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Abstract

Background Annotation of biomedical entities with ontology terms facilitates the use of background
knowledge in analysis. Described entities may be stratified into groups or otherwise assigned labels, and it is of
interest to identify semantic characterisations of these groups based on their ontological annotations. Enrichment
analysis is routinely employed to identify classes that are over-represented in annotations across sets of groups,
most often applied to gene set analysis. However, these approaches usually consider only univariate relationships,
make limited use of the semantic features of ontologies, and provide limited information and evaluation of the
explanatory power of both singular and grouped candidate classes. Moreover, they do not solve the problem of
deriving cohesive, characteristic, and discriminatory sets of terms for entity groups.

Results We develop a new tool, Klarigi, which introduces multiple scoring heuristics used to identify classes
that are both explanatory and discriminatory for groups of entities annotated with ontology terms. The tool
includes a novel algorithm for derivation of multivariable semantic explanations for entity groups, makes use of
semantic inference through live use of an ontology reasoner, and includes a classification method for identifying the
discriminatory power of candidate sets. We describe the design and implementation of Klarigi, and evaluate its use
in two test cases, comparing and contrasting methods and results with literature and enrichment analysis methods.

Conclusions We demonstrate that Klarigi produces characteristic and discriminatory explanations for groups
of biomedical entities in two settings. We also show that these explanations recapitulate and extend the knowledge
held in existing biomedical databases and literature for several diseases. As such, Klarigi provides a distinct and
valuable perspective on biomedical datasets when compared with traditional enrichment methods, and therefore
constitutes a new method by which biomedical datasets can be explored, contributing to improved insight into
semantic data.

Background

Over the last two decades, it has become standard practice to represent biomedical knowledge using ontologies.
Ontologies define controlled domain representations for biomedical concepts, and the linkage of data to these
representations is intended to reduce variability and ambiguity, as well as to synthesise additional knowledge through
contextual aggregation. As such, biomedical ontologies and their instance data constitute a massive source of
formalised knowledge.

1/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2021.06.14.448423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448423
http://creativecommons.org/licenses/by-nc-nd/4.0/


This repository of formalised knowledge facilitates secondary use, taking advantage of the semantic features of
ontologies to integrate and explicate upon the large and multi-modal datasets annotated to them. Semantic analysis
methods are applied to many knowledge synthesis and classification tasks, including prediction of protein interaction
and rare disease variants [1]. In the clinical space, semantic methods have been applied to tasks including diagnosis of
rare and common diseases [2, 3] and identification of subtypes of diseases such as autism [4]. In addition, the
synthesis of classical ontology-based methods and machine learning is increasingly common [5].

Despite the increasing use of semantics in biomedical analysis, the subsequent derivation of semantic explanations
for classifications, outcomes, labels, or groups generated by those analyses, remains a challenging task, and a major
practical, ethical, and technical issue.

We define the task of semantic explanation as that of producing, given a set of entities described by ontology
terms, a set of terms that characterises the set of entities. For example, and most prominently, gene set enrichment
analysis (GSEA) identifies terms that are significantly over-expressed in a set of genes [6]. Enrichment analysis
techniques have also been used to explore over-representation of terms in groups of entities associated with other
datasets and ontologies [7].

There are, however, multiple drawbacks to the use of enrichment analysis methods for semantic explanation:

• Traditional enrichment methods using a univariate statistical test provide limited information about the
relationship of each explanatory term with the group of interest.

• They usually do not consider the multivariate contribution of sets of terms to a non-redundant characterisation
of the group of interest.

• Most make little or no use of the semantic features of ontologies, or information-theoretic methods of evaluating
candidate terms.

• They provide limited tools and metrics for the evaluation of the overall explanatory power of groups of terms
with respect to the group of interest.

• They can be difficult or impossible to use with non-preconfigured ontologies, often with a dedicated focus on
the Gene Ontology (GO) [8].

Moreover, enrichment methods do not attempt to identify a full and cohesive set of characteristic terms for a
group, and these methods therefore provide a limited solution to the task of semantic explanation. We propose to
solve these problems by developing a new method for semantic explanation, with the aim of deriving characteristic
and discriminatory sets of explanatory terms for groups. The method introduces new metrics for measurement for
contribution of both individual and groups of candidate classes to the characterisation of a group. The new metrics
include a configurable measure of information content, facilitating the use of the information theoretic, in addition to
the purely statistical, mode of identifying explanatory terms. We also introduce a new algorithm for derivation of
multivariable sets of terms that together provide a characteristic explanation of a maximal subset of the group of
interest, within configurable boundaries. The method also makes use of ontological inference, by live use of the ELK
reasoner [9]. Furthermore, the method is ontology agnostic, and can be used with any OWL ontology without any
pre-processing. To provide tools for evaluating the characteristic and discriminatory power of explanatory sets
produced, we also introduce a new classification method that can be used to reclassify the evaluated data, as well as
to classify a holdout test set or other new data.

In this work, we formally describe the method, including the metrics and algorithms involved. In doing this, we
discuss existing approaches and their potential limitations, explaining how our proposed approach solves these
problems. We then describe development of the tool, Klarigi, that implements the method. The work is inspired by a
previous investigation, in which we developed an algorithm for deriving multivariable explanations for semantic
clusters identified from Human Phenotype Ontology (HPO) phenotype profiles [10]. In this work, the approach is
heavily modified and improved upon, including changes to the algorithm and scoring system, and is generalised to be
applicable to any dataset and ontology. We also include native support for the Phenopacket format [11]. The
resulting tool provides an analysis framework that can be used to explore any dataset annotated by a consistent Web
Ontology Language (OWL) ontology.

To evaluate our approach, we develop two use cases for characterisation of diseases. We compare and contrast the
results of the analysis with those of an enrichment analysis, as well as existing literature and biomedical databases. In
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doing this, we show that Klarigi can be used to provide insights into biomedical datasets via semantic explanation,
providing a perspective that is both distinct and complementary to the use of enrichment.

Literature Review

There are numerous methods developed for the R statistical programming environment, as well as online applications,
to assess gene over-expression. Most of these include built-in or API calls to annotations to a single ontology: fgsea
[12] and GSEABase [13] leverage the Gene Ontology [14] exclusively; DOSE [15] implements the Disease Ontology
[16]; ReactomePA [17] makes use of the Reactome pathway database; MamPhea [18] encodes the Mammalian
Phenotype Ontology [19]. Additional methods implement multiple ontologies as packages or online tools, including
DAVID [20], GProfiler [21], and XGR [22]. Of these, only XGR allows users to provide their own custom ontology,
and this must be a graph object mutated from an OWL file. Additionally the XGR package is the only one of these
which does not explicitly rely on prepopulated, species-specific gene-ontology annotation databases. This limits
analyses to both species-specific questions and to genes or gene products, and these tools have little direct relevance
to non-genetic translational medicine.

An additional limiting factor in these analyses is their univariate approach: each ontology entity is tested for
overrepresentation on a univariate basis. While methods do exist to help correct for the dependence of statistical
tests on related ontology entities, these are post-hoc corrections which do not fully take advantage of the information
gained by using an formal ontology. While XGR and Func [23] both take the ontology structure into account, both
require manipulation of the well-used OWL file format beforehand if using ontologies other than the Gene Ontology
(Func) or using ontologies outside a predefined set or not using pre-computed gene/ontology annotation databases
(XGR). Recent Bayesian approaches to ontology enrichment likewise use ontology structure, but require additional
numerical data (effect sizes, variance measures from experiments) in to construct informative priors [24] or are
restricted to the Gene Ontology [25].

Some previous works have explored multivariate gene set enrichment. The tmod R package uses an approach that
finds associations between feature sets and significant components derived through principal component analysis [26]
which requires raw gene expression values, and makes interpretation difficult due to pre-processing into principal
components. One more recent work [27] used a random walk approach, and involved multi-omics data. Traditional
GSEA, ranking genes in order of relevance of biological assays and defining a function as the number of genes above
that sorted list, can be formulated as a random walk along sorted features. This approach implements multiple sorted
lists from multiomics experiments and implements joint random walks among assays. Another recent development
uses Bayesian regression to model the relationship between phenotypes and the proportion of patients with rare
alleles, and interpreting the probability of associations being equal or depending on the phenotypic similarity of the
patients with rare alleles [28]. This approach requires informed assumptions about existing gene/phenotype
relationships in literature to weight priors. All of these methods are specific to the genetic domain, and cannot
therefore be easily applied to other kinds of biomedical data.

