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Abstract

The communication of oscillatory activity between neurons in a network result from the interplay

of the subthreshold oscillatory properties of the participating neurons, when they exist, the proper-

ties of the synaptic connectivity and modulatory effects (e.g., oscillatory, deterministic and stochastic

fluctuations) capturing identified external activity and unidentified background activity. A necessary

step to address the underlying mechanisms is to understand how the response of neurons to period

inputs, and external inputs in general, depends on the interplay of the neuronal intrinsic proper-

ties and the properties of the input. We address this issues in a systematic manner in the context

of the response of neurons to oscillatory and synaptic-like inputs, and we extend our investigation

to fluctuating spiking inputs with more realistic distributions of spike times. We use relatively sim-

ple neuronal models subject to additive current-based inputs and multiplicative conductance-based

synaptic inputs, and we use two types of chirp-like inputs, one consisting of a sequence of cy-

cles with discretely increasing frequencies over time, and the other consisting of the same cycles

arranged in an arbitrary order. We develop a number of voltage response metrics to capture the

different aspects of the voltage response, including the standard impedance profiles (curves of the

impedance amplitude as a function of the input frequency) and the peak-to-trough amplitude enve-

lope (VENV ) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in

response to sinusoidal inputs) also show VENV -resonance in response to sinusoidal inputs, but gen-

erally do not (or very mildly) in response to square-wave and synaptic-like inputs. We also show that

responses to conductance-based synaptic-like inputs are attenuated as compared to the response

to current-based synaptic-like inputs. These response patterns were strongly dependent on the in-

trinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells

had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like

inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same

frequency content and the only source of uncertainty is the subset of all possible permutations of

cycles chosen for a given protocol. This variability is the result of the multiple different ways in which

the autonomous transient dynamics is activated across cycles in each signal (different cycle order-

ings) and across trials. We extend our results to include high-rate Poisson distributed current- and
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conductance-based synaptic inputs and compare them with similar results using additive Gaussian

white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated

with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses

to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are

low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters,

consistent with experimental findings. Our results shed ling on the mechanisms of communication

of oscillatory activity among neurons in a network in a network via subthreshold oscillations and

resonance and the generation of network resonance.

1 Introduction

Subthreshold (membrane potential) oscillations (STOs) in a variety of frequency ranges have been

observed in many neuron types [1–40]. In brain areas such as the entorhinal cortex, the hippocam-

pus and the olfactory bulb, the frequency of the STOs is correlated with the frequency of the networks

of which they are part [1,2,26–28,34,41–44], thus suggesting STOs play a role in the generation of

network rhythms [11,26,45], the communication of information across neurons in a network via tim-

ing mechanisms [6, 29, 46, 47], cross-frequency coupling in neurons where STOs are interspersed

with spikes (mixed-mode oscillations; MMOs) [48–55], and the encoding of information [56, 57] and

sensory processing [39]. STOs can be generated by cellular intrinsic or network mechanisms. In the

first case, STOs result from the interplay of ionic currents that provide positive and slower negative

effects (e.g., [3,5,58,59]). (Examples of the former are the persistent sodium and calcium activation

and examples of the latter are h-type hyperpolarization-activated mixed sodium-potassium, M-type

slow potassium and calcium inactivation.) In the second case, STOs are generated in networks, but

the individual cells cannot robustly oscillate when isolated (e.g., [20,60,61]).

From a dynamical systems perspective, single-cell sustained STOs can be in the limic cycle

regime (robust to noise, driven by DC inputs) or in the fluctuation-driven regime (vanishing or de-

caying to an equilibrium in the absence of noise). Noisy STOs in the limit cycle regime reflect the

stationary dynamics of the system in the absence of noise. In contrast, fluctuation-driven STOs

reflect the (autonomous) transient dynamics of the underlying unperturbed system [62]. The au-

tonomous transient dynamics are captured by the system’s response to abrupt changes in constant

inputs [62] where the values of the voltage and other variables at end of a constant input regime

become the initial conditions for the new one. By repeated activation of the autonomous transient

dynamics, piecewise constant inputs with short-duration pieces and arbitrarily distributed amplitudes

(not necessarily randomly distributed) are able to produce oscillatory responses [62]. Noise-driven

oscillations are a limiting case of this mechanism where the input’s constant pieces have randomly

distributed amplitudes and their durations approach zero. If the amplitudes are normally distributed,

these piecewise constant inputs provide an approximation to Gaussian white noise [63]. Roughly

speaking, each “kick" to the system by the noisy input operates effectively as an abrupt change

of initial conditions to which the system responds by activating the transient time scales, and the

voltage and other state variables evolve according to the vector field away from equilibrium (or sta-

tionary state). For example, noise-driven STOs [58, 62, 64, 65] can be generated when damped

oscillations are amplified by noise, and this may extend to situations where the noiseless system

exhibits overdamped oscillations (overshoots) [62].

The communication of oscillatory information among neurons in a network and across brain

areas requires the generation of spiking patterns that are correlated with the underlying STOs (e.g.,

MMOs where spikes occur at the peak of the STO or at a consistent phase referred to this peak).

It also requires the ability of the system to respond to external inputs in such a way as to preserve

the oscillatory information. Studies on the latter are typically carried out by using sinusoidal inputs.

Subthreshold (membrane potential) resonance (MPR) refers to the ability of a system to exhibit

a peak in their voltage amplitude response to oscillatory inputs currents at a preferred (resonant)
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frequency [66–69] (in voltage-clamp, the input is voltage and the output is current). MPR has been

investigated in many neuron types both experimentally and theoretically [7–9,17,66–111] and it has

been shown to have functional implications for the generation of network oscillations [96,112].

The choice of sinusoidal inputs is based on the fact that for linear systems they can be used to

reconstruct the response to arbitrary time-dependent inputs, and relatively good approximations can

be obtained for mildly nonlinear systems. However, although neurons may be subject to oscillatory

modulated inputs, the communication between neurons in a network occurs via synaptic connec-

tions whose waveforms are significantly different from pure sinusoids. Synaptic inputs such as these

associated to AMPA or GABAA synaptic currents raise very fast (almost instantaneously) and then

decay exponentially on a slower time scale. In contrast to sinusoidal inputs, the raise and decay

of the periodic synaptic inputs occurs over a small portion of the input periods for the smaller input

frequencies. The gradual variation of the sinusoidal inputs cause the voltage response to reach

the stationary regime after a very small number of cycles, while the abrupt changes in the synaptic

inputs over a small time interval sequentially activate the autonomous transient dynamics at every

cycle, and therefore is expected to produce different response patterns than these for sinusoidal

inputs [62].

Along these lines, a series of dynamic clamp experiments [19] using artificially generated synap-

tic conductances and currents driven by high-rate presynaptic Poisson spike trains showed that

medial entorhinal cortex layer II stellate cells (SCs) are able to generate STOs in response to

current-based synapses, but not in response to conductance-based synaptic currents. SCs are a

prototypical example of an intrinsic fluctuation-driven STO neuron [3, 5, 58, 113] and resonator [72].

In the response to current-based synaptic inputs, the STOs have similar frequencies and amplitudes

as the spontaneous STOs [3, 5] and the resonant responses to sinusoidal inputs [72]. In response

to conductance-based synaptic currents, STOs may still be present, but highly attenuated as com-

pared to current-based synaptic inputs. Similar results were found in [114] for hippocampal CA1

OLM (oriens lacunosum-moleculare) cells.

This raises an seeming contradiction between the ability of the impedance (Z-) profile (curve of

the voltage V -response normalized by the amplitude of the oscillatory inputs as a function of the

input frequency) to predict the existence of STOs for arbitrary time-dependent inputs, in particular

Gaussian white noise, and the absence of STOs for conductance-based synaptic inputs in response

to Poisson-distributed spike trains whose effect on the target cells have been approximated by Gaus-

sian white noise [115–120]. This can be partially explained by the fact that synaptic currents “add

linearity" to the system, but fluctuation-driven STOs can be generated in linear systems and there-

fore one could expect only changes in amplitude and frequency. Another possible explanation is

that while the Z-profile is independent of the input waveform, the voltage response power spectral

density (PSD) is not and depends on the current input waveform. The expectation that the PSD

be similar for current-based Gaussian white noise and Poisson-driven current-/conductance-based

synaptic inputs would assume similarity between the different input types. In this paper we sys-

tematically address these issues in a broader context. Our results shed ling on the mechanisms of

communication of oscillatory activity among neurons in a network via subthreshold oscillations and

resonance and the generation of suprathreshold and network resonance.

2 Methods

2.1 Models

In this paper we use relatively simple biophysically plausible models describing the subthreshold

dynamics of individual neurons subject to both additive and multiplicative inputs.
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2.1.1 Linear model: additive input current

For the individual neurons we use the following linearized biophysical (conductance-based) model

[67,68]

C
dv

dt
= −gLv − g1w + Iin(t) (1)

τ1
dw

dt
= v − w, (2)

where v (mV) is the membrane potential relative to the voltage coordinate of the fixed-point (equilib-

rium potential) of the original model, w (mV) is the recovery (gating) variable relative to the gating

variable coordinate of the fixed-point of the original model normalized by the derivative of the cor-

responding activation curve, C ( µF/cm2) is the specific membrane capacitance, gL (mS/cm2) is

the linearized leak conductance, g1 (mS/cm2) is the linearized ionic conductance, τ1 (ms) is the

linearized gating variable time constant and Iin(t) (µA/cm2) is the time-dependent input current. In

this paper we consider resonant gating variables (g1 > 0; providing a negative feedback effect). The

linearization process for conductance-based models for single cells has been previously described

in [67,68]. We refer the reader to these references for details.

2.1.2 Conductance-based synaptic input model: multiplicative input

To account for the effects of conductance-based synaptic inputs we extend the model (1)-(2) to

include a synaptic current

C
dv

dt
= −gL v − g1w − Isyn(t) (3)

τ1
dw

dt
= v − w (4)

where

Isyn(t) = GsynSin(t)(v − Esyn) (5)

and Gsyn (mS/cm2) is the maximal synaptic conductance, Esyn (mV) is the synaptic reversal poten-

tial (Eex for excitatory inputs and Ein for inhibitory inputs) and Sin(t) is the time-dependent synaptic

input.

2.1.3 INap + Ih conductance-based model

To test our ideas in a more realistic model we will use the following conductance-based model

combining a fast amplifying gating variable associated to the persistent sodium current INap and

a slower resonant gating variable associated to the hyperpolarization-activated mixed cation (h-)

current Ih. The model equations for the subthreshold dynamics read

C
dV

dt
= −GL(V − EL)−Gpp∞(V )(V − ENa)−Ghr(V − Eh) + Iapp + Iin(t)− Isyn(t) (6)

τr
dr

dt
= r∞(V )− r (7)

where
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p∞(v) =
1

1 + e−(v−vp,1/2)/vp,slp
, (8)

and

r∞(v) =
1

1 + e(v−vr,1/2)/vr,slp
. (9)

This model describes the onset of spikes, but not the spiking dynamics [58]. Spikes are added by

including a voltage threshold (indicating the occurrence of a spike after its onset) and reset values

Vrst and rrst for the participating variables.

Unless stated otherwise, we use the following parameter values: vp,1/2 = −38 mV, vp,slp =
6.5 mV, vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2, EL = −65 mV, ENa = 55 mV,

Eh = −20 mV, gL = 0.5 mS/cm2, gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2, and

τr = 80 ms.

2.2 Input functions: periodic inputs and realistic waveforms

The input functions Iin(t) and Sin we use in this paper have the general form

Iin(t) = AinF (t) and Sin(t) = AinF (t) (10)

2.2.1 Chirp-like input functions: increasingly ordered frequencies

We will use the three chirp-like input functions F (t) shown in Fig. 1-a. The sinusoidal chirp-like

function (Fig. 1-a1) consists of a sequence of input cycles with discretely increasing frequencies over

time (Fig. 1-a4). We use integer frequencies in the range 1 − 100 Hz. These chirp-like functions

are a modification of the standard chirp function [73] where the frequency of the sinusoidal input

increases (or decreases) continuously with time [73]. Sinusoidal inputs of a single frequency and

sinusoidal chirps with monotonically and continuously increasing (or decreasing) frequencies with

time have been widely used to investigate the resonant properties of neurons both in vitro and in

vivo [73,82,121].

The square-wave (Fig. 1-a2) and synaptic-like (Fig. 1-a3) chirp-like functions are constructed

in the same manner as the sinusoidal one by substituting the sinusoidal functions by square waves

(duty cycle = 0.5) and exponentially decreasing functions with a characteristic decay time τDec,

respectively. We refer to them as sinusoidal, square-wave, and synaptic-like inputs or chirps, re-

spectively (and we drop the “chirp-like").

