bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

seqgra: Principled Selection of Neural Network Architec-
tures for Genomics Prediction Tasks

Konstantin Krismer 2, Jennifer Hammelman 3 and David K. Gifford 1,234+

1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA,
2Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, 3Computational
and Systems Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, and “Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

*To whom correspondence should be addressed. Tel: +1 617 253 6039; Email: gifford @mit.edu

Abstract— Sequence models based on deep neural networks
have achieved state-of-the-art performance on regulatory ge-
nomics prediction tasks, such as chromatin accessibility and
transcription factor binding. But despite their high accuracy,
their contributions to a mechanistic understanding of the biol-
ogy of regulatory elements is often hindered by the complexity
of the predictive model and thus poor interpretability of its
decision boundaries. To address this, we introduce seqgra,
a deep learning pipeline that incorporates the rule-based
simulation of biological sequence data and the training and
evaluation of models, whose decision boundaries mirror the
rules from the simulation process. The method can be used to
(1) generate data under the assumption of a hypothesized model
of genome regulation, (2) identify neural network architectures
capable of recovering the rules of said model, and (3) analyze
a model’s predictive performance as a function of training set
size, noise level, and the complexity of the rules behind the
simulated data.

I. INTRODUCTION

Over the last five to ten years, neural networks were
successfully applied to make large gains on a wide range
of tasks in such diverse fields as computer vision, computer
audition, natural language processing, and robotics. While
the structure and the semantics of the data used to train
and evaluate neural networks can be vastly different, the
core learning algorithms are almost always the same and
the neural network architectures are often composed of
similar building blocks. This is also true for the field of
genomics, and computational biology as a whole, where
deep neural networks are trained on data that are obtained
experimentally using functional genomics assays such as
DNase-seq [1], ATAC-seq [2], and ChIP-seq. Motivated by
their success, architectural building blocks commonly seen in
these networks, such as convolutional layers, recurrent layers,
batch normalization, drop-out, and skip connections [3—
6], have been imported from computer vision and other
fields. This cross-fertilization between fields and the general
applicability of the building blocks of deep learning has
more recently been seen in the adoption of transformer-based
architectures for image classification tasks in computer vision
and protein prediction tasks in biology. However, most data
sets used to train supervised deep learning models in biology
are different from data sets in computer vision and natural
language processing in two ways. (1) Biological problems
contain noisy input and noisy labels in that not only is
there substantial intra-class variability and noise in the input,
e.g., images labeled as cat contain cats that vary in terms

of breed, color, position, pose, etc., but also a significant
fraction of examples are mislabeled, i.e., images labeled as
cat are empty or contain dogs. This is rare in computer
vision data sets, but common in data sets derived from
functional genomics assays. (2) Feature attribution or other
model explanation methods are not human-interpretable. We
understand images of cats in the sense that we know which
parts of the image contain information that is relevant for
the classification (because they belong to the cat) and which
parts are irrelevant (because they belong to the background).
This intuitive understanding is necessary when attribution
methods such as saliency maps are applied to assess a
model’s ability to base predictions on relevant parts of the
input. In biology, examples often include DNA sequence
windows of various widths, most commonly 1000 base
pairs (bp), which, unlike images of cats, are not human-
readable. This biology-specific issue of inherently opaque
examples exacerbates the general interpretability issue of
deep neural networks, whereas the lack of high quality data
sets contributes to the reproducibility crisis and makes it
more difficult to compare architectures, as they are often
only evaluated on a custom data set.

The method introduced here, seggra, attempts to improve
the process by which neural network architectures are cho-
sen for specific genomics prediction tasks and provides a
framework to evaluate model interpretation methods. Its fully
reproducible pipeline provides a means to (1) simulate data
based on a pre-defined set of probabilistic rules, (2) create
and train models based on a precise description of their
architecture, loss, optimizer, and training process, and (3)
evaluate the trained models using conventional test set met-
rics as well as an array of feature attribution methods. These
feature attribution methods in combination with simulated
data and thus perfect ground truth enable an analysis of the
model’s decision boundaries and how well they capture the
underlying rules of the data generation process from step
1. Utilizing this framework, models are not only evaluated
based on their predictive performance, but also on the ability
to recover the vocabulary (e.g., specific transcription factor
binding site motifs) and grammar (e.g., spacing constraints
between interacting transcription factors) of the data set,
while assigning little weight to confounding factors and
idiosyncratic noise.

Efforts in this area include Kipoi [7], a repository for
trained genomics models, and Selene [8], a framework for

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

biological sequence based deep learning models that supports
training of PyTorch models, model evaluation with conven-
tional test set metrics (ROC and precision-recall curves), and
variant effect prediction and in silico mutagenesis of trained
models. To our knowledge none of the existing methods offer
functionality for simulating data using a general framework
of probabilistic rules, nor do they incorporate feature attri-
bution methods.

Furthermore, this simulation-based framework can also
serve as a testbed for hypotheses about biological phenomena
or as a means to investigate the strengths and weaknesses of
various feature attribution methods across different neural
network architectures that are trained on data sets with
varying degrees of complexity. In the former use case, the
hypothesis is encoded in the rules of the simulation process
to identify an appropriate neural network architecture, which
is subsequently trained and evaluated on experimental data.
The performance of this simulation-vetted architecture on
experimental data serves as an indication of the validity
of the hypothesis and its underlying assumptions about the
biological phenomenon.

II. MATERIALS AND METHODS

A. Position probability matrices and position weight matri-
ces

We use position probability matrices (PPM) with a DNA
alphabet (X = {A, C, G, T}) to represent sequence motifs:

PPM
A C G T

I yvia %ic %16 YT

2 YA Yoc Y26 Yor (D)

n YnA YncC YnG UYn,T

As the name suggests, each cell of a PPM is a probability, the
probability of observing a particular nucleotide at a particular
position, and each row sums to one, i.e., at each position one
of the four nucleotides must be present. We use the notation
PPM; (7, j) to access the probability of observing the jth
nucleotide at the ¢th position in a specific PPMy.

These PPMs usually describe experimentally obtained
estimates of transcription factor binding sites, but may also
describe artificially constructed sequence motifs.

To calculate the likelihood of a sequence given a PPM, we
first convert the PPM to a position weight matrix (PWM) by
transforming the elements of the PPM to log likelihoods,

yi ;= logy 22,)
Dj

using background sequence probabilities p, which are de-
scribed in section II-F. The score of a particular position in
a DNA sequence is then calculated by adding the value of
the observed nucleotide at each position in the PWM.

B. Motif information content

To calculate the information content of a sequence motif
represented as a PPM, we first calculate U(%), the uncertainty
at position ¢ as follows:

U(i) = — > PPM(i, j) x logy(PPM(i,). (3)
JjEX
The information content at position ¢ is then defined as
follows

IC(i) = t — U(3), 4)

where t = log,(|X]), the total information content per posi-
tion in bits. In order to obtain MIC, the information content
of the entire motif, we add up the individual positions:

MIC =) "IC(i), 5)
=1

where n is the motif width in nucleotides (nt), see matrix in
1.