One previously described approach, OntoFunc [29], provides a solution for the use of inferences made by an
ontology reasoner in enrichment analysis. It does this by pre-processing a given OWL file, classifying it, and then
saving the inferred axioms into a graph that can then be used by other enrichment methods.

Design and Implementation

The fundamental challenge of semantic explanation is to determine, given a set of groups, and sets of entities
described by ontology terms associated with those groups, a set of characteristic terms for the group. Since we
developed this approach to be applicable to any biomedical ontology, we will describe the approach, including a data
model and algorithms, in abstract terms first. We will then describe their implementation into the Klarigi tool.

Data Modelling

Klarigi aims to determine sets of characteristic ontology classes, given a corpus of entities described by ontology
terms. Doing this requires, at minimum, a corpus with three features:

1. A set of entities
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2. A set of groups, which are each associated with a set of entities

3. An OWL ontology describing all terms in the corpus

We can define these as sets, which will allow us to define metrics and heuristics on their contents. G is a set of
groups, where Gi is the set of entities ascribed to that group. E is a set of entities, where Ej is the set of terms
associated with with that entity. O is a set of ontology terms in the ontology, where ever Ox is a term in the ontology.

Metrics

To identify good sets of explanatory classes for groups, we need to balance multiple qualities of the relationship
between candidate classes and the group. Specifically, we want to identify classes that are, in comparison with other
candidates:

1. Associated with greater proportion of entities in the considered group.

2. More associated with entities in the considered group than in other groups.

3. More informative.

To measure these qualities and thus make them comparable, we define three univariate scores to measure them,
encoding numeric measures of the explanatory power of each candidate class for the given group. We first define a
simple function that enables us to determine whether or not a particular entity in the corpus is annotated with a
class (or any of its subclasses):

member(C,N) =

{
1 |C ∩N | > 0,

0 otherwise
(1)

Given two sets C and N , any two sets of ontology classes, this function returns 1, if the size of the intersection of
those sets is at least 1, and 0 otherwise. This allows us to identify whether any classes associated with a particular
entity include our candidate class. Using this function, we can then define the first score, inclusion:

inclusion(Ox, Gj) =

∑|E|
z=1
z∈Gj

member(subclass(Ox), Ez)

|Gj |
(2)

This score measures the proportion of entities in a given group that are annotated with either the candidate term
or any of its subclasses. The subclass function is a call to the ontology reasoner, and returns a set of all transitive
subclasses of the class passed as argument, including the original class. This enables the account of the deductive
inferences made by the ontology reasoner, entailed by the axioms asserted in the considered ontology.

We next measure how uniquely a candidate class characterises the considered group, or its over-representation in
the group with respect to others. Our previous work [10] defined a measure of exclusion as:

exclusionold(Oi, Gj) = 1−

∑|G|
x=1
x̸=j

∑|E|
y=1
y∈Gx

member(subclass(Oi), Ey)∑|G|
x=1
x̸=j

|Gx|
(3)

This provides a measure of the proportion of entities in the dataset that were associated with the class, but are
attributed to other groups: the fewer entities external to the considered group that are annotated with the class, the
greater the exclusion score. This measure, while useful in the context of previous experiments, it has certain
drawbacks. In particular for the cases, where group sizes are unbalanced, the exclusionold measure may give rise to
figures that are not easily comparable between different groups in the same dataset. For example, in the case of a
dataset with 700 pneumonia patients and 300 pulmonary embolism patients, an exclusion score of 0.7 would be
assigned with phenotype association with pneumonia, and 0.3 for pulmonary embolism, even if the inclusion was 0.5
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for both of them; this is correct as a measure of absolute risk for the phenotype occurring in dataset, but is not
necessarily helpful for exploring which phenotypes are more characteristic of the considered groups, in proportion to
each other.

In GSEA, measurement of comparative expression is usually achieved by an enrichment score, which is usually
defined by z-scores and/or odds and relative risk ratios, that measures the strength of association between the class
and group membership; the ratio of B given the presence of A, and its symmetric inverse. However, their
interpretation is challenging due to the behaviour of ratios and confusion between odds, relative, and absolute risk
[30]. In the above example, the relative risk of both pneumonia and pulmonary embolism would be 1. However, this
can become misleading in the presence of larger class imbalances [31]. For example, if we had 950 cases of pneumonia,
and 50 cases of pulmonary embolism. If a phenotype appears thrice in this dataset, and two of those are associated
with pulmonary embolism, we would get the extremely large values of 37.96 and 39.54 for relative risk and odds ratio
respectively. While this is a valid association, it does not take into account the absolute risk of the event occurring
with respect to the disparity in the group sizes, and so large values are given for uncommon and unlikely phenotypes,
which can be easily misinterpreted. To combat this issue, we define exclusion as:

exclusion(Oi, Gj) =

∑|E|
z=1
z∈Gj

member(subclass(Ox), Ez)∑|E|
z=1

member(subclass(Ox), Ez)
− |Gj |

|E|
(4)

In this measure, the proportion of total entities in the corpus that are annotated with the considered class is
determined. From this figure, the proportion of the total entities in the dataset that are associated with the current
group is subtracted. This measures the overall representation of the class in the group versus the expression of the
group in the overall population and can be explained in terms intuitively similar to the calculation of an odds ratio;
the odds of the event occurring in the exposed group minus the odds of exposure.

As such, it caters the measurement of the representation of terms in a considered group, balanced with the
absolute likelihood of the group appearing in the whole dataset. In the example above, the exclusion score for the
phenotype with 0.5 inclusion with respect to both pneumonia and pulmonary embolism would be 0. This is because
neither are more exclusively associated with the phenotype when their relative frequencies are taken into account.

In the latter example, our proposed phenotype association profile would lead to pulmonary embolism receiving an
exclusion score of 0.617, and pneumonia an exclusion score of -0.61. These scores express the exclusion of the
phenotype association with a group in the context of the overall appearance of the group in the dataset.

We further address the problem of balancing the internal and external characteristic power of candidate terms by
introducing an additional heuristic to provide a balanced measure of our previously defined inclusion and exclusion
scores. We note that the inclusion score is equivalent to the ‘absolute risk’ of the class being associated with an entity
in the given group. On the basis of those two scores, we can further define:

r-score(Ox, Gj) = 2
inclusion(Ox, Gj) ∗ (1− exclusion(Ox, Gj))

inclusion(Ox, Gj) + (1− exclusion(Ox, Gj))
(5)

In the case of our latter example with a large class imbalance, our inclusion score for pulmonary embolism is 0.04,
while it is 0.001 for pneumonia. Our r-scores would then be 0.036 and 0.0002, respectively. This provides a balanced
metric between the internal representation of the class in the group, and its external exclusivity in the context of the
larger dataset. Since both figures are taken into account, the r-score metric avoids extreme and potentially misleading
values of z-score and odds ratio, when used to identify characteristic classes.

In the case that the program is being used with a corpus that only describes a single class, the r-score measure is
alternatively defined as equivalent to inclusion (note that the program can be forced into this mode, see ‘exclusive
group loading’ later). In this case, the algorithm does not consider exclusion at all, and only provides solutions in the
context of inclusion – describing the internal composition of the group.

To test our third quality, we introduce a measurement of how informative or specific a candidate class is. Since
this score does not rely on any relationship between groups and entities, it is calculated only once per ontology term:

specificity(Ox) = IC(Ox) (6)

Specificity is defined as the result of a particular information content measure. These are configurable, and
provided through implementation of the Semantic Measures Library [32], which implements many different
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information content measures. Currently, we implemented the Zhou [33] and Resnik [34] measures, which are defined
as:

ICResnik(x) = − log(
|I(x)|
|I(⊤)|

) ICZhou(x) =
log(deep(x))

log(deepmax)
(7)

The Resnik measure is defined as the reverse log probability of the term appearing in the corpus, and will
therefore be greater for classes that are annotated to entities more infrequently. The Zhou method is a measure of
how deep the given term is when representing the ontology as a directed acyclic graph, calculated as a proportion of
its maximum depth. Therefore, terms that are deeper in the ontology will have more intermediate subsuming classes
between it and Thing and as a result will receive greater values. The choice of which information content measure to
use is given to the user, and the best choice may differ depending on the dataset, ontology, or intended results [35].

