the top and bottom 5% of 
outliers).  
 
Microbiome data processing 
All microbiome-based analyses were done using data previously processed with DADA2111 and 
SpeciateIT15, available from Table S4 of ref. 15. A single exception to this are predictive models, which 
were trained on 97%-clustered OTUs using the USEARCH pipeline112. We obtained raw sequences from 
the database of Genotypes and Phenotypes (dbGaP) under study accession: phs001739.v1.p1. Primers 
were aligned to reads and then trimmed, followed by end merging and quality filtering (-fastq_maxee 
1.0). The filtered reads were then pooled together, dereplicated, clustered with a 97% threshold, and 
chimera filtered with the UPARSE algorithm to produce the OTU count matrix.  
 
Global microbiome and metabolome structure 
PERMANOVA analysis was performed using Bray-Curtis distance for microbiome data and the 
Canberra dissimilarity metric for metabolites data. De novo clustering of metabolite vectors was done 
using K-medoids algorithm, also with Canberra dissimilarity. This metric is robust to outliers and 
sensitive to differences in common features; used with metabolomics data, it previously produced robust 
results under bootstrapping and generated compact clusters corresponding with prior knowledge113. We 
determined the optimal number of clusters by comparing the within cluster sum of square error and the 
gap statistic for clustering solutions with K between 1 and 15 (Fig. S3). Uniform Manifold Approximation 
and Projection (UMAP)114 was performed using the Python umap-learn package114, with n_neighbors=15 
and min_dist=0.05 for microbiome data and n_neighbors=15 and min_dist=0.25 for metabolomics data. 
 
Differential abundance testing and metabolite set enrichment analysis 
Differential abundance tests between metabolite levels were done using the Mann-Whitney U test for 
metabolites which were present in at least half of the cases. To identify functional sets of metabolites that 
were perturbed between sPTB and TB, we compared, for each set, the Mann-Whitney p values for 
differential abundance between PTB and sPTB for metabolites within the set to the same p values for 
metabolites outside the sets, using an additional Mann-Whitney U test. We calculated significance by 
comparing the p value of the latter test to 10,000 similar p values calculated on random permutations of 
sPTB and TB labels. For functional sets, we used definitions of super and sub pathways provided by 
Metabolon, as well as KEGG56 pathways. FDR correction was performed separately for each metabolite 
set type. 
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Microbe-metabolite correlations 
To identify associations between microbes and metabolites we estimated microbial absolute abundance 
by multiplying the relative abundances of each taxa by the total 16S rRNA copy number for the sample, 
and calculated Spearman correlations with levels of metabolites we found to be associated with sPTB 
across the entire cohort (Fig. 2a). Spearman correlations were performed for microbe-metabolite pairs 
with at least 50 paired measurements, using available values without imputation, and correction for 
multiple testing was performed via the Benjamini-Hochberg FDR method. Edges in the microbe-
metabolite network (Fig. 3a) were drawn for all correlations with FDR < 0.1 and absolute spearman 
correlation above 0.25. To determine whether edges in our network (Fig. 3a) were influenced by race, we 
compared these microbe-metabolite correlations in Black women to the same correlations in white 
women using a two sided Fisher R-to-z transform. 
 
Creating and interrogating vaginal microbiome models 
Microbiome metabolic modeling was done using Microbiome Modeling Toolbox (COBRA toolbox 
commit: 71c117305231f77a0292856e292b95ab32040711)90,115, using models from AGORA116. All 
computations were performed in MATLAB version 2019a (Mathworks, Inc.), using the IBM CPLEX (IBM, 
Inc.) solver. 