C. Relative entropy between motif and background distribu-
tion

The information content of a motif is a special case of the
relative entropy of a motif where background probabilities p
are uniform. Relative entropy, also known as KL divergence,
between a motif and the background distribution is calculated
per position, similarly to IC:

. o PPM(4, j
Dra (i) = 3PP) x oy (Tn) o

jED Pj
and then summed over positions to obtain the Motif Relative

Entropy,

MRE =) " Dy (4). (7)
=1

D. Relative entropy between two motifs

While the relative entropy between a particular motif,
PPM;, and the background distribution is a way to gauge
the learnability of a grammar where the presence of PPM;
carries information, the relative entropy between two motifs,
PPM; and PPMy, is equally useful to assess the learnability
of grammars with multiple, semantically distinct sequence
elements.

By slightly adjusting the Dg;, from above, we calculate the
KL divergence of position ¢ between two motifs as follows:

D1 (PPM;, PPM,, i) =

PPM; (¢
Z PPM; (7, z) x log, (PPM;%) . .
TEX 7

The motif pair relative entropy of PPM; relative to PPM,
is then defined as

MPRE(PPM;, PPMy) = > Dyi(PPMy, PPMy,i). (9)

=1

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

data definition model definition metrics
Simulator Learner Evaluator
condition 1 condition n O 1 ground truth SIS
Ee—n > E—n L L
Ad | LI g] d | L L
o - m loss | o = ow
o 5o on — —u nom
—n " T i L L
o P 0 e L —u .o
“«> LR | — «> L] L]
- «— — - L] L]
e LR | T N Hes LI |
e o = training time e .
—Data definition —Condition ~Model definition
Background Rule 1 | General
alphabet distributions, example length Rule 2 | deep learning library, task, sequence
ule space, input encoding, labels
Rule n
n Sequence elements, positioning, .
Data generation inclusion probability, spacing constraints ArCh'te(_:ture_))
number of training, validation, test set layers, units, activation functions,
examples, k-mer frequency preserving shuffle batch normalization, dropout, skip
~Sequence element (SE) connections, efc.
Condition 1 | k-mer-based SE
Condition 2 | ACGCGCCAGAAC: 0.80 Loss hyperparameters
= ACGGGCAAGAAC: 0.15
Condition n ‘ TCGCGCAAGAAC: 0.05
‘ Optimizer hyperparameters ‘
Sequence element 1 | matrix-based SE
Sequence element 2 | cT CA Traini h 1
rainin rocess erparameters
Sequence element n ‘ *AV TAIAL;;A;@ vxa ‘ g p yperp: ‘
1. Cell type specific k-mer, fixed position 4. Cell type specific combination of PWMs, variable positions
cell type 1 cell type 2 cell type 3 cell type 4 cell type 1 cell type 2 cell type 3 cell type 4
e N N . N . N [N\ (. . N (. N (. N . . N
L} | | | | | | | I | | | | | | |
L} | | | | | |] | | L}
L} | | | | | | L} |] [1] |]
L} | | | | | | | |] |] | | |] | |]
L} | | | | | | L} | | LI | 1
L} | | | | | I} |] |]
L} | | | | []] |] L} na
L} | | | | | | s | | | | | |
\ ! J \. ' J \ " J \. J U " J \. ' J \. J \. - *
2. Cell type specific PWM, fixed position 5. Non-specific combination of PWMs with cell type specific order constraints
cell type 1 cell type 2 cell type 3 cell type 4 cell type 1 cell type 2 cell type 3 cell type 4
e . N . N N . N\ (.. A Y N . N (. N
L} | | | | | | | | | na | | | |
L} |] | | | | L} |]
L} |] | | L} | | | | L} |] L}
1 |] |] | | | |] | | | L} o
L} | | | | | | | | | | | | | L]
|] |] [B | | |]
1 | | nn | | | |] | |
L} | | | | | | LI} |] | |
\ J - J J - J \ ! J " J I ! J
3. Cell type specific PWM, variable position 6. Non-specific combination of PWMs with cell type specific spacing constraints
cell type 1 cell type 2 cell type 3 cell type 4 cell type 1 cell type 2 cell type 3 cell type 4
(. N (. N N [. N\ (C aos N\ (o N o N .o N
]] | | Ad | | B | | | « | B g |
| | | | ad | I > | « 1
| | | | | Rad | LR | R | | Ll | |
| | |] | 1 i—n 10 | R | 1 o |
| | 1 | ad | LB | > | | Ol |
|] | Ead LERC | Ed | Rl |
| | L} 1 11 — 1 [| Rl | <« 1
L} | | L} | B3 LR | 1 o 1 o |
\ J \ ' J \ J \ - /A J\ =t J__* < J \ < v

Fig. 1. A framework for simulation-based evaluation of neural network architectures. (A) Schematic of the three main components: First, a simulator
generates synthetic data according to the rules and specifications defined in the data definition file. Second, a learner creates a neural network model whose
architecture and hyperparameters are specified in the model definition file, and trains it on the synthetic data from step 1. And third, the trained model
is evaluated in terms of predictive performance and its ability to recover the rules specified in the data definition file. (B) The data definition specifies
the basic properties of the synthetic data, including the alphabet (e.g., DNA, RNA, protein) and its distribution, as well as condition-specific rules (the
grammar), which determine how information about the label y is encoded in the input x. (C) The model definition contains all information required to
create and train the model. (D) A schematic of six simulated toy data sets for multi-class classification, where the classes y correspond to cell types and
the input z are sequence windows (depicted as gray bars) that encode information about the class y at certain positions in x (colored areas). The rules that
determine how this information is encoded range from basic (cell type specific k-mer at fixed position) to complex (non-specific combinations of position
weight matrices with cell type specific spacing constraints).

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

ROC curve

micro-average (area = 0.89)
macro-average (area = 0.91)
condition c1 (area = 0.94)
condition c2 (area = 1.00)
condition c3 (area = 0.96)
condition c4 (area = 0.86)
condition ¢5 (area = 0.99)
condition ¢6 (area = 0.66)
condition c7 (area = 0.95)
condition c8 (area = 0.82)
condition c9 (area = 1.00)
condition c10 (area = 0.92)

True Positive Rate

“0.0 0.2 0.4 06 0.8 1.0
False Positive Rate

KL divergence empirical similarity score
0

0.00 0.25 0.50 0.75 1.00

20 40 60

se10

Q/\Q Q/\Q
E E

Fig. 2.

B ROC curve

1.0 micro-average (area = 0.94)

macro-average (area = 0.96)
condition c1 (area = 0.99)
condition c2 (area = 0.92)
condition ¢3 (area = 0.90)
condition c4 (area = 0.97)
condition ¢5 (area = 0.95)
condition c6 (area = 0.94)
condition c7 (area = 0.99)
condition c8 (area = 0.97)
condition c9 (area = 0.99)
condition c10 (area = 1.00)

o
®

True Positive Rate
o
>

N
=

0.2

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

KL divergence
0 10 20 30 40 50 60

empirical similarity score
0.00 0.25 0.50 0.75 1.00

Q:\Q
Ei

Selection of sequence motifs for simulation grammars. (A) ROC curve of Bayes Optimal Classifier on multi-class classification task with

10 classes, prior to filtering out ambiguous sequence motifs. (B) Same as panel A, after ambiguous sequence motifs were removed. (C) KL divergence
matrix of 10 sequence motifs, prior to filtering. (D) Empirical similarity score matrix of 10 sequence motifs, prior to filtering. (E) Same as panel C, after
removing ambiguous motifs. (F) Same as panel D, after removing ambiguous motifs.

