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Abstract

Summary: Semantic annotation facilitates the use of background knowledge in analysis. This
includes approaches that sort entities into groups, clusters, or assign labels or outcomes that are
typically difficult to derive semantic explanations for. We introduce Klarigi, a tool that creates
semantic explanations for groups of entities described by ontology terms implemented in a manner
that balances multiple scoring heuristics. We demonstrate Klarigi by using it to identify
characteristic terms for text-derived phenotypes of emergency admissions for two frequently
conflated diagnoses, pulmonary embolism and pneumonia. Klarigi provides a universal method by
which entity groups or labels can be explained semantically, and thus contributes to improved
explainability of analysis methods.

Availability and Implementation: Klarigi is freely available under an open source licence at
http://github.com/reality/klarigi. Supplementary data is available with this article.
Contact: l.slater.1@bham.ac.uk

1 Introduction

Over the last two decades, biomedical knowledge has increasingly been represented in the form of
ontologies. Ontologies provide a large corpus of formalized knowledge, facilitating the use of
background knowledge in analysis and knowledge synthesis across many biomedical disciplines.
Ontology-based analysis has been leveraged across many tasks including prediction of protein
interaction and rare disease variants [1]. In the clinical space, similar analysis methods have been
applied across a wide range of applications including diagnosis of rare and common diseases [2, 3], as
well as the identification of subtypes of diseases, such as autism [4]. In addition, the synthesis of
ontology-based methods and machine learning is increasingly common [5]. Despite the increasing use
of semantics in analysis, the anticipated subsequent derivation of semantic explanations for
classifications, outcomes, labels, or groups generated by those analyses, remains a challenging task,
and a major practical, ethical, and technical issue in biomedical analysis.

Semantic explanation is the task of producing, given a set of entities described by ontology terms,
a set of terms that characterises the set of entities. Several previous methods have been developed to
achieve this, such as semantic regression, which seeks to describe the functionality of clustered genes
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or protein arrays [6]. These approaches are often concerned with genetics, focusing on the
measurement of the probability of terms appearing in a group. For example, gene enrichment
analysis coupled with with a hypergeometric test identifies terms that are significantly
over-expressed in a set of genes [7].

Our approach improves upon these methods in several ways. By introducing several heuristics
that measure a candidate term’s explanatory power, the approach provides multiple metrics for
configuration and interpretation. Furthermore, hypergeometric gene enrichment is a univariate
method, while Klarigi produces sets of terms which, considered individually or together, exclusively
characterises multiple groups. We have previously applied this approach to faceted clusters of
text-derived phenotypes [8]. However, in this work, we generalise the algorithm, and present a
standalone application that can be used with any group or set of groups of entities associated with
ontology classes.

2 Approach

Our approach calculates three heuristics to measure the explanatory power of candidate terms:
inclusivity, exclusivity, and specificity. Inclusivity measures the proportion of entities in a group of
terms where at least one is subclass of or equivalent to the candidate term. Conversely, exclusivity
measures the proportion of entities in other groups of terms with at least one being a subclass of or
equivalent to the candidate term. Specificity is a measure of term specificity, calculated through a
configurable information content measure. These scores are calculated for all classes associated with
all members of a group and their superclasses.

Klarigi then uses these heuristics to identify explanatory sets of terms for the group. To evaluate
explanatory sets, we further define measurements of overall inclusivity and exclusivity. Overall
inclusivity measures the proportion of group members that contain at least one term that is a
subclass of a term in the explanatory set. Conversely, overall exclusivity measures the proportion of
members of other groups that are excluded by at least one term in the explanatory set. This process
involves optimisation of several variables, and can therefore can be considered as a multiple objective
optimisation problem, considering the scoring heuristics as objective functions. The ε-constraints
solution retains one objective function, and transforms the rest into a set of constraints between
which the remaining objective function can be optimised [9]. Our method is based upon this
solution, retaining overall inclusivity as the objective function. However, instead of optimising this
within a set of static constraints, it steps down through upper constraint boundaries in a priority
order, to optimise overall inclusivity while also identifying large values of the other measures. A full
characterisation of the measures and method is available in the supplementary material.

3 Use Case: Pulmonary Embolism

Pulmonary embolism, a condition associated with considerable mortality rates, presents in ways that
render the conditions difficult to diagnose when associated with other comorbidities, such as COPD,
and typically shares symptoms with other more common conditions, such as pneumonia and acute
bronchitis [10]. The critical time dependence of treatment on diagnosis makes it important to
identify combinations of discriminating symptoms as rapidly as possible [11]. To demonstrate
Klarigi’s functionality, and to gain insight into the phenotypic presentations associated with
pulmonary embolism and pneumonia, we created and evaluated text-derived phenotype profiles for
characterising terms.

We identified 337 admissions in MIMIC-III [12] whose primary coded diagnosis was pulmonary
embolism (ICD-9:41519), and 704 with pneumonia (ICD-9:486), for a total of 1,041 admissions. We
then used Komenti [13] to perform concept recognition on the discharge letters for the admissions
with the Human Phenotype Ontology (HPO), identifying 43,597 terms in total. We then excluded
negated and uncertain terms, using Komenti, producing a set of phenotype profiles for the
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Table 1. Explanatory sets for text phenotypes derived for admissions whose primary diagnosis was
pulmonary embolism or pneumonia.

pulmonary embolism (337 members) Exclusion Inclusion IC
Chest pain (HP:0100749) 0.71 0.39 1.0
Hypertension (HP:0000822) 0.52 0.5 0.89
Dyspnea (HP:0002094) 0.46 0.43 0.82
Increased blood pressure (HP:0032263) 0.52 0.5 0.82
Abnormal breath sound (HP:0030829) 0.38 0.41 0.8
Abnormal systemic blood pressure (HP:0030972) 0.38 0.63 0.76
Edema (HP:0000969) 0.4 0.58 0.67
Abnormality of fluid regulation (HP:0011032) 0.37 0.6 0.67
Overall 0.86 0.96 -
pneumonia (704 members) Exclusion Inclusion IC
Hypertension (HP:0000822) 0.5 0.48 0.89
Cough (HP:0012735) 0.73 0.63 0.87
Dyspnea (HP:0002094) 0.57 0.54 0.82
Increased blood pressure (HP:0032263) 0.5 0.48 0.82
Fever (HP:0001945) 0.74 0.47 0.82
Abnormal breath sound (HP:0030829) 0.59 0.62 0.8
Overall 0.7 0.97 -

admissions consisting of all positive concept mentions in their discharge letters. This constitutes
grouped data with which Klarigi can derive characteristic explanations, shown in Table 1.

Our findings almost precisely mirror those reported by [10], although we do not have imaging and
clinical pathology data available. Particularly, that there is a strong cross-over in the characteristic
phenotypes associated with the two diseases. Many phenotypes, such as chest pain, have exclusion
and inclusion values that add up to around one, indicating low discriminatory power. Several
individual phenotypes show greater discriminatory power, with cough and fever being more strongly
and exclusively associated with pneumonia. Moreover, overall inclusivity and exclusivity values show
that both explanatory sets, are discriminatory (though many individual terms are not). We also find
that edema, not considered by [10], is a discriminator when it appears with other pulmonary
embolism-associated phenotypes.

4 Conclusion

Klarigi enables researchers to create semantic explanations for any entity groups associated with
ontology terms. As such, it presents a contribution to the reduction of unexplainability in semantic
analysis.
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