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Abstract 

It has been suggested that sensorimotor adaptation involves at least two processes (i.e., fast and 

slow) that differ in retention and error sensitivity. Previous work has shown that repeated 

exposure to an abrupt force field perturbation results in greater error sensitivity for both the fast 

and slow processes. While this implies that the faster relearning is associated with increased 

error sensitivity, it remains unclear what aspects of prior experience modulate error sensitivity. 

In the present study, we manipulated the initial training using different perturbation schedules, 

thought to differentially affect fast and slow learning processes based on error magnitude, and 

then observed what effect prior learning had on subsequent adaptation. During initial training of 

a visuomotor rotation task, we exposed three groups of participants to either an abrupt, a gradual, 

or a random perturbation schedule. During a testing session, all three groups were subsequently 

exposed to an abrupt perturbation schedule. Comparing the two sessions of the control group 

who experienced repetition of the same perturbation, we found an increased error sensitivity for 

both processes. We found that the error sensitivity was increased for both the fast and slow 

processes, with no reliable changes in the retention, for both the gradual and structural learning 

groups when compared to the first session of the control group. We discuss the findings in the 

context of how fast and slow learning processes respond to a history of errors. 
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New & Noteworthy 
 
We investigated what aspects of prior experience modulate error sensitivity, within the 
framework of a two-state model of short-term sensorimotor adaptation. We manipulated initial 
training on a visuomotor adaptation reaching task using specific perturbation schedules that are 
thought to differentially affect fast and slow learning processes, and we tested what effect these 
had on subsequent adaptation. We found that sensitivity to adaptation error was similarly 
modulated by abrupt, gradual, and random perturbation schedules. 
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Introduction 

Adaptation is often defined as an error-driven process, in which the error experienced during a 

movement leads to a corrective adjustment in the motor output on the following movement 

(Donchin et al., 2003; Miall & Wolpert, 1996; Smith et al., 2006; Thoroughman & Shadmehr, 

2000; Wolpert et al., 1998). Behavioural measures of adaptation are well characterized by state-

space models (Donchin et al., 2003; Thoroughman & Shadmehr, 2000), which represent trial-to-

trial changes in movement as a function of how an error on a given trial affects motor output on 

the subsequent trial. The update from one trial to the next, or the change in motor output, is 

based on two parameters: a retention parameter which determines what proportion of motor 

output is retained from trial to trial, and an error sensitivity parameter which governs the 

proportion of error experienced on the current trial that is corrected for on the subsequent trial.  

Variations of the state-space model are built on the assumption that adaptation is the 

product of multiple underlying processes with distinct timescales (Kording et al. 2007; Lee and 

Schweighofer 2009; Smith et al. 2006). Researchers have begun to provide neural evidence to 

strengthen the theory that sensorimotor learning is supported by multiple processes (S. Kim et 

al., 2015; Sarwary et al., 2018). An influential two-state model of short-term motor adaptation 

was proposed by Smith et al. (2006) that proposed a fast process that learns quickly but has poor 

retention and a slow process that learns more slowly, but has strong retention.  

The prevailing success of the two-state model continues to be that it accounts for the 

learning phenomenon known as savings, characterized as prior learning speeding up subsequent 

relearning (Ebbinghaus, 1913; Smith et al., 2006). While Smith et al. (2006) initially argued that 

the reason for the fast relearning during a second introduction of the same perturbation was due 

to the resistance of the slow process to change, recent studies suggest that learning rate can be 
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modified depending on factors such as the uncertainty of movement error (van Beers, 2009; Wei 

& Körding, 2009), size of movement error (Marko et al., 2012), and a history of movement 

errors (Coltman et al., 2019; Herzfeld et al., 2014; Leow et al., 2016). 

The behavioural changes associated with savings suggest that some component of 

memory from the initial training must lead to the faster relearning, but what is remembered and 

recalled remains unclear (Avraham et al., 2021; Coltman et al., 2019; Herzfeld et al., 2014; 

Huang et al., 2011; Huberdeau et al., 2015; Leow et al., 2016, 2017; Yin & Wei, 2020). One 

perspective argues for the enhancement of an explicit strategy (Avraham et al., 2021; Huberdeau 

et al., 2015; Morehead et al., 2015), while the other side suggests that faster relearning is driven 

by the experience of the motor errors (Coltman et al., 2019; Hanajima et al., 2015; Herzfeld et 

al., 2014; Leow et al., 2016). 