To calculate the MPRE between motifs of unequal width,
we pad the shorter motifs with neutral positions using
background probabilities.

Another issue with equation 9 is that it does not capture
highly similar but shifted motifs. PPM; might be equiv-
alent to PPMy shifted by one position and thus consid-
ered highly similar, but MPRE(PPM;, PPM5) in its current
form does not reflect this. To resolve this, we calculate
MPRE(PPM;,PPM;) for several alignments of PPM; and
PPM, and take the minimum.

E. Empirical similarity score between two motifs

The empirical similarity score (ESS) between PPM; and
PPM; is another way to assess the similarity between two
motifs and thus the difficulty to distinguish between them.
ESS(PPM;,PPM,) is calculated by generating k (in this
work, k = 100) instances of motif 2, flanked on both sides by
background sequences of length n;, where n; is the width of
PPM; . All positions of these k sequences are then scored by
PWM; (the position weight matrix of PPM;), and the highest
score per sequence is returned. ESS(PPMy, PPMy) is then
the mean of these k scores. ESS motif matrix plots (Figure 2
and Supplementary Figure S3) depict adjusted empirical
similarity scores, which are shifted by ESSq if ESSg < 0,
where ESSy; = min; ESS(PPM;,PPM;), and normalized
such that the self similarity score ESS(PPM,, PPM;) = 1.0.

Bothh MPRE and ESS are asymmetric, i.e.,
ESS(PPM;, PPM,) # ESS(PPM,, PPM,).

F. Alphabet distribution for grammars

For all grammars discussed in this paper, we used the nat-
ural nucleotide distribution of the human genome, 29.565 %
adenine (A), 20.435 % cytosine (C), 20.435 % guanine (G),
and 29.565 % thymine (T) [9].

G. Motif database

We used HOMER motifs for all grammar sequence ele-
ments that were based on transcription factor binding site
motifs. These motifs were obtained by analyzing data from
publicly available ChIP-seq experiments [10].

H. Feature importance evaluators

While conventional test set metrics, such as ROC curves
and precision-recall curves, assess model performance based
on a set of examples (e.g., the test set), feature importance
evaluators quantify the contribution of each input feature to
the model’s prediction. In the context of seqgra, feature im-
portance evaluators are used to assess what we call grammar
or vocabulary recovery, the degree to which a model was able
to align its decision boundaries with the rules of the grammar
that was used to simulate the data it was trained on. This is
possible because for simulated data we not only know the
ground truth label for each example, but also which positions
are part of the background and thus contain no information
about the class label, and which positions were altered by
a grammar rule and thus do contain information about the
class label. These position-level annotations (background

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

positions, grammar positions) are provided for all simulated
examples.

More formally, feature importance evaluators take a model
f(x), a target y and an example x; of width n, and return z,
an n-dimensional vector that contains the attribution value
(also known as importance, relevance, contribution) of each
input position to model f(x) predicting target y. Please note
that n is the sequence length of the example, not the number
of features. For instance, if the input to the model is a 150 nt
DNA sequence, x; is a 150 by 4 matrix (one-hot encoded),
containing 600 features, but its width n = 150. Feature
attribution values in seqgra are grouped and reported at the
position level, not the input feature level.

Attribution values are visualized with so-called grammar
agreement plots, which are heatmaps depicting attributions
and position-level annotations of several examples. The plots
encode the attribution values in the color luminosity, where
lighter colors indicate low values (low feature importance)
and dark colors indicate high values (high feature impor-
tance). The position-level annotations are encoded in the
color hue, with grammar positions in green and background
positions in red.

1. Gradient-based feature importance evaluators

This large class of feature importance evaluators (FIEs)
uses backpropagation to calculate the partial derivatives of
the output, f,(x), with respect to the input, z;. seqgra
includes seven gradient-based feature importance evaluators
off-the-shelf, whose implementations are based on code by
Yulong Wang [11].

The most basic FIE, raw gradient [12], just returns the
gradient with respect to the input example z;:

Ofy(x)
(9.131' ’
or short V f,,(x;), where f;(-) is the activation of the target
neuron in the output layer, e.g., class j for multi-class
classification tasks.
The absolute gradient method or saliency is defined as

zs = [V fy(wi)l, (1)

where |x| applies the element-wise absolute value operation
to vector x.
Gradient-x-input [13] (gradient times input) is defined as

Integrated Gradients [14] takes the average of multiple
(here, K = 100) gradients evaluated along the linear path
from the baseline xy (which in seqgra is the zero vector) to
the input example z;. The method is defined as

1 & k
ZIG — E zk:ny (Kl‘l> .
seqgra also supports gradient-based methods that alter the
way the gradient is obtained using backpropagation, namely
Guided Backpropagation [15], Deconvolution [16], and

DeepLIFT [17]. The details of these methods are beyond
the scope of this work.

ZRG — (10)

13)

J. Model-agnostic feature importance evaluators

Model-agnostic FIEs do not require access to the gradients
and make no assumptions about the structure of the model,
hence the name. They rely solely on the ability to evaluate
fy(x), for various altered versions of .

Sufficient Input Subsets (SIS) [18] is a perturbation-
based method that identifies subsets of input features that
are sufficient to keep f,(x) > 7, ie., if all other features
are masked, the class prediction does not change (is still
above some threshold 7). Unlike gradient-based FIEs, which
return a real-valued vector of feature attributions, SIS returns
a binary vector, indicating for each feature whether it is part
of a sufficient input subset or not.

K. Hardware infrastructure

Models presented in this paper were trained on three
compute nodes with a total of 6 CPUs (2x Intel Xeon ES5-
2630 v4, 2x Intel Xeon Gold 6138, 2x Intel Xeon Gold
6240), 26 GPUs (8x NVIDIA GeForce GTX 1080 Ti with
11 GB GDDR5X, 10x NVIDIA GeForce RTX 2080 Ti with
11 GB GDDR6, and 8x NVIDIA Titan RTX with 24 GB
GDDR6), and a total of 833 GB of main memory. The total
GPU time (for training and evaluation) was roughly 12 GPU
months.

L. Software infrastructure

All seqgra data presented in this paper was obtained on
machines running Ubuntu 18.04.3 LTS, CUDA 10.1, cuDNN
7.6.5, Python 3.8, NumPy 1.19.2, TensorFlow 2.2.0, PyTorch
1.7.0, and R 4.0.

III. RESULTS

A. seqgra provides a reproducible, simulation-based frame-
work for neural network architecture evaluation

The method we describe in this paper (seqgra) generates
synthetic biological sequence data according to predefined
probabilistic rules in order to either (1) evaluate neural
network architectures trained on these data sets, or (2) test
whether the assumptions about the underlying biological phe-
nomenon that the probabilistic rules of the simulation process
are based on, accurately reflect experimentally obtained data.
In the former scenario, the result would be a neural network
architecture that—when trained on data sets generated from a
similar set of rules—has high predictive performance and de-
cision boundaries that closely reflect those set of generative
rules. The goal of the latter approach is to arrive at a concise
set of probabilistic rules that approximates the biological
process in question, and a neural network architecture whose
high performance on simulated data is recapitulated when
trained on experimental data.