Scoring

Now that we have defined a number of measures for the explanatory power of candidate classes, the next steps depend
upon identifying and scoring candidate classes in the relevant biomedical ontology. At this stage, we load and classify
the ontology, verifying internal consistency and reflecting any structural inferences. Klarigi uses the ELK reasoner to
perform this task [9], which supports the EL subset of OWL. Since we sought to support a maximal number of
ontologies, datasets, and settings, we chose ELK since it ensures maximum polynomial time classification with
respect to the number of axioms in the ontology. Since Klarigi is implemented using OWLAPI [36], however, use with
more expressive reasoners can be easily implemented, or ontologies can be pre-processed before passing to Klarigi.

While scores can be derived, theoretically, for all classes in the biomedical ontology, in practice this is not
necessary. This is because only classes that subsume classes appearing in our corpus can receive inclusion and
exclusion scores above zero. We can therefore define a new set of candidate terms C, the set of candidate terms in
the ontology that we will score, as a subset of O:

C = {x ∈ O | ∃z∈Emember(subclass(Ox), Ez)} (8)

In practice, this is implemented more efficiently by iterating directly all classes appearing explicitly in the
annotation corpus and identifying their transitive superclasses. Once C is determined, the scores are calculated as
above for each combination of group and candidate class, excepting for specificity where the score is calculated only
once per class.

Candidate Restriction and Univariate Analysis

We have now created the set of C candidate explanatory classes, which consists of the set of all classes that either
directly annotate, or subsume classes that directly annotate, all entities in the corpus. The next step is to identify
characteristic candidate variables for each group of interest. We do this by creating a new set Uj for each group:

Uj = {x ∈ C | r-score(Ox, Gj) >= min-r-score ∧ inclusion(Ox, Gj) >= min-inclusion

∧ exclusion(Ox, Gj) >= min-exclusion ∧ specificity(Ox) >= min-ic}
(9)

This new subset Uj can be determined for each group, and contains a subset of the C candidate classes that meet
the set of minimum restrictions for each score in relation to the considered group: r-score, inclusion, exclusion, and
specificity. The process up to this stage consists the univariate mode of operation for Klarigi. At this point, the set
Uj can be output for a group of interest, and subsequently interpreted. The minimum cut-offs for scores are
controlled by configurable parameters, described in Table 1.

Multivariable Explanatory Sets

In addition to the univariate mode of operation, we also determine an additional method to identify sets of candidate
terms that together characterise the group of interest. To do this, we can consider a solution space S, where Sm is
any potential subset of Uj , the set of candidate classes that meet the minimum cut-offs for the univariate scores. Our
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Table 1. Names, descriptions, and default parameters for candidate class restrictions. These parameters define
minimum values for the scoring heuristics, which restrict the set of candidate variables that will appear in the
univariate analysis output, and be considered in the multivariable analysis stage.

Parameter Default Description

min-inclusion 0 Candidate terms with inclusion values below
this level won’t appear in, or contribute to,
explanatory sets.

min-exclusion 0.05 Candidate terms with exclusion values below
this level won’t appear in, or contribute to,
explanatory sets.

min-r-score 0.1 Candidate terms with r-score values below
this level won’t appear in, or contribute to,
explanatory sets.

min-ic 0.4 Candidate terms with information content val-
ues below this level won’t appear in, or con-
tribute to, explanatory sets.

goal is to identify such an Sm that is a good characterisation of entities in the group. To identify what constitutes a
good characterisation of the group, we turn to our previously defined scores. For the purposes of our solution, we
only consider r-score and specificity to evaluate the explanatory power of individual terms, relying on the ability of
r-score to balance between inclusion and exclusion scores. To evaluate the overall fitness of a set of terms Sm, we
define an additional heuristic:

overall inclusion(Sc, Gj) =

∑|E|
z=1
z∈Gj

member(subclass(Sc), Ez)

|Gj |
(10)

This is a measure of overall inclusion, the proportion of entities in the group of interest that are annotated by at
least one of the classes in the proposed solution, or their subclasses. This measures how well a set of candidate classes
covers the full set of entities in the group.

The challenge of obtaining a good solution lies with the optimisation of several variables, and can therefore can be
considered as a multiple objective optimisation problem, considering the scoring heuristics as objective functions.
The objective functions can be defined as the cut-offs for our scores. In the case of scores that measure the
explanatory power of individual terms, this is the cut-off for candidate terms to appear in S, while the
overall inclusion function can be defined as the cut-off for S to be considered acceptable.

This can be considered in terms of the ε-constraints solution to multiple objective optimisation problems. In these
solutions, one objective function is retained, while the rest are transformed into a set of constraints between which
the remaining objective function can be optimised [37]. Our solution is inspired by this approach, selecting
overall inclusion as the objective function. However, instead of using static constraints for the other cutoffs, we
develop an algorithm that steps down through acceptable values of these constraints in a priority order to
dynamically identify high values for constraints in the context of objective function optimisation.

To do this, we define an order of priority for parameters:

1. overall inclusion

2. r-score

3. specificity

The objective function can be considered as the highest priority constraint (and is also one that has no lower
boundary). To identify a solution that maximises overall inclusion, while optimising the other values within their
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configured boundaries, the algorithm steps down through acceptable values of each constraint in order of priority,
from lowest to highest.

A satisfactory solution is defined as a set of ontology terms that meets a current minimum value for
overall inclusion, and in which every member meets the current minimum constraint for r-score and specificity.
Upon each step of the algorithm, the subset of classes that meet the current individual criteria is identified, and if
that set meets the current cutoff for overall inclusion, this is returned as the solution. If not, the current constraint
settings are stepped down in order of priority, with a new check for a satisfactory solution at each step. First, the
cut-off for r-score is reduced stepwise to its lower limit, at which point the cut-off for specificity will be reduced by
one step, and the cut-off for r-score will be reset. Once both r-score and specificity reach their lower limits, they
are reset to their original values, and the overall inclusion cut-off will be reduced by one step. This process is
repeated until a satisfactory solution is found, checked every time a constraint is changed, or until the
overall inclusion cutoff reaches zero (a null response). The result of this process is a set of terms Sgood, a subset of
C, that both maximises the value of the objective function, and maximises values of the constraints according to the
order of priority. The algorithm is given in Algorithm 1.

Data: Refer to Table 2.
Result: A set of ontology terms that explanatory of the cluster.
specificityCutoff = top-ic
r-scoreCutoff = top-r-score
totalInclusionCutoff = top-total-inclusion
while True do

Sp = { x ∈ Uj | r-score(Ox, Gj) >= rScoreCutoff ∧ specificity(Ox) >= specificityCutoff}
Spm = { x ∈ Sp | r-score(Ox, Gj) >= max-r-score ∧ specificity(Ox) >=
max-specificity ∧ inclusion(Ox, Gj) >= max-inclusion ∧ exclusion(Ox, Gj) >= max-exclusion}

if overall inclusion(Spm, Gj) < totalInclusionCutoff then
if rScoreCutoff <= bot-rScore then

rScoreCutoff = top-rScore
if specificityCutoff > bot-ic then

specificityCutoff = specificityCutoff - step
else

specificityCutoff = top-ic
totalInclusionCutoff = totalInclusionCutoff - step

end

end
rScoreCutoff = rScoreCutoff - step

end
return Sp end

Algorithm 1: Algorithm for identifying characterising ontology terms for a cluster, by stepping down through
r-score and specificity thresholds.

The algorithm also supports maximal constraints, that are used to define the maximum score at which a
candidate term can contribute to the overall inclusion score. This is implemented in Algorithm 1 as the
determination of the Spm subset of the proposed solution Sp. By default, they are set to values that will not be
triggered (shown in Table 2), but they can be configured to prevent the result set being dominated by a small number
of highly explanatory classes, where a larger and more varied set is desired. For example, the appearance of the term
hypertension (HP:0008071) at 0.95 inclusion for a group defined by a diagnosis of hypertension may not be very
informative. Thus setting an upper limit to score values that can contribute to overall inclusion will force the
algorithm to continue to step down to find additional explanatory terms. Since these terms still characterise the
group, however, they are still included in the explanatory set, and are therefore included in the output (and included
in the final overall inclusion value associated with the output). These upper parameters can be used to encourage
the algorithm to seek larger, less monolithic explanatory sets.