In support of the latter possibility, Herzfeld and colleagues (2014) proposed that a history 

of errors modulates the error sensitivity on each trial, systematically controlling how much the 

motor system learns from the current motor error. They suggested that an error-based adaptation 

model that provides for experience-dependent error sensitivity modification could account for 

savings. Furthermore, Leow et al. (2016) demonstrated that it is a memory of errors, not previous 

actions, that is necessary for savings.   

Recent work has shown that repeated exposure to the same force field perturbation results 

in greater error sensitivity of both the fast and slow processes (Coltman et al., 2019). While the 

error sensitivity terms for the fast and slow processes were kept constant within a session, we 

evaluated the theory of experience-dependent error sensitivity modulation as changes in error 

sensitivity from one session to the nex. Although these results clearly indicate that the motor 

system must have stored some component (i.e., memory) of prior training to speed up the 
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subsequent learning, it remains unclear how each process contributes to savings and what aspects 

of prior experience modulated error sensitivity. In other words, did both processes access a single 

stored component of prior training, or did they store independent components? 

Considering recent findings which demonstrate that participants do not adapt linearly to 

error size (H. E. Kim et al., 2018; Marko et al., 2012; Wei & Körding, 2009), we presume that 

errors of different magnitudes may have a differential effect on the fast and slow processes. 

Based on the forward simulation of the learning curves for the overall learning, the fast process 

and the slow process, Smith et al (2006) related the two stereotypical phases during the learning 

of a novel motor task to the contributions made by the fast and slow processes. When errors are 

large, such as those experienced during early learning of an abrupt perturbation, the fast process 

is believed to be the dominant output, contributing to the overall motor output; conversely when 

errors are small, the slow process is believed to be the dominant output. Additionally, Orban de 

Xivry and Lefevre (2015) proposed that different perturbation schedules lead to distinct motor 

memories with different attributes and neural representations (i.e., the amount of reorganization 

of the motor cortex). We, therefore, hypothesize that fast and slow processes may be 

independently malleable, meaning we could influence a single process at a time. In the present 

study, we manipulated the initial training using different perturbation schedules, which generated 

errors of different magnitudes, and then observed what effect prior learning has on subsequent 

adaptation. 

Our goal was to use two different adaptation schedules thought to differentially affect fast 

and slow learning processes based on error magnitude, to test the idea that error sensitivity for 

each process could be independently modulated. We asked one group of participants to counter a 

gradual perturbation schedule during initial training. When a perturbation is gradually 
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introduced, such that participants never experience large errors, learning is believed to be more 

implicit in nature (Orban de Xivry & Lefèvre, 2015). We predicted that when participants in this 

group were later tested on an abrupt perturbation, only the slow process would be affected by the 

initial training, compared to a control group who were initially trained using an abrupt 

perturbation. For a second group of participants, initial training was based on a structural 

learning paradigm, involving a series of brief exposures to large, random perturbations (Braun et 

al., 2009, 2010). This perturbation schedule is thought to be based on explicit learning 

mechanisms (Bond & Taylor, 2017; Huberdeau et al., 2015). For this group we predicted that 

when later tested on an abrupt perturbation, only the fast process would be affected by the initial 

training, as compared to the control group.  

We modelled perturbation-driven changes in movement with the state-space equations 

proposed by Smith et al. (2006), and focused on changes in the retention and error sensitivity 

parameters. The model estimates function as a tool for understanding how the underlying 

processes of adaptation were affected by the prior training. Substantiating the finding of Coltman 

et al. (2019), we confirm that repetition of the same visuomotor perturbation results in an 

increase in error sensitivity for both processes, when comparing the two sessions of the control 

group. By comparing the model estimates of participants in the gradual and structural learning 

groups to the first session of the control, we expected to see changes in error sensitivity that 

depended on the type of prior training participants experienced. Interestingly, however, we found 

that error sensitivity of both the fast and slow processes was increased for both groups. The 

findings are discussed in the context of storing and accessing a history of errors. 
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Methods 

Participants. A total of 60 healthy young adults (age range 21-35; mean age ± sd 27.9 ± 4.2 

years) participated in a visuomotor rotation experiment. Participants were recruited from the 

online platform maintained by Prolific.co and received £11.25 for their participation. As part of 

the Prolific platform, participants respond to a series of questions related to age, gender, health 

and economic status. Based on this prescreen information, 24 participants identified as female 

and 36 as male. Participants were recruited globally and reported being located in 17 different 

countries (Estonia, Finland, France, Greece, Hungary, Israel, Italy, Mexico, Netherlands, Poland, 

Portugal, Slovenia, South Africa, Spain, Sweden, United Kingdom and the United States). All 

participants self-reported being right-handed and had normal or corrected-to-normal vision. The 

protocol was approved by Western University's Research Ethics Board and all participants 

indicated electronic consent.  