A data set in the context of seqgra, whether obtained
by simulation or experiment, is always divided into three
subsets, training set, validation set, and test set. Each of the
subsets comprises a number of supervised examples, which
are (x,y, a)-triplets. Here, the input variable x is a biological
sequence (DNA, RNA, protein) of fixed or variable length,
also referred to as sequence window or features; y is the

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Grammar: mc2-dnal1000-homer Grammar:

task: multi-class classification with 2 classes

mc2-dnal000-homer-interaction-order

Grammar:
mc2-dnal000-homer-interaction-spacing

output: 1000-nt DNA sequence window
grammar: class-specific HOMER motifs

task: multi-class classification with 2 classes
output: 1000-nt DNA sequence window
grammar: class-specific order of HOMER motifs

task: multi-class classification with 2 classes
output: 1000-nt DNA sequence window
grammar: class-specific spacing of motifs

C, C, G, G
1] 1] (3 | LI | e
1 1 [(] [l] LI |
. 1 1 P - []
1] [} LI | TR | EEERC . |
1 [} | B | | B | 1o T |
1 1 |] 1 1 [FEEERE |
P P
] 1 1] 1] -l |
]]] 1 (B [LIRS |
] 1] e -]
D conv (10 21-nt filters),

conv (10 21-nt filters),
dense (5 units)

conv (10 21-nt filters),
batch norm, dense (5 units)

MC2: no interactions

=}
S
b

{

&

4

o o
) 3]
A S

PR AUC (predictive performance)
o
P
o

P PP PP PN S
SELSE LS LS LSS
BT PR RTRTSTADT ST P S

—e— batch norm, dense (5 units),
batch norm
conv (10 21-nt filters),

—e— batch norm, dense (5 units), —e— dropout (p = 0.3), dense (5 units),
dropout (p = 0.3)

MC2: order-sensitive interactions

0
2
»
o

%
»
2

%

%
%,
%
%
%
%,
%
%
%,
%

SRS P S
N

conv (10 21-nt filters),
dense (5 units), dropout (p = 0.3)

conv (10 21-nt filters),

dropout (p = 0.3)

MC2: spacing-sensitive interactions

O O O O O O O O O O D OO OO OO DN OO OO O
S T ST s T T O T T TS T S T
NPT R PPN PSS S
a4 N

O O P
SELESE

n (data set size)

MC2: no interactions

o
]

o
9
o

o
o
=)

o
N
3}

o
o
S)

P P PSS S

o-@ ng &Q 0-@ @Q 090 Q‘QQ ng 090 QQQ ng 090 Q@ w@ 090 Q@ w@ QQQ

NPT RTRTT A E PSS S
N

Q
%

$

Raw gradient F4 score (vocab recovery) [Tl

MC2: order-sensitive interactions

LSS LLELLLLLE LSS

MC2: spacing-sensitive interactions

P PP PP LTSS S
> § PSS § S
Q

§ PFEFEFLFLSSLESLSS S FEFLLSLSS $ & §S
$ FPFFLFLFLFLFLFFFLFLFFFLFSLFE & FLLFLFLLL S FLELFL P LS
O S M O M N I AR S S S \Q.’@Q;’&Q.\DQ.@B;‘_&Q.@Q.Q@;Q@.
NI IO

n (data set size)

Fig. 3.

seqgra-enabled ablation analysis reveals most efficient neural network architecture. (A) Schematic of binary classification grammar using

class-specific HOMER motifs as sequence elements. (B) Schematic of binary classification grammar using class-specific order of HOMER motifs. (C)
Schematic of binary classification grammar using class-specific spacing of HOMER motifs. (D) Predictive performance of six neural network architectures
with and without batch normalization and dropout. (E) Vocabulary recovery of six neural network architectures with and without batch normalization and

dropout.

target variable, the condition this example belongs to (e.g.,
cell type), which is either a mutually exclusive class or a
non-mutually exclusive label, for multi-class classification
tasks or multi-label classification tasks, respectively; and a
is the positional annotation of the example, denoting for
each position in z whether it is part of the grammar or part
of the background. Grammar positions contain information
related to y and are therefore important for classification,
whereas background positions do not and are thus irrelevant
for classification.

The core functionality of seqgra can be broken down
into three components: (1) Simulator, (2) Learner, and (3)
Evaluator. Each component corresponds to a distinct step in
the pipeline depicted in Figure 1A.

In step 1, the simulator generates a synthetic data set
according to the specifications laid out in the data definition
(see Figure 1B), a document that contains a precise descrip-
tion of the generated data, from the background nucleotide
distribution to the set of probabilistic rules that determines
how information about the condition y (label, class) is

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

—o— Basset* —#- ChromDragoNN* -e— DeepSEA*

>

MC2: no interactions MC2: order-sensitive interactions MC2: spacing-sensitive interactions
W fifM «j‘%(i

LS P P D DS O O HH O D P P DN DN PP PO DD SHSH P P P DN PO P P PP I PPN OIS HP DD
PP LLLF PSP L TP L L LLLELL L LIS
§§w&§ @ﬁébﬁ@@«°@$§$w§§w§§ﬁ%§ ®§§>§@@§W9§§§dw&§§$§w%§

o
S)

o o o
N 133 ~
33} =) o

PR AUC (predictive performance)
o
o
o

%
2
2

9
%

S P O O H O O P H H
CELFLLLFLLLFLL LS
A O e R

2
2,
2

n (data set size)

B MC10: no interactions MC10: interactions MC10: order-sensitive interactions MC10: spacing-sensitive interactions
m
8 1.00
c
©
£
S
£ 0.75
@
aQ
2
5 0.50
S
-
@
=
~0.25
(]
2
<
& 0.00
PELELLELLLLLLSISS SIS PP SIS SIS PP PSS O P LS PP, LSS
A A A A A P P P P I A P P A A A A A A P P P P P A A A A A A AP PO PP S PS AO AR S A A A ACA A P P AP AN
R R e e O O N N R O S A N K O R O N R N R O IR R S N NI N M A SR N RO O R N R A
oS 00 00 O
n (data set size)
MC20: no interactions MC20: interactions MC20: order-sensitive interactions MC20: spacing-sensitive interactions
n
8 1.00
=
©
€
S
Lo75
o)
Q
2
= 0.50
S
k=]
@
=
~0.25
S
< _a{/l
& 0.0
a o
PELELLLELLLLLLSL LSS PSS SIS PP, LLLLLLL LS PP, LS
B P A e A A A T e S A A S PO A A A T P P A A P P A A A S PO A A P P P P A A P P P A A A PO PP P P AP
e R e O O N N R O N N i R O e R O R R R R O o I N R R R R O N R N R O I SR SRS RO RORON SRS
A A0 NS A
n (data set size)
MC50: no interactions MC50: interactions MCS50: order-sensitive interactions MC50: spacing—sensitive interactions
—
)
8 1.00
c
o]
£
S
L 075
o)
Q
)
>
= 0.50
°Q
k=]
&
~0.25
[&]
2
<
14
o 0.00

PPN LSS, PP, LSS PP, LSS PPN SH
T R T O P P P A A P A A AP
U e O A N O R O S R i O M S O A R N R S D I A e N O O O R N e N R M R RS SRR N R S S

e X XX e
n (data set size)

*input and output layers adapted for task, architecture only (no pre—training)

Fig. 4. Comparison of neural network architectures Basset, ChromDragoNN, and DeepSEA. (A) Predictive performance on binary classification
tasks of grammars with class-specific HOMER motifs (left), class-specific order of HOMER motifs (middle), and class-specific spacing of HOMER motifs.
All architectures were trained on data sets ranging in size from 10,000 examples to 2,000,000 examples. Error bars are standard errors of five models
trained on the same grammar, using five different simulation seeds. (B) Same as panel A, for multi-class classification tasks with 10 classes. The second
plot from the left shows the predictive performance of models trained on data sets with class-specific interactions of HOMER motifs. (C) Same as panel
B, for multi-class classification tasks with 20 classes. (D) Same as panel B, for multi-class classification tasks with 50 classes.

