Prediction of survival after hepatectomy using a physiologically based pharmacokinetic model of indocyanine green liver function tests

Adrian Köller¹, Jan Grzegorzewski¹, Michael Tautenhahn² and Matthias König¹,*

¹Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
²Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany

Correspondence*: Matthias König
koenigmx@hu-berlin.de

ABSTRACT

The evaluation of hepatic function and functional capacity of the liver are essential tasks in hepatology, especially in the context of liver surgery. Indocyanine Green (ICG) is a widely applied test compound that is used in clinical routine to evaluate hepatic function. Important questions for the functional evaluation with ICG in the context of hepatectomy are how liver disease such as cirrhosis alters ICG elimination, and if postoperative survival can be predicted from preoperative ICG measurements. Within this work a physiologically based pharmacokinetic (PBPK) model of ICG pharmacokinetics was developed and applied to the prediction of liver resection under various degrees of cirrhosis. For the parametrization of the computational model and validation of model predictions a database of ICG pharmacokinetic data was established. The model was applied (i) to study the effect of liver cirrhosis and hepatectomy on ICG pharmacokinetics; and (ii) to evaluate model-based prediction of postoperative ICG-R15 as a measure for postoperative outcome. Key results were that the model is able to accurately predict changes in ICG pharmacokinetics caused by liver cirrhosis and postoperative changes of ICG-elimination after liver resection, as validated with a wide range of data sets. Based on the PBPK model predictions a classifier allowed to predict survival after hepatectomy, demonstrating its potential value as a clinical tool.

Keywords: Indocyanine Green, Hepatectomy, Liver Cirrhosis, Mathematical Model, Computational Model, Pharmacokinetics, Liver Function, Liver Resection

1 INTRODUCTION

Determining liver function is a crucial task in hepatology, e.g., for diagnostics of liver disease or evaluating pre- and postoperative functional capacity of the liver. Accurate evaluation is especially relevant in the context of liver surgery as postoperative complications are often associated with reduced functional capacity. Comprehensive characterization of the status of a patient and their liver are performed before liver surgery such as hepatectomy. This includes among others anthropometric factors (e.g. age, sex, body weight), static liver function tests (e.g., ALT, AST, albumin, bilirubin, INR, prothrombin time), cardiovascular...
parameters (e.g., cardiac output, blood pressure, hepatic blood flow) and lifestyle factors (e.g., smoking, medication). In addition, CT scans are performed for planning of the operation. An important method for quantitative evaluation of liver function are pharmacokinetic measurements of test compounds specifically metabolized by the liver (dynamical liver function tests) such as methacetin (LiMAX \cite{Rubin2017} and MBT \cite{Gorowska-Kowolik2017}), caffeine \cite{Renner1984} or galactose \cite{Bernstein1960}.

Indocyanine green (ICG) is such a test compound that is widely used to assess hepatic function. ICG is an inert, anionic, water-soluble, tricarbocyanine dye that is immediately bound to plasma proteins after intravenous administration. ICG is taken up exclusively by the liver and excreted unchanged into the bile. It is not reabsorbed by the intestine and does not undergo enterohepatic circulation \cite{Wheeler1958}. ICG is an ideal test compound to test hepatic uptake and biliary excretion. Determining liver function using ICG is based on its plasma-concentration time course after administration. Based on the time course pharmacokinetic parameters are calculated, with the most commonly used parameters being: (i) ICG retention ratio 15 minutes after administration (ICG-R15) [\%]; (ii) ICG plasma disappearance rate (ICG-PDR) [\%/min]; (iii) ICG-clearance [ml/min]; and (iv) ICG half-life (ICG-\(t_{1/2} \)) [min]. Reduced elimination of ICG by the liver is directly reflected by these parameters \cite{Sakka2018}.

Liver disease, especially advanced and more severe liver disease, is accompanied by a loss of liver function which can be quantified with dynamical liver function tests. The effects of liver disease on ICG-elimination have been studied extensively, e.g., in different stages of primary biliary cholangitis (PBC) \cite{Vaubourdolle1991}. ICG elimination is reduced in Gilbert’s disease \cite{Martin1976} as well as in patients with hepatic fibrosis and cirrhosis \cite{Gadano1997}. Interestingly, also non-liver diseases can affect ICG parameters, e.g., ICG-clearance is significantly reduced in patients with chronic pancreatitis \cite{Andersen1999}.

Liver cirrhosis is the final stage of many liver diseases and highly relevant in the context of liver surgery. The most common causes are alcoholism, chronic hepatitis C virus infection or non-alcoholic fatty liver disease \cite{Hackl2016}. The pathological characteristics of liver cirrhosis include degeneration of hepatocytes as well as a reduction of liver perfusion through increased portal resistance. Additionally, intrahepatic shunts form, which bypass a portion of the liver blood supply around the functioning liver tissue. From the shunted blood, no ICG can be extracted by the liver, resulting in further reduced elimination \cite{Schuppan2008}.

The severity of cirrhosis can be described using the Child-Turcotte-Pugh- Score (CTP) \cite{Child1964}. The CTP is an empiric, qualitative, discontinuous classification of the severity of the “hepatic functional reserve” \cite{Botero2003}. Based on a set of parameters, the CTP assigns a score from 5-15 to a cirrhotic patient, where the more severe a patient’s symptoms are the higher the score is. These parameters are serum bilirubin and albumin concentrations, pro-thrombin time, the International Normalized Ratio (INR) and the existence of ascites (increased amount of fluid in the peritoneal cavity due to liver cirrhosis) \cite{Child1964}. Patients are classified as CTP-A (5-6 points, low risk), CTP-B (7-9 points, intermediate risk) or CTP-C (10-15 points, high risk). Differences in ICG-elimination between cirrhotic patients and control subjects has been widely assessed \cite{Caesar1961, Burns1991, Gilmore1982, Figg1995, Muller2019, Mukherjee2006, Pind2016}. A good correlation between CTP-score and ICG-elimination has been reported with ICG-elimination decreasing as CTP-score increases \cite{Figg1995, Muller2019, Mukherjee2006, Pind2016}. For many liver diseases, liver surgery is the only effective treatment with hepatectomy being the most common. Liver resection (hepatectomy) describes the removal
Köller et al.

PBPK model of ICG liver function tests

of part of the liver. Hepatectomy is the most important procedure in liver surgery with more than 20,000 liver resections in Germany per year (Filmann et al., 2019). It has been widely performed for the treatment of various liver diseases, such as malignant tumors, benign tumors, calculi in the intrahepatic ducts, hydatid disease, and abscesses (Jin et al., 2013). Despite advances in technology and high experience of liver resection of specialized centers, postoperative morbidity and mortality is still a major issue. Especially, complex resections are being more and more performed in older and high risk patient population (Jin et al., 2013).

Major hepatectomy in the presence of cirrhosis is considered to be contraindicated due to the high mortality rate. Recommendations are often that only selected patients with Child’s A status or ICG-R15 of less than 10% undergo major hepatectomy (Kitano and Kim, 1997).

A key challenge in liver surgery and especially in hepatectomy is to leave the patient with sufficient functional capacity of the future remnant to survive and support liver regeneration while minimizing complications. As a result, the decision whether or not a hepatectomy can be safely performed on a patient is often based on predictions of postoperative remnant liver function (in addition to remnant liver volume), which are in turn based on preoperative evaluations of liver function (and volume). Understanding how cirrhosis alters liver function as measured via ICG is of high clinical relevance. Elucidating how ICG parameters change with increasing CTP score would be an important asset for the evaluation of patients.