Apparatus. Participants used a standard computer mouse and their own computer to access a 

webpage hosted on a network computer located at Western Interdisciplinary Research Building. 

The task was written in and controlled by JavaScript, running locally within the participants’ 

web browser.  

Participants were asked to use a standard computer mouse and a standard credit or debit 

card to complete a spatial calibration procedure. Participants were initially instructed how to turn 

off the acceleration for the mouse, based on their operating system. Then, following an 

instruction video, participants were asked to align the top of their mouse with the top of the 

credit card. After a tone, they were instructed to move the mouse in a smooth and straight path, 

aligning the top of their mouse with the bottom of the card. Participants were asked to hold still 

while waiting for a second tone, indicating that they needed to realign the mouse with the top of 
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the card. This was repeated at two different speeds indicated in the video. When the calibration 

procedure was successfully completed, participants watched an instructional video about the 

experimental task.  

The size and position of the stimuli were scaled based on a mouse calibration procedure. 

Real-time position of the mouse was used to control the visual display and to provide on-line 

visual feedback. The mouse speed was adjusted such that the distance from start position to 

target was exactly 6 cm based on the calibration. While the physical target distance was always 6 

cm, this translated to 300 pixels on screen. Therefore, the straight reach trajectory was 300 

pixels, however a participant's view of this was potentially compressed or expanded relative to 

the target value of 6 cm, depending on their monitor as well their viewing distance from the 

monitor.  

Paradigm. At the start of each trial, participants were instructed to click their mouse to begin. A 

circular cursor (10 pixels radius) was virtually displayed on the participant’s computer monitor 

and was used to represent the position of the mouse on screen. The position of the mouse at the 

start of the trial, represented the start position on screen. A small square (20 pixels by 20 pixels) 

represented the target. The radial distance of the target from the start position was 300 pixels. 

The target appeared at either 45°, 90°, or 135°, relative to the start position (where 6cm directly 

to the right of the start position represented 0°). The location of the target was randomized per 

trial, per participant, such that each participant saw a different order of targets with an equal 

number of presentations of each target over the course of a session.  

Participants were instructed to make a straight movement from the start position to the 

target, within a narrow temporal window. At the beginning of each trial the target appeared in 

white. Participants were required to hold still at the start position for 500 ms, at which time the 
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target changed color to green, representing a “go” signal for participants to initiate a movement 

to the target. In addition to the colour change of the target, a tone was used as a secondary “go” 

signal. Participants needed to reach for the target and bring the centre of a red cursor 

representing the position of their computer mouse within 10 pixels of the centre of the target 

within 600–900 ms. If a participant’s movement time was less than 600 ms, the target turned red 

to indicate that the movement was “too fast”. If the participant’s movement time was within 

600–900 ms, the target remained green to indicate that the movement was “good”. If the 

participant’s movement time was greater than 900 ms, the target would turn blue to indicate “too 

slow”. Feedback related to movement time was displayed on the screen for 1000 ms before the 

screen went blank and written instructions on screen indicated that the participant should return 

the mouse to a comfortable starting position within their workspace. Participants were instructed 

to try to obtain the “good” feedback as often as possible throughout the experiment. 

 To assist with making straight movements between the start position and the target using 

a computer mouse, the first 20 trials of the first session represented a practice session for 

participants. In these trials, a purple rectangle (50 pixels by 300 pixels), with two white lines on 

either side was shown on screen, highlighting a straight path to the target. Participants were 

instructed to keep the red cursor on the path, between the lines, toward the target. If the cursor 

moved outside the path, the background colour changed from black to pink.  

Participants were randomly assigned to one of three groups. Each group completed two 

sessions (initial training and testing), separated by a 5 minute break (Fig. 1).  
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Figure 1. Experimental design and perturbation schedule. The experiment was divided into two 
sessions, separated by a 5-min session break. Each session consisted of four blocks: 1) a baseline 
period of no rotation trials, 2) an adaptation period, 3) an error clamp period, and 4) a washout 
period. Participants were randomly assigned to one of three groups which differed in session one 
during the adaptation period: abrupt control group, gradual learning group, or structural learning 
group.   
 
Each session included a total of 450 reaching movements, with a 1-minute mid-session break 

halfway. The experimental paradigm for each session consisted of 4 epochs. The first epoch 

(baseline) consisted of 70 trials in which participants were provided with veridical feedback of 

the cursor position. The second epoch (adaptation) consisted of 300 trials in which a visuomotor 

rotation was applied to the cursor feedback: an angular rotation was imposed on the cursor, such 

that a hand movement aimed directly at a target produced a cursor movement that was rotated 

radially about the start position and participants saw that their movement had generated an error. 

