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Viruses play crucial roles in the ecology of microbial commu-
nities, yet they remain relatively understudied in their native
environments. Despite many advancements in high-throughput
whole-genome sequencing (WGS), sequence assembly, and an-
notation of viruses, the reconstruction of full-length viral
genomes directly from metagenomic sequencing is possible only
for the most abundant phages and requires long-read sequenc-
ing technologies. Additionally, the prediction of their cellular
hosts remains difficult from conventional metagenomic sequenc-
ing alone. To address these gaps in the field and to accelerate
the study of viruses directly in their native microbiomes, we de-
veloped an end-to-end bioinformatics platform for viral genome
reconstruction and host attribution from metagenomic data us-
ing proximity-ligation sequencing (i.e., Hi-C). We demonstrate
the capabilities of the platform by recovering and characteriz-
ing the metavirome of a variety of metagenomes, including a fe-
cal microbiome that has also been sequenced with accurate long
reads, allowing for the assessment and benchmarking of the new
methods. The platform can accurately extract numerous near-
complete viral genomes even from highly fragmented short-read
assemblies and can reliably predict their cellular hosts with min-
imal false positives. To our knowledge, this is the first software
for performing these tasks. Being significantly cheaper than
long-read sequencing of comparable depth, the incorporation
of proximity-ligation sequencing in microbiome research shows
promise to greatly accelerate future advancements in the field.

Correspondence: ivan@phasegenomics.com

Introduction

In the past two decades, the study of microbiome compo-
sition and function has risen to the forefront of both med-
ical and basic research (1, 2). In host-associated micro-
biomes, metagenomic whole-genome sequencing (WGS) has
been widely deployed to show that microbiota composition
and metabolic function have significant effects on the health
of their host (1, 3, 4). The gut microbiome alone has been
linked with a broad range of human diseases and disorders
and is a target for therapeutic intervention (5, 6). Similarly,
microbiomes found in water reservoirs (7), soil (8), and waste
systems (9) were also found to play critical roles in modu-
lating the chemistry of their respective environments. How-
ever, while such research primarily focused on prokaryotic
microorganisms, viruses have also been shown to have major

Fig. 1. Proximity-ligation data use in ProxiPhage. Formaldehyde crosslinking
in vivo physically constrains nearby DNA molecules inside the same cell (Left;
host DNA in grey, phage DNA in blue). (A) Chromatin is fragmented to release
crosslinked material containing DNA ends from nearby molecules. (B) Proximity
ligation joins adjacent DNA molecules into chimeric junctions that are purified and
sequenced. (C) The paired sequence information from chimeric junctions creates a
connectivity matrix showing which contigs originated inside the same cells (includ-
ing both phage-phage, phage-host, and host-host interactions). (D) Combined, this
connectivity information can be used to associate phage and microbial contigs into
MAGs and attribute viral MAGs to their microbial hosts within a mixed population.

effects on microbiome dynamics (10, 11). Viruses are often
the most abundant members of microbiomes and can play the
roles of predators within an ecosystem through lytic activ-
ity, impacting population growth and nutrient turnover (12).
Viral lysogenic activity can also affect community evolution
through horizontal gene transfer events such as the spread of
antimicrobial resistance (AMR) genes (13). These contribu-
tions of viruses to microbiome dynamics make them critical
to study in both medical and basic research.

High-throughput metagenomic WGS of microbial commu-
nities allowed the study of viruses directly within their na-
tive environments, and advancements in viral sequence an-
notation led to a rapid expansion of viral sequence databases
(14, 15). However, the assembly of complete viral genomes
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from metagenomes remained a major challenge due to their
fast mutation rates and subsequent high heterogeneity in their
sequences (16, 17). Long-read sequencing technologies from
both Oxford Nanopore and Pacific Biosciences allow for the
extraction of near-complete viral sequences (18, 19), how-
ever, such sequencing is prohibitively expensive compared
to short-read sequencing of comparable depth and is typi-
cally only able to recover the most abundant viruses due to
the lower number of reads (20). In prokaryotic genomes, this
same challenge was overcome with the emergence of metage-
nomic binning software, which can extract genomes from
short-read assemblies by predicting groups of contigs that be-
long to the same genomes. Coupled with methods to estimate
the accuracy of such groupings with prokaryotic universal
single-copy marker genes (21), such software has allowed the
recovery of metagenome-assembled genomes (MAGs) from
complex and diverse microbial communities (22–24).

Despite the widespread use and acceptance of metagenomic
binning for prokaryotic genome recovery, similar advances
have not been made for reconstructing viral metagenome-
assembled genomes (vMAGs). One of the main challenges
has been the inability to assess the completion and contami-
nation of vMAGs from single-copy universal marker genes,
as there is no such set known to exist for viruses(25). Several
attempts have been made to bin viral contigs of select large
phage genomes using conventional approaches (17, 26), how-
ever, the challenges of resolving closely related viral strains
limit the broad application of this approach. Metagenomic
binning approaches utilizing proximity-ligation sequencing
(Hi-C, 3C, and other derivatives of chromosome confor-
mation capture) show particular promise in reconstructing
vMAGs (27, 28). Several studies have reported using the
proximity-ligation signal to bin viral contigs together with
their microbial host genome, with a high likelihood of these
viral contigs belonging to the same viral genome (29, 30).
Marbouty et. al remarked on using a custom application of
the Louvain algorithm to reconstruct several possible vMAGs
(31). However, these approaches rely on the assumption that
each prokaryote may only host a single virus and that every
virus may infect only one host (32), which is commonly not
the case. To our knowledge, there is currently no available
software designed for genome-resolved binning of vMAGs
from fragmented metagenomic assemblies. The recent de-
velopment of CheckV – software that can assess the com-
pleteness of viral sequences by comparing them to a large
database of known viruses (33) enables such a software to be
built and benchmarked.