The discretely changing chirp-like functions we use here are a compromise between tractability

and the ability to incorporate multiple frequencies in the same input signal. They combine the notion

of input frequency with the notion of transition between different frequencies in the same signal.

2.2.2 Chirp-like input functions: arbitrarily ordered frequencies

To examine the variability of the cell’s response to the chirp signals described above and to capture

the fact that information does not necessarily arrive in an regularly ordered manner, we will use

modified versions of these chirp inputs where the cycles are rearranged in an arbitrary order (Fig.

1-b). The regularly (Fig. 1-a4)and arbitrarily (Fig. 1-b4) ordered input signals have exactly the same

cycles (one cycle for each frequency value within the considered range) and therefore the same

frequency content.
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2.2.3 Poisson distributed spikes and white Gaussian noise

To test the oscillatory responses to more realistic inputs we use spike-trains with distributed spikes

following a homogeneous Poisson process with rate ν. Each input spike evokes a synaptic-like

input function as described above. In addition, we use an additive Gaussian noise current Inoise =√
2Dη(t) where η(t) is a Gaussian white noise input with zero mean and unit variance (Iin(t)

has zero mean and variance 2D). Unless stated otherwise, ν = 1000 Hz and D = 1 (additional

information is provided in the figure captions).

2.3 Output Metrics

2.3.1 Impedance (amplitude) profile

The impedance (amplitude) profile is defined as the magnitude of the ratio of the output (voltage)

and input (current) Fourier transforms

Z(f) =

∣

∣

∣

∣

F{v(t)}
F{I(t)}

∣

∣

∣

∣

, (11)

where F{x(t)} =
∫ T

0
dte−2πiftx(t). In practice, we use the Fast Fourier Transform algorithm (FFT)

to compute F{x(t)}. Note that Z(f) is typically used as the complex impedance, a quantity that has

amplitude and phase. For simplicity, here we used the notation Z(f) for the impedance amplitude.

2.3.2 Voltage and impedance (amplitude) envelope profiles

The upper and lower envelope profiles V
+/−
ENV are curves joining the peaks and troughs of the steady

state voltage response as a function of the input frequency f . The envelope impedance profile is

defined as [69,109]

ZENV(f) =
V +
ENV (f)− V −

ENV (f)

2Ain

, (12)

where Ain is the input amplitude. For linear systems, ZENV(f) coincides with Z(f).

2.3.3 Voltage power spectral density

In the frequency-domain, we compute the power spectral density (PSD) of the voltage as the abso-

lute value of its Fourier transform F{v(t)}. We will refer to this measure as PSD or VPSD.

2.3.4 Firing rate (suprathreshold) response

We compute the firing rate response of a neuron by counting the number of spikes fired within an

interval of length T and normalizing by T

〈x〉 = 1

T

∫

T

x(t)dt (13)

where the neural function x is given by

x(t) =
∑

i

δ(t− ti), (14)

and ti are the spike times within the considered interval.
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2.4 Numerical simulations

We used the modified Euler method (Runge-Kutta, order 2) [122] with step size ∆t = 0.01 ms.

All neural models and metrics, including phase-plane analysis, were implemented by self-developed

Matlab routines (The Mathworks, Natick, MA) and are available in https://github.com/BioDatanamics-Lab/

impedance_input_dependent.

3 Results

3.1 Transient and steady-state neuronal responses to abrupt versus gradual

input changes

The properties of the transient responses of dynamical systems to external inputs depend on the in-

trinsic properties of the target cells, the initial conditions of the participating variables and the nature

of the attractors (assumed to exist). The complexity of the autonomous transient dynamics, defined

as the transient response to abrupt changes in constant inputs, increases with the model complexity.

For example, for the simplest, passive neuron (a one-dimensional system), the voltage V evolves

monotonically towards the new equilibrium value determined by a constant input. Two-dimensional

neurons having a restorative current with slow dynamics (e.g., Ih, IM , ICaT inactivation) may display

overshoots and damped oscillations (Fig. 3), which can be amplified by fast regenerative currents

(e.g., INap, IKir , ICaT activation), and are more pronounced the further away the initial conditions

are from the equilibrium (not shown) and the more abrupt is the input change. Here we review the

dependence of the transient response properties of relatively simple models with the properties of

the input and discuss some of the implications for the steady state responses of the same systems

to periodic inputs.

3.1.1 The strength of the transient responses to input changes decreases as the

input changes transition from abrupt to gradual

An abrupt change in the input current (e.g., step DC input) can be interpreted as causing a sudden

translation of the equilibria (for the voltage and other state variables) in the phase-space diagram

from its baseline location (e.g., Fig. 2-a, I = 0, intersection between the V - and w-nullclines, solid-

red and green, respectively) to the to a new location determined by the DC value (e.g., Fig. 2-a,

I = 1, intersection between the displaced V - and w-nullclines, dashed-red and green, respectively).

The values of these state variables prior to the transition become the initial conditions with respect

to this new equilibrium. Therefore, the voltage responses to abrupt changes in the input currents are

expected to exhibit overshoots and damped oscillations ( Fig. 2, insets, and Fig. 3, left ), which are

more pronounced the stronger the input (not shown). As the change in input current becomes more

gradual, the transient effects become more attenuated (Fig. 3, middle) and eventually the voltage

response becomes almost monotonic (Fig. 3, right).

This transition in the strength of the transient responses is expected since a monotonic input

change can be approximated by a sequence of smaller step input changes of increasing (constant)

magnitude, each one producing a transient response, which becomes smaller the larger the number

of steps (the smaller the step size) since the initial conditions for each step in the partition are very

close to the corresponding (new) steady state. Therefore, for input transitions between the same

constant values, but with different slopes the amplitude of the transient response becomes more

attenuated the more gradual the transition since a larger partition is required in order to keep the

step size constant.
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3.1.2 Nonlinear amplification of the transient and steady-state response to constant

inputs

Certain types of nonlinearities have been shown to amplify the response of neuronal systems (and

dynamical systems in general) to the same input. This is reflected in both the responses to constant

and oscillatory inputs. For illustrative purposes, in Figs. 2-c we use a piecewise linear (PWL) model

obtained from the linear model (1)-(2) by making the v-nullcline a continuous PWL function. It was

shown in [109] that this type of models display nonlinear amplifications of the voltage response to

sinusoidal inputs and capture similar phenomena observed in nonlinear models, in particular these

having parabolic-like V -nullclines describing the subthreshold voltage dynamics. [69]).

Figs. 2-a and -b show the superimposed phase-plane diagrams for the PWL model (b) and

the linear (LIN) model (a) from which it originates for a constant input amplitude I = 0 (solid-red,

baseline) and I = 1 (dashed-red). The w-nullcline is unaffected by changes in I. The trajectory

(blue), initially at the fixed-point for I = 0, converges towards the fixed-point for I = 1. For low

enough values of I (lower than in Figs. 2-a and -b) the trajectory remains within the linear region (the

trajectory does not reach the V -nullcline’s “breaking point" value of V ) and therefore the dynamics

are not affected by the nonlinearity. In both cases (panels a and b), the response exhibits an

overshoot. The peak occurs when the trajectory is able to cross the V -nullcline. Because the

V -nullcline’s “right piece" has a smaller slope than the “left piece", the trajectory is able to reach

larger values of V before turning around. This amplification is particularly stronger for the transient

dynamics (initial upstroke) than for the steady-state response. Nonlinear response amplifications in

this type of systems are dependent on the time scale separation between the participating variables.

For smaller values of τ1 this nonlinear amplification is reduced and although the system is nonlinear,

it behaves quasi-linearly [69,109].

3.1.3 Attenuation of the transient and stead-state response of conductance-based

versus current-based (constant) synaptic inputs

From the phase-plane diagram in Fig. 2-c we see that increasing values of I (replacing S in the

model) reduces the nonlinearity of the V -nullcline (dashed-red) and increases (in absolute value) its

slope. Both phenomena oppose the response amplification (blue) and the overshoot becomes much

less prominent. The triangular region (bounded by the V -axis, the displaced V -nullcline (dashed-

red) and the w-nullcline (green)) is reduced in size as compared to the current-based inputs (panel

b) and therefore the response is reduced in amplitude. Moreover, because the displaced V -nullcline

in panel c is more vertical than the baseline V -nullcline, the size of the overshoot in response to

constant inputs is reduced and, in this sense, the responses become quasi-1D. As a consequence,

the initial portion of the transient responses to abrupt changes in input is reduced in size and the

oscillatory response to PWC inputs is also attenuated and the resonant peak disappears [62]

3.1.4 Implications for the neuronal responses to structured (periodic) and non-structured

inputs: hypotheses and questions

An immediate consequence of these observations is the prediction that a system’s responses to

square-wave and sinusoidal inputs of the same frequency (and duty cycle) will be qualitatively differ-

ent, and these differences will depend on the stability properties of the unperturbed cells (e.g., stable

nodes versus foci, overshoots versus damped oscillations). The steady state response to periodic

inputs can be interpreted as a sequence of transient responses to input changes. These transient ef-

fects (autonomous transient dynamics) are expected to be prominent in the steady-state responses

to square-wave inputs, but not in the steady state responses to sinusoidal inputs. Sinusoidal and

square-wave inputs are representative of gradually and abruptly changing signals, respectively, and

are amenable for comparison. The result of these comparisons sheds light on more realistic signals
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such as synaptic-like ones. To tests these ideas we will use the chirp-like input currents shown in

Fig. 1 (see Section 2.2.1)

A second immediate consequence of the observations referred to above is the finding that a

system’s amplitude response to piecewise constant (PWC) inputs having the same set of constant

pieces arranged in different order are variable with respect to each other [62]. At the population level

(same cell receiving a number of input signals consisting of permutations of the order of the same

constant pieces of the same baseline signal), the properties of this variability crucially depend on

the cell’s autonomous transient dynamics. These reflect the multiple ways in which the cell responds

to a given input constant piece inputs from the values determined by the responses to the previous

piece in the inputs signal, which change across trials. Interestingly, this phenomenon does not

require the constant piece amplitudes to be randomly distributed, but they can be generated by a

deterministic rule consisting of a baseline input patterns (e.g., increasing order of amplitudes) and a

subset of all possible permutations of the constant piece amplitude order. We analyzed this in detail

in the companion paper [62].

The issues discussed above raise a number of questions. First, whether and under what condi-

tions the frequency-preference properties of a system’s response to sinusoidal inputs are predictive

of the response properties of the same system to other types of inputs. While the Fourier theorem

guarantees that the latter can be reconstructed from the former if properly normalized, it does not

guarantee that the two will have the same waveform and the same frequency-dependence proper-

ties using metrics that depend on these waveforms since the normalization factors (related to the

input) may have different frequency dependencies. Second, whether and under what conditions the

differences between the preferred frequency-band response of sinusoidal and non-sinusoidal inputs,

if theyexist, persist in the spiking regime. Given that the communication between neurons occurs via

synaptic interactions, the failure of the responses to synaptic-like inputs to replicate the frequency-

preference properties in response to sinusoidal inputs would indicate that the latter, although useful

for the reconstruction of signals, has not direct implications for the spiking dynamics. Third, whether

and under what conditions the frequency-preference properties of a system’s response to structured

(deterministic) inputs are predictive of the responses of the same system to unstructured (noisy) in-

puts. Fourth, whether and under what conditions the oscillatory (intrinsic) and resonant properties

of cells result from the very brief initial transients of their autonomous dynamics. Fifth, how does the

variability of a cell’s response to different input trials is processed by the feedback effects operating

at the cell level. We address these issues in the next sections.

3.2 Subthreshold resonance in response to sinusoidal inputs is captured by

the impedance and voltage envelope profiles

3.2.1 Subthreshold resonance

A cell is said to exhibit subthreshold resonance if its voltage amplitude response to subthreshold

oscillatory inputs peaks at a preferred (resonant) frequency (Figs. 4-a and 5-a). These responses

are typically measured by computing the impedance Z, defined as the quotient of the power spectra

of the output and input (see Methods). In current clamp, the input is current and the output is voltage.

In controlled experiments and simulations the unperturbed cells are in equilibrium in the absence

of the oscillatory inputs. In response to constant inputs, resonant cells may be non-oscillators,

typically exhibiting an overshoot, or exhibit oscillatory behavior (e.g., damped oscillations) (e.g., see

Figs. 4-c1 and 5-c1, respectively, where the behavior can be observed in the first cycle). Therefore,

resonance is not uncovering an oscillatory property of the unperturbed cell, but rather it is a property

of the interaction between the cell and the oscillatory inputs [109]. Hence, it is not clear whether and

under what conditions subthreshold resonance persists in the presence of other types of periodic

inputs with non-sinusoidal waveforms.