Participants had to learn to counter the rotation by moving their hand in an equal and opposite 

direction. With practice, participants adjusted their movements in such a manner that the visual 
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feedback produced straight trajectories from start position to the target. In the third epoch (error-

clamp; consisting of 30 trials) the task error was clamped to zero. During the clamp trials, the 

angular position of the cursor relative to the start position was clamped to a straight line 

connecting the start position to the target, while participants maintained control of the radial 

distance of the cursor from the start position. Finally, in the fourth epoch (washout; consisting of 

50 trials), participants were provided again with veridical feedback to bring performance back to 

baseline.   

During the adaptation epoch of the first session, participants experienced one of three 

conditions: (1) a control learning group (n=20) experienced an abrupt 30° clockwise (CW) 

rotation for all 300 trials during this phase (Fig. 1; top), (2) a gradual learning group, (n=20) in 

which a rotation was increased linearly from 0° to 30° CW over 250 trials and then held at a 

fixed 30° CW for another 50 trials (Fig. 1; middle), or (3) a structural learning group (n=20)  in 

which participants encountered random rotations, ranging from 60° counter-clockwise (CCW) to 

60° CW in blocks of 6 trials with the same rotation (Bond & Taylor, 2017; Braun et al., 2009, 

2010); Fig. 1; bottom). In this group, we deliberately set the average over all angles to zero, to 

prevent any accumulative learning. We also excluded rotation sizes within 10° of the test rotation 

(30° CW) and its inverse (30° CCW). We furthermore set the change in rotation angle to be 

equal to or greater than 15° to ensure the errors were always large, which characteristically has 

the greatest influence on the fast process (Bond & Taylor, 2017; Smith et al., 2006). During the 

second session, all three groups experienced an abrupt 30° CW rotation during the adaptation 

epoch.  

Data Analysis.  The position of the cursor in both x (lateral) and y (sagittal), were sampled in 

pixels at the refresh rate of their computer monitor (typically 60 Hz). Missed samples were 
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interpolated during analysis (less than 1 % of samples on average). In cases in which data were 

acquired at higher sampling rates (for example because a participant’s computer monitor refresh 

rate exceeded 60 Hz), the data were down sampled to 60 Hz. Data were digitally smoothed using 

a second-order low-pass Butterworth filter with a cutoff frequency of 15 Hz. All data were stored 

for offline analysis using custom MATLAB R2020a (The MathWorks) scripts.  

 Movement trajectories were selected using an algorithm in which movement initiation 

was defined as the time at which the tangential velocity of the mouse first exceeded 0.5 cm/s and 

movement end was defined as the first time after peak velocity that tangential velocity fell below 

0.5 cm/s, where peak velocity was defined as the fastest participants ever moved during the reach 

movement. For each trial we computed the angle between the line connecting the start position 

and the cursor position at peak velocity, and the line connecting the start position to the target. 

We determined the average reach angle, per subject during the last 50 trials of the baseline epoch 

and we subtracted this quantity from the reach angle measured on each trial.  

Model fitting. Smith et al. (2006) outlined a method for mathematically modelling an iterative 

update of the states of the two proposed processes of short-term sensorimotor adaptation. 

Essentially, the model involves fitting four parameters: an error sensitivity and a retention 

parameter for both a fast and a slow process. The first parameter weighs the relative importance 

of recalling previous motor commands, which is interpreted as the retention factor. The second 

parameter is the sensitivity to error, which relates to the proportion of error that is corrected for 

trial-to-trial (Donchin et al., 2003; Scheidt et al., 2001; Smith et al., 2006; Thoroughman & 

Shadmehr, 2000). The two important assumptions in this model are that the error sensitivity is 

higher for the fast process compared with the slow process and that retention is stronger for the 

slow process compared with the fast process (Smith et al., 2006). Adaptation can be decomposed 
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into a fast (Eq. 1) and a slow (Eq. 2) process, knowing that each state follows different learning 

dynamics. The two processes are summed together to produce the overall output x (Eq. 3). Error, 

denoted by e(n), arises on each trial n as the difference between the overall output xnet and the 

task parameter r (i.e., the degree of the rotation; Eq.4). 