Identifying the cellular hosts of viruses is critical for under-
standing their role in the microbiome, however, this infor-
mation is lost during conventional shotgun or long-read se-
quencing, except for viruses integrated into the host genomes
(prophages)(34). In the past, most virus-host association
studies focused on probe- and emulsion-based interaction
capture (35) and CRISPR array spacer alignment (36). How-
ever, proximity-ligated library sequencing allows for the
most robust and high-throughput approach, as internalized

Fig. 2. Computational pipeline. Flowchart showing the outline of data processing
in ProxiPhage. Cylinders represent main input data, rectangles represent sequence
data, and ellipses represent methods or software. Green represents Hi-C data and
uses of the Hi-C data in the pipeline, orange represents the main components of
the platform, blue represents input metagenomic data, and red represents the main
ProxiPhage outputs.

viral DNA can be physically joined with the host chromo-
some DNA by in vivo crosslinking (36). One way of utilizing
such data is to directly group viral contigs with their host
genome during metagenomic binning with the proximity-
ligation signal. This approach has been documented to pro-
duce robust virus-host associations (37, 38), but relies on the
assumption that each virus can only infect one host, and is
thus largely limited to prophages because more transient in-
fections are likely to have weaker linkage signals (30). A
second approach is to directly compare all viral sequences
with all possible host MAGs to look for pairs with high
proximity-ligation linkage signals, which allows for higher
sensitivity and the identification of multiple host interactions
from much weaker proximity ligation signal (39, 40). How-
ever, false-positive associations from poor library quality and
read mis-alignments commonly found in proximity-ligation
sequencing require robust linkage strength normalization and
noise subtraction. To our knowledge, there is no software to
perform such analysis, which has only been achieved on a
sample-by-sample basis with custom methods. To overcome
these gaps in the field and to accelerate high-throughput virus
discovery and characterization, we developed ProxiPhage™
– a comprehensive end-to-end analysis platform for vMAG
reconstruction and host prediction using proximity-ligation
sequencing data.
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Category Statistic Sheep stool Human stool Cow rumen Wastewater

General statistics

Hi-C reads (millions) 100 100 100 95.3
WGS reads (million) 100 100 100 100
Assembly size (Mb) 873 479 531 822
Assembly N50 4138 5922 3871 2511
Number of contigs 274,316 118,092 179,930 371,131
Prokaryotic MAGs 365 155 178 238

Viral contigs

Number of viral contigs 2341 1609 1298 1013
Unfiltered virus-host links 30,811 92,438 49,317 6561
Filtered virus-host links 1654 1314 1020 1024
Viruses with hosts 1526 1262 1000 705
Percent viruses with hosts 65.19% 78.43% 77.04% 69.60%

Viral MAGs

Contigs in vMAGs 791 714 599 340
Number of vMAGs 315 205 148 105
Unfiltered vMAG-host links 11,015 18,692 10,469 1538
Filtered vMAG-host links 244 185 125 126
vMAGs with hosts 216 180 122 87
Percent vMAGs with hosts 68.57% 87.80% 82.43% 82.86%

Table 1. Metagenomic data, assembly, binning and viral host attribution statistics from the four samples processed in this study.

Results

Viral MAG extraction improved genome completion.
ProxiPhage is able to use proximity ligation sequencing to
reconstruct viral genomes from highly fragmented short-read
assemblies (Fig. 1). Viral contigs identified with VirSorter2
(41) in the assembly were grouped based on likely member-
ship to original viral genomes with the viral binning func-
tion of ProxiPhage (Fig. 2; see Methods for details). In
short, binning contigs based on Hi-C read linkages allowed
for the extraction of groups of contigs that were likely in the
same cell, phage envelope, or were otherwise in proximity
with each other at the time of sampling. By comparison, bin-
ning the contigs using more conventional metagenomic met-
rics such as tetranucleotide frequency profiles and mean read
coverages resulted in the grouping of viral contigs that are
likely of similar phylogeny and abundance. Intersecting and
resolving these two cluster sets allowed the reconstruction of
viral metagenome-assembled genomes (vMAGs). The com-
bined results avoid issues with the resolution of different viral
genomes present in the same cell which would confound Hi-
C deconvolution and similar codon usage profiles among vi-
ral families that would be poorly resolved by tetranucleotide
frequencies. The synergistic combination of these two meth-
ods results in higher quality vMAGs than would be predicted
by a simple merger of the two datasets.

To demonstrate ProxiPhage performance, we analyzed pre-
viously published proximity ligation sequencing data from a
sheep fecal microbiome sample. In this metagenome, Prox-
iPhage was able to place 791 viral contigs into 315 vMAGs
(Table 1). The sizes of the viral MAGs ranged from 11 - 197
kb in vMAGs consisting of 2-10 contigs each. vMAG bin-
ning increased the average length of predicted viral genomes
from 18 kb to 45 kb and the final sequence N50 from 23 kb
to 58 kb over that of the original set of viral contigs (Fig.

S1). The genome completion of the ProxiPhage vMAGs
was compared to that of the original viral contigs using
CheckV (33), which uses an extensive viral lineage and pro-
tein database to estimate the completion of a given phage se-
quence. We found that the ProxiPhage vMAGs had signifi-
cantly improved CheckV completion metrics (Fig. 3A). For
instance, the number of near-complete viral genomes (>90%
completion) improved from 9 to 73 after binning (Fig. 3C).
For 276 out of the 351 (88%) of the vMAGs with a reliable
reference, the completion improvements were also assessed
using the alignments to the reference viral genomes from the
long-read assembly (see below).