In principle, there are various metrics one could use to characterize the frequency response
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profiles of neurons (and dynamical systems in general). The impedance Z-profile (curve of the

impedance amplitude as a function of the input amplitude) measures the signals frequency content

(Fig. 4-a3, green). The upper and lower envelope profiles V
+/−
ENV (Fig. 4-a2) capture the stationary

peaks and troughs of the voltage response, respectively as a function of the input frequency. The

peak profiles, in particular, are a relevant quantity since spikes are expected to occur at the response

peaks as the input amplitude crosses threshold (the voltage response to this amplitude crosses the

voltage threshold). The envelope impedance ZENV profiles (Fig. 4-a3, blue), consisting of the

stationary peak-to-trough amplitude normalized by the input amplitude as a function of the input

frequency and serves to connect and compare between the two previous profiles.

For sinusoidal inputs, the Z-profile in response to chirp inputs typically coincides with the ZENV -

profile computed by using sinusoidal inputs of a constant frequency (over a range of input frequen-

cies). This remains true for the sinusoidal chirp-like input we use here (Fig 4-a). It is always true

for linear systems [67,68] and certain nonlinear systems (e.g., [123]). In other words, the frequency

content of the voltage response (green) is reflected by the voltage upper and lower envelope re-

sponse profiles and the response to non-stationary chirp-like inputs coincides with the stationary

response to sinusoidal inputs of a single frequency. This is a direct consequence of the fact that the

input changes are gradual.

3.2.2 Communication of the preferred frequency responses from the sub- to the

supra-threshold regimes

The frequency-dependent suprathreshold response patterns to periodic inputs result from the in-

terplay of the frequency-dependent subthreshold voltage responses to the same inputs and the

spiking mechanisms. The subthreshold resonant frequency is communicated to the suprathreshold

regime when neurons selectively fire action potentials in response to oscillatory inputs only at fre-

quencies within a small enough range around the subthreshold resonant frequency. This type of

evoking resonance can be obtained for input amplitudes sightly above these producing only sub-

threshold responses, for example for neurons for which the spiking response to oscillatory inputs

can be thought of as spikes mounted on the corresponding subthreshold responses. Evoked spik-

ing resonance captures a selective coupling between the oscillatory input and firing, and it has been

observed experimentally and theoretically [73, 124] and the underlying dynamic mechanisms have

been investigated in detail [125]. A related measure of the communication of the subthreshold res-

onant frequency to the suprathreshold regime is that of firing rate resonance [67] where the firing

rate in response to oscillatory inputs peaks at or within a small range around the subthreshold reso-

nance frequency. We note that subthreshold resonance does not necessarily imply evoked spiking

resonance [73], evoked spiking resonance may be observed as the input amplitude crosses thresh-

old, but lost for higher input amplitudes [125], the firing rate (or spiking frequency) at the firing rate

(evoked) resonant frequency band is not necessarily the same as that frequency band [67,124,125],

and evoked spiking resonance may be occluded in the presence of spontaneous firing, a situation

likely to occur in vivo. When the spontaneous (or intrinsic) firing frequency is relatively regular, the

associated time scale may dominate over the subthreshold resonant time scale and determine the

firing rate resonant frequency [67]. A third form of preferred frequency response to oscillatory inputs

is the so-called output spiking resonance [125] where the spiking frequency response to oscillatory

inputs remains within a relatively narrow range independently of the input frequency range. The

output spiking resonant frequency and the subthreshold resonant frequency are not necessarily the

same, but the mechanisms that give rise to both are dynamically related [125].

While there is no guarantee that subthreshold resonance implies any of the various types of

supra-threshold resonance, the communication of the resonant frequency to the suprathreshold

regime is favored when the neuron’s upper envelope profile V +
ENV exhibits a peak at the subthresh-

old resonant frequency (V +
ENV resonance). For the examples in Figs. 4-a and 5-a, the models, sup-
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plemented with a voltage threshold for spike generation and a reset mechanism, will exhibit evoked

spiking resonance in response to sinusoidal inputs at the subthreshold resonant frequency band,

and this is well captured by both the Z and ZENV profiles. However, while this remains true for a

larger class of systems, we note that this is not necessarily the case for nonlinear systems exhibiting,

for instance if the V +
ENV and V −

ENV are asymmetric with respect to the equilibrium voltage [126].

For example, a cell that is an upper envelope low-pass filter (V +
ENV is a decreasing function of the

input frequency), but a lower envelope band-pass filter (V −

ENV has a trough at an intermediate input

frequency) will show a peak in the impedance profile Z and therefore will be considered resonant ,

but this will not necessarily be reflected in the spiking response since the lower frequencies will be

communicated better to the spiking regime than the intermediate frequencies as the input amplitude

increases above threshold, in particular these within the subthreshold resonant frequency band.

This together with our discussion in the previous section raises the question of whether the re-

sponses of resonant cells to non-sinusoidal periodic inputs will also show a preferred frequency

response in the resonant frequency band and whether the Z- and VENV - profiles exhibit the same

filtering properties. This has implications for the frequency-dependent supra-threshold response

patterns to periodic inputs since the communication between neurons occurs via synaptic interac-

tions, which exhibit abrupt changes as compared to the sinusoidal inputs, raising in turn the possi-

bility of a competition between Z- and VENV - profiles in determining the spiking frequency filtering

properties.

3.3 Resonant cells do not necessarily show V
+
ENV resonance in response to

chirp-like square-wave inputs

Figs. 4-c1 and -c2 illustrate that (Z) resonant cells (see Fig. 4-a) may not exhibit envelope band-

pass filter in responses to square-wave inputs. The V +
ENV resonant response for sinusoidal inputs

(Figs. 4-a1 and -a2) is lost for square-wave inputs and, consequently, these inputs would produce

spiking activity preferentially at the lowest frequencies (no evoked spiking resonance) for input cur-

rent amplitudes above threshold. The absence of V +
ENV -resonance does not imply the absence

of Z-resonant frequency content. In fact, the power spectra for the responses to sinusoidal and

square-wave inputs (Fig. 4-c3, green) are very similar to the power spectra for sinusoidal inputs

(Figs. 4-a3, green) and all show Z-resonance (see schematic explanation in Fig. 8). However, this

Z-resonance is not reflected in the V response and therefore it does not have a direct effect on the

communication of the subthreshold frequency content to the spiking regime.

Figs. 5-c1 and -c2 shows a representative case where V +
ENV resonance is still present for

square-wave inputs, but the resonance amplitude Q+
ENV (defined as the quotient of the values

of V +
ENV at the peak and at f = 0) is very small as compared to Q+

ENV in response to sinusoidal

inputs (Fig. 5-a2). In these cases, the subthreshold resonant frequency will be communicated to the

spiking regime, but only for a small range of input amplitudes as compared to the responses to sinu-

soidal inputs (Fig. 5-a), above which spiking would occur for the lowest frequencies. The frequency

content of the voltage response (Fig. 5-c3, green) is not reflected by the V +
ENV and V −

ENV response

profiles (Fig. 5-c2) and consequently by the ZENV profiles (Fig. 5-c3, blue).

The main difference between the two cases presented in Figs. 4 and 5 are the type of au-

tonomous transient dynamics of the two cells. For the parameter values used in Fig. 4 the equilib-

rium for the isolated cell is a stable node (real eigenvalues, no intrinsic damped oscillations) and the

cell displays overshoot transient responses to input changes (e.g., Fig. 3-a), while for the parameter

values used in Fig. 5, the equilibrium for the isolated cell is a stable focus and the cell displays

damped oscillations in response to input changes (e.g., Fig. 3-b). Biophysically, the transition from

stable nodes to stable foci is associated to an increase in the levels of the amplifying currents. In

Fig. 5, this is reflected as a decrease in the linearized conductance gL, which contains information

about fast amplifying currents such as INap present in the original biophysical models [67,68].
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The persistence of V +
ENV resonance in cells having stable foci is due to a combination of the

(damped) oscillatory response after the abrupt input increase/decrease and summation. More

specifically, the response to the abrupt input changes (square-wave or synaptic) has two regimes:

a relatively large amplitude response, reflecting the biophysical amplification levels, and a smaller

amplitude response reflecting the stability properties of the equilibrium Veq . The location of the volt-

age response V right before the arrival of the input from the next cycle determines the response

amplitude to this input and this location depends on the stability properties of Veq . When Veq is a

node, the voltage response V decreases below Veq immediately after the abrupt input change, and

then returns to Veq . When the input from the next cycle arrives, V is below Veq . In contrast, when

Veq is a focus, the oscillatory voltage response may be above Veq when the input from the next cycle

arrives, and therefore, because it starts at a higher value, V reaches higher values. This depends

on the frequency of the damped oscillations and the input frequency. If the input frequency is too

low, then the damped oscillations die out before the next input arrives, while if the input frequency

is high enough, then the damped oscillations are close to their first peak. If the input frequency is

higher, then the value that V has when the next input arrives is lower because is further away from

the first peak. For still higher input frequencies, the standard summation takes over.

Figs. S1 and S2 show similar results for the nonlinear conductance-based Ih + INap model (the

linear models used for Figs. 4 and 5 can be considered as linearized versions of this Ih + INap

model). For the lower levels of the INap conductance Gp the Ih + INap shows no V +
ENV resonance,

while V +
ENV resonance persists for the higher levels of Gp, consistent with the transition of the

equilibrium from a stable node to a stable focus.

3.4 Dependence of V +
ENV resonance in response to synaptic-like input cur-

rents on the current sign and the cell’s intrinsic properties

3.4.1 Z-resonant cells do not necessarily show V +
ENV resonance in response to

excitatory synaptic-like inputs currents

As for the square-wave inputs described above, V +
ENV is absent when Veq is a node (Figs. 4-b1

and -b2) and present when Veq is a focus (Figs. 5-b1 and -b2), but with a smaller Q+
ENV than

the response to sinusoidal inputs (Fig. 5a). Also similarly to square-wave inputs, the absence of

V +
ENV -resonance does not imply the absence of Z-resonant frequency content; The power spectra

of the responses to sinusoidal, square-wave and synaptic-like inputs are very similar and all show

Z-resonance (compare Figs. 4-b3 and -5-b3, green, with Figs. 4-a3 and -5-a3, green), and therefore

this (Z-) resonance may have no direct effect on the communication of the subthreshold frequency

content to the spiking regime (since the frequency-dependent properties that govern the generation

of spikes are captured by V +
ENV profiles and not on the frequency content captured by the Z-

profiles).

In contrast to the responses to square-wave inputs, both the V +
ENV and V −

ENV responses to

excitatory synaptic-like inputs exhibit a trough before increasing due to summation, which is more

pronounced in Fig. 4b (Veq is a node) than in Fig. 5b (Veq is a focus). The generation of these troughs

are the result of the interplay of the accumulation of synaptic inputs and the intrinsic properties of

the cell reflected by the transient responses to individual inputs (overshoots, damped oscillations),

and occur at a different frequency than the Z-resonant frequency. More specifically, for the lower

frequencies in Fig. 4-b, V exhibits a sag before returning to a vicinity of Veq . The value V reaches

before the arrival of the next input serve as the initial condition for the next cycle. As the input fre-

quency increases, these initial conditions are lower than for the previous cycles since the periods

decrease, and therefore V returns to an even lower value after the synaptic input wears off. As the

input frequency increases further, standard summation takes over and the combination of summa-

tion and the higher frequency input creates the high-pass filter VENV patterns with an amplitude

that decreases with frequency. This phenomenon is watered down when Veq is a focus because the
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amplification associated to the presence of damped oscillations as compared to overshoots causes

the voltage response troughs at every cycle to reach lower values when Veq (Fig. 5b) is a focus than

when Veq is a node (Fig. 4b).

Figs. S1 and S2 show similar results for the nonlinear conductance-based Ih + INap model.

3.4.2 Z-resonant cells show V +
ENV resonance in response to inhibitory synaptic-like

inputs currents in a Veq-stability-dependent manner

For inhibitory synaptic-like input, the V +
ENV and V −

ENV responses are qualitatively inverted images

of the ones described above. For linear cells, in particular, the responses for excitatory and inhibitory

synaptic-like inputs are symmetric with respect to Veq (= 0). The most salient feature is the presence

of a peak in both V +
ENV and in V −

ENV (Figs. S5- a1 and -b1 and Figs. S5-a2 and -b2), indicating

the occurrence of V +
ENV resonance at a frequency, which is different from the Z-resonant frequency

(Figs. S5 c1 and c2). The mechanism of generation of this V +
ENV band-pass filters is similar to

the one described for the troughs in excitatory synaptic-like inputs and involves a combination of

summation and intrinsic properties of the cell, reflected in the properties of the transient response

of the cells to individual inputs. More specifically, the summation acts as a low-pass filter and the

effects of the transient responses to individual neurons, associated to the presence of Z resonance,

act as a high-pass filter. We emphasize that the V +
ENV and Z resonances are significantly different.