𝑥!(𝑛 + 1) = 	𝐴!𝑥(𝑛) +	𝐵!𝑒(𝑛)     (1) 

𝑥"(𝑛 + 1) = 	𝐴"𝑥(𝑛) +	𝐵"𝑒(𝑛)     (2) 

𝑥#$%(𝑛) = 	𝑥!(𝑛) +	𝑥"(𝑛)     (3) 

𝑒(𝑛) = 	𝑟(𝑛) +	𝑥#$%(𝑛)     (4) 

 
Linear inequality constraints were defined in order to apply to standard two-state model 

dynamics (Albert & Shadmehr, 2018): 

𝐴! ≤	𝐴" + 	0.001     (5) 

𝐵! ≥	𝐵" + 	0.001     (6) 

In order to approximate the four parameters (i.e., Af, As, Bf, and Bs), we fit the model to 

the behavioral data (using the function fmincon in MATLAB r2020a) by minimizing the squared 

difference between the estimated net output (xnet) of the model and the average participant reach 

angle, measured on each trial. According to the methods described in Albert and Shadmehr 

(2018), we also included a mathematical formalization of visual error clamp trials and set breaks. 

Statistical Design. Pairwise comparisons were performed with nonparametric bootstrap 

hypothesis tests, as well as paired and unpaired t-tests. For statistical analyses that require 

multiple comparisons, we used the Holm-Bonferroni correction (Holm, 1979). Statistical tests 

were considered significant at p < 0.05. For all reported and depicted values, we report the mean 

and SEM. 

Results 
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Figure 2 shows the hand paths from one representative participant in the control group 

during both sessions one and two, as well as one representative participant per group in session 

two of the structural and gradual learning groups. During the baseline epoch (left column), these 

paths are relatively straight to the target. The representative participants were all adapting to an 

abrupt 30° CW rotation. During the early adaptation epoch (middle column) these movements 

were initially deviated in the CW direction, with a corrective movement at the end of the 

trajectory to bring the cursor to the target. In all three groups, participants adapted to the 30° CW 

rotation by the late adaptation epoch (right column), reducing their movement errors and 

resuming relatively straight hand paths to the target.  

 

Figure 2. Hand trajectories from a representative participant in the control group during both 
session one (light blue) and two (dark blue), and one representative participant per group in 
session two of the structural (purple) and gradual (pink) learning groups. Baseline reaches were 
from the last three trials (from trial 68 to trial 70) during the baseline epoch. Early and late 
adaptation reaches were from the first (from trial 71 to 73) and last (from trial 368 to trial 370) 
three trials of the adaptation epoch, respectively. Participants saw a random ordering of the three 
possible targets (represented by the squares). 
 

We used a kinematic behavioural measure to assess changes in performance. The primary 

outcome measure for the study was reach angle at peak velocity, which was measured as the 

angle between the straight line connecting the start position and the cursor position at peak 

velocity and the straight line connecting the start position to the target. The control group of 

participants adapted their movements to an abrupt 30° CW visuomotor rotation in both the first 

and second session. Figure 3A shows the angle at peak velocity for all trials in each session, 

averaged across participants in the control group. In both sessions, participants exhibited learning 
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during the adaptation epoch, decay during the visual error clamp epoch, and a return towards 

baseline performance during the washout epoch. During the adaptation epoch we examined the 

learning at two different time points: early (first fifty trials during adaptation) and late (last fifty 

trials during adaptation; Fig. 3B). The mean angle in the early learning phase of the second 

session  (M = 23.7, SD = 3.15 ) was reliably greater than in the first session  [M = 19.9 , SD = 

4.6; paired t-test, t(19) = -6.2, P = 3.0e-06], indicating savings. We did not detect a reliable 

difference (P = 0.08) between sessions during late learning.  

 

Figure 3. Control group. A: the average angle at peak velocity for all trials in session 1 (light 
blue) and session 2 (dark blue). The shaded region denotes ± SE. B: comparisons between 
session 1 and session 2 (dark blue) for the mean angle for the first 50 (early)  and last 50 (late) 
trials of the adaptation epoch. Circles represent individual data.  
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A second group of participants was exposed to a gradual perturbation schedule during 

initial training. Figure 4A shows the angle at peak velocity for all trials in each session, averaged 

across participants in the gradual learning group. Participants exhibited learning during the 

adaptation epoch, decay during the visual error clamp epoch, and a return towards baseline 

performance during the washout epoch. A final group of participants was exposed to a series of 

brief exposures to large, random perturbations. Each participant in this group experienced a 

different set of randomly varying rotations. Figure 4B illustrates the angle at peak velocity for 

all trials in session one for four representative individual participants from the structural learning 

group. We observed two participants who demonstrated learning within each block of six trials, 

but who also appeared to have maintained a fraction of error throughout the adaptation epoch 

(Fig. 4B, S2 and S8). In addition to a participant who adapted quickly to the randomly changing 

perturbation (Fig. 4B, S18), we observed a participant who qualitatively showed greater 

reduction of error in the later half of the adaptation epoch, compared to the early half (Fig. 4B, 

S20).  
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Figure 4. Gradual and structural learning groups. A: the average angle at peak velocity for all 
trials in session 1 of the gradual learning group. The shaded region denotes ± SE. B: the data 
from four representative individual participants (S2, top left, S8 top right, S18 bottom left, S20 
bottom right). 
 