HiFi long-read assembly allows for vMAG validation.
Due to the lack of a reliable universal marker gene set for
viruses, the false-positive rates (or contamination) of the viral
contig clusters must be evaluated with an orthogonal valida-
tion method. The sheep fecal microbiome sample described
above was sequenced previously using PacBio HiFi chem-
istry (40). The resulting sequence data was used to generate
a long-read assembly with much higher contiguity than the
short-read assembly with an N50 of 279,621 bp compared
to 4,138 bp, respectively. To serve as a reliable reference
for both completion and contamination estimation, phage se-
quences were annotated and excised from the long-read con-
tigs using VirSorter2 (see Methods). The resulting excised
viral genomes from the HiFi assembly were assumed to be
100% complete and 0% contaminated for the purposes of val-
idating vMAGs from the short-read assembly. The short-read
and long-read phage sequences were aligned to each other
and the similarity of the vMAGs and reference phages was
assessed to estimate the percent completion and percent con-
tamination of each vMAG that was present in the long-read
assembly. To evaluate the validity of viral genome assess-
ment using a long-read assembly, the estimated completion
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Fig. 3. Viral MAG validation. The completion and contamination of unbinned viral contigs and binned vMAGs from a sheep fecal metagenome estimated with CheckV (A)
and with viral references extracted from long-read HiFi assembly of the same sample (B), and a bar plot showing the number of high-completion viral genomes in the contigs
and vMAGs (C).

Quality Completion Contamination Count Percent

Near-complete >90% <10% 57 20.65%
Moderate completion >50% <10% 141 51.09%
Low completion >0% <10% 259 93.84%
Over-contaminated >0% >10% 17 6.16%
Testable >0% NA 276 100.00%
Total NA NA 315 NA

Table 2. The number of vMAGs from a sheep fecal metagenome falling into broad quality categories after evaluation with reference viral sequences from a long-read HiFi
assembly.

percentages of each phage contig and vMAG were compared
to that estimated with CheckV. We found that both methods
produced highly congruent completion scores (Figure S2).

Viral MAGs are supported by the long-read assembly.
Using the reference long-read virus sequences to estimate
the completion of the vMAGs generated from the short-read
assembly confirmed that the clustering method significantly
improved viral genome completion (Fig. 3B) and increased
the number of near-complete viral genomes from just 1 to
58 (Fig. 3C). The long-read references also allowed for the
evaluation of vMAG contamination resulting from erroneous
groupings of contigs that originated from different phages.
We found that most of the contigs from any given vMAG
aligned to a single long-read viral genome reference, con-
firming that the contigs originated from the same phage in
the sample (Fig. 3B). However, there were still several in-
stances of contigs from the same vMAG aligning to different
reference phages. In the network visualization of select clus-
ters (Fig. S3), possible contamination can be seen at vMAGs
identifiers 23, 266, 140, 20, and 50. In total, we found that 17
of the 315 vMAGs (6%) had notable contamination of >10%

(Table 2). The majority of these false positives were found to
be closely related prophage sequences integrated in bacterial
genomes of the fecal sample and thus could not be separated
by the ProxiPhage algorithm.

Novel linkage signal normalization for evaluating
virus-host interactions.
ProxiPhage also features a novel approach for using
proximity-ligation sequencing to infer the likely prokaryotic
MAG hosts for viral contigs and vMAGs. The host finder
independently evaluates each possible virus-host pair with at
least 2 proximity-ligated read pairs linking them to estimate
the average copy count of the virus genome per prokaryotic
genome (see Methods; Formula 1). The density (links per
kb2) of the virus-host is then normalized to the predicted
virus per cell copy count and compared to the average intra-
genome Hi-C connectivity of the prokaryotic host (Formula
2) to evaluate the likelihood that the given MAG is the cor-
rect host for the virus. These normalization methods can be
reliably used to threshold linkage data generated from a va-
riety of Hi-C sequencing depths. The Hi-C sequences were
down-sampled in silico to produce libraries ranging from 100
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Fig. 4. Host finding thresholding. Effect of Hi-C read rarefication (x-axis) on A) viral copy count per cell estimates and B) the normalized linkage ration R’. Each line
represents one virus-host association tracked across multiple rarefied Hi-C libraries. C) Receiver operating characteristic curve showing the decline in the number of bacteria-
phage host associations (x-axis) and in the number of phages with at least one host (y-axis) as the threshold of the minimum average copy count of each phage genome in
its host is raised. D) The percent of prophage host links that were validated with HiFi long-read sequencing at different viral copy count thresholds. The red lines show the
chosen threshold of 0.14 viral copies per cell.

thousand to 100 million reads, and the resulting subsets were
used to compute linkage metrics from the same virus-host
pairs. Standardizing the linkage strengths by calculating the
estimated viral copy count (Fig. 4A) and normalized con-
nectivity ratio (Fig. 4B) revealed that these estimates do not
significantly change with reduced Hi-C library depth. In ad-
dition to this, we also saw an enrichment of both these values
around 1 – the theoretically expected value for both metrics in
lysogenic infections (Fig. 4A-B; see below). Taken together,
this suggests that these metrics can be used to reliably assess
virus-host linkages regardless of the sequencing depth.