We also emphasize that V +
ENV resonance is not significant when Veq is a focus (Fig. S5-b2) since

the amplification associated to the presence of damped oscillations referred to above obstructs the

envelope high-pass filtering component.

Figs. S3 and S4 show similar results for the nonlinear conductance-based Ih + INap model.

3.4.3 V +
ENV low- and high-pass filtering properties of synaptic-like currents

The responses to synaptic-like inputs are affected by the summation effect, which depends on the

synaptic decay time τDec. Figs. 6 and 7 illustrate the transition of the response (middle and right

panels) to excitatory synaptic-like inputs (left panels) for representative values of τDec (including

these used in Figs. 4-b and 5-b). In all cases, the frequency content measured by the impedance

Z (Figs. 6 and 7, green) remains almost the same. The summation effects, which increases as

τDec increases, strengthens the low-pass filter properties of the ZENV response. The results for

inhibitory synaptic-like inputs are symmetric to these in Figs. 6-b and 7-b with respect to Veq (= 0)

(not shown), and therefore, increasing values of τDec strengthens the low-pass filter properties of

ZENV .

3.5 The autonomous transient dynamic properties are responsible for the

poor upper envelope (V +
ENV ) resonance (or lack of thereof) exhibited by (Z-)

resonant cells in response to non-sinusoidal chirp-like input currents

As discussed above, the differences between the V +
ENV response patterns to square-wave/synaptic-

like and sinusoidal inputs and the differences between the V +
ENV response patterns to different

types of synaptic-like inputs (excitatory, inhibitory) are due to the different ways in which individual

cells transiently respond to abrupt and gradual input changes, which operate at every cycle. Both

and the corresponding sinusoidal inputs share the primary frequency component determined by the

period (see Fig. 8). However, the sinusoidal input is gradual and causes a gradual response without

the prominent transients (overshoots and damped oscillations) observed for the square-wave input,

which together with the summation phenomenon produces VENV peaks. The responses to square

wave inputs, in particular for the lower frequencies, reach a steady state value as the responses to

sinusoidal inputs do, but in contrast to the latter, the voltage envelope for the former is determined
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by the transient peaks. These transients appear to be “getting in the way" of the voltage response

to produce VENV resonance. However, they are not avoidable. In fact, overshoots in non-oscillatory

systems are an important component of the mechanism of generation of resonance in response to

sinusoidal inputs [69,109] as are damped oscillations.

For comparison, Fig. 9 shows the responses of a passive cell (g1 = 0) to the three types of inputs.

Passive cells exhibit neither overshoot nor damped oscillatory transient responses to abrupt input

changes, but monotonic behavior. As expected, this cell does not exhibit resonance in response

to oscillatory inputs, but a low-pass filter response in both Z and VENV (Figs. 9-a). The envelope

response to square-wave inputs is also a low-pass filter (Fig. 9-c), though it decays slower with

increasing values of the input frequency since, because of the waveform, the square-wave input

stays longer at its maximum value than the sinusoidal input at each cycle. In contrast to Figs. 4 and 5,

the cell’s response to synaptic-like inputs is a VENV high-pass filter (Fig. 9-b) due to summation and

the lack of interference by the transient effects. Fig. S6 shows similar results for a two-dimensional

linear models with a reduced value of the negative feedback conductance g1 where overshoots and

damped oscillations are not possible. The analogous results for inhibitory synaptic-like inputs are

presented in Figs. S5 (rows 3 and 4).

3.6 Current- and conductance-based synaptic-like inputs produce qualita-

tively different voltage responses and synaptic currents

The synaptic-like inputs considered so far are additive current inputs. However, realistic synaptic

currents involve the interaction between the synaptic activity and the postsynaptic voltage response.

In biophysical models, the synaptic currents terms consist of the product of synaptic conductances

and the voltage-dependent driving force (Eq. 3). Because the voltage response contributes to the

current that produces this response, the frequency-dependent response profiles for current- and

conductance-based inputs may be qualitatively different.

3.6.1 Z-resonant cells do not show V +
ENV resonance in response to conductance-

based excitatory synaptic-like inputs, but they do show troughs in the V −
ENV re-

sponse

Figs. 10 and 11 show representative comparative examples for the two Z-resonant cells (in re-

sponse to sinusoidal inputs) discussed in Figs. 4 (stable node) and 5 (stable focus), respectively.

For the parameter values corresponding to Fig. 4 (no V +
ENV resonance in response to current-based

synaptic-like inputs, Fig. 10-b, blue), the conductance-based synaptic current shows a peak in the

upper envelope (Fig. 10-a2), but not in the voltage response (Fig. 10-b, red), which, instead, shows

a trough as for the current-based synaptic input (Fig. 10-b, blue). In spite of the similarities between

the two profiles, the ZENV profile for the conductance-based input shows a peak (Fig. 11-c1, red),

but this peak does not reflect a true ZENV preferred frequency response.

For the parameter values corresponding to Fig. 5 (mild V +
ENV resonance in response to current-

based synaptic-like inputs, Fig. 11-b, blue), the response to conductance-based synaptic inputs is

similar to that in Fig. 10, but more amplified. In particular, there is no V +
ENV resonance in response to

conductance-based synaptic-like input (Fig. 11-b, red). In both cases, the cells shows Z resonance

(Figs. 4-c2 and 5-c2).

For comparison, Fig. 12 show the result of repeating the protocols used above for a passive cell

(g1 = 0, same as Fig. 9). The frequency response patterns are the standard Z- and ZENV low-pass

filters and the expected V +
ENV high-pass filter.
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3.6.2 Z-resonant cells show V +
ENV resonance in response to conductance-based

inhibitory synaptic-like inputs

Figs. S7, S8, and S9 shows the result of repeating the protocols described above (Figs. 10, 11

and 12, respectively) using synaptic-like inhibitory conductance-based inputs. The Z- and ZENV -

profiles are qualitatively similar, except for the relative magnitudes of the synaptic- and conductance-

based ZENV that are inverted. The V +
ENV profile shows a significant (resonant) peak when the cell

has a node (Fig. S7-b), which is almost absent when the cell has a focus (Fig. S8-b), but ZENV

has a peak when the cell is a focus (Fig. S8-c1), while it is a low-pass filter when the cell has a

node (Fig. S7-c1).

Together, these results and the result from the previous section shows that the frequency con-

tent (in terms of Z) of resonant cells persists in response to synaptic-like current- and conductance-

based inputs, but the V +
ENV responses are different between synaptic-like current- and conductance-

based inputs, and these differences depend on whether the cell has a node or a focus and whether

the synaptic-like input is excitatory or inhibitory. Of particular interest are the peaks in the conductance-

based synaptic inputs (Figs. 10-a2 and 11-a2, red).

3.7 Amplitude variability in response to chirp-like inputs with arbitrarily dis-

tributed cycles results from the transient response properties of the autonomous

system

In the previous sections we used discretely changing frequencies (chirp-like or, simply, chirps, see

Section 2.2.1) as a compromise between tractability and the ability to incorporate multiple frequen-

cies in the same input signal, and we extended this type of inputs to waveforms with more realistic

time-dependent properties. In all the cases considered so far, the chirp-like input cycles were “reg-

ularly" ordered in the sense that the input frequency monotonically increases with the cycle number

(and with time). In this section we move one step forward and consider chirp-like inputs where

the cycles are arbitrarily ordered (see Section 2.2.2 and, Fig. 1-b) in an attempt to capture the fact

that information does not necessarily arrive in an regularly ordered manner, while keeping some

structure properties (sequence of oscillatory cycles), which ultimately allows for a conceptual under-

standing of the responses.

Each trial consists of a permutation of the order of the cycles using the regularly ordered cycles

as a reference. The regularly and arbitrarily ordered input signals have exactly the same cycles (one

cycle for each frequency value within some range) and therefore the same frequency content. The

corresponding responses are expected to have roughly the same frequency content as captured

by the Z-profiles within the range of inputs considered. However, we expect the voltage responses

to have different frequency-dependent V responses, captured by the peak-and-trough envelopes

V
+/−
ENV . The differences between the V responses for two different inputs (different cycle orders) are

due to the different ways in which the autonomous transient dynamics are activated across cycles for

these inputs as the result of the transition between cycles. The values of the participating variables

at the end of one cycle become the initial conditions for the subsequent cycle.

3.7.1 Emergence of the amplitude variability

In Section 3.2.1 (Figs. 4-a and 5-a) we showed that (Z-) subthreshold resonance is well captured

by the V
+/−
ENV profiles in response to chirp-like sinusoidal inputs via the ZENV -profiles (difference

between the V +
ENV and V −

ENV profiles). In Section 3.5 we argued that the transient response

properties of the autonomous (unforced) cells (overshoots, damped oscillations, passive monotonic

increase/decrease) are responsible for the (frequency-dependent) differences between the V
+/−
ENV

profiles and the Z-profiles in response to both square-wave and synaptic-like chirp-like inputs, and
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for the (frequency-dependent) differences among the V
+/−
ENV profiles in response to the three types

of chirp-like inputs.

The ordered chirp-like input signals produced V
+/−
ENV profiles with gradual amplitude variations

along the input frequency range (and a very small number of increasing and decreasing portions).

The peaks and troughs for each frequency are determined by two parameters: the values of the

variables at the beginning of the corresponding cycle and the duration of the cycle (the intrinsic

properties of the cell are the same for all input frequencies), which in turn determines the initial

values of the variables in the next cycle. The monotonic increase of the input frequency causes a

gradual change in these parameters along the frequency axis, which in turn causes gradual changes

in the V
+/−
ENV profiles.

Because of this dependence of the values of the variables at the beginning of each cycle with

the values of these variables at the end of the previous cycle, we reasoned that the voltage re-

sponse to chirp with arbitrarily distributed cycles in time will exhibit non-regularly distributed peak

and troughs, leading to amplitude variability in the V
+/−
ENV profiles, while producing at most minimal

changes in the Z profiles (as compared to the responses to input signals with order cycles) within

the frequency range considered. Moreover, this variability will depend on the type and properties of

the autonomous transient dynamics of the participating cells. The arbitrary distribution in the order

of the cycles in the input signal is achieved by considering one permutation of the regularly ordered

signal (signal with regularly ordered cycles). The randomness in the input signals lies on the choice

of a subset of all possible permutations for the considered trials.

Our results are presented in Figs. 13 and 14 for a cell exhibiting and overshoot (Fig. 13; stable

node; same parameter values as in Fig. 4) and damped oscillations (Fig. 14; stable focus; same

parameter values as in Fig. 5) in response to step-constant inputs. For sinusoidal and square-

wave chirp-like inputs, the output V +
ENV and V −

ENV frequencies were computed as the differences

between two consecutive troughs and two consecutive peaks, respectively, normalized so that the

resulting frequencies have units of Hz. The V +
ENV and V −

ENV profiles consist of the sequence

of maxima and minima for each frequency (dots superimposed to the v time courses in the left

columns) and include the damped oscillations for the lower frequencies (e.g., Fig. 14-b1). For

the synaptic-like chirp inputs, we used the V +
ENV and V −

ENV profiles consisting of the sequence of

maxima and minima for each input frequency and do not include the damped oscillations for the

lower frequencies (e.g., shown in Fig. 14-c1, but not present in Fig. 14-c2).

We use the (regularly changing) responses to inputs with regularly ordered cycles (blue) as a

reference for the variability of the responses to arbitrarily ordered cycles (red). In both Figs. 13 and

14 the responses to the input with randomly ordered cycles (red) have random amplitudes organized

around (sinusoidal and square-wave; panels a and b) or in a vicinity (synaptic-like panel c) of the

responses to regularly ordered cycles. The amplitude response variability is stronger for higher

frequencies than for the lower frequencies, since the responses for the former are more affected

from changes in the initial conditions at the corresponding cycles. Importantly, the variability is

stronger for cells having stable foci (exhibiting transient damped oscillations; Fig. 14) than for cells

having stable nodes (exhibiting transient overshoots; Fig. 13), reflecting the higher complexity of

the latter cells’ autonomous part. In all cases considered, the Z profiles remain almost unaffected

by the order of cycles within the input frequency range. For comparison and completeness, Figs.

S10 and S11 show similar graphs for a passive cell and synaptic-like inhibition, respectively. An

important observation common to the responses of the three types of cell to synaptic-like input, is

the identification of the summation effects in the generation of V
+/−
ENV resonances. For example, Fig.