Figure 5A shows the angle at peak velocity averaged across participants for all trials in 

session one of the control group and session two of the structural and gradual learning groups. 

When comparing the model estimates of participants in the gradual and structural learning 

groups during the second session to the first session of the control group, we expected to see 

changes in error sensitivity that depended on the type of prior training participants experienced. 

To compare the changes in angle between the control, structural and gradual learning groups, we 

examined learning during the adaptation epoch at two different time points: early (first fifty trials 
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during adaptation) and late (last fifty trials during adaptation; Fig. 5B). A one-way ANOVA 

revealed a significant effect of mean angle between the control, structural and gradual learning 

groups during early learning [F(2,57) = 14.4, P = 8.8 e-06].  

Post hoc comparisons using Tukey HSD tests indicated that the mean angle for the 

structural learning group (M = 24.9, SD = 2.9, P = 2.9 e-05) and the gradual learning group (M = 

24.5, SD = 2.9,  P = 1.4 e-04) were reliably higher than the mean angle for the control group (M 

= 19.9 , SD = 4.6). However, there was no reliable difference detected between the structural and 

gradual learning groups (P = 0.9). During late learning, we did not detect a reliable difference in 

mean angle among the groups (P = 0.2). Therefore, the structural and gradual learning groups 

demonstrated fast learning when countering an abrupt 30° CW rotation, as compared to session 

one of the control group. While the control group represented naive learners, the prior experience 

from session one for the structural and gradual learning groups is suggested to have facilitated 

the improved learning. Likewise, this was observed in the control group, in which participants 

experienced a repetition of an abrupt rotation and demonstrated savings during the second 

session.  
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Figure 5. A: the average angle at peak velocity for all trials in session 1 for the control group 
(light blue) and session 2 for the structural (purple) and gradual (pink) learning groups. The 
shaded region denotes ± SE. B: comparisons between groups for the mean angle for the first fifty 
(early)  and last 50 (late) trials of the adaptation epoch. Circles represent individual data.  
 

 Recent work suggests that error sensitivity in sensorimotor adaptation is likely not 

constant, but rather can vary depending on prior experience (Albert et al., 2021; Herzfeld et al., 

2014; Marko et al., 2012; Wei & Körding, 2009). We modelled movement angle across each 

session with the state-space equations proposed by Smith et al. (2006), and focused on changes 

in the retention and error sensitivity parameters. The main objective of this study was to compare 

the model parameters across groups learning to counter the abrupt 30° CW rotation. To do this, 

we used the bootstrap procedure previously reported by Coltman et al. (2019). In this manner, we 
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always fit the model to averaged group data for each resampled population (Albert & Shadmehr, 

2018; Coltman et al., 2019). The estimated posterior distributions of each of the four two-state 

model parameter values are depicted in Fig. 6 for sessions one and two of the control group and 

session two of the gradual and structural learning groups. To determine whether the difference 

between the mean of each distribution was statistically reliable, we calculated the distribution of 

the differences in individual samples. The insets in Fig. 6 show the distribution of differences 

found. Table 1 shows the mean and standard deviation for each of the two-state parameters for 

each group.  

Table 1. Two-state model parameters calculated from probability distribution 

 Fast Process Slow Process 

 A (mean ± SD) B (mean ± SD) A (mean ± SD) B (mean ± SD) 

Control Session 1 0.86 (0.02) 0.17 (0.02) 0.996 (7e-04) 0.05 (0.006) 

Control Session 2 0.87 (0.03) 0.28 (0.04) 0.994 (0.001) 0.07 (0.01) 

Structural Session 2 0.80 (0.05) 0.40 (0.03) 0.993 (0.002) 0.10 (0.02) 

Gradual Session 2 0.87 (0.02) 0.27 (0.04) 0.994 (0.001) 0.10 (0.02) 

 

 We first compared parameter estimates from session one and session two for the control 

group (Fig. 6A). Across all comparisons made between groups, we did not observe a reliable 

difference in the retention parameters for either the fast or slow process. When participants 

experienced repetition of the same abrupt rotation, we found a statistically reliable increase in the 

error sensitivity parameter for both the fast (Bf, P = 0.007) and the slow (Bs, P = 0.003) 

processes. Importantly, this comparison allowed us to demonstrate that our previous finding from 
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a force field adaptation task (Coltman et al., 2019) was replicated in a visuomotor rotation task. 