We first matched between species detected in microbiome samples and those present in 
AGORA116 (Table S3). Models for Atopobium vaginae (PB189-T1-4) and Gardnerella vaginalis (14019-MetR) 
were obtained from the AGORA authors117. To increase the representativeness of our models, we selected 
genus-level representatives for abundant vaginal species without a corresponding AGORA model that 
were present with >5% relative abundance in more than 20 samples: As a common Prevotella species in 
our cohort did not have a species assignment, we grouped Prevotella abundances to the genus level, and 
selected the AGORA model for Prevotella timonensis as its representative, as it was the most abundant 
taxa for which a correspondent metabolic model was present in AGORA. Similarly, we represented 
Atopobium OTUs without a species assignment with the model of Atopobium rimae, which was detected 
in vaginal samples and was the most extensive Atopobium model in AGORA (1054 reactions). A missing 
Megasphaera sp_2 model led us to choose Megasphaera elsdenii as a representative for Megasphaera, as this 
was the only AGORA model present for this genus. Candidatus Lachnocurva vaginae (BVAB1) was 
discarded, as no suitable AGORA model was available for it. To generate species level models, we 
combined metabolic models from available strains using the function createPanModels.m of the 
Microbiome Modeling Toolbox90. Altogether, our microbiome metabolic models included 62 different 
species, with an average of 15 species in each sample and a maximum of 33.  

To support and improve the accuracy of our tyramine predictions, we validated the presence of 
the TDC gene, coding for tyrosine decarboxylase. For each species represented in our metabolic models 
(N = 62), we used Prodigal126 to predict open reading frames in up to 200 randomly selected Refseq118 
assemblies, and searched them for evidence of TDC using the hmmsearch function of Hmmer3.3.2119 and 
a profile hmm for TDC120 (NCBI HMM accession: TIGR03811.1). We then curated our metabolic models, 
making sure that the corresponding reaction exists in models for which at least one assembly contained 
the corresponding gene. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448190
http://creativecommons.org/licenses/by-nc-nd/4.0/


For each sample, tailored microbiome models were created through the compartmentalization 
technique121: metabolic reconstructions of all species present in the sample were merged into a shared 
compartment, and input and output compartments were added. The shared compartment enables 
microbes to share metabolites while input and output compartments are present to enable compounds 
intake and secretion. Coupling constraints were added as in refs. 122 and 123 to ensure a dependency 
between relative abundances and each species network fluxes. Finally, personalized microbiome biomass 
objective functions composed by the sum of each microbial biomass multiplied by the corresponding 
relative abundance value, were added to each microbiome model.  

Metabolic modeling requires environmental conditions such as media and carbon source 
availability91. We therefore formulated a “general vaginal media” (Table S4), as the union of all 
metabolites present in at least 25% of our samples to which a corresponding metabolite was identified in 
AGORA, assuming them to be present in an unlimited (i.e., very high) concentration. This vaginal media 
was applied to each microbiome model input compartment in the form of constraints on metabolite 
uptake reactions, constraining uptake of compounds not present in the environment to zero. To 
interrogate the secretion potential of each sample-specific microbiome model, we computed Net 
Maximal Production Capabilities (NMPCs) using the pipeline mgPipe.m of the Microbiome Modeling 
Toolbox90 (Table S5). We computed Spearman correlations between NMPCs and the corresponding 
metabolite measurements without imputation.  
 
Training and testing of sPTB classifiers  
We constructed multiple predictive models separately using the clinical, microbiome, and metabolomics 
data, as well as a combination model consisting of all of these data types combined. Samples were split 
into training and test sets using 10-fold cross validation, block-stratified for deciles of gestational age at 
birth (GAB), and for microbiome, metabolomics, and combined models, also stratified for race. Train-test 
sterility was strictly maintained. We used LightGBM124 to predict GAB, and used 1,000 iterations of a 
random grid search to tune hyperparameters (Table S6). The predictions of the model were standardized 
for each fold separately. The final model was selected as the model with the top R2 score out of the top 5 
most accurate models based on auROC for sPTB classification. To increase robustness, each model was 
evaluated on 5 randomly-selected 10 cross-validation folds. The selected models were then evaluated, 
without retraining, on classification of extremely (GAB < 28 weeks) or very (GAB < 32 weeks) PTB. We 
assessed the significance of the difference in auROC between two models by computing z-scores of the 
normal distributions of auROC on 30 10-fold cross-validation splits125. 

