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Abstract 16 

Reduced representation sequencing (RRS) is a widely used method to assay the diversity of 17 

genetic loci across the genome of an organism. The dominant class of RRS approaches assay 18 

loci associated with restriction sites within the genome (restriction site associated DNA 19 

sequencing, or RADseq). RADseq is frequently applied to non-model organisms since it 20 

enables population genetic studies without relying on well-characterized reference genomes. 21 

However, RADseq requires the use of many bioinformatic filters to ensure the quality of 22 

genotyping calls. These filters can have direct impacts on population genetic inference, and 23 

therefore require careful consideration. One widely used filtering approach is the removal of 24 
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loci which do not conform to expectations of Hardy-Weinberg equilibrium (HWE). Despite 25 

being widely used, we show that this filtering approach is rarely described in sufficient detail 26 

to enable replication. Furthermore, through analyses of in silico and empirical datasets we 27 

show that some of the most widely used HWE filtering approaches dramatically impact 28 

inference of population structure. In particular, the removal of loci exhibiting departures from 29 

HWE after pooling across samples significantly reduces the degree of inferred population 30 

structure within a dataset (despite this approach being widely used). Based on these results, 31 

we provide recommendations for best practice regarding the implementation of HWE filtering 32 

for RADseq datasets. 33 

 34 

Keywords: RADseq, Hardy-Weinberg, reduced representation sequencing, population 35 

genomics, population genetics 36 

 37 

Introduction 38 

 39 

Reduced representation sequencing (RRS) is a population genomic approach that enables 40 

assaying of a reduced set of genetic loci across the genome of an organism. There are many 41 

reduced representation sequencing approaches, some of which assay loci associated with 42 

restriction sites within the genome, including approaches such as Genotyping-by-Sequencing 43 

(GBS), Restriction site-Associated DNA sequencing (RADseq), double digest RADseq 44 

(ddRADseq), DArTSeq, and hybridization of RAD probes (hyRAD) (see (Andrews et al., 45 

2016) for a discussion and summary of these methods). These approaches are an efficient and, 46 

in comparison with Whole-Genome Sequencing (WGS), cost-efficient method for generating 47 

population genomic datasets, often with a focus on inferring population structure of non-48 
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model organisms. The uniting feature of these different approaches is utilising restriction sites 49 

in an attempt to assess genome-wide diversity while not having to sequence the complete 50 

genome. For the remainder of this paper, we group these various approaches under the 51 

umbrella term of “RADseq”. 52 

 53 

The application of RADseq, particularly to non-model organisms, however, can pose 54 

particular challenges. First, RADseq can be affected by allelic dropout, the failure to identify 55 

an allele due to the loss of a restriction site which leads to missing data for that allele and 56 

therefore an apparent reduction in heterozygosity in samples (Cooke et al., 2016). 57 

Furthermore, the inferences drawn from RADseq data originating from non-model species 58 

often depend on the availability of a reference genome of the species of interest or a closely 59 

related one (Galla et al., 2019). While a reference genome is not essential for conducting 60 

analyses based on RADseq datasets, de novo assembly without a reference can result in more 61 

misassembled genetic loci (LaCava et al., 2020). However, as RADseq typically produces a 62 

large amount of data, bioinformatic filtering approaches can be leveraged to adjust for the 63 

potential biases of RADseq approaches. 64 

 65 

The application of such filters help to normalize RADseq data across experiments, and to 66 

check if the data is consistent with the assumptions made by downstream analyses (O’Leary 67 

et al., 2018). For population structure inference in non-model species (Choquet et al., 2019), 68 

downstream analyses often make assumptions about factors such as the population size (i.e. 69 

very large), the sampling scheme (i.e. randomized sampling), and the species in question (i.e. 70 

diploid). Ordination techniques such as Principal Component Analysis (PCA) are therefore 71 

often used for preliminary analysis of RADseq data since they do not rely on these 72 
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assumptions, however, they lack the translation to population parameters that parametric 73 

approaches such as admixture analyses or F-statistics offer (Falush et al., 2003; Wright, 74 

1943).  75 

 76 

One commonly used admixture approach is STRUCTURE, a widely used tool for identifying 77 

distinct genetic groups in population genetic data, and for subsequently analysing the degree 78 

of admixture between individuals (Falush et al., 2003; Porras-Hurtado et al., 2013). 79 

STRUCTURE iteratively clusters individuals into groups in order to minimise the Hardy-80 

Weinberg disequilibrium (HWD) within groups while maximising it between groups 81 

(Pritchard et al., 2010). Thus, STRUCTURE makes explicit assumptions about the 82 

relationship between HWD and genetic structure within groups. 83 

 84 

F-statistics are frequently used to infer the degree of genetic structure within predefined 85 

groups based on observed heterozygosity relative to expected heterozygosity.  Population 86 

structure is typically measured using FST, which is defined as the relative reduction in 87 

heterozygosity due to partitioning the total dataset into putative populations (Whitlock, 2011; 88 