While the upper and lower boundaries for cut-offs are configurable, reasonable defaults have been set based on our

8/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2021.06.14.448423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448423
http://creativecommons.org/licenses/by-nc-nd/4.0/


observations using the algorithm. These can be defined for any of the term-wise scores: r-score, inclusion,
exclusion, and specificity.

Table 2. Descriptions and default values for multivariable parameters for the stepdown algorithm.

Parameter Default Description

max-exclusion 1 Candidate terms with r-score values above this
level won’t contribute to calculation of overall
inclusion, though they will still appear in ex-
planatory sets.

max-inclusion 1 Candidate terms with r-score values above this
level won’t contribute to calculation of overall
inclusion, though they will still appear in ex-
planatory sets.

max-r-score 1 Candidate terms with r-score values above this
level won’t contribute to calculation of overall
inclusion, though they will still appear in ex-
planatory sets.

top-ic 0.7 The maximum stepdown value for IC.
bot-ic 0.4 The minimum stepdown value for IC.
top-r-score 0.8 The maximum stepdown value for r-score.
bot-r-score 0.1 The minimum stepdown value for r-score.
top-total-inclusion 1 Maximum stepdown value for overall inclusion.
step 0.05 Cutoffs will be reduced by this step on each

iteration of the stepdown algorithm.

Discrimination and Significance

On top of the univariate and multivariate modes of producing explanatory sets of classes for groups, we have also
implemented several additional methods by which the fitness of solutions can be evaluated. To identify the
discriminatory power of a set of explanatory classes, we can define a function that will, for each combination of entity
and group in the corpus, produce a score:

score(Ei, Gj , Sl) =

|Sl|∏
x=1

(1 + (exclusion(Ox, Gj) · member(subclass(Ox), Ei))) (11)

This score can either be calculated on the results of the multivariable stepdown approach, the full set of univariate
results, or a manually specified list of term associations. In the case that we are using the univariate mode of
execution only, Sl will be equivalent to Uj . Given a proposed solution for a group, consisting of a set of classes, a
score is calculated for each entity in the corpus, defined as the product of one plus the exclusion score of every class
in the solution set that the entity is annotated with.

This definition of a predictive score allows us to construct a model to classify group membership for entities, from
which an Area Under the receiver operating Characteristic (AUC) score can be calculated. This provides a simple
measure how well the set of explanatory variables, univariate or multivariate, was able to reclassify the set it was
learned from. This can help to inform modifications to parameters or judge quality of the dataset in general.

The difference between these scores between the univariate and multivariate results can also provide insight on the
quality of the modularisation performed by the stepdown algorithm. In the case that this value is small, there is a
small amount of loss of total discrimination. Where values are large, there is a large decrease in performance when
restricting scoring to the derived set of characteristic values, and this may be caused by a model that is poorly fit to
the training data and does not reflect the full dataset.

The program also contains the possibility to apply this classifier to unseen data, calculating an AUC in the same
way. This provides the ability to perform a test-set validation, or even external validation, to more properly judge the
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quality of the solution. Where this approach is applied to a new dataset, the exclusion score used is the one learned
from the training corpus.

The second method of results evaluation is significance testing. In many instances, it is useful to access the type 1
error (false positive) rate to enable comparison with existing tools which provide p-values, and also to provide a
conservative aid to interpreting inclusion and exclusion results. We implemented Monte Carlo methods to
approximate the empirical p-value of the inclusion and exclusion statistics [38, 39]. Briefly, we sample with
replacement a set of class associations for each entity of the same size as its original association set.

A test statistic (inclusion/exclusion) is generated for that set of patient profiles. This procedure is repeated 1,000
times to create a vector of test statistics. The statistics are ranked, and the empirical p-value is obtained as:

p̂ =
r + 1

n+ 1
(12)

where r is the number of test statistics ranked greater or equal to the observed value, and n is the total number of
permutations. The full algorithm is shown in Supplementary Algorithm 1.

The number of permutations can be changed by the user, and we suggest at least 1,000 to ensure a (log-)normal
distribution and sufficiently precise p-values possible (minimum of 0.002 in this case). Throughout the evaluations in
this article, we use 2,000 permutations. Since we are creating a set of p-values for non-independent phenotypes, we
suggest a Bonferroni threshold be applied to adjust the family-wise error rate:

θ ≤ αfwe

n
(13)

where αfwe is the desired error rate (0.05), n is the total number of phenotypes Klarigi generates p-values for (two
for each term in the multivariable result set). Thus θ is the new threshold for a significant inclusion/exclusion score.

Output and Configuration

Klarigi reports its results in either the univariate or multivariate mode, in the form of a table of class associations
with each group of interest, reported with the scores assigned to them. These can either be received in a LATEXtable,
a plain text table, or in Tab-Separated Values format.

The program is highly configurable, and we have previously discussed the parameters that are available to modify
the operation and results of the program in both univariate (see Table 1) and multivariate modes of operation (see
Table 2). In the former case, these parameters also affect the input of the multivariable analysis. In addition, there
are additional parameters that control different modes of operation and calculation of scores. For example, there is a
choice between which information content measure to use for the calculation of the specificity score. Descriptions of
parameters are available in the documentation for the program. Klarigi can also be run in exclusive group loading
(EGL) mode, which only loads the group of interest, and does not consider any others. In this case, the stepdown
algorithm operates upon inclusion, and neither exclusion nor r-score are calculated. This can be useful for
investigating group constituency without taking into account the exclusivity of terms.

Because of this configurability, and the dependence of results on that configurability, we anticipate a general
workflow of using the application to consist of interactive modification of those parameters according to intermediate
results, and desired outcomes. For example, if an empty set is returned upon analysis, the min-ic parameter could be
reduced in an attempt to identify explanatory terms with a lower specificity than previously considered.

Results

We have described the development and implementation of Klarigi, and made the tool freely available at
https://github.com/reality/klarigi. This repository includes the source code, pre-compiled binaries,
documentation, and a tutorial in notebook format that walks through the functionality of the software, explaining the
significance of different parameters and outputs.

To demonstrate and evaluate the use of Klarigi for exploration of biomedical datasets, we developed two use cases.
Both describe clinical entities annotated using the Human Phenotype Ontology (HPO) [40]: in the first case
text-derived phenotype profiles for a set of Medical Information Mart for Intensive Care III (MIMIC-III) admissions
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[41], and the second using a set of phenopackets [11], describing patients with rare diseases reported in literature [42].
We use Klarigi to explore both of these datasets, comparing and contrasting those results with literature and
enrichment analysis.

To further evaluate the results Klarigi produced for these use cases, we also used an enrichment method to
identify over-represented terms. To do this, we used XGR [22] to identify over-represented phenotypes using both
one-tailed binomial and fisher tests. P-values were adjusted with Bonferroni correction, propagating patient
annotations to each term according to the True Path Rule. P-values were calculated with two background
distributions: once using traits annotated to each patient and their frequencies as background, and additionally using
only those annotated to the parent class of each entity tested; the maximum of each p-value was selected to help
correct for the interdependence of testing. In the case of Klarigi, we also tested the normality of the permutation
distribution for inclusion and exclusion scores by visually examining the distributions using histograms and QQ-plots.
An R script containing these visualisations is provided in experiment repository.

The code used to obtain our results, as well as to perform the quantitative evaluations and create the tables for
the paper, are available online at https://github.com/reality/klarigi_paper.

Use Case: Pulmonary Embolism

Pulmonary embolism, a condition associated with considerable mortality rates, presents in ways that render it difficult
to diagnose when associated with other comorbidities, such as COPD, and typically shares symptoms with other
more common conditions, such as pneumonia and acute bronchitis [43]. The critical time dependence of treatment on
diagnosis makes it important to identify combinations of discriminating symptoms as rapidly as possible [44].

To demonstrate Klarigi’s functionality, and to gain insight into the phenotypic presentations associated with
pulmonary embolism and pneumonia, we created and evaluated text-derived phenotype profiles describing critical
care admissions with the two diagnoses. To do this, we identified relevant admissions from MIMIC-III, and analysed
their associated clinical narrative. MIMIC-III is a large freely accessible dataset concerning nearly 60,000 visits to the
emergency department at the Beth Israel Deaconess hospital [41].