Unsupervised virus-host linkage thresholding.
Evaluating the linkage strength based on the advanced nor-
malization metrics allows for a more robust separation of true
positives from false positives because the expected values are
known. For the copy count metric, a value of 1 suggests that
on average every cell in the population has 1 copy of the virus
and thus is likely a true virus-host linkage. Likewise, a nor-
malized linkage ratio of 1 means that the virus was connected
to the host genome with the same signal strength as if it were
part of the host genome.

The threshold chosen for the minimum copy count metric
has a major impact on the number of interactions captured
and the false-positive rate of the classifier. To set an optimal
threshold, ProxiPhage automatically assesses the likely false-
positive rates and false-negative rates at each cut-off and se-
lects the optimal value based on the results (see Methods).
In short, ProxiPhage constructs a receiver operating charac-
teristic (ROC) curve and chooses a threshold that minimizes
the fraction of the kept virus-host links while maximizing the
number of viruses that still have at least one host (Fig. 4C).
We observed that the area under the ROC curve (AUC) of
this analysis and the chosen threshold can vary significantly
depending on the quality of the proximity ligation library and
the complexity of the sampled community. In the example of

the highly complex sheep fecal microbiome analyzed in this
study, the area under the curve (AUC) was relatively low –
0.88, and ProxiPhage selected a minimum copy count thresh-
old value of 0.14 viral copies per cell.

To evaluate the accuracy of the automated thresholding and
to validate this host-finding method, the long-read assembly
was used to estimate the false-positive rates in the resulting
associations. HiFi long-reads do not carry any inter-molecule
information, so this validation was limited to prophages –
viral sequences integrated into the host genome. The host
sequence flanking prophages on the long-read contigs was
compared to the sequence of the host MAG(s) that that the
same prophage was linked to in the short-read assembly to
determine if the host association was correct (see Methods).
As expected, the true-positive virus-host assignment rate im-
proved as the minimum copy count threshold was increased,
peaking at 96% support (Fig. 4D, grey line). The automati-
cally detected optimal threshold was placed at the point in the
curve where further increasing the threshold started having
diminishing returns and resulted in 731 prophage-host links
with a true-positive rate of 74%. However, some of the false
positives from this method could also be explained by the
prophages being present in several hosts (but present only
once in the long-read assembly). When the validation was
rerun with prophages that were only assigned a single host
(Fig. 4B, blue line), the automatically chosen threshold left
516 prophage-host links with a true-positive rate of 93%.

ProxiPhage host attribution is sensitive and specific.
The 2341 viral contigs identified by VirSorter2 in the sheep
fecal metagenome sample were cross-referenced with 365
prokaryotic MAGs extracted from the same assembly using
the ProxiPhage host attribution algorithm, resulting in a to-
tal of 30,811 possible virus-host pairs with at least 1 physical
link (Fig. S4A). Applying multiple automated filtering steps
to the data (see Methods) removed the vast majority of these
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Fig. 5. Viral MAGs and their hosts. Viral metagenome-assembled genomes (vMAGs, outer ring) derived from a sheep fecal metagenome, with their associated contigs in
the same color. Darker bars indicate higher estimated copy count. Additional circular layers (viral) and bar plots (prokaryotic host MAGs, upper-right) represent characteristics
of viral contigs or host MAGs respectively, including gene content, length, GC%, and estimates of completion based on alignment to a long-read metagenomic assembly.
Radial grey bars indicate a viral-host association, with the intensity encoding estimated viral copy count per cell. Only vMAGs with at least 3 contigs and a host found for
every contig are shown to fit this visualization.

links, leaving just 1654 links that were predicted to be true
positives (Fig. S4B, Fig. 7A). In total, the algorithm was able
to identify a prokaryotic host for 1526 (65%) of the viral con-
tigs. Of these, 588 were found to be prophages with a single
host (see Methods), with a true host attribution rate of 93%
as validated with the long-read reference assembly. While the
majority of the viral contigs were assigned just one host, sev-
eral viral contigs were linked to multiple prokaryotic MAGs,
suggesting possible promiscuous viruses (Fig. S4, vertical
lines). Likewise, some prokaryotic MAGs were linked with
many viral contigs, which could be assembly fragments of

the same viruses or indicate co-infection (Fig. S4, horizontal
lines). Reassuringly, the majority of contigs that were clus-
tered together into a vMAG were assigned identical or similar
prokaryotic hosts (Fig. 5), except where coverage dropout
caused likely false negatives. It should be noted, however,
that some of the weaker host associations still appear to be
clear outliers in their respective vMAG clusters, indicating
the presence of residual false-positive associations even after
thresholding.

The host attribution algorithm in ProxiPhage works more re-
liably on complete vMAGs since the algorithm has more se-
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quence length to use for estimating the connectivity likeli-
hood. When using the vMAGs for host assignment, applying
the automatic filtering on the unfiltered connectivity matrix
(Fig. S5A) results in a cleaner matrix, with relatively few pre-
dicted promiscuous phages or host co-infections (Fig. S5B).
Interestingly, the algorithm predicted the optimal copy count
value to be 0.14 – the same as in the original viral contigs.
This reduced the possible 11,015 vMAG-host links with at
least 1 Hi-C link to just 244 links after thresholding, which
still associated a total of 216 vMAGs (69%) with a prokary-
otic MAG host.