Therefore, this result suggests that both the fast and slow processes are responsive to a history of 

error and both contribute to savings.  

 Next we compared parameter estimates from session one of the control group with 

session two of the structural learning group (Fig. 6B). Based on the theory of structural learning, 

thought to be essential to capturing the initial rapid phase of learning, Braun et al. (2009) 

demonstrated that the benefit of knowing the underlying structure of a task is that it leads to 

facilitated adaptation. For this group we predicted that when later tested on an abrupt 

perturbation, only the fast process would be affected by the initial training, as compared to the 

control group. When overall learning is decomposed into a fast and slow state, the initial rapid 

phase of learning is dominated by the output of the fast process. Therefore, we assumed that such 

practice would influence the fast process. In addition to a statistically reliable increase in the 

error sensitivity parameter for the fast process (Bf, P < 0.001), we also found a statistically 

reliable increase in the slow process error sensitivity (Bs, P = 0.002). 

 Learning is believed to be more implicit in nature when a perturbation is gradually 

applied using small undetectable increases, so that participants never encounter large sensory 

prediction errors (Criscimagna-Hemminger et al., 2010; Orban de Xivry & Lefèvre, 2015; Yin & 

Wei, 2020). By exposing a group of participants to a gradual perturbation schedule during initial 

training, we predicted that only the slow process would be influenced. When we compared the 

parameter estimates from session one of the control group with session two of the gradual 

learning group (Fig. 6C) we found the gradual learning group showed a statistically reliable 

increase in the error sensitivity parameter for both the fast (Bf, P = 0.009) and the slow (Bs, P = 2 

e-04) processes. 
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Figure 6. Probability distribution of the model parameters given the data. Light blue and dark 
blue represent session 1 and session 2 of the control group, respectively. Purple represents 
session 2 of the structural learning group and Pink represents session 2 of the gradual learning 
group. Inset represents the distribution  of pairwise differences. The four model parameters of the 
two-state model are fast retention (Af), slow retention (As), fast learning rate (Bf), and slow 
learning rate (Bs). 
 

Lastly, we compared parameter estimates between the structural and gradual learning 

groups during session two (Fig. 6D). Our goal was to use two different adaptation schedules 

thought to differentially affect fast and slow learning processes and test the idea that error 

sensitivity for each process would be independently modulated. We expected that the error 

sensitivity parameter for the fast process would be greater in the structural learning group 
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compared to the gradual learning group, while the error sensitivity parameter for the slow 

process would be greater in the gradual learning group compared to the structural learning group. 

The only statistically reliable difference was in the error sensitivity parameter for the fast process 

that was larger for the structural learning group (Bf, P = 0.02).  

From the bootstrap distributions we calculated the mean value for each parameter for 

session one and session two of the control group, and session two of the structural and gradual 

learning groups separately. Using these mean estimated parameter values, we used the two-state 

model to simulate our experimental paradigm and generate simulated learning curves to visualize 

the time course of the estimated fast and slow processes, as well as the simulated overall output. 

Figure 7 demonstrates that the simulated learning curves are qualitatively in good agreement 

with the measured behavioural data. The models explains 98 - 99 % of the variance in angle over 

the course of learning (control session 1: R2 = 0.98, P = 2.2 e-04; control session 2: R2 = 0.99, P 

= 1.2 e-04; structural session 2: R2 = 0.98, P = 2.3 e-04; gradual session 2: R2 = 0.99, P = 1.6 e-

04 ). The model effectively captures the initial improvement in learning during the adaptation 

epoch, the decay during the visual error clamp epoch, as well as the subsequent return towards 

baseline performance during the washout epoch. 
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Figure 7. Model simulations. Parameter estimates for each session were based on the mean 
values from the bootstrap distributions shown in Fig. 6. The four parameters of the model are fast 
retention (Af), fast learning rate (Bf), slow retention (As), and slow learning rate (Bs). 
 

Discussion 

The integration of different perturbation schedules and two-state modelling of measured 

behavioral data allowed us to test the role of prior experience on error sensitivity modulation 

during subsequent adaptation. The modelling of the data in turn describes adaptation as an 

interaction between error-sensitivity and retention. It has previously been shown in the context of 

force field learning that repetition of the same perturbation results in increased error sensitivity 

for both the fast and slow processes of adaptation (Coltman et al., 2019). We substantiated this 

here by demonstrating that sensitivity to errors is similarly increased for both the fast and slow 
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processes during the second session of a visuomotor rotation task. We found no reliable 

differences in the retention parameter across conditions and sessions.  