S10-c2 (passive cell) shows that the summation effect in response to regularly ordered cycles (blue)

disappears in the responses to randomly ordered cycles (red). Furthermore, the V +
ENV resonance

in response to regularly ordered synaptic-like inhibitory inputs (Fig. S11-a2, blue) also disappears

in the responses to randomly ordered synaptic-like inhibitory inputs (Fig. S11-a2, red).

Together these results show that the disruption of the regular order of a set of basic input signals,
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while the basic signals and their shapes remain unchanged, is translated into the amplitude variabil-

ity of the response as compared to the responses to the regularly ordered sequence of signals, and

this variability results from the properties of the transient dynamics of the (unforced) cells receiving

the input.

3.7.2 Dependence of the amplitude response distribution variance with the cycle

frequency and the properties of the receiving cell

Here we focus on synaptic-like inputs since they are the most realistic signals cells receive and we

considered both current- and conductance-based synaptic-like inputs. We used the model (1)-(2) for

current-based inputs and the model (3)-(4) for conductance-based inputs. We use the same input

signal for both (I(t) = S(t)).
In order to quantify the variability of the voltage response envelopes (V +

ENV and V −

ENV ) to arbi-

trarily ordered chirp-like inputs we considered a number of trials (Ntrials = 100) and computed the

cycle-by-cycle variance for the corresponding peaks (V +
ENV ) and troughs (V −

ENV ). Our results for

some representative cases are presented in Fig. 15. In all cases, Var(V +
ENV ) (blue) is less variable

across frequencies than Var(V −

ENV ) (red). The latter significantly increases for the higher frequen-

cies. This high variability is associated to the phenomenon of summation observed in the regularly

ordered cell. In other words, while summation is not observed in the responses to arbitrarily dis-

tributed cycles (e.g., Figs. 13-c, 14-c, and S10-c), it is translated into a high response variability.

In Fig. 15-a, the transition from the P-cell (passive cell) to the N-cell (node cell) is due to a small

increase in g1 and therefore the Var patterns are similar. The transition from the N-cell to the F-

cell (focus cell) involves changes in both gL and g1 in order to maintain fres within the same (small)

range. Both V +
ENV and V −

ENV are significantly larger for the F-cell than for the N-cell, consistent with

Figs. 13 and 14. The amplification of the initial portion of the transient response to constant inputs

caused by difference in cell type are translated into a higher response variability. In Fig. 15-b, the

transition from the P-cell to the N-cell to the F-cell is due to an increase only in g1 (at the expense of

having values of fres distributed on a longer range than in panels a). The Var magnitudes are similar

among the different cases. Together, these results reflect the fact that changes in the levels of the

positive feedback effects (captured by the parameter gL in linear models) have stronger effects on

the response variability than changes in the negative feedback effect (captured by the parameter

g1).

3.7.3 The envelope response variabilities are stronger for current- than for conductance-

based synaptic-like inputs

The Var(V +
ENV ) and Var(V −

ENV ) for the conductance-based synaptic-like inputs follow a similar pat-

tern as these for the current-based inputs (Fig. 15, light-blue and light-coral), but the magnitudes

for the former are lower than these for the latter inputs, consistent with the attenuation of the ini-

tial portion of the transient response to conductance-based constant synaptic inputs as compared

to current-based constant synaptic inputs discussed in Section 3.1.2. These relationships persist

when the Var(V +
ENV ) and Var(V −

ENV ) patterns are normalized by the amplitude of the response of

the first synaptic-like input in the ordered patterns (a metrics that takes into account the effects of

the differences in parameter values by the relative magnitude of their responses to the same input

pattern).
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3.8 Intrinsic oscillations evoked by Gaussian white noise may be lost or at-

tenuated in response to synaptic-like inputs with arbitrarily ordered frequen-

cies

3.8.1 Oscillations (and lack of thereof) in response to synaptic-like chirp inputs

Fig. 16-a (blue) corresponds to the same parameter values as Figs. 13-c, 14-c, and S10-c. The

most salient feature is the low-pass filter in the middle panel (a2), while the corresponding Z-profile

shows a band-pass filter (Figs. 13-c). For the parameter values in Fig. 16-b2 both the PSD-profile

and Z-profile (not shown) display a band-pass filter, but the resonant peak in the Z-profile is more

pronounced that in the PSD-profile and relatively bigger in comparison to the values of the same

quantities at f = 0. This reflects the different ways in which the autonomous transient dynamics

can be evoked by different types of input patterns, leading to significantly different results. This

is not unexpected from the sets of parameter values in this graphs (panels a2 and b2) since the

autonomous cell has resonance (in response to oscillatory inputs, fres > 0) but not intrinsic damped

oscillations (fnat = 0). For the other panels in Fig. 16 the Z-profile is a relatively good predictor

of the PSD-profiles. These correspond to low-pass filters (panels a1 and b1) and strong band-pass

filters (panels a3 and b3; fres > 0 and fnat > 0).

3.8.2 The oscillatory voltage responses are stronger for current- than for conductance-

based synaptic-like inputs

This is readily seen by comparing the blue and red curves in Fig. 16. These results are inherited

from the responses of linear systems to synaptic current- and conductance-based constant inputs

discussed in Section 3.1.2, and they can be understood in terms of our phase-plane diagrams

discussion (compare Figs. 2-a and -c). Importantly, while in Fig. 16-a2 both responses show

a low-pass filter, in Fig. 16-b2, the response to conductance-based synaptic inputs is close to a

low-pass filter, while the response to current-based synaptic inputs is a well developed band-pass

filter. In both cases, the autonomous cells have a stable node, exhibiting resonance, but not intrinsic

(damped) oscillations.

3.8.3 Oscillations (and lack of thereof) in response to Poisson distributed synaptic-

like inputs

Poisson distributed inputs have in principle a very different structure than the synaptic-like chirp in-

puts we discussed above. However, there is a natural transition between the two types of patterns.

Roughly speaking, synaptic-like chirp patterns can be first extended to include a larger number of

frequencies (not necessarily integer), and more than one cycle for each input frequency according

to some distribution. Therefore one expects the results discussed above to extend to Poisson dis-

tributed inputs. This is supported by the fact that for high enough Poisson input rates ν, synaptic-like

inputs approximate constant inputs (this is true for Poisson distributed pulses with amplitude g → 0
and rate ν → ∞), and therefore one should expect the voltage response PSD to approach these for

constant inputs reflecting overshoots (low-pass filters) and damped oscillations (band-pass filters).

However, for cells exhibiting overshoots there is a conflict between the response pattern “dictated"

by the Z-profile (band-pass filter) and the low-pass filter pattern in response to constant inputs. For

these cases, we expect the response pattern to be highly sensitive to the interplay of the Poisson

rate ν and model parameters. For other rates we expect a departure from the overall behavior

described above, but less pronounced.

Our results are presented in Fig. 17 (see also Figs. S12 to S15). The blue and red curves curves

correspond to the V responses to synaptic-like current- and conductance-based inputs respectively.

The solid curves are smoothed versions of the dotted one (to which they are superimposed). The
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green dots/solid curves correspond to the V responses to white noise and are used as a refer-

ence for comparison. The blue and red dashed curves are rescaled versions of the corresponding

dot/solid curves so that they match the values of the green curves at f = 1. In all cases the re-

sponses to synaptic-like inputs are attenuated as compared to the responses to white noise. The

level of attenuation increases with increasing values of the input Poisson rate (ν) as we discussed

below. Low-pass filters (panels a1 and b1) and strong band-pass filters (panels a3 and b3, F-cell)

remain so with some variations. The responses of N-cells (panels a2 and b2) vary according to the

input rate ν. Consistent with our results discussed above, for the cells that have resonance but not

intrinsic (damped) oscillations (panels a2 and b2) and ν = 1000 (Fig. S14), the response can be ei-

ther a low-pass filter or a band-pass filter depending on the model parameters, in particular the level

of the (amplifying) positive feedback effect that increases with decreasing values of gL (compare

panels a2, for gL = 0.25, and b2, for gL = 0.1). This remains the case for ν = 500 (Fig. S13) for the

conductance-based response, but not for the current-based response (a band-pass filter emerges in

panel a2). For ν = 100 and ν = 10 (Figs. S12 and S15), both the current- and conductance-based

responses show a band-pass filter.

The results described above persists when the input synaptic train consist of both excitatory and

inhibitory synaptic-like inputs (e.g., Fig. S16).

The emergence of band-pass filters in response to synaptic-like inputs is strongly dependent on

the synaptic input decay time τDec. For values of τDec (= 25 ms) larger than in Figs. S12 to S16 and

not realistic for fast synapses the band-pass filters are attenuated for F-cells (compare Figs. 17-a3

and -b3 with Figs. S14-a3 and -b3) and the N-cells show low-pass filters (compare Figs. 17-a2 and

-b2 with Figs. S14-a2 and -b2).

3.8.4 The oscillatory voltage responses are stronger for current- than for conductance-

based synaptic-like inputs and biophysically plausible in vivo input rates

This is readily seen in Figs. 17 and S14 for the realistic values of in vivo input rates (ν = 1000)

also used in controlled experiments [19]. For lower values of ν (Fig. S12 for ν = 100, Fig. S13 for

ν = 500, Fig. S15 for ν = 10) and when synaptic inhibition is incorporated (Figs. S16 for excitatory

ν = 1000 and inhibitory ν = 500) the relative magnitudes of the current- and conductance-based

responses depends on the input frequency regardless of whether the response has a low- or a band-

pass filter. For even lower values of ν (Figs. S12 for ν = 10), the conductance-based response is

stronger than the current-based response).

Together these results and the results o the previous Sections shed some light on the impli-

cations of the experimental findings in [19] where the intrinsically generated subthreshold oscil-

lations observed in medial entorhinal cortex layer II stellate cells (SCs) have been shown to be

strongly attenuated by current-based synaptic-like inputs and absent (or almost absent) in response

to conductance-based synaptic-like inputs. Our findings suggest that STOs in SCs are generated

by noise-dependent mechanisms in the presence of subthreshold resonance with at most strongly

damped intrinsic oscillations [58], but not sustained limit cycle oscillations [127] in the presence of

noise variability.

4 Discussion

Subthreshold (membrane potencial) oscillations (STOs) have been observed in many neuron types

in a variety of brain areas and have been argued to be functionally important for the generation of

brain rhythms, sensory processing, encoding of information, communication of information via timing

mechanisms and cross-frequency coupling (see more details and references in the Introduction).

Intrinsically generated STOs in single neurons require the presence of relatively slow restorative

currents providing a negative feedback effect (currents having a resonant gating variable) and are
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amplified by fast regenerative currents providing a positive feedback effect (currents having an am-

plifying gating variable) (see Section 3.1 for more details). From the dynamical systems perspective,

sustained STOs can be generated by limit cycle mechanisms or be noise-driven. In the latter case,

the noiseless system may exhibit either damped oscillations (F-cells; the equilibrium has complex

eigenvalues) or even overshoots (N-cells; the equilibrium has real eigenvalues) in response to abrupt

changes in constant inputs. The interaction between Gaussian white noise and these autonomous

transient dynamics may create sustained STOs [58,62].

Neurons are subject to fluctuating inputs from a large number of synaptic currents generated by

action potentials whose collective dynamics can be modeled as a high-rate Poisson process. Due

to its high-rate, this synaptic noise has been approximated by Gaussian white noise or Ornstein-

Uhlenbeck processes [128] (low-pass filtered versions of Gaussian white noise) [115–120]. Recent

experimental results [19] on medial entorhinal cortex SCs, a prototypical intrinsic STO neuron [3,

5] and resonator [72], using artificially generated current- and conductance-based synaptic inputs

driven by high-rate presynaptic Poisson spike trains, showed that STOs are still present in response

to current-based synaptic inputs, but absent or strongly attenuated in response to conductance-

based synaptic inputs. This would suggest that in realistic conditions the STO properties of SCs

are not communicated to the network regime via synaptic mechanisms. On the other hand, in SCs

and other cell types exhibiting STOs, the frequency of the STOs has been found to be correlated

with the frequency of the networks in which they are embedded [1, 2, 26–28, 34, 41–44], suggesting

intrinsic STOs in individual neurons may play, at least, an indirect role in the generation of network

oscillations. Moreover, these results are contrary to expectation from our discussion above about

the oscillatory responses to Gaussian white noise.