ProxiPhage can resolve viral genomes and their hosts
from a variety of sample types.
The sheep fecal microbiome used for benchmarking the ac-
curacy of de-novo viral binning and host finding is the only
currently available sample that has been sequenced to such a
high depth with long-read sequencing (40). To test the appli-
cability of ProxiPhage to a variety of medically and environ-
mentally relevant microbiome sample types, we processed
a fecal sample from a healthy human donor, a cow rumen
sample, and a sample from a wastewater treatment plant (see
Methods). Using the same computational analysis pipeline
as the sheep fecal sample, we assembled and annotated a to-
tal of 1609, 1298, and 1013 viral contigs from these sam-
ples, respectively (Table 1, S1). These viral contigs were then
binned into 205, 148, and 104 vMAGs in each sample, and
their completion was compared to that of the original viral
contigs with CheckV (Fig. 6). We found that in every sam-
ple, ProxiPhage significantly increased the completeness of
the resulting viral genomes. The impact of viral binning was
particularly notable in the human fecal and cow rumen sam-
ples, where many of the vMAGs had 10 - 27 contigs. The
metagenomic assemblies from the human fecal, cow rumen,
and wastewater samples were also binned into prokaryotic
MAGs to test the host attribution pipeline. The viruses from
these three samples were linked to the MAGs of their respec-
tive communities using the proximity ligation signal to iden-
tify their likely cellular host genomes. The application of au-
tomated minimum copy count filtering on the three samples
resulted in significantly different thresholds being chosen –
0.03, 0.03, and 0.12 copies per cell, respectively. For the hu-
man fecal and cow rumen sample, the AUC of the ROC anal-
ysis was 0.97 and 0.98 viral copies per cell, respectively, sug-
gesting a very high signal-to-noise ratio in the Hi-C linkage
data, while the AUC for the wastewater sample was lower,
at 0.86. After final thresholding, ProxiPhage retained 1314,
1020, and 1024 high-quality virus-host links, and a total of
1262 (78%), 1000 (77%), and 705 (69%) viruses were as-
signed at least one host in the human fecal, cow rumen, and
wastewater samples, respectively (Fig. 7; Table 1). Similar
to the results from the sheep fecal sample, most of the vi-
ral contigs from the same vMAGs were assigned to the same
host(s), confirming the accuracy of viral bin and host assign-
ments (Fig. 7, top color bar).

Fig. 6. Viral MAG extraction in additional samples. Viral genome completion (es-
timated with CheckV) of the original and binned viral contigs from additional bench-
marking metagenomic samples extracted from A) human stool, B) cow rumen, and
C) wastewater. Bar plots show the number of genomes at different completion cut-
offs in the original viral contigs and vMAGs, as estimated with CheckV.

Discussion

ProxiPhage is the first automated software capable of accu-
rate extraction of near-complete viral genomes from highly
fragmented metagenomic assemblies by using proximity-
ligation sequencing such as Hi-C. This approach is signifi-
cantly cheaper and more scalable for large-scale studies com-
pared to long-read sequencing of comparable depth, while
also enabling the association of the viruses with their hosts
(20). Viral binning has been previously indirectly achieved
with custom analysis of select samples by placing multi-
ple viral contigs together with their host genome sequences
(29–31). This approach can fail in events of promiscuous
phage infections (32, 42, 43), which have been observed
in all four microbiome samples investigated in this study.
By sorting viral contigs with both proximity-ligation sig-
nal as well as conventional binning methods, ProxiPhage al-
lows for viral genome-resolved de-convolution even in events
of phage co-infection, promiscuous phages, and relatively
low Hi-C coverage. Since the majority of virus discovery
efforts focus on extracting viral genomes from short-read
metagenomic assemblies (44) which often results in recov-
ering short, fragmentary contigs (17, 45), ProxiPhage has the
potential to greatly accelerate the discovery of near-complete
viral genomes.

Proximity ligation sequencing has the added benefit of cap-
turing interactions of viruses with their respective hosts. In
both environmental and medical applications, capturing this
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Fig. 7. Viral host assignment in additional samples. Prokaryotic hosts identified for viral contigs with ProxiPhage from additional benchmarking microbiome samples
extracted from A) sheep fecal, B) human stool, C) cow rumen, and D) wastewater. The color map encodes for the estimated average copy count of each phage genome in its
host. Columns are clustered according to vMAG membership (labeled with random colors) and rows are grouped based on linkage similarity with seaborn clustermap. Only
viral contigs from viral MAGs are shown.

information is crucial for understanding the impact and con-
tribution of viruses on the functioning of their respective
communities (46). The high throughput and relatively low
cost of proximity ligation sequencing make it the most scal-
able approach for use in untargeted virus association and
characterization studies (36, 39). Several studies have been
able to predict the prokaryotic MAG hosts of viruses using
this data type, however, these studies relied on careful in-
vestigation and custom thresholding to produce their results.
ProxiPhage offers an unsupervised approach for such anal-
ysis and overcomes many challenges of proximity linkage
data normalization and thresholding, making it appropriate
for use on a variety of sequencing depths, library qualities,
and community compositions. As demonstrated in the four

metagenomes processed in this study, ProxiPhage yields ro-
bust virus-host associations for the majority of viruses, mak-
ing it appropriate for large-scale viral infection screening
studies. In addition to a binary host association output, the
provided normalized metrics can provide useful information
about the nature of a virus-host interaction. The average copy
count of the virus per host cell can help distinguish relatively
rare infection events, common sample-wide associations, or
even active phage replication in the host cells. On the other
hand, the normalized linkage ratio indicates how closely as-
sociated the viral DNA is with the host chromosome(s), al-
lowing the identification of integrated prophage sequences.