Important questions for the functional evaluation with ICG in the context of hepatectomy are (i) how liver disease, especially cirrhosis, alter ICG elimination, and (ii) if postoperative survival can be predicted from preoperative ICG measurements. Within this work a physiological-based computational model of ICG pharmacokinetics was developed and applied to study these questions.

2 MATERIAL AND METHODS

2.1 Data

For the calibration and validation of the model a large data set of ICG measurements and physiological data was established. All data is available via the pharmacokinetics database PK-DB (https://pk-db.com) (Grzegorzewski et al., 2021). PK-DB was used to encode the information on (i) patient characteristics (e.g. age, disease, medication), (ii) applied interventions (e.g. ICG dosing, route of application); (iii) measured ICG time-courses; and (iv) ICG pharmacokinetic parameters (e.g. ICG-PDR, ICG-R15, ICG-clearance).

2.2 Indocyanine Green Pharmacokinetics Parameters

Pharmacokinetic parameters of ICG were calculated from the plasma-concentration time courses using non-compartmental methods (Uzzo et al., 2002). The elimination rate constant (ke) was calculated by fitting the concentration-decay-curve to an exponential function: c(t) = c(0) · e−ke·t. ICG-PDR is ke reported in [%/min]. Half-life (t1/2) was calculated as log(2)/ke. ICG-clearance was calculated as CL = Vd · ke, with the apparent volume of distribution Vd = D/(AUC∞ · ke). D is the applied dose of ICG and AUC∞ is the area under the plasma-concentration time curve AUC calculated via the trapezoidal rule, extrapolated until infinity. ICG-R15 = c(15)/cmax is calculated as the ratio between the plasma-concentration after 15 minutes and the maximum concentration cmax.

2.3 Model

The computational model is an ordinary differential equation (ODE) model encoded in the Systems Biology Markup Language (SBML) (Hucka et al., 2019; Keating et al., 2020). It is defined as a set of species (metabolites), compartments (organs and blood compartments) and reactions (processes such
PBPK model of ICG liver function tests

Köller et al. (2021) developed a PBPK model of ICG liver function tests as metabolic reactions and blood transport. The model was developed using sbmlutils (König, 2021b), and cy3sbml (König and Rodriguez, 2019) and simulated using sbmlsim (König, 2021a) based on the high-performance SBML simulator libroadrunner (Somogyi et al., 2015).

2.4 Model Parameterization

Values for organ volumes and tissue blood flows were taken from literature (ICRP, 2002). A subset of model-parameters was determined using parameter-fitting to minimize the residuals between model predictions and clinical data. This optimization-problem was solved using SciPy’s least_squares method and differential evolution algorithm (Virtanen et al., 2020). For the objective cost function F depending on the parameters \vec{p}, a simple L2-Norm was used consisting of the sum of weighted residuals

$$F(\vec{p}) = 0.5 \cdot \sum_{i,k} (w_k \cdot w_{i,k} \cdot r_{i,k}(\vec{p}))^2 = \sum_{i,k} (w_k \cdot w_{i,k} \cdot (y_{i,k} - m_{i,k}(\vec{p})))^2$$

where $r_{i,k} = (y_{i,k} - m_{i,k}(\vec{p}))$ is the residual of time point i in time course k for model prediction $m_{i,k}(\vec{p})$ and the corresponding data point $y_{i,k}$; $w_{i,k}$ is the weighting of the respective data point i in timecourse k based on the error of the data point and w_k = the weighting factor of time course k. Weighting of time courses was based on the number of subjects per study. The final parameter set given in Tab. 2 was determined using 250 runs of the local least square optimization (Fig. ??). The data used for the parameter fit is listed in Tab. [I].

2.5 Uncertainty analysis

To evaluate the uncertainty of model predictions, uncertainty analysis was performed for a subset of simulations. Each model parameter was changed individually by ±25%. From the set of resulting time courses the mean, standard deviation (SD) and minimum and maximum values at each time point were calculated. These uncertainty areas were displayed as shaded areas. Parameters corresponding to physical constants (such as molecular weights) and dosing were not varied in the uncertainty analysis, as well as parameters for conservation conditions such as the fractional blood flow through the lung (must be 1).

2.6 Classification

For the prediction of survival in hepatectomy multiple classification models were developed allowing based on a set of features to predict the outcome after hepatectomy (binary classification: Survivors/Non-Survivors). For model training and evaluation a dataset of 141 patients with information on survival status, resection rate and preoperative ICG-R15 was used (Seyama and Kokudo, 2009; Wakabayashi et al., 2004). Classification was performed using scikit-learn (Pedregosa et al., 2011) using a C-support vector classifier with a polynomial kernel. Cross-validation was performed using the ShuffleSplit method with 200 iterations and a train-test-ratio of 75%/25%. Based on the confusion matrix the following evaluation metrics were calculated: precision, recall, balanced accuracy F1 score, Mathews correlation coefficient and receiver operator curves (ROC).

3 RESULTS

Within this work, a PBPK model of ICG pharmacokinetics was developed and applied to study (i) how liver disease, especially cirrhosis, alter ICG elimination, and (ii) if postoperative survival can be predicted from preoperative ICG measurements in the context of hepatectomy.
3.1 Data
A wide range of heterogeneous data was curated for model building (parameterization) and subsequent model validation (comparison of model predictions to clinical data). An overview of the 29 studies with their respective clinical protocols is provided in (Tab. 1). All data is freely available from https://pk-db.com.

3.2 Model
A PBPK model for the prediction of ICG pharmacokinetics was developed consisting of whole-body, organ-level and hepatic metabolism. To simulate the whole-body distribution and hepatic elimination of ICG two models were coupled: (i) A whole-body model (Fig. 1A) describing the distribution of ICG in the body and to the organs via blood flow. (ii) A liver model (Fig. 1B) which describes hepatic uptake of ICG, biliary excretion of ICG and transport of ICG into the feces. ICG specific pharmacokinetic parameters (i.e. ICG-PDR, R15, clearance, half-life) were calculated from the resulting time course predictions of ICG in venous plasma.

3.2.1 Distribution and blood flow
The distribution of ICG on whole-body level is modeled using a network of blood flows representing the systemic circulation. From the venous blood, ICG is transported through the lung into the arterial blood from where it can reach the liver on two paths: (i) through the hepatic artery and (ii) through the gastrointestinal tract reaching the liver via the portal vein. Because the liver is the only tissue partaking in the uptake and elimination of ICG, all other organs (e.g. kidney, heart, adipose tissue, muscle, etc.) were pooled into the rest compartment. Each organ consists of a blood compartment (representing the vessels) and a tissue compartment. ICG transport via blood flow was implemented as irreversible transport. The transport \(v_i \) from compartment \(i \) to the next compartment is determined by the ICG concentration \(C_i \) in compartment \(i \) and a compartment-specific blood flow \(Q_i \). \(Q_i \) is determined by the cardiac output \(Q_{CO} \) and a compartment specific fractional tissue blood flow \(fQ_i \). Multiple conservation conditions hold in the model to ensure mass and flow balance. First the sum of blood flows from the arterial to the venous compartment must equal the sum of flows in the reverse direction: \(Q_{CO} = Q_{lu} = Q_h + Q_{re} \). Flow into an organ must be equal to the flow out of the organ. E.g. hepatic venous blood flow must be equal to the sum of hepatic arterial and portal venous blood flow: \(Q_h = Q_{ha} + Q_{po} \).