These issues are part of the more general question of how the response of neurons to periodic

inputs (and to external inputs in general) depends on the interplay of the neuronal intrinsic properties

and the properties of the input. Typical experiments on subthreshold and suprathreshold resonance

use sinusoidal input, which change gradually with time. These studies are motivated by the fact

that the resulting patterns can be used for the reconstruction of the system’s response to arbitrary

time-dependent input under certain assumptions on both the input and the system (e.g., quasi-

linearity). However, systems are not necessarily close to linearity and neuronal communication

occurs via relatively fast synapses (e.g., AMPA and GABAA), which change more abruptly. These

abrupt input changes evoke the autonomous intrinsic dynamics (damped oscillations or overshoots),

which are occluded in response to gradual input changes. As a result, periodic (and also non-

periodic) sequences of sinusoidal and synaptic inputs are expected to produce different patterns

and therefore the impedance profile will not be a good predictor of the voltage response to trains of

synaptic inputs under general assumptions.

We set out to clarify these issues in a broader context. To develop the main set of ideas, we

used a relatively simple neuronal model, the linearization of conductance-based models subject

additive current-based inputs and multiplicative conductance-based synaptic inputs. We then tested

these ideas using a conductance-based model. We used three representative types of periodic

inputs for a range of frequencies: sinusoidal, synaptic-like and square-wave (duty cycle equal to

0.5). Sinusoidal inputs are typically used to uncover the preferred oscillatory responses to external

inputs as discussed above. Synaptic-like inputs represent the realistic ways in which communication

between neurons occur. Square-wave inputs can be considered as an intermediate between the

first two. Sinusoidal and square-wave inputs share the waveform skeleton (they have the same

frequency content except for the high frequency associated to the abrupt changes between phases),

but sinusoidal inputs change gradually. Square-wave and synaptic inputs involve abrupt changes

between minima and maxima, but the active part of the synaptic-like waveforms is independent of

the period for a relatively large range of input frequencies. Moreover, we used chirp-like (sinusoidal)

inputs with discretely changing frequencies in order to be able to incorporate multiple frequencies in

the same signal and we extended these chirps to include square- and synaptic-like waveforms.

We developed the notion of the peak/trough voltage envelope profiles V ±

ENV (f) and the peak-
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to-trough impedance profiles ZENV (f) as metrics to investigate the frequency-dependent voltage

responses to periodic inputs in addition to the (standard) impedance amplitude profiles Z(f) and the

corresponding voltage PSD (computed using Fourier transforms of the whole signal). Because the

upper (peak) envelope is the most important quantity regarding the communication of information

to the suprathreshold regime, we often refer to it indistinctly as VENV or V +
ENV . The differences

between VENV (or V +
ENV − V −

ENV ) and the voltage PSD are due to the signal structure (VENV

captures only the envelope of the voltage response). The differences between ZENV and Z capture

the effect of the input signal (ZENV is normalized by the input signal’s amplitude Ain, while Z is

normalized by the amplitude of its PSD). The differences between the VENV Ain and ZENV profiles

are due to the asymmetries in the voltage responses.

We showed that cells that exhibit resonance in response to sinusoidal inputs (Z-resonant cells)

also show resonance in the VENV - and ZENV -responses to sinusoidal chirp inputs independently of

whether they were N-cells or F-cells. This was expected given the gradual increase of the sinusoidal

waveforms, but it served as a baseline for comparison with the other input types. For suprathreshold

input amplitudes within some range, the frequency properties of Z-resonant cells in response to

sinusoidal inputs are communicated to the suprathreshold regime in the form of evoked spiking

resonance [125] or firing-rate resonance [67]. In contrast, Z-resonant N-cells are VENV and ZENV

low-pass filters and Z-resonant F-cells have mild VENV and ZENV resonant properties. In other

words, the cells’ subthreshold frequency-dependent properties, are not necessarily communicated

to the spiking regime in response to non-sinusoidal inputs. The V ±

ENV patterns in response to these

two types of inputs are dominated by the autonomous intrinsic dynamics and this is particularly

strong for the lower frequencies (longer periods) where the overshoots and damped oscillations

can be prominent. In response to sinusoidal inputs, the autonomous transient dynamics develops

gradually and their contribution to the V ±

ENV patterns remains occluded.

We used these protocols to compare the response of these neuron types to current- vs. conductance-

based synaptic-like inputs. In all cases, the response to conductance-based inputs was attenuated

as compared to the response to current-based inputs. Each one of the metrics produced different

results, capturing different aspects of the voltage responses to these two types of inputs and their re-

lationship with the input signals. For N-cells the responses to both current- and conductance-based

inputs are VENV low-pass filters. In contrast, for F-cells the VENV responses to current-based in-

puts were band-pass filters, while the responses to conductance-based inputs were low-pass filters.

These band-pass filters were generated as the result of the interplay of the autonomous transient

dynamics (damped oscillations) and summation.

The ZENV profiles tell a different story. For N-cells, the ZENV responses to current-based inputs

are low-pass filters, while they are band-pass filters for conductance-based inputs. For F-cells, the

ZENV responses to both current- and conductance-based inputs are band-pass filters. In both

cases, the ZENV band-pass filters in response to conductance-based inputs reflect troughs in the

V −

ENV profiles rather than a real preferred voltage response. The Z profiles tell yet a different story.

In all cases considered (N- and F-cells, current- and conductance-based inputs), the Z profiles are

band-pass filters. For passive cells, where the autonomous transient dynamics are relatively simple

(monotonic increase or decrease), the response patterns are dominated by summation and, while

ZENV and Z are low-pass filters, VENV are high-pass filters.

In order to understand the contribution of the autonomous intrinsic dynamics to the generation of

variability in the neuronal response patterns to external inputs, we used the three types of chirp-like

inputs with arbitrarily ordered cycles. These inputs are an intermediate step between the regularly

ordered and the fully irregular chirp-like inputs. The prototypical example of the latter (and the

one we had in mind) are the synaptic-like inputs generated in response to spike-trains with Poisson-

distributed spike times. The inputs have the same cycles for all trials, and hence the same frequency

content, but each trial corresponded to a different permutation of the order of the cycles. The only

source of uncertainty was the subset of all possible permutations of the cycle period. The differences

in the voltage responses for cycles with the same period across trials was due to the differences in
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the initial conditions across trials for the same period. More specifically, for a given period (Tk)

the previous cycle has different periods across trials and therefore different voltage values at the

end of these periods, which become the initial conditions for period Tk. The variability of these

initial conditions across trials involves not only the voltage but the (hidden) recovery variables. Our

results demonstrated the emergence of variability of the voltage responses across trials for all input

waveforms inherited from this mechanism. This variability was stronger for the F-cells than for the

N-cells considered and, again, it did not required stochastic input fluctuations, but it was the result

of the multiple different ways in which the inputs evoked the autonomous intrinsic dynamics.

The average voltage PSD (< PSD >) responses for F-cells were band-pass filters for both

current- and conductance-based synaptic-like inputs with arbitrarily order periods. For N-cells, in

contrast, the < PSD > responses to current-based input were low-pass filters, while the < PSD >
responses to conductance-based inputs were low-pass filters or mild band-pass filters. This is con-

sistent with the results in [19] and previous results showing that STOs in SCs are noise-driven

[58,113] (but see [127]). Our protocols consisted of the response of one cell type to variable inputs.

More research is needed to understand the effects of variability across cells using some baseline

attribute to all of them (e.g., same resonant properties or the same noise-driven oscillation proper-

ties).

Armed with these results, we compared the voltage responses (VPSD) of these cell types to

high-rate Poisson distributed current- and conductance-based synaptic inputs and additive Gaus-

sian white noise (noise-driven oscillations). The VPSD-profiles in response to both current- and

conductance-based synaptic inputs were attenuated with respect to the response to white noise.

The VPSD-profiles in response to current-based synaptic inputs were low-pass filters for F-cells and

low-pass filters (or mild band-pass filters) for N-cells. The VPSD-profiles in response to conductance-

based synaptic inputs were low-pass filters for all cell types. This is, again, consistent with the results

in [19] and suggests that in contrast to the noise-driven oscillations that emerge in both F- and N-

cells, the current-based synaptic-like Poisson-driven oscillation requires a stronger intrinsic oscilla-

tory structure. These results also show that the responses to synaptic-like high-rate Poisson-driven

inputs are not necessarily captured by the response to additive Gaussian white noise in contrast

to standard assumptions. More research is needed to establish the conditions under which oscil-

lations emerge in response to synaptic-like inputs. Representative examples show that oscillatory

responses for current- and conductance-based synaptic-like inputs emerge for both F- and N-cells

for lower Poisson rates. More research is also needed to establish the conditions under which the

Gaussian white noise approximation provides good approximations to high-rate synaptic inputs.

The question arises whether the lack of oscillatory responses to synaptic-like inputs (almost

complete for conductance-based and partial for current-based) imply the lack of communication of

the intrinsic (noise-driven) oscillatory and resonant properties to the suprathreshold regime. While

this requires a detailed analysis and is beyond the scope of this paper, we conducted a number of

simulations to explore a few representative cases. We used the biophysical (conductance-based) Ih
+ INap model (6)-(7) having two-dimensional subthreshold dynamics (Figs. S17 to S21) and com-

pare them with the results using an integrate-and-fire model (Fig. S21) for which the subthreshold

dynamics is one-dimensional. The results are mixed, but an important common theme is that the

responses show output firing rate resonance (the response firing remains within a relatively small

bounded range) even when the subthreshold resonance is not present. The most salient cases are

shown in Fig. S17-a and -b. This phenomenon is absent in the absent of the intrinsic oscillatory dy-

namics for the leaky integrate-and-fire model (Fig. S17-d, Fig. S21). These results strongly depend

on the input amplitude (Fig. S18 to S21). These results suggest that the oscillatory properties of

individual neurons may be occluded at the subthreshold level, but they are still communicated to the

suprathreshold regime.

Our results generate a number of prediction that can be tested experimentally in vitro using the

dynamics clamp technique [129,130] or in vivo using optogenetic tools [121,131–133].
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5 Figures

Figure 1: Chirp-like input functions. (a1) Sinusoidal chirp-like input. (a2) Square-wave chirp-like input. (a3) Synaptic-like

chirp input. (b) Same input functions as in (a) but with ordered frequencies. (a4) Increasingly ordered frequencies used to

construct (a). (b4) Arbitrarily ordered frequencies used to construct (b). All panels show frequencies in the range 1–100 Hz.
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Figure 2: Nonlinear transient response amplifications and attenuations in current- vs. conductance-based inputs.

Phase-plane diagrams for I = 1. The solid-red curve represents the V -nullcline for I = 0, The dashed-red curve represents

the V -nullcline for I = 1, the solid-green curve represents the w-nullcline for I = 0, and the solid- curve represents the

trajectory initially at (0, 0) (the fixed-point for I = 0), converging to the fixed-point for I = 1. The insets show the V traces.

The 2D linear system exhibits and overshoot in response to step-constant inputs and resonance in response to oscillatory

inputs [67,68,109]. a. Linear (LIN) model described by eqs. (1)-(2). b. Current-based piecewise linear (PWL) model described

by C dv
dt

= −gL FPWL(v)−g1w−I(t) and τ1
dw
dt

= v−w where FPWL(v) = v for v < vc and FPWL(v) = vc+gc/gL(v−vc)

for v > vc. c. Conductance-based piecewise linear (PWL) model described by C dv
dt

= −gL FPWL(v)−g1w−GsynS(t)(v−

Esyn) and τ1
dw
dt

= v−w where FPWL(v) = v for v < vc and FPWL(v) = vc + gc/gL(v− vc) for v > vc (with S substituted

by I). We used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 (same as in Fig. 6), vc = 1 and

gc = 0.1.

Figure 3: Transient response to input decreases as the input changes from abrupt to gradual. Input current increases

from 0 to 1 (black solid line) but the strength of the transient decreases in every column. (a) Example with overshoot,

parameters are gL = 0.2 and g1 = 0.4. (b) Example with subthreshold oscillations, parameters are gL = 0.00025 and

g1 = 0.25. The insets show a zoom-in on the transients.
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Figure 4: Neuronal response upon application of three different inputs (linear model, overshoot). (a) Sinusoidal

chirp. (b) Synaptic-like chirp. (c) Square-wave chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2) Voltage-response

envelopes in the frequency-domain. (a3, b3, and c3) Z(f) (frequency-content) and ZENV (f) (envelope) impedance. We

used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = 1.
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Figure 5: Neuronal response upon application of three different inputs (linear model, subthreshold oscillations).