Neither the binning nor the host-attribution features in Prox-
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iPhage rely on a priori sequence modeling, suggesting that it
may also be applied for the study of other mobile genomic
elements, such as plasmid sequences or gene cassettes. How-
ever, this functionality was not shown or benchmarked in this
study, primarily because the sheep fecal metagenome used
for benchmarking was found to have very few plasmid se-
quences. The challenges of plasmid genome binning and
host association are, in principle, very similar to those of
prophage analysis (38), and plasmid binning and host attribu-
tion are very difficult to achieve without proximity-ligation
data (47, 48). Similar to viruses, plasmid sequence recon-
struction (49) and host association (27, 28, 38) have been pre-
viously achieved using proximity-ligation sequencing, how-
ever, ProxiPhage is the first unsupervised software capable of
this function. The possibility of high throughput plasmidome
de-convolution could have a great impact on microbial re-
sistome characterization in a variety of research and medical
fields (48).

The automated vMAG extraction and host attribution features
of ProxiPhage make it the first software capable of such anal-
ysis, and its accuracy and high throughput have the potential
to aid the study of viruses and their cellular hosts. In both
environmental and host-associated metagenomic studies, this
platform can accelerate the discovery of novel viral clades
and improve our understanding of the role of phages in the
composition dynamics and nutrient cycling of their respec-
tive communities (50). Finally, our platform could be applied
in clinical settings for efficacy and safety screenings of fecal
microbiota transplantations (FMT) and phage therapies, and
for predicting the effects of such treatments on specific pa-
tients (51, 52).

Methods

Read and assembly pre-processing.
DNA extracted from sheep feces was processed and se-
quenced as described in Bickhart et. al (40). To better rep-
resent common sequencing depth and for consistency with
other samples in this study, the shotgun sequences were
downsampled to 100 million reads and then assembled with
MegaHit (53) v1.2.9 using default parameters. The result-
ing assembly had 274,316 contigs at least 1 kb in length and
contained a total sequence length of 873.4 Mb with an N50
of 4138 bp (Table 1). A proximity ligation library was also
prepared from the same sample using the ProxiMeta™ Hi-
C kit from Phase Genomics, and the resulting 2x150 bp se-
quences were also downsampled to 100 million reads. These
Hi-C reads were then aligned to the metagenomic assembly
with BWA (54) v0.7.17 and compressed with Samtools (55)
v1.10. The alignment was then scanned to count the total
number of long-range physical (Hi-C) interactions between
contigs (different contigs or on the same contig but at least
10 kb apart). Similarly, the number of close-range interac-
tions was also counted and saved (at most 10 kb apart on
the same contig). Only alignments that were non-redundant,
full-length, and with a maximum of 1 mismatch were con-
sidered in these tallies. A total of 14,597,959 long-range

and 44,233,451 close range Hi-C interactions were recorded.
Finally, a size-selected SMRTbell (56) library (9-14 kb fi-
nal fragment length) was prepared from the same sample for
ultra-deep sequencing on the Sequel, yielding a total of 255
Gb of long-read HiFi data, as described in Bickhart et. al
(40). These long reads were then assembled with metaFlye
(57) to produce 60,050 contigs with a total of 3.43 Gb of se-
quence and an N50 of 279,621 bp. This HiFi assembly was
used as a reference to evaluate binning and host association
methods in this paper.

Viral sequence annotation.
Long contigs (>5 kb) in both the short-read and long-read as-
semblies were annotated with VirSorter (41) v2.2.2 with de-
fault parameters to find likely viral sequences. For the short-
read assembly, original unmodified contigs with at least 50%
viral gene content were saved for subsequent downstream
analysis. For the Hi-Fi long-read assembly, predicted viral
genomes were excised with VirSorter2 and used as complete
viral genome references. Using these methods, 2341 (N50
15,919 bp) and 8054 (N50 66,873 bp) viral sequences were
annotated in the short-read and long-read assemblies, respec-
tively.

ProxiPhage viral binning.
ProxiPhage viral binning features a combination of proxim-
ity ligation signal clustering and conventional metagenomic
binning approaches to overcome the limitations of either
method. First, the viral sequences are binned with both
methods to produce two preliminary sets of vMAG. A non-
redundant set overlap network is constructed from these two
contig groupings such that nodes represent contig clusters
from either of the two preliminary vMAG sets, and edges
contain contigs that overlap between bin sets. These overlaps
are then scanned and resolved through a proprietary greedy
network collapse algorithm featured throughout the Prox-
iMeta (38) platform to produce a single set of vMAGs that is
more accurate and complete than either of the original inputs.
Each vMAG cluster is then additionally scanned and adjusted
to ensure a minimum strength of Hi-C linkages between its
contained contigs, which further reduces possible contamina-
tion. Finally, ProxiPhage viral binning also allows for addi-
tional pruning of vMAG clusters such that contigs from each
cluster have similar or identical predicted prokaryotic hosts,
although this feature was not utilized in this study since host
commonality was one of the metrics used for vMAG accu-
racy assessment.

Viral MAG validation and benchmarking.
The viral genome completion of both viral contigs and
vMAGs was estimated with CheckV (33) v0.7.0 with de-
fault parameters. Note that CheckV does not natively sup-
port the investigation of contig clusters, so to run CheckV
on the vMAGs the sequences from each vMAG needed to be
concatenated into a single sequence with 200 bp “N” spac-
ers. Also note that the “contamination” metric produced by
CheckV refers to the bacterial content of the sequences, and
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not binning false positives as it does CheckM (21). The qual-
ity of the viral contigs and vMAGs was also assessed by com-
paring the sequences to the reference phage sequences ex-
cised from the long-read HiFi assembly (40). The short-read
and long-read phage sequences were aligned to each other us-
ing BLAST (58) v2.11.0, and high-quality alignments (>95%
percent identity, >100 bp length) were saved. The reference
alignment network was constructed from these alignments
using Cytoscape (59) v3.7.1. The best reference for each
vMAG was determined as the reference to which the greatest
percentage of its sequence aligned, with a minimum of 1 kb.
The completion of the vMAG was estimated as the percent-
age of the reference that aligned to the vMAG (Formula 1),
and its contamination was estimated as the percentage of the
vMAG sequence that did not align to the reference (Formula
2). Contigs or contig segments that did not reliably align to
any of the references were not counted in the contamination
calculation to account for some of the short-read assembly
sequences not being present in the long-read assembly.