3.2.2 Hepatic metabolism and biliary excretion
The liver model (Fig. 1B) consists of three consecutive transport reactions of ICG. After ICG is taken up in the liver it is excreted into the bile. Both transport reactions are modeled as irreversible Michaelis-Menten-kinetics. From the bile, ICG is transported into the feces modeled via a first order kinetic. All transport kinetics scale with the liver volume \(V_{li} \).

3.2.3 Parameter fitting
Parameter fitting of the model was performed using a subset of ICG time courses and extraction-ratio measurements (see Tab. 1). No ICG pharmacokinetic parameters were used in model fitting. Overall, 5 model parameters were fitted (see Tab. 2). Two of them determine the import of ICG in the liver, three determine the subsequent excretion in the bile. The agreement between fit data and model predictions improved substantially during parameter fitting and all trainings data with the exception of three simulations (Meijer1988, Chijiiwa2000 and Burns1991) could be described very well after parameter fitting.

3.2.4 Modeling liver cirrhosis
The reference model, representing a healthy human subject, was adjusted to simulate cirrhosis by including a combination of functional tissue loss (due to scarring and necrosis in cirrhosis) and the formation of intrahepatic shunts, both key hallmarks of cirrhosis (Fig. 1C). The loss of functional liver tissue was controlled via the parameter \(f_{tissue.loss} \in [0, 1] \) which defines the fraction of parenchymal...
cell volume lost in the liver due to the disease. For modeling arteriohepatic and portosystemic shunts two additional blood vessels were introduced into the model. They connect the hepatic artery and the portal vein directly to the hepatic vein. As a result, a part of the portal venous and arterial blood bypasses the active liver tissue and is shunted to the hepatic venous blood compartment, so that ICG cannot be extracted (corresponding to \textit{in silico} shunts). The amount of blood that flows through the shunts is determined by the parameter $f_{\text{shunts}} \in [0, 1)$, which defines the fraction of blood bypassing the liver. The remaining blood $(1 - f_{\text{shunts}})$ reaches the liver tissue and ICG can be extracted. To simulate various degrees of cirrhosis the parameters f_{shunts} and $f_{\text{tissue_loss}}$ were varied in lockstep by coupling them into the parameter $f_{\text{cirrhosis}}$. The following values for $f_{\text{cirrhosis}}$ were used: healthy - 0.0, mild cirrhosis - 0.38, moderate cirrhosis - 0.69, severe cirrhosis - 0.81.

3.2.5 Modeling hepatectomy

The developed model allows to predict changes in ICG pharmacokinetic parameters after hepatectomy (Fig. 1D). \textit{In silico} hepatectomies were simulated by reducing the fractional liver volume FV_{li} by up to 90% (corresponding to a resection rate of 90%). The absolute liver volume is determined with the body weight BW via $FV_{li} \cdot BW$. All hepatectomies were simulated under varying degrees of cirrhosis as described above.

3.3 Healthy controls

In a first step the fitted model was evaluated with the data used for model calibration consisting of ICG time courses in healthy subjects (Fig. 2). For the simulations infusion protocols and body weights were adjusted as reported in the respective studies (see Tab. 1 for details). If no body weight was reported 75 kg were assumed.

The model predictions for ICG plasma disappearance curves after an ICG bolus are in good agreement with the clinical data (Andersen et al., 1999; Grundmann et al., 1992; Kamimori et al., 2000; Klockowski et al., 1990; Niemann et al., 2000; Meijer et al., 1988). In addition, more complex infusion protocols as reported in Soons et al. (Soons et al., 1991) can also be described (Fig. 2F), infusion protocol of three different infusion rates $(2.0 \rightarrow 0.5 \rightarrow 1.0 \text{ mg/min}, \text{ each for 40 minutes})$. Due to the high extraction-ratio of ICG by the liver, the plasma concentration reaches steady state quickly after each change in the infusion rate. Next, simulations of the biliary excretion rate of ICG after bolus administrations of 0.5, 1.0 and 2.0 mg/kg ICG were performed and the results were compared to clinical data (Meijer et al., 1988; Chijiiwa et al., 2000).

Finally, simulations of constant infusions were performed and compared to reported arterial and hepatic vein time courses of ICG (Leevy et al., 1962) and ICG extraction ratios (Leevy et al., 1962; Grainger et al., 1983).

Overall, the model shows the ability to accurately predict ICG time courses for venous and arterial plasma concentrations, for hepatic vein concentrations, the biliary excretion rate and extraction ratios when compared to clinical data. Especially plasma time courses of ICG after ICG bolus and ICG infusion are very well predicted by the model, even for varying administration protocols (dosing and infusion rates).

In a next step a systematic analysis of the dose dependency of ICG pharmacokinetic parameters was performed (Fig. 3). A dose-dependency of the ICG parameters can only be observed if the ICG dose exceeds 100 mg (much higher then the typically applied doses of 20 - 35 mg), resulting in a reduction in ICG-clearance and ICG-PDR as well as an increase of ICG-R15 and ICG-t1/2 (Fig. 3A-D). The model predictions could be validated with clinical data (Martin et al., 1975, 1976; Meijer et al., 1988) (Fig. 3E-G).
3.4 Cirrhosis

To simulate changes of ICG pharmacokinetics in cirrhosis, hepatic tissue loss and shunts were included in the model as described above. First, a systematic analysis of the effect of intrahepatic shunts (f_{shunts}), functional tissue loss ($f_{\text{tissue_loss}}$) and the combination of both ($f_{\text{cirrhosis}}$) on ICG pharmacokinetic parameters was performed (Fig. 4A-D). All three parameters were varied from 0 (no effect, healthy control) to 0.9 (severe effect). ICG-clearance and ICG-PDR decrease with increasing $f_{\text{cirrhosis}}$ whereas ICG-R15 and ICG-t$_{1/2}$ increase. The loss of a fraction of functional liver tissue appears to have a smaller effect on ICG pharmacokinetic parameters than shunting of an equal fraction of blood past the liver. When f_{shunts} and $f_{\text{tissue_loss}}$ are combined to $f_{\text{cirrhosis}}$ their effect on ICG pharmacokinetic parameters is additive. For ICG-clearance and ICG-PDR the effects of both parameters combine to an almost linear dependency on $f_{\text{cirrhosis}}$. The decrease in ICG-clearance and ICG-PDR with increasing cirrhosis can be observed over a wide range of applied ICG doses (Fig. 5A-D).

By varying the $f_{\text{cirrhosis}}$ parameter from 0 to 0.9 different degrees of cirrhosis were simulated and the nonlinear relation between ICG-R20 and ICG-kel as well as ICG-R20 and ICG-t$_{1/2}$ could be predicted (Fig. 4E,F). As seen in the systematic analysis (Fig. 4A-D) ICG-t$_{1/2}$ and ICG-R20 increase with cirrhosis whereas ICG-kel decreases. The correlation between the ICG pharmacokinetic parameters is predicted accurately by the model when compared to a clinical dataset that lacks information about the severity of liver cirrhosis of its patients [Cherrick et al., 1960; Caesar et al., 1961]. Next the ICG-PDR in cirrhotic patients, acute and recovering hepatitis and control subjects after different doses of ICG (0.5 mg/kg and 5.0 mg/kg ICG) was compared to the model predictions. The clinical data shows higher ICG-PDR values after an ICG dose of 0.5 mg/kg than after an ICG dose of 5.0 mg/kg (Levy et al., 1967). In the model prediction the ICG-PDR in acute and recovering hepatitis resembles that of mild to moderate cirrhosis (Fig. 4G). ICG-clearances after a bolus administration and during a constant infusion show good positive correlation in cirrhotic patients (Burns et al., 1991). This correlation is predicted accurately by the model (Fig. 4H).