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

encoded in the sequence window z. This set of probabilistic
rules is also referred to as grammar or sequence grammar
throughout this manuscript (hence the name seg-gra), and
although related to formal grammars, seqgra’s probabilistic
rules are not expressed as and not equivalent to production
rules in the context of formal language theory.

Schematic depictions of six toy data sets, generated from
probabilistic rules of varying complexity, are shown in
Figure 1D. In each case, the data set contains examples
belonging to one of four classes and the probabilistic rules
determine how information about the class ¥ (in this case, the
cell type) is encoded in the sequence window x. The ability
to recover this relationship during training is imperative for
the model’s predictive performance. The sequence windows
of the examples are shown as gray bars with colored spots,
where background positions are shown in gray and grammar
positions are shown in color. In the first example, each of
the four cell types can easily be identified by the presence of
a class-specific k-mer at the center of the sequence window,
a relationship that, unsurprisingly, can be learned perfectly
(i.e., close to an ROC AUC of 1.0) and efficiently (i.e., with
few training examples) by most neural network architectures.
Since a set of rules as simple as the one used in example
1 will almost always be an inadequate description of any
biological process, seqgra allows for various ways to increase
the complexity. Example 2 represents a small step up in
complexity by replacing the fixed, class-specific k-mer with
a class-specific position weight matrix (PWM), which is
a common representation of naturally occurring sequence
elements, such as binding sites for a transcription factors.
Another small step up in complexity is example 3, where
the PWM is placed randomly within in sequence window.
In example 4 none of the PWMs is class-specific, only
a combination of PWMs. Rules like these could be used
to model cell type specific chromatin accessibility that is
dependent on the interaction between transcription factors.
Examples 5 and 6 encode class information in the relative
position of PWMs instead of their presence or absence, with
example data set 5 using class-specific order constraints and
example data set 6 class-specific spacing constraints.

Once the synthetic data set is generated, it is used by the
learner component in step 2 to train a neural network model.
It is important to note that the learner only has access to x
and y of the (x,y,a) example triplets, and the positional
annotations a are only utilized in step 3. Analogous to the
role of the data definition for the simulator in step 1, the
model definition (see Figure 1C) serves as a blueprint for
the learner by providing a precise description of the neural
network architecture, the loss function, the optimizer, and
hyperparameters of the training process, and thus ensuring
a reproducible model creation, training, and serving process
for both PyTorch and TensorFlow models.

In step 3, the fully trained model from step 2 is then
evaluated with the help of an array of conventional test set
metrics and feature importance evaluators, such as Integrated
Gradients [14] and Sufficient Input Subsets [18].

As a means to illustrate the various inputs and output

of this pipeline, we prepared the results of a single seqgra
analysis in Supplementary Figure S2. For this example, we
used a simple grammar, similar to the one described in
example 1 of Figure 1D, but instead of always inserting the
class-specific k-mer, we use different insertion probabilities
for each class, ranging from 100 % present in examples
of class 1, C1, to 80 % present in Cy, 60 % present
in Cs, 40 % present in Cy, 20 % present in C5, 10 %
present in Cg, 5 % present in C7, and only present in 1 %
of Cs examples. We chose a neural network architecture
with two hidden layers, a convolutional layer, followed
by a fully connected layer (Supplementary Figure S2A).
After the simulation process finished, diagnostic plots were
generated, depicting a heatmap of grammar positions for all
examples per class (Supplementary Figure S2B). These so-
called positional grammar probabilities (i.e., the probability
for a specific position to be a grammar position), depicted
in the heatmap correspond to the insertion probabilities of
the grammar, as expected. Furthermore, the class-specific
ROC curves in Supplementary Figure S2C show that the
chosen neural network architecture was optimal in terms
of predictive performance, with true positive rates of 1.0,
0.8, 0.6, 0.4, 0.2, 0.1, 0.05, and 0.01 (at the zero false
positive level) for the classes C to Cg, which are the the-
oretical upper limits given the insertion probabilities of the
underlying grammar. This is also reflected in the precision-
recall curves in Supplementary Figure S2D. In panels E to
G we show the results of the feature importance evaluators
raw gradient, absolute gradient, and Sufficient Input Subsets
(see sections II-I and II-J for details). These heatmaps show
whether the model’s predictions were based on relevant (i.e.,
grammar) positions and are therefore an indication of the
model’s ability to recover the underlying grammar of the
data set. All three methods suggest high grammar recovery
(many dark green positions, few dark red positions).

Supplementary Figure S2 covered the results obtained
from a single seqgra call, evaluating one neural network
model trained on one synthetic data set, but most seqgra
analyses compare various different architectures across a
range of data sets (of different grammar complexities and
sizes). For these situations, we provide a suite of convenient
commands that streamline these analyses and provide a
schematic description of their inputs and outputs in Sup-
plementary Figure S1.

B. Selection of unambiguous set of HOMER sequence motifs

In order to generate synthetic data sets that are closer to
experimentally obtained data sets, we replaced the artificially
constructed k-mers used in the insertion probability grammar
of Supplementary Figure S1 with transcription factor binding
site motifs which were obtained from ChIP-seq assays and
curated by HOMER [10]. However, before a collection of
experimentally obtained motifs can be used effectively as
sequence elements in grammars, degenerate motifs must
be excluded. These include motifs with low information
content and highly similar motif pairs. If these motifs are
used as sequence elements that encode information about

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

the condition y, but either cannot be differentiated from the
background distribution or motifs specific to one condition
are highly similar to motifs specific to another condition, the
conditions are rendered inseparable and learning becomes
impossible. This scenario is shown in Figure 2A, which
depicts the test set ROC curves of a Bayes Optimal Clas-
sifier (BOC) for 10 classes of a data set generated by a
grammar using 10 randomly selected HOMER motifs as
class-specific sequence elements. BOCs in the context of
seqgra are used to determine whether the conditions of
a grammar are separable in principle, i.e., regardless of
data set size and neural network architecture. Instead of
neural network models whose weights are adjusted during
training, the BOC has access to the data definition and
uses the rules and sequence elements specified there directly
to classify the examples. If the predictive performance of
the BOC is low, as is the case with conditions Cg, Cs,
and Cy shown in Figure 2A, the rules associated with
those conditions are not specific enough to differentiate
between them. And since the rules in this case place a
supposedly condition-specific sequence element at a random
position in the sequence window, the only explanation is
that these sequence elements are either indistinguishable
from background or indistinguishable from each other. The
latter is shown in the matrices in Figure 2C and Figure 2D,
which identify the corresponding sequence elements SEg,
SEg, and SE4 as most similar to other sequence elements,
i.e., lowest KL divergence and highest empirical similarity
score, respectively (for details, see sections II-D and II-E).