(a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2)

Voltage-response envelopes in the frequency-domain. (a3, b3, and c3) Z(f) (frequency-content) and ZENV (f) (envelope)

impedance. We used the following parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 ms, and Ain = 1.
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Figure 6: Neuronal responses to synaptic-like inputs are affected by the summation effect produced by the synaptic

time decay (linear model, overshoot). (a) τDec = 1 ms. (b) τDec = 5 ms. (c). τDec = 25 ms. (a1, b1, and c1) Time-

dependent input. (a2,b2, and c2: Voltage-response envelopes. (a3, b3, and c3) Z(f) (frequency-content) and ZENV (f)
(envelope) impedance. We used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = 1,

same model as in Fig. 4.
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Figure 7: Neuronal responses to synaptic-like inputs are affected by the summation effect produced by the synaptic

time decay (linear model, subthreshold oscillations). (a) τDec = 1 ms. (b) τDec = 5 ms. (c). τDec = 25 ms. (a1, b1,

and c1) Time-dependent input. (a2,b2, and c2: Voltage-response envelopes. (a3, b3, and c3) Z(f) (frequency-content) and

ZENV (f) (envelope) impedance. We used the following parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 ms, and

Ain = 1, same model as in Fig. 5.
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Figure 8: A schematic explanation for differences found between impedance computed from Fourier transforms

(Z(f)) or from peaks and troughs (ZENV). (a) The schematic voltage response signal is approximated in a Fourier Trans-

form by the superposition of sinusoidal waves. These waves have their contribution quantified in the signal’s spectrum magni-

tude. Transients may contribute less than other parts of the signal. (b) Spikes appear when the voltage reaches the threshold

in the model. Transients may reach the threshold easier independently of their contribution to the magnitude of the Fourier

domain. (c) Even if the threshold is lower, the emitted spike will still be dependent on the transients as they may come earlier.
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Figure 9: Neuronal response upon application of three different inputs (1D-linear model; g1 = 0). (a) Sinusoidal chirp.

(b) Synaptic-like chirp. (c) Square-wave chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2) Voltage-response envelopes

in the frequency-domain. (a3, b3, and c3) Z(f) (frequency-content) and ZENV (f) (envelope) impedance. We used the

following parameter values: C = 1, gL = 0.25, g1 = 0, τ1 = 100 ms, and Ain = 1.
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Figure 10: Comparison between conductance-based and current-based inputs (linear model, overshoot). (a1)

Current-based input. (a2) Conductance based input. (b) Voltage traces (same colors as in a1 and a2). (c1) ZENV (f)
(envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1, gL = 0.25, g1 =
0.25, τ1 = 100 ms, and Ain = 1, same model as in Fig. 4.

Figure 11: Comparison between conductance-based and current-based inputs (linear model, subthreshold oscil-

lations). (a1) Current-based input. (a2) Conductance based input. (b) Voltage traces (same colors as in a1 and a2). (c1)

ZENV (f) (envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1, gL = 0.05,

g1 = 0.3, τ1 = 100 ms, and Ain = 1, same model as in Fig. 5.
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Figure 12: Comparison between conductance-based and current-based inputs (1D-linear model, g1 = 0). (a1)

Current-based input. (a2) Conductance based input. (b) Voltage traces (same colors as in a1 and a2). (c1) ZENV (f)
(envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1, gL = 0.25, g1 = 0,

τ1 = 100 ms, and Ain = 1, same model as in Fig. 9.
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a1 a2 a3

b1 b2 b3

c1 c2 c3

Figure 13: Comparison of neuronal response between ordered and random input (linear model, overshoot). (a)

Sinusoidal chirp. (b) Square-wave chirp. (c) Excitatory synaptic-like chirp. (a1, b1, and c1) voltage traces with peaks and

troughs marked by red circles. (a2, b2, and c2) Voltage-response envelopes in the frequency domain (blue is ordered input;

red is random input as in Fig. 1b). (a3, b3, and c3) Z(f) (frequency-content) for ordered and shuffled inputs. In this 2D linear

model, we used the following parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = 1. Same model as in

Fig. 4.
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a1 a2 a3

b1 b2 b3

c1 c2 c3

Figure 14: Comparison of neuronal response between ordered and random input (linear model, subthreshold

oscillations). (a) Sinusoidal chirp. (b) Square-wave chirp. (c) Excitatory synaptic-like chirp. (a1, b1, and c1) voltage traces

with peaks and troughs marked by red circles. (a2, b2, and c2) Voltage-response envelopes in the frequency domain (blue is

ordered input; red is random input as in Fig. 1b). (a3, b3, and c3) Z(f) (frequency-content) for ordered and shuffled inputs.

In this 2D linear model, we used the following parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 ms, and Ain = 1.

Same model as in Fig. 5.

34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.14.448368doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448368
http://creativecommons.org/licenses/by/4.0/


Passive Node Focus

a1 a2 a3

0 20 40 60 80 100
f  [Hz]

0

0.05

0.1

0.15

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

0 20 40 60 80 100
f  [Hz]

0

0.05

0.1

0.15

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

0 20 40 60 80 100
f  [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

b1 b2 b3

0 20 40 60 80 100
f  [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

0 20 40 60 80 100
f  [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

0 20 40 60 80 100
f  [Hz]

0

0.2

0.4

0.6

0.8

1

1.2

V
ar

 (
V E

N
V)

V
ENV,curr
+

V
ENV,curr
-

V
ENV,cond
+

V
ENV,cond
-

Figure 15: Peak and trough envelope (V +
ENV and V −

ENV ) variability in response to synaptic-like chirp-like inputs

with arbitrarily distributed cycles for current- and conductance-based models. We used the linear model (1)-(2). Each

trial (Ntrials = 100) consists of a permutation of the cycle orders using as reference the ordered input patterns in Figs.

13-c to S10-c. The blue and red curves represent the variances across trials for V +
ENV and V −

ENV in response to synaptic-

like current-based inputs. The light-blue and light-coral curves represent the variances across trials for V +
ENV and V −

ENV in

response to synaptic-like conductance-based inputs. Column 1. Passive cells.of Column 2. Node (N-) cells. Column 3.

Focus (F-) cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and fres = 9). a3.

gL = 0.05 and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2
(fnat = 0 and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional parameter values:

C = 1, τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1.
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Figure 16: Average PSD for the V response to synaptic-like chirp-like inputs with arbitrarily distributed cycles for

current- and conductance-based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-

based synaptic-like inputs we used the linear component of eqs. (3)-(4). The parameter values are as in Fig. 15. Each trial

(Ntrials = 100) consists of a permutation of the cycle orders using as reference the ordered input patterns in Figs. 13-c to

S10-c. The blue and red curves represent the < PSD > for the responses to synaptic-like current- and conductance-based

inputs, respectively. Column 1. Passive cells.of Column 2. Node (N-) cells. Column 3. Focus (F-) cells. a1. gL = 0.25 and

g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and fres = 9). a3. gL = 0.05 and g1 = 0.3 (fnat = 8.1
and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2 (fnat = 0 and fres = 7). b3.

gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional parameter values: C = 1, τ1 = 100, Ain = 1,

Gsyn = 1, Esyn = 1.
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Figure 17: PSD for the V response to Poisson synaptic inputs trains (excitatory rate = 1000 Hz) for current- and

conductance-based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-based synaptic-

like inputs we used the linear component of eqs. (3)-(4). The parameter values are as in Figs. 15 and 16. Poisson inputs

(refractory time = 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had a variance 2D with D = 1.

Blue dots and solid curves represent the PSD in response to current-based synaptic-like inputs. Red dots and solid curves

represent the PSD in response to conductance-based synaptic-like inputs. Green dots and solid curves represent the PSD

in response to white noise. The solid curves are a smoothed version (“moving", 13 points) of the corresponding dots. The

dashed curves are rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column 2. Node (N-) cells.

Column 3. Focus (F-) cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and

fres = 9). a3. gL = 0.05 and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1
and g1 = 0.2 (fnat = 0 and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional

parameter values: C = 1, τ1 = 100, Ain = 1, Gsyn,ex = 1, Esyn,ex = 1, τDec = 25.
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A Intrinsic and resonant oscillatory properties of 2D linear sys-

tems

Consider

{

x′ = a x+ b y +Ain e
i ω t,

y′ = c x+ d y
(15)

where a, b, c and d are constants, ω = 2πf/1000 > 0 is the input frequency and Ain ≥ 0 is the

input amplitude. The prime sign represents the derivative with respect to t. The units of t are ms

and the units of f are Hz.

A.1 Intrinsic oscillations

The characteristic polynomial for the corresponding homogeneous system (Ain = 0) is given by

r2 − (a+ d) r + (a d− b c) = 0. (16)

The eigenvalues are given by

r1,2 =
a+ d±

√

(a− d)2 + 4bc

2
, (17)

and the natural (intrinsic) frequency of the (damped) oscillations (in Hz if t has units of ms) is given

by
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fnat =

√

−(a− d)2 − 4bc

4π
1000 (18)

assuming (a− d)2 + 4bc < 0.

A.2 Resonance and the impedance amplitude profile

The impedance amplitude profile Z(ω) for system (15)-(16) is the magnitude

Z(ω) =

√

d2 + ω2

(a d− b c− ω2)2 + (a+ d)2 ω2
(19)

of the complex valued coefficient of the particular solution to the system

Z(ω) =
(−d+ i ω)

(−a + i ω) (−d+ i ω)− b c
. (20)

For 1D system, these quantities are given, respectively, by

Z(ω) =
1√

a2 + ω2
(21)

and

Z(ω) =
1

(−a + i ω)
. (22)

The resonance frequency fres (in Hz if t has units of ms) is the frequency at which Z reaches its

maximum

fres =

√

−d2 +
√
b2 c2 − 2 a b c d− 2 d2 b c

2π
1000. (23)
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Supplementary Material

Figure S1: Neuronal response upon application of three different inputs (INap+Ih conductance-based F-cell model).

Same parameters as in Fig S17(a) and Fig. S18. (a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave chirp. (a1,b1,

and c1) voltage traces. (a2, b2, and c2) Voltage-response envelopes in the frequency-domain. (a3, b3, and c3) Z(f)
(frequency-content) and ZENV (f) (envelope) impedance. Parameter values are: vp,1/2 = −38 mV, vp,slp = 6.5 mV,

vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2, EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2,

gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2, τr = 80 ms, Ain = 0.1 in (a), Ain = 0.5 in (b), and Ain = 0.07 in

(c).
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Figure S2: Neuronal response upon application of three different inputs (INap + Ih conductance-based N-cell

model). Same parameters as in Fig S17(b) and Fig. S4. (a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave chirp.

(a1,b1, and c1) voltage traces. (a2, b2, and c2) Voltage-response envelopes in the frequency-domain. (a3, b3, and c3)

Z(f) (frequency-content) and ZENV (f) (envelope) impedance. Parameter values are: vp,1/2 = −38 mV, vp,slp = 6.5 mV,

vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2, EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2,

gp = 0.1 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2, τr = 80 ms, and Ain = 2.
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Figure S3: Neuronal response upon application three different inhibitory inputs (INap + Ih conductance-based F-

cell model). Same parameters as in Fig S17(a) and Fig. S18. (a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave

chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2) Voltage-response envelopes in the frequency-domain. (a3, b3, and c3)

Z(f) (frequency-content) and ZENV (f) (envelope) impedance. Parameter values are: vp,1/2 = −38 mV, vp,slp = 6.5 mV,

vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2, EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2,

gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2, τr = 80 ms, Ain = −0.1 in (a), Ain = −0.5 in (b), and

Ain = −0.07 in (c).
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Figure S4: Neuronal response upon application three different inhibitory inputs (INap + Ih conductance-based N-

cell model). Same parameters as in Fig S17(b) and Fig. S4. (a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave

chirp. (a1,b1, and c1) voltage traces. (a2, b2, and c2) Voltage-response envelopes in the frequency-domain. (a3, b3, and c3)

Z(f) (frequency-content) and ZENV (f) (envelope) impedance. Parameter values are: vp,1/2 = −38 mV, vp,slp = 6.5 mV,

vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2, EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2,

gp = 0.1 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2, τr = 80 ms, and Ain = −2.
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Figure S5: Neuronal response upon application of inhibitory synaptic-like inputs (linear model). (a) Voltage traces.

(b) Voltage-response envelopes in the frequency-domain. (c) Z(f) (frequency-content) and ZENV (f) (envelope) impedance.

(a1, b1, and c1) Overshoot, parameter values: C = 1, gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = 1 (as in Fig. 4). (a2, b2,

and c2) Subthreshold oscillations, parameter values: C = 1, gL = 0.05, g1 = 0.3, τ1 = 100 ms, and Ain = 1 (as in Fig. 5).