We used the ICD-9 codes 486 and 41519 to identify 5,437 MIMIC-III admissions with either pneumonia or
pulmonary embolism as an associated diagnosis (provided in the coded diagnosis list produced by a coding expert):
4,853 with pneumonia and 912 with pulmonary embolism. We further restricted these to admissions with pneumonia
or pulmonary embolism given as the primary diagnosis, and those which did not have the other diagnosis in any
position. This led to a final set of 991 admissions, made up of 699 primarily coded with pneumonia, and 292 with
pulmonary embolism. We employed the 2021-08-02 release of the Human Phenotype Ontology, available at
http://purl.obolibrary.org/obo/hp/releases/2021-08-02/hp.owl.

To create phenotype profiles for these admissions, we used the Komenti semantic text-mining framework [45],
which implements Stanford CoreNLP [46]. For every considered admission, we collected the text from the
corresponding discharge note. We created a lemmatised vocabulary of all labels and synonyms in the Human
Phenotype Ontology (HPO) [40], containing 50,265 labels for 16,019 unique classes. We used these to identify
ontology terms mentioned in the discharge notes. We then removed all associations that were identified by Komenti
as negated or uncertain. We also removed classes equivalent to or subclasses of pneumonia (HP:0002090) and
pulmonary edema (HP:0100598) from the set of annotations. To facilitate a holdout validation, we then reserved a
randomly sampled 20% of the annotated admissions. In the training set there are a total of 785 records, 552
pneumonia and 233 pulmonary embolism, while in the test set there were 206 records, 147 pulmonary embolism and
59 pneumonia.

We first employed Klarigi in “exclusive group loading” (EGL) mode separately on both groups. As described in
the implementation section, this evaluates the selected group alone, without considering its relationship to any other
groups in the dataset. As such, only the inclusion and IC scores are used, and the step-down algorithm uses inclusion
rather than r-score as its optimisation parameter. The results of this analysis are shown in Supplementary Table 1.
For both conditions, large values of the overall inclusion score show that the given explanatory sets describe the
cohort, although in the case of pulmonary embolism this set is much larger, at 20 explanatory terms, relative to the
10 identified for pneumonia.

To gain insight on discriminatory differences between these two groups, Klarigi was used in its default mode: with
the opposing group as context, providing the additional exclusion and r-score measures, using the latter for the
stepdown algorithm this time. The full set of univariate results for each disease are given in Supplementary Tables 2
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and 3, while the multivariable results derived from the stepdown algorithm performed on the full set of univariate
results, and additionally permutation tested, are shown in Table 3. We modified the min-inclusion hyperparameter
manually to optimise for the reclassification AUC on the training set, whose final values were 0.953 and 0.983 for
pulmonary embolism and pneumonia respectively. Permutation testing was performed after hyper-parameter
optimisation, and so was only run once. Meanwhile, the results of the enrichment analysis using both the Fisher and
binomial tests are shown in Supplementary Table 4.

Table 3. Multivariable Klarigi results for pneumonia and pulmonary embolism, with each others’ cases considered as
control. Train AUC was 0.953 for pulmonary embolism and Train AUC was 0.983 for pneumonia.

pneumonia (552 members) r-score Inclusion Exclusion IC

Renal insufficiency (HP:0000083) 0.22 0.39 (p=0.001) 0.15 (p=0.007) 0.84
Airway obstruction (HP:0006536) 0.2 0.34 (p=0.001) 0.14 (p=0.03) 0.87
Atrial fibrillation (HP:0005110) 0.2 0.27 (p=0.001) 0.15 (p=0.079) 0.95
Respiratory insufficiency (HP:0002093) 0.2 0.24 (p=0.001) 0.17 (p=0.01) 0.81
Chronic pulmonary obstruction (HP:0006510) 0.2 0.33 (p=0.001) 0.14 (p=0.107) 1.0
Respiratory distress (HP:0002098) 0.2 0.37 (p=0.001) 0.13 (p=0.121) 0.92
Congestive heart failure (HP:0001635) 0.2 0.32 (p=0.001) 0.14 (p=0.108) 0.95
Aspiration (HP:0002835) 0.19 0.29 (p=0.001) 0.15 (p=0.077) 1.0
Respiratory failure (HP:0002878) 0.19 0.22 (p=0.001) 0.17 (p=0.051) 1.0
Productive cough (HP:0031245) 0.19 0.17 (p=0.001) 0.22 (p=0.017) 1.0
Wheezing (HP:0030828) 0.19 0.42 (p=0.001) 0.12 (p=0.156) 1.0
Chronic kidney disease (HP:0012622) 0.18 0.17 (p=0.001) 0.21 (p=0.001) 0.87
Atrial arrhythmia (HP:0001692) 0.18 0.29 (p=0.001) 0.13 (p=0.041) 0.83
Rhonchi (HP:0030831) 0.18 0.27 (p=0.001) 0.13 (p=0.121) 1.0
Stage 5 chronic kidney disease (HP:0003774) 0.17 0.13 (p=0.001) 0.24 (p=0.008) 1.0
Confusion (HP:0001289) 0.17 0.18 (p=0.001) 0.15 (p=0.094) 1.0
Sepsis (HP:0100806) 0.16 0.17 (p=0.001) 0.15 (p=0.089) 1.0
Supraventricular arrhythmia (HP:0005115) 0.15 0.3 (p=0.001) 0.1 (p=0.101) 0.72
Respiratory tract infection (HP:0011947) 0.15 0.13 (p=0.001) 0.18 (p=0.054) 0.73
Overall - 96.56 - -
pulmonary embolism (233 members) r-score Inclusion Exclusion IC

Abnormal thrombosis (HP:0001977) 0.37 0.41 (p=0.001) 0.35 (p=0.001) 0.75
Venous thrombosis (HP:0004936) 0.35 0.37 (p=0.001) 0.34 (p=0.001) 0.83
Deep venous thrombosis (HP:0002625) 0.33 0.33 (p=0.001) 0.34 (p=0.002) 1.0
Abnormality of coagulation (HP:0001928) 0.22 0.15 (p=0.001) 0.41 (p=0.001) 0.61
Lower limb pain (HP:0012514) 0.18 0.14 (p=0.001) 0.26 (p=0.007) 0.89
Limb pain (HP:0009763) 0.18 0.14 (p=0.001) 0.25 (p=0.009) 0.84
Pleuritic chest pain (HP:0033771) 0.17 0.15 (p=0.001) 0.22 (p=0.012) 1.0
Increased body weight (HP:0004324) 0.17 0.15 (p=0.001) 0.19 (p=0.029) 0.84
Sinus tachycardia (HP:0011703) 0.17 0.25 (p=0.001) 0.13 (p=0.088) 1.0
Aortic regurgitation (HP:0001659) 0.17 0.39 (p=0.001) 0.11 (p=0.105) 1.0
Pericardial effusion (HP:0001698) 0.16 0.45 (p=0.001) 0.09 (p=0.121) 0.92
Abnormality of body weight (HP:0004323) 0.15 0.3 (p=0.001) 0.1 (p=0.119) 0.73
Abnormal pericardium morphology (HP:0001697) 0.15 0.45 (p=0.001) 0.09 (p=0.134) 0.76
Obesity (HP:0001513) 0.15 0.13 (p=0.001) 0.17 (p=0.039) 0.87
Abnormal electrophysiology of sinoatrial node origin (HP:0011702) 0.14 0.26 (p=0.001) 0.09 (p=0.141) 0.89
Tricuspid regurgitation (HP:0005180) 0.13 0.14 (p=0.001) 0.12 (p=0.08) 1.0
Abnormal tricuspid valve physiology (HP:0031651) 0.13 0.14 (p=0.001) 0.12 (p=0.08) 0.95
Abnormal aortic valve physiology (HP:0031652) 0.13 0.43 (p=0.001) 0.08 (p=0.178) 0.92
Mitral valve prolapse (HP:0001634) 0.13 0.17 (p=0.001) 0.11 (p=0.101) 1.0
Abnormal anatomic location of the heart (HP:0004307) 0.13 0.17 (p=0.001) 0.11 (p=0.101) 0.81
Abnormal cardiac septum morphology (HP:0001671) 0.13 0.15 (p=0.001) 0.11 (p=0.101) 0.71
Tachycardia (HP:0001649) 0.13 0.3 (p=0.001) 0.08 (p=0.155) 0.74
Abnormal atrioventricular valve morphology (HP:0006705) 0.12 0.18 (p=0.001) 0.09 (p=0.142) 0.72
Abnormal mitral valve morphology (HP:0001633) 0.12 0.18 (p=0.001) 0.09 (p=0.142) 0.77
Palpitations (HP:0001962) 0.1 0.28 (p=0.001) 0.06 (p=0.201) 1.0
Abnormal heart valve physiology (HP:0031653) 0.1 0.48 (p=0.001) 0.06 (p=0.138) 0.8
Abnormal heart valve morphology (HP:0001654) 0.1 0.35 (p=0.001) 0.06 (p=0.131) 0.64
Back pain (HP:0003418) 0.1 0.19 (p=0.001) 0.07 (p=0.178) 0.92
Overall - 90.56 - -