Maternal clinical data included age, race, parity status, history of sPTB, and BMI. When training 
the model based on this data we calculated, for the training data of each cross-validation fold, the 
Spearman correlations between each feature and GAB, and then selected the top 4 features, without 
examining the test fold. This selected age, race, parity status, and history of sPTB in all models. The final 
hyperparameters of this model were learning_rate = 5e-4, num_iterations = 3500, num_leaves = 48, 
min_data_in_leaf = 25, max_depth = 7, feature_fraction = 0.87, and bagging_fraction = 0.64. 

As race had very strong interactions with microbiome and metabolomics data, we trained a 
composite predictor for microbiome, metabolomics, and combination models. For microbiome data, 
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models were trained separately for samples from Black (N = 173) and non-Black (N = 59) women. The 
metabolomics and combinations models followed the same scheme, but ignored samples from non-
white, non-Black women (N = 8) when training. Despite the smaller sample size for each model, this 
empirically improved prediction performance.  
 Microbiome-based models used absolute abundances, calculated from USEARCH-processed 
OTUs as described above. For the microbiome model used for samples from Black women, the data was 
log-transformed and the following parameters were used with LightGBM: learning_rate = 0.01, 
num_iterations = 2000, num_leaves = 54, min_data_in_leaf = 20, max_depth = 9, feature_fraction = 0.96, 
bagging_fraction = 0.78). For the microbiome model used for samples from non-Black women, we 
removed the 40% most sparse features (highest fraction of zero entries) within the training data. We 
further performed feature selection, first by fitting a LightGBM model (with the same parameters) to the 
training data and then removing the bottom 10% of features based on SHAP98 values; and then again 
using Spearman correlations with GAB, removing the bottom 10% of features. The LightGBM model in 
this case was used with the following parameters: learning_rate = 0.05, num_iterations = 3000, 
num_leaves = 98, min_data_in_leaf = 19, max_depth = 8, feature_fraction = 1, bagging_fraction = 1. 
 Metabolomics-based models used raw metabolites data, mean-imputed and then standardized in 
every feature using only train data. For the model used for samples from Black women, we performed 
feature selection using Spearman correlation, removing the bottom 20% of features. We used the 
following parameters for LightGBM: learning_rate = 0.01, num_iterations = 540, num_leaves = 47, 
min_data_in_leaf = 24, max_depth = 5, feature_fraction = 0.95, bagging_fraction = 1. For the model used 
for non-Black women, we again removed the 35% most sparse features, and performed feature selection 
using Spearman correlation, removing the bottom 15% of features. We used the following parameters for 
LightGBM: learning_rate = 0.03, num_iterations = 550, num_leaves = 29, min_data_in_leaf = 1, max_depth 
= 4, feature_fraction = 0.95, bagging_fraction = 1. 

For the combined model, we used microbiome absolute abundances. We used dimensionality 
reduction, which had better performance empirically, while maintaining train-test sterility, using PCA 
(nPC = 50) for the model used for Black women, and kernel PCA (nPC = 25) for the model used for non-
Black women. The metabolomics data in the model were mean-imputed and standardized as mentioned 
above. We applied feature selection for the combination model used for samples from Black women, 
using Spearman correlation to remove the bottom 10% of features. We used the following parameters for 
LightGBM: learning_rate = 0.02, num_iterations = 560, num_leaves = 68, min_data_in_leaf = 24, 
max_depth = 7, feature_fraction = 0.95, bagging_fraction = 1. For the combination model used for non-
Black women, we removed the 30% most sparse features, and then performed feature selection using 
Spearman correlation, removing the bottom 15% of features. We used the following parameters for 
LightGBM: learning_rate = 2.5e-2, num_iterations = 650, num_leaves = 13, min_data_in_leaf = 1, 
max_depth = 4, feature_fraction = 1, bagging_fraction = 1. 
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Supplementary figures 
 