Figure 2B shows BOC performance after the most am-
biguous motifs were removed, and the corresponding KL
divergence and empirical similarity score matrices are shown
in Figure 2E and F. A collection of experimentally derived
sequence motifs will never be completely orthogonal, but
the degree of dissimilarity between these 10 were deemed
sufficient and all subsequent multi-class classification gram-
mars with 10 classes used these 10 motifs. Supplementary
Figure S3 shows the same selection process for a collection
of 100 HOMER motifs. All HOMER motifs used in this
study are listed in Supplementary Table S1, together with a
IUPAC notation of the motif, the motif information content
(see section II-B) and the KL divergence between the motif
and the background distribution (see section II-C). Motifs
used for binary classification tasks are listed in Supplemen-
tary Table S2, those for multi-class classification tasks with
10, 20, and 50 classes are listed in Supplementary Tables S3,
S4, and S5, respectively.

C. seqgra-enabled ablation analysis reveals most efficient
neural network architecture

Ablation, a technique widely used in neuroscience to de-
termine the functions of brain regions by removing them one
by one, has been used similarly to identify the relevant com-
ponents of an artificial neural network [19,20]. We performed
an ablation analysis to determine the effects of dropout [21]
and batch normalization [22] on the predictive performance
and grammar recovery of a basic neural network architecture

with two hidden layers, a convolutional layer with 10 21-
nt wide filters, followed by a dense layer with 5 hidden
units, and dropout or batch normalization operations after
each layer. Models were trained on binary classification data
sets generated by grammars using class-specific HOMER
motifs (see schematic in Figure 3A), class-specific order
of HOMER motifs (Figure 3B), and class-specific spacing
constraints between HOMER motifs (Figure 3C). Test set
precision-recall curve AUCs are shown for all models across
all grammars in Figure 3D. Unsurprisingly, the predictive
performance of all architectures increases with data set
size, and all architectures approach a PR AUC of 1.0 for
sufficiently large data sets. But this analysis reveals a striking
difference between the neural network architectures in terms
of their efficiency, i.e., how many training examples are
required to reach an AUC of approximately 1.0. On the
grammars tested here, batch normalization had a negative
effect on efficiency, requiring up to 100,000 examples more
to converge than architectures without the operation. The
architecture with dropout after each hidden layer was the
most efficient and highest performing, both in terms of pre-
dictive performance and grammar recovery (i.e., the model’s
propensity to classify examples based on grammar positions)
as shown in Figure 3E.

D. DeepSEA dominates comparison of popular genomics
deep learning architectures

Furthermore, we compared three popular neural network
architectures used in the field of genomics, Basset [3],
ChromDragoNN [6], and DeepSEA [5]. All three architec-
tures were devised with functional genomics data sets in
mind and were originally trained on multi-label classifica-
tion data sets obtained from numerous DNase-seq assays,
with ChromDragoNN also utilizing RNA-seq and DeepSEA
ChIP-seq data. With over 4 million (Basset), over 6 million
(DeepSEA), and over 20 million (ChromDragoNN) trainable
parameters, all three can be considered high-capacity models.
The three architectures make use of commonly used building
blocks such as convolutional, followed by dense layers (all
three), max pooling and dropout operations (all three), ReLU
activation functions (all three), batch normalization (Basset
and ChromDragoNN), and skip connections (ChromDrag-
oNN). Input and output layers were adjusted to fit the
prediction task and architectures were trained on simulated
data sets from scratch without pre-training on their original
data sets.

We used the area under the micro-averaged precision-
recall curve to evaluate the test set predictive performance
on four multi-class classification tasks (with 2, 10, 20,
and 50 classes) and three or four grammars each, with
a sequence window of 1000 nucleotides. The results are
shown in Figure 4A for binary classification, and Figures 4B,
4C, and 4D for multi-class classification with 10, 20, and
50 classes, respectively. The HOMER motifs used by the
grammars presented here are listed in Supplementary Tables
S2-S5. Each panel contains precision-recall AUCs of models
trained on data sets generated by one grammar, using 5

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A 1. Model Architecture Selection 2. Final Model Training
with Simulated Data with Experimental Data
Machine Learning Model Simulated Data Machine Learning Model Experimental Data
(Theory-informed)
N convolution, P tight spacing convolution, SOX2 & PO5F1
= e : = ¥ :
c—- GMP, I constraints o—- GMP, \ ChlIP. seq
dense dense experiments
B D ROC curves of torch-mc2-dna150-fc10 E ROC curves of torch-mc2-dna150-conv10-conv10-gmp-fcs
Model: torch-mc2-dna150-fc10 10 10 9
% .
library: PyTorch ,,'/ /'/
architecture: 08 e 08 ol
g ¥
fully connected layer with 10 units e 4
/l /l
) o ° e
& 06 el & 06 e
© 2 ° /
Model: torch-mc2-dnal50-conv10-gmp-fc5 204 7 204 7
. .
K . .
llbra_ry: PyTorch // //
architecture: 02 e 02 e
%] %
convolutional layer with 10 11-nt wide filters, s e
global max pooling operation, it simulated data (area = 0.57) it simulated data (area = 0.76)
fully connected layer with 5 units 7 experimental data (area = 0.60) " experimental data (area = 0.79)
. .
0.0 0.2 0.4 06 0.8) 0.2 0.4 06 0.8 1.0
False Positive Rate False Positive Rate
* R i L I = =
o S el il el vy S -- = — T —— _—
N e 2 - = - g
o e o s g - - e -
o el P K ¥ | 3 .. o -
B o e, M 5 = S _ - - _
R A o Th =t R =5 =
£ RS SR - - -
RO | falCe e RS- e o - . - = = .
50 50 100 150
position position
Iluminosity encodes feature importance: from light (low feature importance) to dark (high feature importance) luminosity encodes feature importance: from light (low feature importance) to dark (high feature importance)
hue encodes annotation: green (grammar position), red (background position) hue encodes annotation: green (grammar position), red (background position)
Fig. 5. Predictive performance and grammar recovery of various model architectures on simulated and experimental data. (A) Schematic

of model selection process: first, identify suitable model architectures on simulated data; second, train models with simulation-vetted architectures on
experimental data. (B) Naive neural network architecture with fully connected layer. (C) Grammar-informed neural network architecture with convolutional
layer, global max pooling, and fully connected layer. (D) Predictive performance of naive architecture, trained and evaluated on simulated and experimental
data. (E) Predictive performance of grammar-informed architecture, trained and evaluated on simulated and experimental data. (F) Grammar agreement
plot (Integrated Gradients) of naive architecture, trained on experimental data. (G) Grammar agreement plot (Integrated Gradients) of grammar-informed

architecture, trained on experimental data.

different random seeds for simulation (error bars) and 19
different data set sizes. The DeepSEA architecture exhibited
an at times substantially higher predictive performance than
Basset and ChromDragoNN and was the highest performing
architecture on all tested data sets. While DeepSEA is the
preferred architecture on data sets derived from the grammars
we tested, this is not necessarily true for data sets with other
grammars or experimentally obtained data. Interestingly, we
observed that high capacity architectures such as those tested
here perform better on data sets generated by grammars that
include interactions, specifically interactions that encode the
class label in the order or spacing of the interacting sequence
elements. This is not the case for small-scale architectures
with less than 100,000 trainable parameters, which, as ex-
pected, do better on grammars without interactions, where
the class label is encoded in the presence of class-specific
sequence elements.