To evaluate how characteristic and discriminatory the explanatory sets were of their respective diseases, we used
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the 20% holdout set to define a classification task. The results of this analysis are listed in Table 4. In this analysis,
we used the sets of characteristic terms identified by Klarigi in univariate mode, Klarigi in multivariate mode, and
enrichment. Since the binomial enrichment results were a subset of the Fisher results, we combine these into one
‘enrichment’ set of explanatory terms. We then constructed classifiers for pulmonary embolism and pneumonia in the
test set with scores for each entity identified using Klarigi. To provide additional measures of evaluation, as well as to
evaluate the utility of the exclusion score in measuring term discrimination, we also compared the Klarigi
classification method with semantic similarity approaches. To do this, we also built classifiers scored using the
groupwise similarity between each phenotype profile in the test set, and the explanatory set for each method. We
performed this task for both the best match average and average groupwise strategies, with both cases using the
Resnik pairwise method and Resnik information content measure (using the annotations in the training set for the
probability distribution). For all classifiers, we calculated an AUC using the scores for each admission in the test set,
and their actual diagnosis group for the label.

Table 4. Test set classification results for pneumonia and pulmonary embolism, using Klarigi’s classifier (see
Equation 11), and semantic similarity using the Resnik IC and Resnik pairwise method, with results given for both
best match average and average groupwise strategies. OI is the overall inclusion score, defined in Equation 10, of the
solution with respect to the test corpus. The greatest score for each category is emboldened.

Group Method AUC (Klarigi) AUC (SS-BMA) AUC (SS-AVG) OI

Pneumonia Enrichment 0.997 0.66 0.694 0.993
Klarigi (u) 1 0.716 0.701 1
Klarigi (mv) 0.976 0.69 0.686 0.952

Pulmonary embolism Enrichment 0.67 0.587 0.556 0.339
Klarigi (u) 0.924 0.654 0.662 0.848
Klarigi (mv) 0.924 0.656 0.662 0.848

Use Case: Phenopackets

Phenopackets are a standardised format for the representation of phenotypic descriptions of patients, linked to
biomedical ontologies [11]. We developed Klarigi to natively support the phenopackets format, converting it internally
into the required data model. To further evaluate Klarigi, we examined a dataset of 384 rare disease patients, whose
phenotypes were originally reported in literature, and have subsequently had their phenotypes transcribed into the
phenopacket format [42]. The dataset describes a range of rare diseases, and in our use case, we examine the disease
with the most patient descriptions, Hypotonia, infantile, with psychomotor retardation and

characteristic facies 3 (OMIM:616900) (IHPRF3), with 19 patients. In the dataset, the patient descriptions
are derived from 4 separate publications, listed in Table 5 were taken from these citations. The 2018-03-08 release of
HPO was used to annotate these patients, and this was the version we used for the analysis.

Table 5. The publications that report the 19 patients with IHPRF3 that are phenotyped in the phenopackets dataset.

Short Name Full Title Patients

Bhoj 2016 [47] Mutations in TBCK, Encoding TBC1-Domain-Containing Kinase,
Lead to a Recognizable Syndrome of Intellectual Disability and
Hypotonia

10

Chong 2016 [48] Recessive Inactivating Mutations in TBCK, Encoding a Rab
GTPase-Activating Protein, Cause Severe Infantile Syndromic
Encephalopathy

5

Guerreiro 2016 [49] Mutation of TBCK causes a rare recessive developmental disorder 2
Zapata-Aldana 2019 [50] Further delineation of TBCK - Infantile hypotonia with psychomo-

tor retardation and characteristic facies type 3
2

Total - 19

Supplementary Table 5 shows the full set of 61 associated classes that constitute the univariate results.
Meanwhile, Table 6 shows the multivariable results, whose overall inclusion describes complete coverage of the
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dataset with at least one of these classes, expressed in a much smaller explanatory set of 33 classes. Enrichment
analysis was also performed using the Fisher and binomial tests, and the significant results of this analysis are shown
in Supplementary Table 6.

Table 6. Multivariable results for IHPRF3 in Klarigi. Reclassification AUC was 1.

OMIM:616900 (19 members) r-score Inclusion Exclusion IC

Severe muscular hypotonia (HP:0006829) 0.8 0.68 (p=0.001) 0.95 (p=0.009) 1.0
Developmental regression (HP:0002376) 0.63 0.58 (p=0.001) 0.68 (p=0.007) 1.0
Severe global developmental delay (HP:0011344) 0.5 0.42 (p=0.001) 0.62 (p=0.012) 1.0
Abnormality of upper lip vermillion (HP:0011339) 0.46 0.47 (p=0.001) 0.45 (p=0.007) 0.83
Respiratory insufficiency (HP:0002093) 0.42 0.42 (p=0.001) 0.42 (p=0.042) 0.81
Reduced tendon reflexes (HP:0001315) 0.42 0.53 (p=0.001) 0.35 (p=0.018) 0.82
Small basal ganglia (HP:0012697) 0.41 0.26 (p=0.001) 0.95 (p=0.007) 1.0
Exaggerated cupid’s bow (HP:0002263) 0.41 0.26 (p=0.001) 0.95 (p=0.009) 1.0
Macroglossia (HP:0000158) 0.39 0.26 (p=0.001) 0.78 (p=0.01) 0.95
Areflexia (HP:0001284) 0.39 0.32 (p=0.001) 0.5 (p=0.012) 0.89
Profound global developmental delay (HP:0012736) 0.36 0.26 (p=0.001) 0.58 (p=0.012) 1.0
Prominent nasal bridge (HP:0000426) 0.36 0.26 (p=0.001) 0.58 (p=0.014) 1.0
Skeletal muscle hypertrophy (HP:0003712) 0.35 0.26 (p=0.001) 0.51 (p=0.013) 0.78
Sloping forehead (HP:0000340) 0.34 0.21 (p=0.001) 0.95 (p=0.006) 1.0
Aplasia/Hypoplasia of the cerebellar vermis (HP:0006817) 0.33 0.26 (p=0.001) 0.45 (p=0.044) 0.87
Highly arched eyebrow (HP:0002553) 0.33 0.26 (p=0.001) 0.45 (p=0.039) 1.0
Cerebellar vermis hypoplasia (HP:0001320) 0.33 0.26 (p=0.001) 0.45 (p=0.044) 0.95
Tented upper lip vermilion (HP:0010804) 0.31 0.21 (p=0.001) 0.62 (p=0.015) 1.0
Coarse facial features (HP:0000280) 0.29 0.26 (p=0.001) 0.34 (p=0.036) 1.0
Small forehead (HP:0000350) 0.29 0.26 (p=0.001) 0.34 (p=0.041) 1.0
Narrow forehead (HP:0000341) 0.29 0.26 (p=0.001) 0.34 (p=0.041) 1.0
Aplasia/Hypoplasia of the corpus callosum (HP:0007370) 0.29 0.37 (p=0.001) 0.24 (p=0.094) 0.95
Aplasia/Hypoplasia of the cerebral white matter
(HP:0012429)