Having evaluated and validated the effect of $f_{\text{cirrhosis}}$ on the model prediction of ICG parameters, we were interested how the model $f_{\text{cirrhosis}}$ parameter compares to the in vivo estimation of cirrhosis degree via the CTP-score (Fig. 5). As described above, the CTP-score is a semi-quantitative scoring system that describes the severity of liver cirrhosis. An important step to apply the developed PBPK model in a clinical setting, is the ability to adjust the model individually to the respective status of liver disease in a patient. Therefore, the relationship between the $f_{\text{cirrhosis}}$ parameter and the CTP-Score was evaluated using multiple datasets in which ICG pharmacokinetic parameters were reported in patient subgroups of different CTP-Scores [Figg et al., 1995; Møller et al., 1998, 2019; Herold et al., 2001].

The clinical results of the ICG pharmacokinetic parameters in different CTP-classes were mapped onto their respective systematic scan (Fig. 5A-D). The resulting $f_{\text{cirrhosis}}$ values were then compared between the patient groups. Additional individual data is shown (Figg et al., 1995).

The resulting mapping between $f_{\text{cirrhosis}}$ and the CTP-classes shows a good positive correlation. The $f_{\text{cirrhosis}}$ values for the controls groups are close to 0, increasing with the CTP-class. The relation appears nonlinear, as $f_{\text{cirrhosis}}$ shows little difference between CTP-class B and C. The mappings of the CTP-class to $f_{\text{cirrhosis}}$ for the different ICG parameters each give very similar results. From the mapping of all four pharmacokinetic parameters a mean value of $f_{\text{cirrhosis}}$ was calculated for each CTP-class (Control: $f_{\text{cirrhosis}}$ = 0.0; Mild cirrhosis: 0.38; Moderate cirrhosis: 0.69; Severe cirrhosis: 0.81). The resulting values were used in all simulations of control, mild, moderate and severe cirrhosis, as well as in the above described dose dependency analysis (Fig. 5A-D).
Only a single study reported the numerical CTP-score of the patient groups in combination with ICG-clearance (Figg et al., 1995). All other studies instead used the CTP-classes (A, B, C) (Møller et al., 1998, 2019; Herold et al., 2001). With a dataset of individually reported CTP-scores in combination with ICG pharmacokinetic parameters of cirrhotic patients, it would be possible to calculate the relationship of the CTP-score on the $f_{\text{cirrhosis}}$ parameter more accurately. Such an improved mapping would allow to adjust the model via the $f_{\text{cirrhosis}}$ parameter individually based on the respective severity of liver disease/cirrhosis of the patient reported as CTP-score.

After establishing the CTP mapping the model was further validated via several comparisons with clinical data of ICG time courses in cirrhotic and control subjects (Fig. 6).

Assuming moderate cirrhosis ($f_{\text{cirrhosis}} = 0.7$), the model prediction of an ICG time course in a cirrhotic patient agrees well with the clinical data (Burns et al., 1991) (Fig. 6A,B). The main alteration compared to the healthy control is the slower disappearance rate resulting in higher ICG plasma concentrations. The same effect is observed in steady state via a constant ICG infusion (Fig. 6C). Using the $f_{\text{cirrhosis}}$ values from the CTP mapping above, the steady state concentrations are predicted in agreement with the clinical data (Caesar et al., 1961). Fig. 6E shows the relation between the hepatic venous and arterial ICG concentrations and the extraction ratio in a cirrhotic subject. Here, $f_{\text{cirrhosis}}$ was set to 0.54 which allowed to predict arterial and hepatic vein concentration as well as ICG extraction ratio. Finally, in Fig. 6F-H the ICG extraction ratio predicted for controls and three different cirrhosis degrees was compared to clinical data (Levey et al., 1962; Gadano et al., 1997; Caesar et al., 1961). The extraction ratio in cirrhotic subjects is reduced compared to healthy controls, as predicted by the model.

3.5 Hepatectomy

After validating the model predictions of ICG pharmacokinetics in liver cirrhosis, the model was applied to liver surgery, specifically hepatectomy. To analyze the effect of hepatectomy on ICG elimination the change in ICG pharmacokinetic parameters as a function of the resection rate was simulated (Fig. 7A-D). The scan was performed for healthy controls as well as three different degrees of cirrhosis.

ICG-clearance and ICG-PDR are highest in the preoperative liver (resection rate = 0) and decrease with increasing resection rate whereas ICG-$t_{1/2}$ and ICG-R15 are lowest in the healthy liver and increase with increasing resection rate. The effect of varying the degree of cirrhosis is in accordance with the results shown in (Fig. 4A-D). Importantly, increasing resection rate and increasing degree of cirrhosis affect ICG pharmacokinetic parameters in the same manner. The dependencies of ICG-clearance, ICG-PDR, ICG-$t_{1/2}$ and ICG-R15 on the resection rate are fairly linear up to 50-60% resection, and become much more non-linear for higher resection rates.

For model validation the predictions were compared to clinical data of subjects undergoing hepatectomy. For these simulations the resection rate was varied from 0 to 0.9. First, the relative change of ICG-PDR after hepatectomy as a function of the resection rate was simulated (Fig. 7E). The model predicts a nonlinear dependency of change in ICG-PDR on the change of liver volume independent of the degree of cirrhosis. This prediction is in good agreement with the clinical data (Thomas et al., 2015; Stockmann et al., 2009). Furthermore, the correlation between measured postoperative ICG-kel and estimated remnant ICG-kel (ICG-kel · fractional liver remnant) was simulated under various degrees of cirrhosis (Fig. 7F). A good correlation can be observed. The model predictions were compared to three different data sets (Ohwada et al., 2006; Okochi et al., 2002; Sunagawa et al., 2021) and are in good agreement with them. In addition, all data sets are in good agreement with each other. The simulated correlation line is independent of the cirrhosis degree, but with increasing cirrhosis ICG-kel decreases. A large variability can be observed in the
Köller et al.

PBPK model of ICG liver function tests

Experimental data, but as our simulations indicate is most likely not due to the underlying liver disease (cirrhosis).

(Thomas et al., 2015) found significant correlation between post-hepatectomy ICG-PDR and intraoperative ICG-PDR measured under trial clamping of those parts of the liver that were to be removed. This was simulated by changing hepatic blood flow and liver volume in separate simulations but in the same intervals. This was performed for a healthy liver as well as three different degrees of cirrhosis (Fig. 7G). The predictions agree well with the clinical data and show that reducing hepatic blood flow (clamping of liver volumes which will be resected) has a very similar effect on ICG elimination as actually removing the respective liver volume via hepatectomy.

Finally, the correlation between preoperative and postoperative ICG-PDR for different resection rates and cirrhosis degrees was simulated and compared to clinical data (Fig. 7H). ICG-PDR is reduced in cirrhosis preoperatively as well as postoperatively. The model prediction agrees with the clinical data (Thomas et al., 2015).