 The behavioural changes associated with savings suggest that some component of 

memory from the initial training must lead to the faster relearning, but what is remembered and 

recalled remains unclear. In the context of the present study, how the fast and slow processes 

individually contribute to savings, is not well known. To address this point, we used different 

perturbation schedules that relied on errors of different magnitudes to determine whether the 

underlying processes of adaptation could be independently manipulated, and whether an 

independent memory would subsequently be formed. We expected to see differences in error 

sensitivity depending on the type of prior training participants had received and therefore 

compared the model parameter estimates of participants in the gradual and structural learning 

groups to the first session of the control group, but we found that error sensitivity of both the fast 

and slow processes was increased for both groups. Such a result might suggest that sensitivity to 

error during visuomotor adaptation is modulated by abrupt, gradual and random perturbation 

schedules.  

As an alternative account, savings has previously been explained by the retrieval of 

previous successful actions, reflecting the use of an explicit strategy (Avraham et al., 2021; 

Huang et al., 2011; Huberdeau et al., 2015; Morehead et al., 2015). Within the framework of a 

two-state model, this theory suggests that savings is driven purely by the fast process, without 

consideration of the contributions from the slow process. Several researchers have argued that 

explicit cognitive strategies can account for a significant amount of learning, particularly during 

the early phase of learning and relearning (Mazzoni & Krakauer, 2006; Taylor et al., 2014; 

Taylor & Ivry, 2011). The dissociation of learning into implicit and explicit learning processes 
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often relies on the use of verbal aiming reports prior to reaching (Avraham et al., 2021; 

Huberdeau et al., 2015; Morehead et al., 2015; Taylor et al., 2014). Recent findings, however, 

indicate that verbal aiming reports could lead to an overestimated explicit contribution to 

adaptation (de Brouwer et al., 2018; Leow et al., 2017). In fact, Leow et al. (2017) demonstrated 

that the use of shortened preparation time, designed to prevent strategic reaiming, resulted in the 

estimated implicit learning being larger than that which was obtained from verbal reports. 

Furthermore, Yin and Wei (2020) provide supporting evidence that savings of motor adaptation 

is possible without forming or recalling a cognitive strategy with the use of a gradually 

introduced visuomotor rotation during initial learning. If savings is possible, with and without an 

explicit strategy being formed during initial learning and predominant measures of implicit and 

explicit processes may be confounding their mode of measurement, how reliable are the findings 

suggesting savings is driven exclusively by an explicit process? 

Another long standing question is how quickly implicit changes in learning emerge. 

Huberdeau and colleagues (2015) demonstrated that learning of an abrupt perturbation with only 

a few trials is sufficient to cause savings via the explicit process, based on the belief that the fast 

learning is too short for implicit learning to take its full effect. Ruttle et al. (2021) however 

recently confronted the long standing notion that implicit learning is slowly developing, typically 

unfolding over tens of trials. By observing changes in both internal models and state estimates of 

limb position as a characterization of implicit learning, they found that after only one to three 

perturbed training trials participants had changes in both reach aftereffects and a shift in hand 

localization. Taking this into account, it seems possible that  the 6 trial repetition used in the 

structural learning task, aiming to influence the fast process, may have simultaneously influenced 

the slow process. For that reason, it is possible that a common component of all three 
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perturbation schedules used during initial training was that the slow process accounted for a 

significant portion of the error reduction.  

Albert et al. (2021) recently investigated the persistence of residual errors during motor 

adaptation in the context of implicit and explicit learning systems. Of importance to the present 

study, they propose that it is the implicit learning system which maintains a history for prior 

errors. Our results are consistent with this hypothesis that it is the implicit process that stored 

some component of prior training. As a follow-up to our initial question, we would further 

suggest that the stored memory is accessible to both processes during subsequent learning. As it 

pertains to our findings, we would argue that while the fast process may not maintain a history or 

errors, it does have access to this information in subsequent learning as evident by the increased 

error-sensitivity for the fast process during testing in all groups. 

Alternatively, while the experimental design and two-state model, used in the present 

study, account well for the results of savings, recent work looking at evoked recovery (Heald et 

al., 2020) posits that memory formation is related to the storing of information about the 

dynamical and sensory features of the environment is related to the context with which it is 

associated. Understanding how contextual inference can be related to and accessed by each 

process of the two-state model can shed light on future discussions about multiple processes 

underlying motor learning.  
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