Genome completion of a query viral sequence ω(q) calculated using a long-read
reference assembly from the total length of the reference that aligned to the query
A(r) and the length of best reference genome L(r):

ω(q) = A(r)
L(r) (1)

Genome contamination χ(q) of a query viral sequence calculated using a long-
read reference assembly from the total length of the query L(q, the length of the
query that aligned to the best reference A(q) and the length of the query that was
not found to align to any reference sequence L(u):

χ(q) = L(q)−
∑
A(q)−

∑
L(u)

L(q) (2)

Prokaryotic MAG extraction.
The metagenomic assembly was de-convoluted with the
ProxiMeta (38) platform to extract draft prokaryotic genomes
to be used for finding the likely hosts of the viral sequences.
The completion and contamination of the MAGs were esti-
mated with CheckM (21) v1.1.3. In total, 365 MAGs were
formed, representing 34% of the total assembly sequence. Of
these, 151 MAGs were of moderate quality (>50% comple-
tion and <10% contamination), and none of the 365 MAGs
were over-contaminated (contamination >10%). All the re-
sulting clusters were used for viral host attribution with Prox-
iPhage.

ProxiPhage host attribution.
The long-range Hi-C linkage data was scanned to identify vi-
ral contigs and prokaryotic MAGs with a Hi-C link between
them. A combination of the Hi-C link count, viral read depth,
and MAG read depth were then used to estimate the average
copy count of each virus in each MAG (Formula 3). The
density of Hi-C links per kb2 of sequence between the virus
and the MAG was then compared to the connectivity of the

MAG to itself and normalized to the estimated copy count to
compute the normalized connectivity ratio (Formula 4). This
value assesses the strength of the virus-host linkage in the
context of what would be expected if the virus was found
inside the cell, with a value of 1 being ideal. Virus-host link-
ages were then filtered to keep only connections with at least
2 Hi-C read links between the virus and host MAG, a con-
nectivity ratio of 0.1, and intra-MAG connectivity of 10 links
to remove false positives. For the final threshold value, a
receiver operating characteristic (ROC) curve is used to de-
termine the optimal copy count cut-off value. The optimal
cut-off was determined from the ROC curve as the value that
produces the point to the top left of the plot, or the cut-off
that removed the maximum number of virus-host links while
still finding at least one host for the maximum number of
viruses. Each virus is also evaluated for the fraction of host
MAGs that it still had connections with to identify “sticky”
sequences with a likely high proportion of false positives.
These were corrected by removing linkages with an average
copy count less than 80% of the highest copy count value for
the given viral sequence. The above host assignment work-
flow also works identically for vMAG clusters, but with link-
age and length values from different contigs being added to-
gether.

Average viral copy counts per cell C calculated from the virus abundance V ,
prokaryotic host abundance H, Hi-C links between the virus and host L, and total
Hi-C links of the virus and all possible hosts L(v):

C = V

H

L∑
L(v) (3)

Normalized connectivity ratio R′ calculated from the Hi-C connectivity density be-
tween the virus and host DV H and of the host genome to itself DH , and normal-
ized to the virus abundance V , prokaryotic host abundance H, Hi-C links between
the virus and host L, and total Hi-C links of the virus and all possible hosts L(v):

R′ = DV H
DH

H
∑
L(v)

V L
(4)

Prophage host validation.
The accuracy of prophage virus-host links found with the
host attribution software in ProxiPhage was evaluated with
the reference long-read HiFi assembly. The short-read vi-
ral sequences were aligned to the full HiFi assembly using
Blast (58) v2.11.0, and high-quality alignments (> 95% per-
cent identity, > 100 bp length) were saved. The best reference
contig for each virus was defined as the contig to which the
greatest percentage its sequence aligned to, with a minimum
of 50%. If the HiFi contig still had more than 200 kb of
sequence that did not align to the viruses, the virus was de-
clared a prophage and thus used for subsequent analysis. This
unaligned bacterial sequence was compared to the sequence
of the host MAG from the short-read assembly to which the
virus was linked. If at least 10 kb of the host sequence aligned
to the host MAG, the virus-host link was considered correct.
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Only good quality MAGs (>50% completion, <10% contam-
ination according to CheckM) were included in this analysis.

Anvi’o analysis.
A custom selection was taken from the full vMAG set for
detailed visualization with Anvi’o 7 (60). This selection con-
tained vMAGs that had at least 3 contigs and had at least
one host assigned to each of its contigs. The phylogenetic
tree was constructed from the vMAG sequences using VIC-
TOR (61), and the resulting Newick tree was then manually
modified to replace the vMAG leaves with the contigs con-
tained in each of the vMAGs. For the host MAGs, their tax-
onomies at the phylum level were estimated manually us-
ing a combination Kraken2 (62) v2.1.1 (using default op-
tions and the full standard database) and metaWRAP (63)
v1.3.2 blobology and classifybins modules using default
options. The phylogenetic tree of the host MAGs was then
constructed with Anvi’o 7 (60) using a concatenated align-
ment of all common ribosomal genes. The estimated aver-
age read depth for both viral contigs and host MAGs was
estimated with the jgisummarizebamcontigdepths script
in MetaBAT (22) v2.15.