Overall the predictions of hepatectomies in severely cirrhotic liver is not in good agreement with the clinical data. This reflects the fact that no resections are performed in severely cirrhotic liver due to high risk of postoperative complications. As a consequence, most of the hepatectomies are performed in mild to moderate cirrhosis. The model allows to perform these risky hepatectomies in silico and predict there effect.

In summary, the model allows to systematically predict the changes of ICG pharmacokinetic parameters in hepatectomy under various degrees of liver disease (cirrhosis).

3.6 Prediction of post-hepatectomy survival

An interesting application of the presented PBPK model is the prediction of postoperative outcome for patients undergoing hepatectomy. Preoperative ICG-R15 and the planned resection rate are key parameters included in the decision process whether a patient is eligible to receive liver resection surgery.

As shown above, the presented PBPK model accurately predicts ICG-R15 in liver cirrhosis as well as the changes in ICG-R15 following hepatectomy. As such, we were interested how a classification model based on the PBPK model prediction of postoperative ICG-R15 compares to classification approaches only using clinical data (preoperative ICG-R15, resection rate and calculated postoperative ICG-R15).

Five different classification models to predict survival after hepatectomy were developed using a dataset of 141 patients (Seyama and Kokudo, 2009; Wakabayashi et al., 2004): Three data-based classification models based on (i) the preoperative ICG-R15 (Data1A), (ii) the calculated postoperative ICG-R15 by multiplying the future liver remnant (1-resection rate) and preoperative ICG-R15 (Data1B) and (iii) both the resection rate and the preoperative ICG-R15 (Data2). In addition two PBPK-based models were developed, (iv) one based on the prediction of postoperative ICG-R15 (PBPK1) and (v) the other based on the resection rate and the estimated $f_{\text{cirrhosis}}$ model parameter (PBPK2). By fitting the model parameter $f_{\text{cirrhosis}}$ as a function of its resulting ICG-R15 value to a logarithmic function $f_{\text{cirrhosis}} = a \cdot \ln(b \cdot x) + c$ where x is the ICG-R15 value, the clinically measured preoperative ICG-R15 value could be converted to a value of the model parameter $f_{\text{cirrhosis}}$, thereby providing an estimate of individual liver disease (cirrhosis degree). This estimated parameter allowed in combination with the resection rate to predict individual postoperative ICG-R15 values. An overview of the classification results of these five models is provided in Tab. 3.

A clear difference in the ability to predict survival after hepatectomy exists between the single feature data-based classifiers (Data1A, Data1B) and the other classifiers. Both PBPK-based classifiers (PBPK1,
PBPK2) as well as the Data2 classifier outperform the Data1A and Data1B classifiers. When comparing the classification models using a single feature (Data1A, Data1B, PBPK1) the physiological-based predicted postoperative ICG-R15 (PBPK1) clearly outperforms the preoperative (Data1A) and calculated postoperative ICG-R15 (Data1B).

Fig. 8A shows the postoperative ICG-R15 in survivors and non-survivors predicted by the model as well as the preoperative ICG-R15 in the same subjects (inlet). The predicted postoperative ICG-R15 is able to distinguish better between survivors and non-survivors than the preoperative ICG-R15 as can be seen by the clearer separation of the histograms and the ROC curves for the single feature classifier (Fig. 8C). Both preoperative ICG-R15 as well as calculated postoperative ICG-R15 are not very useful for the prediction of survival after hepatectomy, whereas predicted postoperative ICG-R15 using PBPK1 is a very good measure for survival.

To determine possible cutoffs for predicted postoperative ICG-R15 based on the PBPK1 classifier the dependency of evaluation metrics on the cutoff was analyzed (Fig. 8B). Balanced accuracy has a maximum at around 40%, precision would be perfect for a predicted ICG-R15 > 20%. Fig. 8D depicts how the predicted postoperative ICG-R15 depends on the resection rate and $f_{cirrhosis}$. The data confirms that a cutoff value slightly below 40% would correctly predict most of the non-survivors with a stricter cutoff of 20% avoiding any death after hepatectomy. Similar analysis of the data-based single feature classification models failed to find a significant optimum of evaluation metrics for either preoperative ICG-R15 or calculated postoperative ICG-R15 (Fig. 9).

The two-feature classification models (PBPK2, Data2) show good performance in the survival prediction comparable to PBPK1 as can be seen from the ROC-curves in Fig. 8F. Whereas the one-dimensional PBPK1 classifier provides a simple interpretation and cutoff value, the two dimensional classifiers are more difficult to interpret and apply.

In summary, we developed a single-feature classification model based on a physiological-based model of ICG elimination (PBPK1) which allows to predict post-hepatectomy survival solely based on preoperative ICG-R15 input. Importantly, this computational model-based approach clearly outperforms data-based approaches such as preoperative ICG-R15 and calculated postoperative ICG-R15.

4 DISCUSSION

In summary, a PBPK model for ICG based liver function evaluation was developed, validated, and applied to the prediction of postoperative outcome after liver surgery, i.e., survival after hepatectomy. The model takes into account physiological factors such as the degree of cirrhosis and the planned resection volume, which allowed an accurate prediction of postoperative liver function in agreement with clinical data. As such, the model has proven its potential of becoming a valuable clinical tool for the planning of hepatectomies.

The physiologically-based modeling approach allowed us to predict ICG pharmacokinetics data from 29 studies using only a small set of parameters and processes. The model accurately predicts changes in ICG pharmacokinetic parameters in a wide range of conditions including varying degrees of cirrhosis. Additionally, in silico hepatectomies with underlying cirrhosis are in good agreement with clinical data. As an important note, all clinical data besides the time courses in healthy subjects used for model calibration was used for model validation.

An important outcome of this study is a single-feature classification model based on a physiological-based model of ICG elimination (PBPK1) which allows to predict post-hepatectomy survival solely based on preoperative ICG-R15 and resection rate. A limitation hereby is the relative small sample size (n=104)
from retrospective data. Validation with a dataset consisting of Caucasian subjects would be highly relevant, as the available survival data after hepatectomy was based on Japanese subjects.

The developed classification models show the potential of using PBPK predicted postoperative ICG-R15 values in the clinical decision process. Whereas the PBPK1 classifier provides a simple cutoff based on the individual model prediction (Fig. 8A,B), PBPK2 provides the dependency of predicted postoperative ICG-R15 on resection rate and cirrhosis degree (Fig. 8D), both key factors for survival after hepatectomy. Comparing different approaches of predicting postoperative outcome after hepatectomy showed the importance of taking resection rate into account. The data-based classifier combining resection rate with preoperative ICG (Data2) allowed to achieve comparable classification results then the PBPK-based classifiers. In contrast, the classification models Data1A and Data1B failed to achieve satisfying results, i.e. neither preoperative ICG alone nor calculated postoperative ICG provide sufficient information.

Due to the high mortality rate major hepatectomy in the presence of cirrhosis is considered to be contraindicated. Recommendations are often that only selected patients with Child’s A status or ICG-R15 of less than 10% undergo major hepatectomy (Kitano and Kim, 1997). As can be seen in Fig. 8A inlet even such a strict cutoff can still result mortality after hepatectomy. A better approach is to use a combination of resection rate and individual cirrhosis degree as shown by the PBPK2 classifier (and indirect by the PBPK1 classifier).

Overall, the clinical data shows large variability in ICG pharmacokinetic measurements, mostly due to intra-individual differences (e.g. Fig. 7F). Possible explanations are differences in blood flow, plasma proteins or protein amount or activity of the ICG transporters. An important next step would be a systematic analysis of these possible causes of variability and account for these confounding factors.