0.29 0.37 (p=0.001) 0.24 (p=0.094) 0.95

Hypoplasia of the corpus callosum (HP:0002079) 0.29 0.32 (p=0.001) 0.27 (p=0.094) 1.0
Cerebral white matter hypoplasia (HP:0012430) 0.29 0.32 (p=0.001) 0.27 (p=0.094) 1.0
Brachycephaly (HP:0000248) 0.29 0.21 (p=0.001) 0.45 (p=0.036) 0.95
Absent speech (HP:0001344) 0.28 0.37 (p=0.001) 0.23 (p=0.085) 1.0
Abnormality of the cerebellar vermis (HP:0002334) 0.27 0.26 (p=0.001) 0.28 (p=0.042) 0.8
Diffuse cerebellar atrophy (HP:0100275) 0.27 0.16 (p=0.001) 0.95 (p=0.006) 1.0
Global brain atrophy (HP:0002283) 0.27 0.16 (p=0.001) 0.95 (p=0.006) 1.0
Global developmental delay (HP:0001263) 0.26 0.95 (p=0.001) 0.15 (p=0.055) 0.89
Open mouth (HP:0000194) 0.26 0.16 (p=0.001) 0.7 (p=0.011) 1.0
Diffuse cerebral atrophy (HP:0002506) 0.26 0.16 (p=0.008) 0.7 (p=0.002) 1.0
Visual impairment (HP:0000505) 0.25 0.21 (p=0.001) 0.31 (p=0.052) 0.87
Overall - 100.0 - -

To provide a quantitative evaluation for this much smaller set of patients, we compared them with the disease
annotations defined by the HPO database. HPO database annotations were developed through a combination of
expert curation and text mining of clinical descriptions provided in OMIM [51]. These relationships are produced by
expert curators, and are derived from literature, clinical descriptions, or experimental evidence. There are 46 such
annotations, listed in Supplementary Table 4. To measure how characteristic the result sets are we calculated
semantic similarity between each one and the set of HPO database annotations. We used the Resnik method of
pairwise similarity, with the Zhou method of information content, with the best match average groupwise strategy.
The results of the Fisher and Binomial tests are here treated separately, since neither forms a subset of the other.
Table 7 lists the semantic similarity value for each comparison.
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Table 7. Resnik+BMA+Zhou semantic similarity between the the explanatory set for each method and the definitive
set of IHPRF3 HPO annotations defined by the HPO annotations database.

Method Similarity

Fisher 0.560
Binomial 0.607
Klarigi (u) 0.703
Klarigi (mv) 0.72

We can also use Klarigi to evaluate alternative ways of grouping the data, or subsets of the data. In this use case,
we explored 19 IHPRF3 patient data across different publications, shown in Table 5. In Supplementary Table 7 we
show multivariable Klarigi results for IHPRF3 patients grouped by the publication in which they are reported.

Discussion

We have described the design and implementation of Klarigi, and its application to two use cases, one to the
comparison of two phenotypically similar diseases from text-derived phenotypes, and another to rare disease patients
from expert annotations created from literature. In this section, we will interpret and discuss the results, and provide
more discussion of Klarigi in context, including limitations and future work.

Interpretation of Results

Pulmonary Embolism

The large values of overall inclusion calculated for the EGL results in Supplementary Table 1 show indicate that the
threshold was met before being reduced, per the stepdown algorithm. That the number of explanatory terms for
pulmonary embolism is greater than those for pneumonia, implies a more complex and varied phenotypic presentation
for patients with this disease, since a greater number of explanatory terms with a lower individual threshold for
inclusion had to be included to reach the overall inclusion threshold. This difference illustrates how the stepdown
algorithm works to provide explanations that suit the data being described, beginning with thresholds that admit
parsimonious solutions with large values for individual scores, lowering those thresholds as necessary for more
complex, noisy, or difficult to characterise entity groups.

The EGL results also evidence the similarity in presentation of the two conditions, with the set of explanatory
terms for pneumonia forming an explicit subset of the set for pulmonary embolism: every explanatory term for
pneumonia is also one for pulmonary embolism. The similarities are explicated further by the similarities in the
representation of those terms, evidenced by the inclusion scores. The mean difference in inclusion score between PE
and pneumonia for the 10 explanatory terms for pneumonia is only 0.113, though some individual terms, such as
cough (HP:0012735) and abnormal breath sound (HP:0030829), have greater differences in prevalence, implying
that they may be candidates for discriminatory terms. Indeed, the enrichment results include cough (HP:0012735)

as a significantly over-represented class, being the only significant result produced by the binomial method.
The complication of this dataset, illustrated by the EGL results, demonstrates the challenge of the task in finding

discriminatory characteristic sets for these diseases. The full results of the multivariate analysis performed with
consideration of the other group, shown in Table 3, works to create such a solution. Indeed, none of the other highly
redundant 9 terms in the EGL results appear in either set of results, however a more specific, and in this case
discriminatory, subclass productive cough (HP:0031245) appears in the set of explanations for pneumonia.

The reclassification AUCs for both reveal good performance, indicating that both sets are reasonably
characteristic. This was lower for pulmonary embolism, which mirrors the lower overall inclusion score, and is
indicative of the increased complexity of this disease and its presentation in comparison to pneumonia.

The discriminatory power of the sets is further explored by the classification analysis, the results of which are
given in Table 4. Reduction in performance for prediction of pneumonia with the Klarigi classifier was minimal,
indicating that the set of explanatory terms generalised well to the phenotypic distribution of those patients in the
test set. This reduction was greater for pulmonary embolism, which tracks the lower overall quality of this
explanatory set evident on the training set, however the classifier still achieved a high performance.
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For all classification methods and for both groups, models derived from the sets of explanatory terms generated by
Klarigi outperformed those from enrichment. This is very stark in the case of pulmonary embolism, where
performance of the enrichment on the test set approached random for the semantic similarity approaches, was much
lower using the Klarigi scorer, with poor generalisation also evidenced by the very low overall inclusion value.

Another insight from the classification analysis on the test set, is that the Klarigi classifier consistently performed
substantially better than both semantic similarity approaches. This helps to provide evidence that the exclusion
score, which makes up the Klarigi classification model, is a good measure of term discrimination, that generalises to
use for quantifying discriminatory sets.

Phenopackets

The phenopackets dataset is much smaller than the MIMIC dataset, describing far fewer patients. The annotations of
patients were also derived by an expert from literature reports, instead of being mined from text. The task also
differs, in that we are evaluating IHPRF3 patients against a large background distribution of patients with other rare
genetic diseases, instead of comparing their phenotype profiles head-to-head with those of a single chosen, and
phenotypically similar disease. This difference is evidenced by the increased clarity of the results, with large
individual values for inclusion and exclusion, overall inclusion, and reclassification AUC. Klarigi was also able to
identify a much smaller subset of the univariate sets during the multivariate stage, and this provides an example of
the identification of sparse representations of entity groups, in the case that the representation of terms across the
group is sufficiently homogenous.

The small number of disease cases also informed the decision not to perform a train-test validation for this use
case. Instead, explanatory sets were compared with semantic similarity to the HPO database annotations for the
disease. In this evaluation, Klarigi’s result sets were shown to be more similar to the definitional annotations than
were both enrichment approaches.

We can also use this dataset to identify relationships that are not represented in the structured description of the
disease. Several classes identified by the multivariate results, described in Table 6, are not found in the HPO
database annotations. For instance, none of the phenotypes describing aplasia/hypoplasia are included in the OMIM
database, such as Aplasia/Hypoplasia of the corpus callosum (HP:0007370), which affects 37% of described
patients with IHPRF3. As such, the findings produced by Klarigi could constitute new disease associations for the
disease, not currently expressed in existing scientific databases describing it. In addition, of the HPO database
annotations that are shared by Klarigi’s representation, we provide additional information about patient
representation, information content, and how exclusive these phenotypes are for patients across a wide set of rare
diseases, all information that can be used to enrich secondary use of these phenotype associations.

Supplementary Table 8 shows the multivariable Klarigi results for IHPRF3 when stratified by the publication they
appear in. This analysis allows us to identify features that may be more specific to particular publications. For
example, intellectual disability (HP:0001249) is over-represented in the patients described by Bhoj 2016, and
both listed phenotypes for Guerreiro 2016 are highly exclusive and inclusive. The terms appearing in these sets are
highly discriminatory, and thus in fact may imply that they are not overall representative of the disease, and instead
a feature or focus of the investigation described by the source article. Interestingly, we can see from the metadata
associated with the HPO database annotations, that some associations were directly evidenced by the OMIM clinical
description, which in turn makes use of publications not represented in the phenopackets dataset, in particular
Alazami 2015 [52].