10

E. High predictive performance of simulation-vetted neural
network architecture recapitulated with ChlP-seq data

In this section we address the question of whether neural
network architectures that perform well on simulated data
also succeed on data obtained experimentally. We decided
to model the well-known hetero-dimeric pair of transcrip-
tion factors SOX2 and POUS5F1, whose spacing constraints
were previously characterized [23,24]. To that end, we
used the HOMER motifs SOX2_HUMAN.H11MO.O0.A and
PO5F1_HUMAN.H11MO.1.A as sequence elements in the
data definition. We also included spacing constraints (0-3
bp between SOX2 and POSF1 motifs). Figure 5SA shows a
schematic depiction of the analysis.

The experimental data set was based on two ChIP-seq
assays, which targeted the two transcription factors. The
preprocessed data was obtained from the Cistrome Data
Browser [25], specifically the data associated with GEO IDs
GSM1701825 for SOX2 and GSM1705258 for POUSFI.

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

We evaluated the same neural network architectures on
both the simulated and the experimental data sets. The
architecture described in Figure 5B with one fully connected
layer (not counting the output layer) is an example of an
architecture that does not assume any structure in the input.
It is a naive architecture in the sense that it was constructed
without any knowledge about the grammar that was used to
simulate the data. The architecture described in Figure 5C,
on the contrary, makes assumptions about the data that are in
agreement with the grammar, such as a 1D spatial structure
with information encoded in 11-nt long code words (enough
to cover the SOX2-POUSF1 interaction), whose position in
the sequence window is irrelevant.

As expected, the test set predictive performance of the
naive architecture (Figure 5D) was significantly lower than
the grammar-informed architecture (Figure 5E). Furthermore,
the performance on the simulated data proved to be a
good predictor for the performance on the experimental data
(Figure 5D and E).

The agreement between feature importance and the gram-
mar positions, a proxy for a model’s ability to recover
the SOX2 and POUSF1 motifs, is shown in Figure 5F for
the naive architecture and in Figure 5G for the grammar-
informed architecture. The grammar-informed model’s pre-
dictions were based almost exclusively on grammar posi-
tions (positions that contained SOX2 and POUSF1 motifs),
whereas this was not the case for the naive model. Both
panels were created with the Integrated Gradients feature
importance evaluator.

IV. DISCUSSION

In this paper we introduced seqgra, a deep learning infras-
tructure method for genomics. It is intended to streamline
the development of deep learning models for biological
sequence-based prediction tasks, by providing a reproducible
unified framework for (1) flexible, rule-based synthetic data
generation; (2) model training; and (3) model evaluation
with conventional test set metrics and feature attribution
methods. This three-step pipeline supports data sets obtained
by simulation and experiment, models implemented in Py-
Torch and TensorFlow, and numerous gradient-based feature
attribution methods as well as Sufficient Input Subsets, a
model-agnostic feature attribution method, in addition to
conventional ROC and precision-recall curves for model
evaluation. Our method greatly simplifies an array of com-
monly performed diagnostics and performance assessments
of deep learning models, such as ablation analysis, estimated
data set size requirements, and tolerated noise thresholds.
The simulator and the language of the probabilistic rules are
flexible enough to span multi-class and multi-label classi-
fication tasks with any number of classes or labels, DNA
or amino acid sequence windows of variable or fixed length,
class-dependent background distributions, sequence elements
defined as position weight matrices or list of k-mers with
associated probabilities, and interactions between sequence
elements with associated order or spacing constraints.

Moreover, the controlled environment of data simulation
and reproducible model training, serving, and evaluation
makes seqgra a suitable testbed for feature attribution and
interpretability methods and their interdependencies with
neural network architectures and the complexity level of the
training data. The framework can even be used to perform ex-
tensive comparisons between deep learning libraries, which
are rarely done (see Supplementary Figures S7 and S8) or
identify undocumented behavior of the deep learning tech-
nology stack, such as an unusual training instability caused
by a random seed of zero on some grammar-architecture
combinations, which is reproducible and occurs in both
PyTorch and TensorFlow (see Supplementary Figures S4 -
S6).

To avoid confusion, we would like to point out that
seqgra is not a neural architecture search technique in
the sense that it will not propose suitable neural network
architectures for a particular data set. The model definition
is an input, not an output of the seqgra pipeline. However,
seqgra can be used in conjunction with neural architecture
search, such as AMBER [26], a neural architecture search
method for architectures aimed at genomics prediction tasks,
or general hyperparameter optimization methods, such as
Hyperband [27].

One caveat of all simulation-based approaches is the
inevitable gap between simulated and real-world data sets,
in the sense that the former is always a simplified approxi-
mation of the latter. Thus insights gained from simulated data
might not carry over to the experimental world. In fact, to a
certain degree this will always be the case. However, while
high-performing neural network architectures on simulated
data might not perform as highly on experimental data, the
opposite is rarely the case, i.e., low-performing architectures
in simulation are unlikely to improve when trained on noisier
and/or smaller experimental data sets.

While the intricacies of noisy and biased high-throughput
genomics experiments make for highly complex and poorly
understood data sets, training highly complex alchemy-
like [28] deep neural networks on them contributes little to
a mechanistic understanding of the biological processes that
are at work underneath and might worsen the reproducibility
crisis in both machine learning [29] and biology [30,31].
Simulated data, however, is perfectly understood, its noise
levels controlled and any biases artificially introduced and
accounted for, which makes it an excellent environment for
model evaluation. With seqgra, the clean room of simulated
data and a precise description of the patterns in the data (i.e.,
the probabilistic rules in the data definition) on the one end
is paired with an array of feature attribution methods on the
other, to answer questions that are often impossible to answer
with poorly understood genomics data. One such question is
whether the predictions of the model are based on those parts
of the input that are in fact relevant for the phenomenon that
is predicted, or, to put it another way, whether the model
was able to recover the underlying rules of the data set.

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

AVAILABILITY

The source code of the seqgra package is hosted
on GitHub (https://github.com/gifford-1lab/
seqgra) and licensed under the MIT license. seqgra is
part of the Python Package Index PyPI and can be installed
using pip, the Python package installer. Extensive documen-
tation can be found at https://kkrismer.github.
io/seqgra.