Importantly, due the physiological-based modeling approach predictions could be easily further individualized with the availability of respective data. The individualization of the model could include general information such as age, sex and ethnicity. Physiological information such as body weight, body fat percentage, cardiovascular parameters and organ volumes would be included. Information regarding the liver specifically would be of high relevance. This includes liver perfusion, liver volume and quantification of ICG protein amounts as well as assessment of liver disease such as cirrhosis degree. Such an individualization could substantially improve the models prediction of postoperative liver function and outcome in patients undergoing hepatectomy.

Going forward, an important step will be to evaluate the model in the clinical context using a high quality dataset reporting individual ICG time courses in combination with the above-mentioned additional clinical data.

CONFLICT OF INTEREST STATEMENT

All authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

AK and MK designed the study, developed the computational model, build the classifiers, performed the analysis, and wrote the initial draft of the manuscript. JG provided support with PKDB, data curation and meta-analysis. AK and MK wrote the initial manuscript draft. All authors contributed and revised the manuscript critically.
MK is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054). This work was supported by the German Research Foundation (DFG) within the Research Unit Programme FOR 5151 "QuaLiPerF (Quantifying Liver Perfusion-Function Relationship in Complex Resection - A Systems Medicine Approach)" by grant number 436883643.

SUPPLEMENTAL DATA

Supplementary Material should be uploaded separately on submission, if there are Supplementary Figures, please include the caption in the same file as the figure. LaTeX Supplementary Material templates can be found in the Frontiers LaTeX folder.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in PK-DB available from https://pk-db.com.

REFERENCES

Cherrick, G. R., Stein, S. W., Leevy, C. M., and Davidson, C. S. (1960). Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. The Journal of clinical investigation 39, 592–600. doi:10.1172/JCI104072

Köller et al.

PBPK model of ICG liver function tests

Köller et al.

PBPK model of ICG liver function tests

Figure 1. Model overview: A: Whole-body model. The whole-body PBPK model for ICG consists of venous blood, arterial blood, lung, liver, gastrointestinal tract and rest compartment (accounting for organs not modeled in detail) and the systemic blood circulation connecting these compartments. B: Liver model. ICG in the liver plasma compartment is taken up into the liver tissue (hepatocytes). Subsequently hepatic ICG is excreted in the bile from where it is excreted in the feces. No metabolization of ICG takes place in the liver. C: Modeling liver cirrhosis. Liver cirrhosis was modeled as a combination of tissue loss and hepatic shunts (see main text for details). D: Modeling hepatectomy. Hepatectomy was modeled as a removal of tissue volume with corresponding vessels (see main text for details)
PBPK model of ICG liver function tests

Figure 2. Model prediction of ICG time courses in healthy subjects: A-D: Venous concentration after bolus ICG administration (Andersen et al., 1999; Grundmann et al., 1992; Kamimori et al., 2000; Klockowski et al., 1990). E: Arterial concentration after bolus ICG administration (Niemann et al., 2000). F: Venous concentration during an ICG infusion protocol (2.0, 0.5, 1.0 mg/min, 40 minutes each) (Soons et al., 1991). G, H: Venous concentration and biliary excretion rate after 3 different ICG doses (0.5, 1.0, 2.0 mg/kg) (Meijer et al., 1988; Chijiiwa et al., 2000). I: Hepatic venous and arterial concentration during constant ICG infusion (Leevy et al., 1962). J-L: ICG extraction ratio during constant infusion (Leevy et al., 1962; Grainger et al., 1983).
Köller et al.