Wright, 1943). Accurate a priori delineation of groups or 'populations' is essential for 89 

leveraging FST to characterise population structure (De Meeûs, 2018). FST  can further be 90 

influenced by independent factors that impact the heterozygosity of individual SNPs (Single 91 

Nucleotide Polymorphisms) (such as natural selection or technological artifacts including null 92 

alleles; De Meeûs, 2018; Meirmans & Hedrick, 2011; Whitlock, 2011). 93 

 94 

The assumptions of the various methods highlighted here reinforce the need for appropriate 95 

bioinformatic filtering approaches when inferring population structure from RADseq data. 96 
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Filtering approaches can substantially influence the inference of genetic structure, especially 97 

when filters disproportionately affect potentially informative loci (Graham et al., 2020; Shafer 98 

et al., 2017). Linck & Battey (2019) showed that minor allele frequency (MAF) filtering of 99 

datasets may be problematic since it alters the site frequency spectrum (SFS) across loci 100 

according to their rate of missingness. Additional recent work has revealed that both variant 101 

call rate and MAF can affect population genetic inferences and genotype-environment 102 

association studies (Ahrens et al., 2021; Selechnik et al., 2020). In Table 1, we summarise 103 

filtering approaches that are commonly applied to RADseq data, the reasons for their usage, 104 

and how they can affect population genetic inference. 105 

 106 

Table 1 Description of commonly used filtering approaches in the analysis of RADseq data (“Filter”), the reason for their 107 
usage (“Usage”), and how they impact population genomic inference (“Impact”). 108 

Filter Usage Impact Reference 
Hardy-Weinberg 

equilibrium (HWE) 
• Removes loci under 

selection 

• Removes library and 

sequencing artifacts 

• Unknown  (Gruber et al., 2018; 

Sethuraman et al., 

2019; Waples, 2015) 

Linkage within loci • Mitigates effects of 

non-independence of 

Single Nucleotide 

Polymorphisms 

(SNPs) by removing 

physically linked 

SNPs. 

• Reduces false 

signals of population 

structure 

• Necessary for 

STRUCTURE (If 

LD correction is not 

used) 

 

(O’Leary et al., 2018) 

Locus level diversity • Loci with high SNP 

density (i.e. many 

SNPs within a locus) 

may be the result of 

polyploidy 

• Can remove putative 

paralogous loci 

(Hohenlohe et al., 

2011; Mastretta‐

Yanes et al., 2015)  

Minor Allele Frequency 

(MAF)/Count (MAC) 
• Identification of 

genotyping errors 

 

• Can remove 

informative loci if 

not applied carefully 

• MAF will affect loci 

differently based on 

missingness 

• Removes 

genotyping errors 

(Linck & Battey, 

2019; O’Leary et al., 

2018) 

Variant call rate • Ensures SNP panel 

is well represented 

across individuals 

• Can dramatically 

reduce number of 

loci 

(O’Leary et al., 2018) 
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• Helps ensure 

samples are 

comparable 

 109 

The removal of genetic loci exhibiting departures from Hardy-Weinberg Equilibrium (HWE) 110 

is a commonly applied filter (Waples, 2015). HWE describes the state of an ideal population 111 

in the absence of evolutionary forces, where allele frequencies are predictable since they 112 

remain constant across generations (Garnier‐Géré & Chikhi, 2013). The removal of genetic 113 

loci departing from HWE is often used to remove genotyping errors (Hendricks et al., 2018) 114 

and loci that are potentially under selection (Lachance, 2009; Wang et al., 2005). The removal 115 

of genotyping errors is, in general, beneficial for downstream analyses, while the removal of 116 

loci under selection may be required for analyses that assume neutrality of loci. However, 117 

many other factors can cause departures from HWE, especially since the assumptions of 118 

HWE are rarely met in real biological populations (Waples, 2015), and therefore the removal 119 

of loci out of HWE may have substantial effects on population genetic inferences.  120 

 121 

The, arguably, most obvious other factor that can cause departures from HWE is the Wahlund 122 

effect, where heterozygosity is dramatically reduced due to the inadvertent pooling of 123 

multiple populations (De Meeûs, 2018). Excessive deviation from HWE heterozygosity 124 

expectations can also arise from repetitive genomic elements (Hohenlohe et al., 2011). Other 125 

scenarios that lead to HWE departure that are also frequently observed in real populations 126 

include overlapping generations, non-panmictic reproduction, non-diploidy, and very small 127 

population sizes. Genotype/SNP (Single Nucleotide Polymorphism) calling approaches 128 

represent further potential sources of departure from HWE: Genotype calling can be sensitive 129 

to sequencing depth, and to the number of mismatches allowed to call a variant, both of which 130 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448615
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

can lead to a reduction in heterozygosity and in turn lead to HWE departures (Cumer et al., 131 