(a3, b3, c3) No overshoot or subthreshold oscillations, parameter values: C = 1, gL = 0.5, g1 = 0.0105, τ1 = 100 ms, and

Ain = 1 (as in Fig. S6). (a4, b4, c4) Parameter values: C = 1, gL = 0.25, g1 = 0, τ1 = 100 ms, and Ain = 1 (as in Fig. 9).
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Figure S6: Neuronal response upon application of three different inputs (linear model, no overshoot or subthresh-

old oscillations). (a) Sinusoidal chirp. (b) Synaptic-like chirp. (c) Square-wave chirp. (a1,b1, and c1) voltage traces. (a2,

b2, and c2) Voltage-response envelopes in the frequency-domain. (a3, b3, and c3) Z(f) (frequency-content) and ZENV (f)
(envelope) impedance. We used the following parameter values: C = 1, gL = 0.5, g1 = 0.0105, τ1 = 100 ms, and Ain = 1.
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Figure S7: Comparison between conductance-based and current-based inputs (linear N-cell model and inhibitory

responses). (a1) Current-based input. (a2) Conductance based input. (b1) Voltage traces (same colors as in a1 and a2).

(c1) ZENV (f) (envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1,

gL = 0.25, g1 = 0.25, τ1 = 100 ms, and Ain = −0.2, same model as in Fig. 4.

Figure S8: Comparison between conductance-based and current-based inputs (linear F-cell model and inhibitory

responses). (a1) Current-based input. (a2) Conductance based input. (b1) Voltage traces (same colors as in a1 and a2).

(c1) ZENV (f) (envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1,

gL = 0.05, g1 = 0.3, τ1 = 100 ms, and Ain = −0.2, same model as in Fig. 5.
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Figure S9: Comparison between conductance-based and current-based inputs (1D-linear model and inhibitory

responses, g1 = 0). (a1) Current-based input. (a2) Conductance based input. (b1) Voltage traces (same colors as in a1 and

a2). (c1) ZENV (f) (envelope) impedance. (c2) Z(f) (frequency-content). We used the following parameter values: C = 1,

gL = 0.25, g1 = 0, τ1 = 100 ms, and Ain = −0.3, same model as in Fig. 9.
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a1 a2 a3

b1 b2 b3

c1 c2 c3

Figure S10: Comparison of neuronal response between ordered and random input (1D-linear model, g1 = 0). (a)

Sinusoidal chirp. (b) Square-wave chirp. (c) Excitatory synaptic-like chirp. (a1, b1, and c1) voltage traces with peaks and

troughs marked by red circles. (a2, b2, and c2) Voltage-response envelopes in the frequency domain (blue is ordered input;

red is shuffled input as in Fig. 1b). (a3, b3, and c3) Z(f) (frequency-content) for ordered and shuffled inputs. In this model,

we used the following parameter values: C = 1, gL = 0.05, g1 = 0, τ1 = 100 ms, and Ain = 1.
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a1 a2 a3

b1 b2 b3

c1 c2 c3

Figure S11: Comparison of neuronal response of the individual cells upon inhibitory inputs. Same models as

in Figs. 13, 14 and S10. (a1, b1, and c1) voltage traces with peaks and troughs marked by red circles. (a2, b2, and c2)

Voltage-response envelopes in the frequency domain (blue is ordered input; red is shuffled input as in Fig. 1b). (a3, b3, and

c3) Z(f) (frequency-content) for ordered and shuffled inputs. C = 1. Ain = 1, Gsyn = 1, Esyn = −1. a. gL = 0.25,

g1 = 0.25, τ1 = 100. b. gL = 0.05, g1 = 0.3, τ1 = 100. c. gL = 0.25, g1 = 0.
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Figure S12: PSD for the V response to Poisson synaptic inputs trains (rate = 100 Hz) for current- and conductance-

based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-based synaptic-like inputs we

used the linear component of eqs. (3)-(4). The parameter values are as in Figs. 15 and 16. Poisson inputs (refractory time

= 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had a variance 2D with D = 1. Blue dots and

solid curves represent the PSD in response to current-based synaptic-like inputs. Red dots and solid curves represent the

PSD in response to conductance-based synaptic-like inputs. Green dots and solid curves represent the PSD in response to

white noise. The solid curves are a smoothed version (“moving", 13 points) of the corresponding dots. The dashed curves are

rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column 2. Node (N-) cells. Column 3. Focus (F-)

cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and fres = 9). a3. gL = 0.05
and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2 (fnat = 0
and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional parameter values: C = 1,

τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1, τDec = 5.
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Figure S13: PSD for the V response to Poisson synaptic inputs trains (rate = 500 Hz) for current- and conductance-

based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-based synaptic-like inputs we

used the linear component of eqs. (3)-(4). The parameter values are as in Figs. 15 and 16. Poisson inputs (refractory time

= 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had a variance 2D with D = 1. Blue dots and

solid curves represent the PSD in response to current-based synaptic-like inputs. Red dots and solid curves represent the

PSD in response to conductance-based synaptic-like inputs. Green dots and solid curves represent the PSD in response to

white noise. The solid curves are a smoothed version (“moving", 13 points) of the corresponding dots. The dashed curves are

rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column 2. Node (N-) cells. Column 3. Focus (F-)

cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and fres = 9). a3. gL = 0.05
and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2 (fnat = 0
and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional parameter values: C = 1,

τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1, τDec = 5.
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Figure S14: PSD for the V response to Poisson synaptic inputs trains (rate = 1000 Hz) for current- and

conductance-based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-based synaptic-

like inputs we used the linear component of eqs. (3)-(4). The parameter values are as in Figs. 15 and 16. Poisson inputs

(refractory time = 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had a variance 2D with D = 1.

Blue dots and solid curves represent the PSD in response to current-based synaptic-like inputs. Red dots and solid curves

represent the PSD in response to conductance-based synaptic-like inputs. Green dots and solid curves represent the PSD

in response to white noise. The solid curves are a smoothed version (“moving", 13 points) of the corresponding dots. The

dashed curves are rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column 2. Node (N-) cells.

Column 3. Focus (F-) cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and

fres = 9). a3. gL = 0.05 and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1
and g1 = 0.2 (fnat = 0 and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional

parameter values: C = 1, τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1, τDec = 5.
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Figure S15: PSD for the V response to Poisson synaptic inputs trains (rate = 10 Hz) for current- and conductance-

based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For conductance-based synaptic-like inputs we

used the linear component of eqs. (3)-(4). The parameter values are as in Figs. 15 and 16. Poisson inputs (refractory time

= 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had a variance 2D with D = 1. Blue dots and

solid curves represent the PSD in response to current-based synaptic-like inputs. Red dots and solid curves represent the

PSD in response to conductance-based synaptic-like inputs. Green dots and solid curves represent the PSD in response to

white noise. The solid curves are a smoothed version (“moving", 13 points) of the corresponding dots. The dashed curves are

rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column 2. Node (N-) cells. Column 3. Focus (F-)

cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25 (fnat = 0 and fres = 9). a3. gL = 0.05
and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0). b2. gL = 0.1 and g1 = 0.2 (fnat = 0
and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used the additional parameter values: C = 1,

τ1 = 100, Ain = 1, Gsyn = 1, Esyn = 1, τDec = 5.
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Figure S16: PSD for the V response to Poisson synaptic inputs trains (excitatory rate = 1000 Hz, inhibitory rate

= 500 Hz) for current- and conductance-based models. For current-based synaptic-like inputs we used eqs. (1)-(2). For

conductance-based synaptic-like inputs we used the linear component of eqs. (3)-(4). The parameter values are as in Figs.

15 and 16. Poisson inputs (refractory time = 0.2 ms) were generated for a total duration of 1,000,000 ms. White noise had

a variance 2D with D = 1. Blue dots and solid curves represent the PSD in response to current-based synaptic-like inputs.

Red dots and solid curves represent the PSD in response to conductance-based synaptic-like inputs. Green dots and solid

curves represent the PSD in response to white noise. The solid curves are a smoothed version (“moving", 13 points) of the

corresponding dots. The dashed curves are rescaled versions of the dots/solid curves to Column 1. Passive cells.of Column

2. Node (N-) cells. Column 3. Focus (F-) cells. a1. gL = 0.25 and g1 = 0 (fnat = fres = 0). a2. gL = 0.25 and g1 = 0.25
(fnat = 0 and fres = 9). a3. gL = 0.05 and g1 = 0.3 (fnat = 8.1 and fres = 8). b1. gL = 0.1 and g1 = 0 (fnat = fres = 0).

b2. gL = 0.1 and g1 = 0.2 (fnat = 0 and fres = 7). b3. gL = 0.1 and g1 = 0.8 (fnat = 12.3 and fres = 14). We used

the additional parameter values: C = 1, τ1 = 100, Ain = 1, Gsyn,ex = 1, Gsyn,in = 1 ( Gsyn,in = −1 for current-clamp),

Esyn,ex = 1, Esyn,in = −0.5, τDec = 5.
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Figure S17: Comparisons between the firing rate responses to different frequency-dependent inputs for the INaP+
Ih-model. The curves represent the firing rate of the neuron for each input frequency and input type (see legend). (a) F-cell

(same model as in Fig. S18 and Fig. S1). (b) N-cell (same model as in Fig. S2 and Fig. S4). (c) F-cell with resonance at higher

frequencies (same model as in Fig. S20). (d) LIF model (1D subthreshold linear dynamics, same parameters as in Fig. 9).

Parameter values for are: (a) vp,1/2 = −38 mV, vp,slp = 6.5 mV, vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2,

EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2, gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2,

τr = 80 ms, vth = −45 mV, Vrst = −55 mV, rrst = 0, Eex = −51 mV, and τDec = 5 ms. Ain = 0.2 for sinusoidal and

square-wave inputs and Ain = 0.3 for synaptic-like inputs. (b) Same as in (a) except for gp = 0.1 mS/cm2, vth = −57.63 mV,

Vrst = −57.74 mV, Eex = −56.65 mV. Ain = 0.03 for sinusoidal and square-wave inputs and Ain = 0.06 for synaptic-like

inputs. (c) Same as in (a) except for τr = 4 ms, vth = −53 mV, and Vrst = −55 mV. (d) C = 1, gL = 0.25, g1 = 0,

τ1 = 100 ms, vth = 3.5, and wr = vr = 0. All simulations in this figure were run for 10 s over 10 trials where noise was

added by Inoise =
√

2Dξ(t).
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Figure S18: Comparisons between the firing rate responses to different frequency-dependent inputs for the

INaP + Ih-model as input amplitude is increased (F-cell). The curves represent the firing rate of the neuron for each

input frequency and input type (see legend). Same parameters as in Fig. S17(a) and Fig. S1 (example with subthreshold

oscillations). Parameter values are: vp,1/2 = −38 mV, vp,slp = 6.5 mV, vr,1/2 = −79.2 mV, vr,slp = 9.78 mV, C = 1 µF/cm2,

EL = −65 mV, ENa = 55 mV, Eh = −20 mV, gL = 0.5 mS/cm2, gp = 0.5 mS/cm2, gh = 1.5 mS/cm2, Iapp = −2.5 µA/cm2,

τr = 80 ms, vth = −45 mV, Vrst = −55 mV, rrst = 0, Eex = −51 mV, and τDec = 5 ms. Values of Ain atop each panel. All

simulations in this figure were run for 10 s over 10 trials where noise was added by Inoise =
√

2Dξ(t).
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Figure S19: Comparisons between the firing rate responses to different frequency-dependent inputs for the INaP+
Ih-model as input amplitude is increased (N-cell). The curves represent the firing rate of the neuron for each input

frequency and input type (see legend). Same parameters as in Fig. S2 and Fig. S17(b). Parameters are the same as in

Fig. S17(a) except for gp = 0.1 mS/cm2, vth = −57.63 mV, Vrst = −57.74 mV, and Eex = −56.65 mV. Values of Ain atop

each panel. All simulations in this figure were run for 10 s over 10 trials where noise was added by Inoise =
√

2Dξ(t).
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Figure S20: Comparisons between the firing rate responses to different frequency-dependent inputs for the INaP+
Ih-model as input amplitude is increased (F-cell, resonance at higher frequencies). The curves represent the firing rate

of the neuron for each input frequency and input type (see legend). Same parameters as in Fig. S17(c). Parameters are the

same as in Fig. S17(a) except for τr = 4 ms, vth = −53 mV, Vrst = −55 mV, and D = 0.2. Values of Ain atop each panel.

All simulations in this figure were run for 10 s over 10 trials where noise was added by Inoise =
√

2Dξ(t).
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Figure S21: Comparisons between the firing rate responses to different frequency-dependent inputs for the LIF

model (1D subthreshold linear dynamics) . The curves represent the firing rate of the neuron for each input frequency

and input type (see legend). Same parameters as in Fig. 9 and Fig. S17(d). Parameters are C = 1, gL = 0.25, g1 = 0,

τ1 = 100 ms, vth = 3.5, and wr = vr = 0. Values of Ain atop each panel. All simulations in this figure were run for 10 s over

10 trials where noise was added by Inoise =
√

2Dξ(t).
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