Human fecal microbiome processing.
Libraries were prepared using the Phase Genomics Prox-
iMeta Hi-C kit version 3 following the manufacturer’s pro-
tocol from a healthy donor stool sample. In brief, approx-
imately 250 mg of sample was homogenized in phospho-
buffered saline (PBS) and pelleted by spinning at 17,000 x g
for 1 min. The pellet was resuspended in 1 ml of crosslink so-
lution and incubated at room temperature for 20 min at room
temperature with rotational mixing. Crosslinking was termi-
nated by the addition of 100 µl of Quench solution and in-
cubation for 15 min at room temperature with mixing. After
pelleting sample at 17,000 x g for 5 minutes, pellets were
washed once in chromatin rinse buffer (CRB) and then re-
suspended in 700µl of Phase Genomics Lysis buffer 1 and
250 µl of Lysis beads. The sample was placed in a Tur-
bomix disruptor (Scientific Industries) and mixed at maxi-
mum speed for 20 minutes. The lysate was spun down briefly,
and the lysate was transferred to a new microcentrifuge tube
and chromatin pelleted by spinning at 17,000 x g for 5 min-
utes. The pellet was then washed with CRB and resuspended
in 100 µl of Phase Genomics Lysis Buffer 2 and incubated
at 65°C for 15 min. Chromatin was then bound to Re-
covery beads, washed with CRB, and then fragmented/ends
filled in with biotinylated nucleotides at 37°C for 1 h. Beads
were washed and resuspended in 100 µl of Proximity Liga-
tion buffer and 5 µl of Proximity Ligation Enzyme and incu-
bated at 25°C for 4h. Reverse crosslinks enzyme was added
at the sample was heated to 65°C for 1h to release DNA
from crosslinked chromatin. DNA was purified using Recov-
ery Beads and biotinylated ligation junctions capture using
streptavidin beads. Bead-bound DNA was used to generate
a dual unique-indexed Illumina-compatible library. DNA for
Shotgun WGS libraries were prepared using a ZymoBiomics
DNA miniprep kit (Zymo Research). Shotgun libraries were

prepared using Nextera XT (Illumina) following the manu-
facturer’s protocol and 50 ng of input DNA.

Additional sample processing.
Additional benchmarking data was generated from the short-
read WGS and Hi-C sequencing data from the cow rumen
metagenome (64), the wastewater benchmark metagenome
(48), and the human fecal metagenome (see human fecal mi-
crobiome processing). All downstream sequence analyses,
including rarefaction to 100 million reads, metagenomic as-
sembly, viral annotation, viral binning, and host attribution
were identical to the analysis performed on the main sheep
metagenome (Table 1).

Data Availability

The raw data from the sheep fecal shotgun WGS and
Hi-C sequencing is publicly available from NCBI Bio-
Project PRJNA595610. The cow rumen microbiome
data is available from BioProject PRJEB21624, sample
SAMEA104567052. The wastewater microbiome data is
available from BioProject PRJNA506462. The human fecal
microbiome data is available at https://proximeta.
phasegenomics.com/proximeta-pgfecal. The
four shotgun assemblies used in this study are available
at https://bitbucket.org/phasegenomics/
proxiphage_paper/src/main/assemblies.
The sheep fecal microbiome long-read HiFi assembly
used as a reference in this study is available at DOI:
https://doi.org/10.5281/zenodo.4729049.
All other data, intermediate files, and analysis scripts
are publicly available from https://bitbucket.
org/phasegenomics/proxiphage_paper.
The ProxiPhage viral analysis platform is avail-
able through the ProxiMeta™ service platform at
https://proximeta.phasegenomics.com.
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Fig. S1. Viral MAG lengths. The length distribution of viral sequences before (red) and after (blue) binning with ProxiPhage in
metagenomic samples extracted from A) sheep stool, B) human stool, C) cow rumen, and D) wastewater.
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Fig. S2. Completion estimation comparison. Scatter plot of completion percentages of viral contigs and vMAGs from a sheep fecal
metagenome, estimated with CheckV (y-axis) and with reference excised phages from a long-read HiFi assembly (x-axis).
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Fig. S3. Viral MAG validation network. Network showing long-read validation of vMAG contig clusters from a sheep fecal
metagenome. Viral contigs (circles, labeled with vMAG identifiers) are randomly colored according to the vMAG they belong to and
linked to reference long-read viral genomes that they aligned to (grey check marks). The node size represents the viral sequence
length, and the edge weight represents the percent of the short-read viral contig that aligned to the long-read reference. A random
subset of 50 vMAGs was chosen for this visualization from a pool of vMAGs with at least 3 contigs and with at least one reference found
for each contig.
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Fig. S4. Viral contig host predictions. Prokaryotic hosts identified for viral contigs with ProxiPhage from a sheep fecal metagenome
with ProxiPhage before (A) and after (B) thresholding. The color map encodes for the log of the estimated average copy count of each
phage genome in its host. Columns are clustered according to vMAG membership (labeled with random colors) and rows are grouped
based on linkage similarity with seaborn clustermap. Only viral contigs from viral MAGs are shown.

Fig. S5. Viral MAG host predictions. Prokaryotic hosts identified for viral MAGs from a sheep fecal metagenome with ProxiPhage
before (A) and after (B) thresholding. The color map represents the log of the estimated average copy count of each phage genome in
its host. Rows and columns are clustered according to linkage similarity with seaborn clustermap.
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