AUTHOR CONTRIBUTIONS

Conceptualization, K.K, D.K.G.; Methodology, K.K.;
Software, K.K. and J.H; Formal Analysis, K.K. and J.H.;
Investigation, K.K.; Resources, D.K.G.; Data Curation, K.K.;
Writing - Original Draft, K.K.; Writing - Review & Editing,
KK., J.H, and D.K.G.; Visualization, K.K.; Supervision,
D.K.G.; Funding Acquisition, D.K.G.

ACKNOWLEDGEMENTS

We thank members of the Gifford lab for insightful
suggestions and discussions.

FUNDING

We gratefully acknowledge funding from NIH grants
1RO1HGO008754 (D.K.G.) and 1ROINS109217 (D.K.G.), and
National Science Foundation Graduate Research Fellowship
(1122374) (J.H.).

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES
[1] Boyle, A. P, Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H.,
Weng, Z., Furey, T. S., and Crawford, G. E. (Jan, 2008) High-
resolution mapping and characterization of open chromatin across the
genome. Cell, 132(2), 311-322.
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., and
Greenleaf, W. J. (Dec, 2013) Transposition of native chromatin for fast
and sensitive epigenomic profiling of open chromatin, DNA-binding
proteins and nucleosome position. Nat Methods, 10(12), 1213-1218.
Kelley, D. R., Snoek, J., and Rinn, J. L. (07, 2016) Basset: learning
the regulatory code of the accessible genome with deep convolutional
neural networks. Genome Res., 26(7), 990-999.
Quang, D. and Xie, X. (06, 2016) DanQ: a hybrid convolutional and
recurrent deep neural network for quantifying the function of DNA
sequences. Nucleic Acids Res., 44(11), el107.
Zhou, J. and Troyanskaya, O. G. (Oct, 2015) Predicting effects of
noncoding variants with deep learning-based sequence model. Nat.
Methods, 12(10), 931-934.
Nair, S., Kim, D. S., Perricone, J., and Kundaje, A. (07, 2019) Integrat-
ing regulatory DNA sequence and gene expression to predict genome-
wide chromatin accessibility across cellular contexts. Bioinformatics,
35(14), 1108-il16.
Avsec, Z., Kreuzhuber, R., Israeli, J., Xu, N., Cheng, J., Shrikumar,
A., Banerjee, A., Kim, D. S., Beier, T., Urban, L., Kundaje, A.,
Stegle, O., and Gagneur, J. (06, 2019) The Kipoi repository accelerates
community exchange and reuse of predictive models for genomics. Nat
Biotechnol, 37(6), 592-600.
Chen, K. M., Cofer, E. M., Zhou, J., and Troyanskaya, O. G. (04, 2019)
Selene: a PyTorch-based deep learning library for sequence data. Nat
Methods, 16(4), 315-318.
Piovesan, A., Pelleri, M. C., Antonaros, F., Strippoli, P., Caracausi,
M., and Vitale, L. (Feb, 2019) On the length, weight and GC content
of the human genome. BMC Res Notes, 12(1), 106.

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10] Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y. C., Laslo, P.,
Cheng, J. X., Murre, C., Singh, H., and Glass, C. K. (May, 2010) Sim-
ple combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell identities.
Mol Cell, 38(4), 576-589.

Wang, Y. Pytorch-Visual-Attribution. https://github.com/
yulongwangl2/visual-attribution (2018).

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014) Deep Inside
Convolutional Networks: Visualising Image Classification Models and
Saliency Maps. In Bengio, Y. and LeCun, Y., (eds.), 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Workshop Track Proceedings, .
Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K.,
and Miiller, K.-R. (08, 2010) How to Explain Individual Classification
Decisions. Journal of Machine Learning Research, 11, 1803-1831.
Sundararajan, M., Taly, A., and Yan, Q. (2017) Axiomatic Attribution
for Deep Networks. In Precup, D. and Teh, Y. W., (eds.), Proceedings
of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, PMLR Vol. 70 of
Proceedings of Machine Learning Research, pp. 3319-3328.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. A.
(2015) Striving for Simplicity: The All Convolutional Net. In Bengio,
Y. and LeCun, Y., (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings, .

Zeiler, M. D. and Fergus, R. (2014) Visualizing and Understanding
Convolutional Networks. In Fleet, D. J., Pajdla, T., Schiele, B., and
Tuytelaars, T., (eds.), Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part I, Springer Vol. 8689 of Lecture Notes in Computer Science, pp.
818-833.

Shrikumar, A., Greenside, P, and Kundaje, A. (2017) Learning Im-
portant Features Through Propagating Activation Differences. PMLR,
70, 3145-3153.

Carter, B., Mueller, J., Jain, S., and Gifford, D. (16-18 Apr, 2019)
What made you do this? Understanding black-box decisions with
sufficient input subsets. Proceedings of Machine Learning Research,
89, 567-576.

Meyes, R., Lu, M., de Puiseau, C. W., and Meisen, T. (2019) Ablation
Studies in Artificial Neural Networks. CoRR, abs/1901.08644.
Lillian, P., Meyes, R., and Meisen, T. (2018) Ablation of a Robot’s
Brain: Neural Networks Under a Knife. CoRR, abs/1812.05687.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhut-
dinov, R. (1, 2014) Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. J. Mach. Learn. Res., 15(1), 1929-1958.
Ioffe, S. and Szegedy, C. (07, 2015) Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate Shift.
In Proceedings of the 32nd International Conference on Machine
Learning PMLR Vol. 37 of Proceedings of Machine Learning Research
- ICML’15, pp. 448-456.

Chew, J. L., Loh, Y. H., Zhang, W., Chen, X., Tam, W. L., Yeap,
L. S., Li, P, Ang, Y. S., Lim, B., Robson, P., and Ng, H. H. (Jul,
2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the
Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol, 25(14),
6031-6046.

Guo, Y., Mahony, S., and Gifford, D. K. (2012) High resolution
genome wide binding event finding and motif discovery reveals
transcription factor spatial binding constraints. PLoS Comput Biol,
8(8), €1002638.

Mei, S., Qin, Q., Wu, Q., Sun, H., Zheng, R., Zang, C., Zhu, M.,
Wu, J., Shi, X., Taing, L., Liu, T., Brown, M., Meyer, C. A., and Liu,
X. S. (01, 2017) Cistrome Data Browser: a data portal for ChIP-Seq
and chromatin accessibility data in human and mouse. Nucleic Acids
Res, 45(D1), D658-D662.

Zhang, Z., Park, C. Y., Theesfeld, C. L., and Troyanskaya, O. G. (2021)
An automated framework for efficiently designing deep convolutional
neural networks in genomics. Nat Mach Intell, 3, 392-400.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and Talwalkar,
A. (2016) Efficient Hyperparameter Optimization and Infinitely Many
Armed Bandits. CoRR, abs/1603.06560.

Hutson, M. (2018) AI researchers allege that machine learning is
alchemy. Science,.

Hutson, M. (2018) Artificial intelligence faces reproducibility crisis.
Science, 359(6377), 725-726.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448415; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

[30] Begley, C. G. and Ellis, L. M. (Mar, 2012) Drug development: Raise
standards for preclinical cancer research. Nature, 483(7391), 531-533.

[31] Baker, M. (05, 2016) 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604), 452-454.

https://doi.org/10.1101/2021.06.14.448415
http://creativecommons.org/licenses/by/4.0/