 
Supplementary Figure 1 | Prevalence and super pathway of assayed metabolites. a, Distribution of 
metabolite super pathways among assayed metabolites. Metabolite super pathway assignments were 
provided by Metabolon Inc. (Durham, NC, USA). b, Distribution of metabolite prevalences across 
samples. Gray distribution reflects prevalences of all metabolites (N = 748). Blue distribution only reflects 
prevalences of named metabolites (N = 637). Dashed lines distinguish metabolites prevalent in more 
than 80% (N = 352) and more than 20% of samples (N = 694). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supplementary Figure 2 | Characteristics of metabolite clusters. Heatmap showing metabolite levels 
for each subject (rows) and metabolite (columns). Subjects are sorted by their assigned metabolites 
cluster (MC) and metabolites are clustered hierarchically using Canberra distance and Ward linkage. The 
color above each column reflects metabolite annotations. 
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Supplementary Figure 3 | Metabolome clustering inertia and gap statistic. a,b, Within cluster sum 
of squared distances (a) and gap statistic (b) for k-medoids clustering using Canberra distances with k 
from 1 to 15. A shoulder (a) and peak (b) are visible for k = 6.  
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Supplementary Figure 4 | Metabolite clusters correspond to CSTs. a, Distribution of CSTs within 
each metabolite cluster, for all (top; N = 232), white (middle; N = 51) and Black (bottom; N = 173) 
women. Each group of bars corresponds to a single metabolite cluster and bars within a group sum to 
100%. b, Same as Fig. 1d, stratified by race. c-d, Same as Fig. 1f,g, performed for all women 
combined.  
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Supplementary Figure 5 | Metabolite sets altered in sPTB. Heatmap showing metabolite sets altered 
in sPTB in various subsets of our cohort. Colors correspond to p-value of metabolite set enrichment 
analysis (Methods). Only associations with FDR < 0.1 are shown. 
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Supplementary Figure 6 | A network of microbial correlations with metabolites associated with 
sPTB. Same as Fig 3a, but with each microbial taxa represented as an individual node. 
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Supplementary Figure 7 | Comparison of microbe-metabolite associations in white and black 
women. Volcano plot where every point represents a microbe-metabolite association. X-axis displays 
the difference between spearman ρ’s calculated separately among Black and white women. Y-axis 
displays the significance of the difference, using Fisher’s R-to-z transform. Horizontal maroon line 
designates p = 0.05. Gold points indicate associations where there is a difference in sign between the 
correlations among Black and white women.  
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Supplementary Figure 8 | Performance and features of sPTB predictive models. a,b, Receiver 
operating characteristic (ROC, a) and precision-recall (PR; b) curves comparing sPTB prediction 
accuracy for models based on metabolomics data alone (auROC = 0.79, auPR = 0.63), and on 
metabolomics data combined with microbiome and clinical data (“combination”; auROC = 0.77, auPR = 
0.63). N = 232 for all. c,d SHAP-based98 effect on total prediction (x-axis) for the top 10 features used in 
our combination (c) and microbiome-based (d) models, sorted with descending importance. Each dot 
represents a specific sample, with the color corresponding to the relative level of the metabolite, or 
abundance of the microbe, in the sample compared to all other samples.  
 

Supplementary tables 
 
Supplementary Table 1 | Assignments of samples to metabolite clusters (MCs). 

Supplementary Table 2 | Shapley values of prediction models. Note that values are available only for 
samples on which the model was trained. 

Supplementary Table 3 | Assignments of SpeciateIT species to AGORA models. 

Supplementary Table 4 | Metabolites included in the vaginal media used in metabolic models. 
Listed are the metabolites included, along with their AGORA identifiers. 

Supplementary Table 5 | Tyramine predicted Net Maximal Production Capabilities. 

Supplementary Table 6 | Parameters of prediction models.  
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