PBPK model of ICG liver function tests

Figure 3. Dose dependency of ICG pharmacokinetic parameters: A-D: Dose dependency of ICG pharmacokinetic parameters in controls and three different degrees of cirrhosis. E-H: Dose dependency of ICG-kel, ICG-clearance, ICG-$t_{1/2}$ in healthy subjects with clinical data (Martin et al., 1975, 1976; Meijer et al., 1988).
Figure 4. Dependency of ICG pharmacokinetic parameters on cirrhosis.: Simulation for healthy controls indicated by star. A-D: Dependency of ICG pharmacokinetic parameters on the degree of shunting (green), degree of tissue loss (yellow) and degree of cirrhosis (black-blue-red). E: Correlation between ICG-R20 and ICG-t$_{1/2}$ in cirrhotic and control subjects (Cherrick et al., 1960). F: Correlation between ICG-R20 and ICG-kel in cirrhotic and control subjects (Caesar et al., 1961). G: Correlation between ICG-PDR after an ICG dose of 0.5 mg/kg and 5.0 mg/kg in control subjects and subjects with various liver diseases (Leevy et al., 1967). H: Correlation between ICG-clearance after a bolus administration and during a constant infusion of ICG in cirrhotic subjects (Burns et al., 1991).
Figure 5. Mapping of model cirrhosis degree on CTP-score: A: Mapping based on ICG clearance (Figg et al., 1995; Møller et al., 1998). B: Mapping based on ICG-kel (Møller et al., 2019; Herold et al., 2001). C: Mapping based on ICG-R15 (Møller et al., 2019). D: Mapping based on ICG-thalf (Møller et al., 2019). E: Resulting $f_{\text{cirrhosis}}$ values for each CTP-class combining the information from the mappings based on individual ICG pharmacokinetic parameters (Control: $f_{\text{cirrhosis}} = 0.0$; Mild cirrhosis: 0.38; Moderate cirrhosis: 0.69; Severe cirrhosis: 0.81).
Figure 6. Model prediction of ICG time courses in subjects with cirrhosis: A, B: Venous concentration after a bolus ICG administration in a healthy subject and a cirrhotic patient (\(f_{\text{cirrhosis}}\) was set to 0.7 corresponding to moderate cirrhosis) (Burns et al., 1991). C: Venous concentration during a constant ICG infusion in healthy and cirrhotic subjects (Caesar et al., 1961). D, E: Hepatic venous and arterial ICG concentration and ICG extraction ratio in a cirrhotic patient (\(f_{\text{cirrhosis}}\) was set to 0.54 corresponding to mild-moderate cirrhosis) (Keiding et al., 1993). F-H: ICG extraction ratio in cirrhotic, hepatitis and control subjects during a constant ICG infusion (Levey et al., 1962; Gadano et al., 1997; Caesar et al., 1961).
Figure 7. Model prediction of ICG pharmacokinetic parameters in hepatectomy under varying degree of cirrhosis: A-D: Dependency of postoperative ICG pharmacokinetic parameters on the resected volume in 4 different degrees of cirrhosis. E: Dependency of postoperative change in ICG-PDR on the resected volume (Thomas et al., 2015; Stockmann et al., 2009). F: Correlation between the measured postoperative ICG-kel and the estimated postoperative ICG-kel (product of preoperative ICG-kel and the future liver remnant) (Ohwada et al., 2006; Okochi et al., 2002; Sunagawa et al., 2021). G: Correlation between postoperative ICG-PDR and intraoperative ICG-PDR during trial clamping (Thomas et al., 2015). H: Correlation between postoperative and preoperative ICG-PDR (Thomas et al., 2015). Simulations for E-H: were performed for varying resection rates in healthy subjects and three different degrees of cirrhosis.
Figure 8. Classification of survival after hepatectomy: A: Distribution of predicted postoperative ICG-R15 in survivors and non-survivors based on the PBPK1 model. Corresponding measured preoperative ICG-R15 used in Data1A as inlet. B: Dependency of evaluation metrics of the classification model PBPK1 on the chosen cutoff of predicted postoperative ICG-R15 using cross-validation (mean ± SD). C: ROC curve using the complete dataset (n=141) with cross-validation (mean ± SD) for classification models Data1A, Data1B and PBPK1. D: Predicted postoperative ICG-R15 and survival status depending on the resection rate and $f_{cirrhosis}$. E: Decision boundary of the two-dimensional classification model PBPK2 based on the resection rate and $f_{cirrhosis}$ using the complete dataset. Survivors and non-survivors are well separated by the decision boundary. F: ROC curve using the complete dataset (n=141) with cross-validation (mean ± SD) for classification models Data2 and PBPK2. Data from [Seyama and Kokudo, 2009; Wakabayashi et al., 2004].
<table>
<thead>
<tr>
<th>Study</th>
<th>PK-DB</th>
<th>PMID</th>
<th>Protocol</th>
<th>Body weight</th>
<th>Fit</th>
<th>Data used in fit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andersen1999</td>
<td>PKDB00386</td>
<td>10499483</td>
<td>Bolus: 0.5 mg/kg</td>
<td>Cont.: 83.4 kg; Pan.: 58.2 kg</td>
<td>✓</td>
<td>ICG time course (plasma)</td>
<td>Pharmacokinetic time course of ICG-disappearance in chronic pancreatitis and healthy subjects.</td>
</tr>
<tr>
<td>Burns1991</td>
<td>PKDB000388</td>
<td>18481681</td>
<td>Bolus: 0.5 mg/kg; Infusion: 0.25 mg/min</td>
<td>NR</td>
<td>✓</td>
<td>ICG time course (plasma)</td>
<td>ICG pharmacokinetics in healthy subjects and patients with liver disease.</td>
</tr>
<tr>
<td>Caesar1961</td>
<td>PKDB000389</td>
<td>13689739</td>
<td>Bolus: 0.5 mg/kg; Infusion: 0.5 mg/min</td>
<td>NR</td>
<td>✓</td>
<td>ICG extraction-ratio</td>
<td>Measuring hepatic blood flow and assessing hepatic function by ICG pharmacokinetics.</td>
</tr>
<tr>
<td>Cherrik1960</td>
<td>PKDB003901</td>
<td>13896957</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG time course (bile excretion)</td>
<td>ICG pharmacokinetics in healthy subjects and patients with liver disease.</td>
</tr>
<tr>
<td>Chijiiwa2000</td>
<td>PKDB003911</td>
<td>10773154</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance and extraction-ratio and their dependency on hepatic bloodflow in healthy subjects and in patients of hepatic fibrosis and cirrhosis.</td>
<td></td>
</tr>
<tr>
<td>Figg1995</td>
<td>PKDB003935</td>
<td>8602757</td>
<td>Infusion: 0.4 mg/min (controls); 0.8 mg/min (cirrhotics) with priming dose (24 mg controls; 12 mg cirrhotics)</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance and extraction-ratio and their dependency on hepatic bloodflow in healthy subjects and in patients of hepatic fibrosis and cirrhosis.</td>
<td></td>
</tr>
<tr>
<td>Gadano1997</td>
<td>PKDB003944</td>
<td>9083919</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>✓</td>
<td>ICG clearance -</td>
<td>Non-invasive measurement of hepatic blood flow using ICG extraction-ratio.</td>
</tr>
<tr>
<td>Grainger1983</td>
<td>PKDB000395</td>
<td>8822056</td>
<td>Bolus: 0.25 mg/kg</td>
<td>NR</td>
<td>✓</td>
<td>ICG clearance -</td>
<td>Effect of anesthetics on ICG-pharmacokinetics and hepatic blood flow:</td>
</tr>
<tr>
<td>Granemann1992</td>
<td>PKDB000396</td>
<td>14037247</td>
<td>Bolus: 0.3 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Effect of changing plasma protein concentrations on ICG-extraction.</td>
</tr>
<tr>
<td>Herold2001</td>
<td>PKDB000397</td>
<td>11169069</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Effect of isradipine and diltiazem on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Kamimori2000</td>
<td>PKDB003999</td>
<td>10883415</td>
<td>Bolus: 0.5 mg/kg</td>
<td>58.6 ± 11.2 kg</td>
<td>✓</td>
<td>ICG time course (plasma)</td>
<td>Non-invasive measurement of hepatic blood flow using ICG extraction-ratio.</td>
</tr>
<tr>
<td>Keiding1993</td>
<td>PKDB000402</td>
<td>81510947</td>
<td>Infusion: 0.08 mg/min</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Effect of change of plasma protein concentrations on ICG-extraction.</td>
</tr>
<tr>
<td>Klockowski1990</td>
<td>PKDB000403</td>
<td>21540959</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>✓</td>
<td>ICG clearance -</td>
<td>Effect of isradipine and diltiazem on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Leevy1961</td>
<td>PKDB000404</td>
<td>14463630</td>
<td>Infusion: 0.3 and 1.5 mg/min/m² with priming dose (10 mg)</td>
<td>NR</td>
<td>✓</td>
<td>ICG clearance -</td>
<td>Estimation of hepatic blood flow using ICG.</td>
</tr>
<tr>
<td>Leevy1967</td>
<td>PKDB000405</td>
<td>6071462</td>
<td>Bolus: 0.5 mg/kg and 5.0 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Estimation of liver function with ICG. Dose dependency of ICG-PDR.</td>
</tr>
<tr>
<td>Martin1975</td>
<td>PKDB000406</td>
<td>12003810</td>
<td>Bolus: 0.5, 2.0, 3.5 and 5.0 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Differences in ICG-pharmacokinetics in men and women at varying ICG-doses.</td>
</tr>
<tr>
<td>Martin1976</td>
<td>PKDB000407</td>
<td>814028</td>
<td>Bolus: 0.5, 2.0, 3.5 and 5.0 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Differences in ICG-pharmacokinetics in patients with Gilbert’s Syndrome.</td>
</tr>
<tr>
<td>Meijer1988</td>
<td>PKDB000408</td>
<td>3151821</td>
<td>Bolus: 0.5, 1.0 and 2.0 mg/kg</td>
<td>64.8 kg</td>
<td>✓</td>
<td>ICG clearance -</td>
<td>Biliary excretion of ICG at different doses.</td>
</tr>
<tr>
<td>Moeller1998</td>
<td>PKDB000409</td>
<td>9691928</td>
<td>Infusion: Rate not reported</td>
<td>72.7 (40-115) kg</td>
<td>-</td>
<td>-</td>
<td>Arterial hypoxaemia in cirrhosis. Correlation between ICG-clearance and CTP-score.</td>
</tr>
<tr>
<td>Moeller2019</td>
<td>PKDB000410</td>
<td>30213900</td>
<td>Infusion: 0.2 mg/min with priming dose (2 mg). Bolus: 0.5 mg/kg</td>
<td>79.2 ± 18.5 kg</td>
<td>-</td>
<td>-</td>
<td>Correlation between ICG-pharmacokinetics and CTP-score.</td>
</tr>
<tr>
<td>Niemann2000</td>
<td>PKDB000411</td>
<td>10801242</td>
<td>Bolus: 10 mg</td>
<td>80 ± 17 kg</td>
<td>✓</td>
<td>ICG time course (plasma)</td>
<td>ICG-pharmacokinetic time course under administration of propanolol.</td>
</tr>
<tr>
<td>Obwoda2006</td>
<td>PKDB000412</td>
<td>16498666</td>
<td>Bolus: 20 mg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver functional capacity based on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Okiuchi2002</td>
<td>PKDB000413</td>
<td>11855925</td>
<td>Bolus: 20 mg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver functional capacity based on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Seyama2009</td>
<td>PKDB000414</td>
<td>19298031</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver functional capacity using trial-clamping and ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Soon2019</td>
<td>PKDB000415</td>
<td>17088526</td>
<td>Infusion: 2.0, 0.5, 1.0 mg/min (consecutive)</td>
<td>72 ± 6 kg</td>
<td>✓</td>
<td>ICG time course (plasma)</td>
<td>Prediction of postoperative liver functional capacity based on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Stockmann2009</td>
<td>PKDB000416</td>
<td>19581747</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver functional capacity based on ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Sunagawa2021</td>
<td>PKDB00418</td>
<td>31092632</td>
<td>Bolus: 20 mg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver failure based on ICG-kel measurements.</td>
</tr>
<tr>
<td>Thomas2015</td>
<td>PKDB00419</td>
<td>25581073</td>
<td>Bolus: 0.25 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of postoperative liver functional capacity using trial-clamping and ICG-pharmacokinetics.</td>
</tr>
<tr>
<td>Wakabayashi2004</td>
<td>PKDB00420</td>
<td>15011353</td>
<td>Bolus: 0.5 mg/kg</td>
<td>NR</td>
<td>-</td>
<td>ICG clearance -</td>
<td>Prediction of correlation between preoperative ICG-R15 and estimated liver remnant. Prediction of survival based on ICG-R15.</td>
</tr>
</tbody>
</table>
Table 2. Overview of key model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
<th>Fitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW</td>
<td>Body weight</td>
<td>75</td>
<td>kg</td>
<td>-</td>
</tr>
<tr>
<td>COBW</td>
<td>Cardiac output per body weight</td>
<td>0.83</td>
<td>ml/s/kg</td>
<td>-</td>
</tr>
<tr>
<td>QC</td>
<td>Cardiac output</td>
<td>3.75</td>
<td>l/min</td>
<td>-</td>
</tr>
<tr>
<td>HCT</td>
<td>Hematocrit</td>
<td>0.51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fblood</td>
<td>Fraction of organ volume that is blood vessels</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>FV gi</td>
<td>Fractional tissue volume gastrointestinal tract</td>
<td>0.0171</td>
<td>l/kg</td>
<td>-</td>
</tr>
<tr>
<td>FV li</td>
<td>Fractional tissue volume liver</td>
<td>0.0210</td>
<td>l/kg</td>
<td>-</td>
</tr>
<tr>
<td>FV lu</td>
<td>Fractional tissue volume lung</td>
<td>0.0076</td>
<td>l/kg</td>
<td>-</td>
</tr>
<tr>
<td>FV ve</td>
<td>Fractional tissue volume venous blood</td>
<td>0.0587</td>
<td>l/kg</td>
<td>-</td>
</tr>
<tr>
<td>FV ar</td>
<td>Fractional tissue volume arterial blood</td>
<td>0.0184</td>
<td>l/kg</td>
<td>-</td>
</tr>
<tr>
<td>LI ICG1 M Vmax</td>
<td>Vmax of liver import</td>
<td>2.25E-2</td>
<td>mmole/min/l</td>
<td>✓</td>
</tr>
<tr>
<td>LI ICG1 M km</td>
<td>Km of liver import</td>
<td>1.39E-2</td>
<td>mM</td>
<td>✓</td>
</tr>
<tr>
<td>LI ICGL2 VA Vmax</td>
<td>Vmax of bile excretion</td>
<td>9.58E-4</td>
<td>mmole/min/l</td>
<td>✓</td>
</tr>
<tr>
<td>LI ICGL2 CA km</td>
<td>Km of bile excretion</td>
<td>1.18E-2</td>
<td>mM</td>
<td>✓</td>
</tr>
<tr>
<td>LI ICGL2 BI Vmax</td>
<td>Vmax of bile transport</td>
<td>1.14E-4</td>
<td>l/min</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 3. Evaluation metrics for classification models of survival after hepatectomy. Evaluation metrics of classification model are values for the model fitted with the complete dataset. Mean ± SD of cross validation reported in brackets.