Comparison to Enrichment Analysis

The results of Klarigi cannot easily be directly compared to enrichment analysis, since enrichment analysis methods
do not determine multivariable sets of explanatory variables, and Klarigi produces its results through class scoring
rather than a significance cut-off. Indeed, the purposes of enrichment and Klarigi are different. In the former case we
are aiming to identify significant individual assocations between terms and groups, while in the latter we are
attempting to identify sets of characteristic and discriminatory terms. Thus, while our quantitative evaluations show
that Klarigi out-performs enrichement in all cases, this primarily indicates the different problem that Klarigi solves:
identifying characteristic and discriminatory sets of terms. Klarigi’s univariate mode is more comparable to
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enrichment, in that it provides a set of pairwise relationships between terms and the group of interest, though Klarigi
provides more information about those relationships.

While enrichment analysis correctly identifies over-represented relationships, it provides little information about
how characteristic the given term is with respect to the considered group. For instance, both Fisher and Binomial
test, produce abnormal thrombosis (HP:0001977) as the term with the largest z-score and odds ratio in the small
set of significant terms identified for pulmonary embolism. This association is not incorrect, though while this term is
highly over-represented, and also appears in the Klarigi result sets, less than half of the admissions in the pulmonary
embolism group are associated with it - indicated by the inclusion score of 0.41. In cases like this, large values for
zscore and odds ratio may be confusing or misleading to interpreters, and does not provide enough information to
those attempting to gain a holistic understanding of the group. Klarigi captures this combination of facts in its scores
for abnormal thrombosis (HP:0001977), with a large score for exclusion, small score for inclusion, and balanced
r-score metric. Moreover, in the Klarigi results, it appears in the context of other terms with which it does form a
more complete phenotypic characterisation of the group, as evidenced by the performance of the classifier on the test
set.

Since we are not selecting multivariable terms based on significance testing, this gives us the opportunity to
manually and reactively modify hyper-parameters to identify better explanatory modules for the group. For example,
if initial results are too general, or if the result set is dominated by a single class, the max-inclusion parameter can be
modified. In the case of the pulmonary embolism use case, we used the min-exclusion and min-r-score parameters to
improve discrimination between the groups.

Limitations and Future Work

While one feature of Klarigi is the ability to interactively modify hyperparameters to identify desirable result sets,
these parameters also introduce complexity to the process, and understanding the interplay of the parameters and
their effect on the results may require manual work, since it will differ depending on the dataset. Moreover, it may
not be easily possible for a human operator to find the optimal parameter configuration.

Grid search could also be employed to automatically identify good settings for parameters, although a challenge
here lies in identifying a good optimisation heuristic, as the current overall inclusion may be equivalent across
result sets of different quality, with respect to a desired outcome for the human operator, depending on their research
goals - for example, five terms that describe 100% of the group may be preferable to one term that also describes
100% of the group. Such a search through possible overall parameters could also add significantly to the execution
time. However, overcoming this problem would also help to avoid the problem of providing parameter defaults that
perform well across different ontologies, datasets, and algorithmic parameters, and reduce the amount of human input
required to obtain quality results. Parameter optimisation could also potentially introduce problems with multiple
testing. We controlled for this, however, by choosing not to employ permutation testing until the final set of desired
results is received - Klarigi currently requires an additional parameter to be passed for significance testing to be
performed.

It is also possible that different scores could be introduced, or different definitions of existing scores could be
explored. For example, the option to re-weight the r-score, in a similar manner to differential weight applications to
precision and recall in an f-score.

The information Klarigi produces about unique characterisation of rare diseases may also benefit development of
disease-phenotype associations, which are used in a wide range of analysis approaches, such as rare disease variant
prioritisation or diagnosis. This contribution could consist simply in the identification of additional phenotypes
through analysis of either larger datasets similar to the phenopackets dataset, or text-mined data from clinical
encounters or literature. Moreover, we showed in Supplementary Table 8 that we were able to identify disease
phenotypes that were more exclusively associated with single publications. Taking note of this information could
support development of high quality disease-phenotype relationships. For example, particular phenotypes that are
very exclusive to one or few publications may be less preferred as candidates for associations, or associations could be
provided with a measure of inter-literature agreement. Such a dataset could be produced using a larger set of
phenopackets data, or through mining literature and clinical narrative for phenotype profiles. Klarigi parameters
could be configured to identify the necessary level of association desired to constitute a disease-phenotype link.

The measures described in our experiment could also be combined with enrichment analysis approaches.
Enrichment analysis use a measure of enrichment score, which could comprise any of the r-score, inclusion, or
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exclusion scores given herein, then using the usual method of testing for significant effects. Indeed, the use of
significance testing upon the final set of multivariable results can be considered as a kind of enrichment analysis.
Other potential expansions of functionality could consist in extending the tool to facilitate a wider range of
information content measures, involving multi-faceted semantic similarity, or identification of sub-groups through
clustering.

Admissions sampling for the MIMIC dataset did not consider whether multiple admissions were attributed to the
same patient, and this could potentially be a small source of bias. However, we do not believe it affects the
conclusions of this study, since it would not favour a particular algorithm. In the same way, different publications
described by the phenopackets dataset could potentially describe the same patients, although there is no way to
confirm this programmatically.

We did not compare the approach with another multivariable enrichment method. This is because existing
methods for multivariable enrichment are either limited to the Gene Ontology, or require a complicated setup process.
The possibility for Klarigi to be easily applied to any ontology and ontology-annotated dataset is a major benefit of
the approach. We addressed this by making these methodological differences clear in our problem description,
comparison of the results, and discussion.

We anticipate that Klarigi can be used to perform improved semantic descriptive analysis of biomedical entities.
This is an area of research that is of recent interest, especially with advancements in text mining for the automated
production of phenotypic profiles. For example, one study performed a statistical analysis of text-mined phenotypic
profiles for 4,095 individuals with Down Syndrome [53], descriptively reporting on phenotypes and their frequency of
appearance. This analysis, however, only used a measure of patient frequency to stratify phenotypes. The use of
Klarigi in this case would have introduced measures of representation for considered phenotypes, for example overall
coverage of unique individuals, and the utility to easily switch around groupings to explore the different aspects of
the data.

Conclusions

Klarigi provides a new way to solve the task of semantic explanation, and thus to explore and interpret biomedical
datasets linked to ontologies. We have demonstrated that it can be used to gain insight into relationships between
biomedical entities with clinical relevance.
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44. Bĕlohlávek J, Dytrych V, Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk
stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism
[Journal Article]. Exp Clin Cardiol. 2013;18(2):129–38.

45. Slater LT, Bradlow W, Hoehndorf R, Motti DF, Ball S, Gkoutos GV. Komenti: A Semantic Text Mining
Framework. bioRxiv. 2020 Aug;p. 2020.08.04.233049.

46. Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D. The Stanford CoreNLP Natural
Language Processing Toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations; 2014. p. 55–60.

47. Bhoj EJ, Li D, Harr M, Edvardson S, Elpeleg O, Chisholm E, et al. Mutations in TBCK, Encoding
TBC1-Domain-Containing Kinase, Lead to a Recognizable Syndrome of Intellectual Disability and Hypotonia.
American Journal of Human Genetics. 2016 Apr;98(4):782–788.

21/22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2021.06.14.448423doi: bioRxiv preprint 

https://doi.org/10.1155/2016/8682506
https://doi.org/10.1101/2021.06.14.448423
http://creativecommons.org/licenses/by-nc-nd/4.0/


48. Chong JX, Caputo V, Phelps IG, Stella L, Worgan L, Dempsey JC, et al. Recessive Inactivating Mutations in
TBCK, Encoding a Rab GTPase-Activating Protein, Cause Severe Infantile Syndromic Encephalopathy.
American Journal of Human Genetics. 2016 Apr;98(4):772–781.

49. Guerreiro RJ, Brown R, Dian D, de Goede C, Bras J, Mole SE. Mutation of TBCK Causes a Rare Recessive
Developmental Disorder. Neurology Genetics. 2016 Jun;2(3):e76.

50. Zapata-Aldana E, Kim DD, Remtulla S, Prasad C, Nguyen CT, Campbell C. Further Delineation of TBCK -
Infantile Hypotonia with Psychomotor Retardation and Characteristic Facies Type 3. European Journal of
Medical Genetics. 2019 Apr;62(4):273–277.
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