<table>
<thead>
<tr>
<th>Classification Model</th>
<th>Data1A</th>
<th>Data1B</th>
<th>PBPK1</th>
<th>Data2</th>
<th>PBPK2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Preoperative ICG-R15</td>
<td>Postoperative ICG-R15 (calculated)</td>
<td>Postoperative ICG-R15 (predicted)</td>
<td>Preoperative ICG-R15 & Resection rate</td>
<td>Postoperative ICG-R15 & Resection rate</td>
</tr>
<tr>
<td>ROC AUC</td>
<td>0.663 (0.656 ± 0.096)</td>
<td>0.517 (0.445 ± 0.1)</td>
<td>0.864 (0.863 ± 0.072)</td>
<td>0.88 (0.858 ± 0.077)</td>
<td>0.88 (0.858 ± 0.076)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>0.562 (0.555 ± 0.072)</td>
<td>0.515 (0.481 ± 0.052)</td>
<td>0.788 (0.765 ± 0.089)</td>
<td>0.785 (0.767 ± 0.09)</td>
<td>0.81 (0.767 ± 0.09)</td>
</tr>
<tr>
<td>F1-score</td>
<td>0.861 (0.852 ± 0.048)</td>
<td>0.85 (0.722 ± 0.279)</td>
<td>0.87 (0.86 ± 0.05)</td>
<td>0.851 (0.847 ± 0.047)</td>
<td>0.867 (0.841 ± 0.052)</td>
</tr>
<tr>
<td>Precision</td>
<td>0.797 (0.792 ± 0.067)</td>
<td>0.779 (0.7 ± 0.194)</td>
<td>0.918 (0.906 ± 0.056)</td>
<td>0.925 (0.912 ± 0.056)</td>
<td>0.936 (0.915 ± 0.054)</td>
</tr>
<tr>
<td>Recall</td>
<td>0.936 (0.927 ± 0.053)</td>
<td>0.936 (0.793 ± 0.322)</td>
<td>0.826 (0.823 ± 0.075)</td>
<td>0.789 (0.795 ± 0.072)</td>
<td>0.807 (0.783 ± 0.081)</td>
</tr>
</tbody>
</table>

SUPPLEMENTAL FIGURES
Figure 9. Classification of survival after hepatectomy: A: Dependency of evaluation metrics of the classification model Data1A on the chose cutoff of preoperative ICG-R15 using cross-validation (mean ± SD). B: ROC curve using the complete dataset (n=141) with cross-validation (mean ± SD) for classification model Data1A. C: Dependency of evaluation metrics of the classification model Data1B on the chose cutoff of preoperative ICG-R15 using cross-validation (mean ± SD). D: ROC curve using the complete dataset (n=141) with cross-validation (mean ± SD) for classification model Data1B. E: Decision boundary of the two-dimensional classification model Data2 based on the resection rate and the preoperative ICG-R15 using the complete dataset. F: ROC curve using the complete dataset (n=141) with cross-validation (mean ± SD) for classification model Data2.