2021).  132 

 133 

While the impact of such factors is often minor, genetic inferences for species which have 134 

many potential causes of HWE departures (such as endangered species) might be heavily 135 

impacted by decisions around HWE-based filtering. Specifically, when conservation 136 

decisions are based on genetic inferences that utilize HWE filtering, it is essential to ensure 137 

that this is done appropriately to aid in the management of already vulnerable populations.    138 

 139 

The question of if and how a genomic dataset should be filtered for departure from HWE is a 140 

difficult one. Sample stratification has to be taken into account; genetic loci that depart from 141 

HWE can be filtered in various ways (Fig. 1): No loci removed based on HWE departures 142 

(‘No Filter’), loci removed if they exhibit departures in any sampling location (‘Out Any’), 143 

loci removed if they exhibit departures from HWE in all sampling locations (or a certain 144 

proportion of sampling locations) (‘Out All’, ‘Out Some’), or loci removed if they exhibit 145 

departures across sampling locations (‘Out Across’). 146 

 147 
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  148 

 149 

Figure 1. Four commonly applied Hardy-Weinberg Equilibrium (HWE) filtering options (loci removed indicated by grey 150 
crosses). In the case of ‘No Filter’, no loci are removed, even if they exhibit departures from HWE. In the case of ‘Out Any’ 151 
and ‘Out All’, loci are removed if they exhibit departures from HWE in either any sampling location, or all sampling 152 
locations respectively. ‘Out Some’ can be considered a subset of ‘Out All’, where loci are removed if they are out of HWE in 153 
a certain proportion of populations. Finally, in ‘Out Across’, loci are removed if they exhibit HWE departures when sampling 154 
locations are grouped together. 155 

The ‘Out Across’ approach removes genetic loci that depart from HWE across the entire 156 

genomic dataset. This filtering scheme will have a substantial impact on downstream analyses 157 

since loci that are strongly informative for population structure are likely to be removed by 158 

this filter due to the differences in allele frequencies between populations leading to these loci 159 

to being out of HWE when analysed at the total dataset level. However, applying ‘No Filter’ 160 

could lead to the retention of genotyping errors or of genetic loci under selection which might 161 

be problematic in downstream analyses. Filtering some loci according to the ‘Out All’ (or 162 

‘Out Some’) approach might therefore be advantageous: Only loci that depart from HWE in 163 

all (or some) populations would be removed, i.e. the loci that are most likely to be 164 

problematic. The same applies to the ‘Out Any’ approach, which is extremely conservative in 165 

that it removes loci that show departures from HWE even in a single population. However, 166 
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both approaches (‘Out Any’ and ‘Out All’) require knowledge about the underlying 167 

population structure in order to correctly define populations for assaying patterns of HWE. In 168 

the absence of prior knowledge, studies often assume sampling locations to be a proxy for 169 

genetic populations. While this assumption might not be problematic in the case of 170 

pronounced population structure, conflating sampling location with genetic populations in the 171 

case of subtle population structure could be problematic. This is because the application of 172 

HWE filters might inflate divergence estimates between sampling locations if they do not 173 

accurately map to the underlying population structure. This inflation may occur if loci that 174 

discriminate ‘true’ populations were removed through HWE filters, and loci that discriminate 175 

sampling locations were retained. This would erroneously reinforce the a priori hypothesis 176 

that sampling locations reflect underlying genetic populations. This ‘over-splitting’ of 177 

populations can be as problematic in a conservation setting as the previously discussed ‘over-178 

lumping’ of populations (i.e. Wahlund effects) in terms of implementing management 179 

recommendations.  180 

 181 

Despite the potentially substantial impact of HWE-based filtering approaches, they are 182 

frequently misused or their application is not reported at all (Sethuraman et al., 2019). While 183 

it has been suggested that HWE filtering is often inadequately described and inappropriately 184 

applied (Gruber et al., 2018; Waples, 2015), this has not yet been systematically assessed 185 

within the field of RADseq-based population genomic research (Table 1). For example, many 186 

widely used filtering tools such as VCFtools (Danecek et al., 2011), plink (Chang et al., 187 

2015), and pegas (Paradis, 2010) calculate HWE departures directly from genetic data rather 188 

than utilising a population mapping file. This default behaviour might be desirable when 189 

studying a single population, as is often the case in large-scale human genomic studies, but it 190 
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could be problematic in studies comprising many populations for the reasons outlined above 191 

(i.e. the default behaviour would therefore be ‘Out Across’, subject to the impact of the 192 

Wahlund effect). 193 

 194 

Here, we firstly review the common approaches for HWE filtering currently used in the 195 

scientific literature, and then systematically explore the effect of different HWE filtering 196 

approaches with the help of simulations and empirical biological datasets across a wide range 197 

of realistic levels of population structure. We hypothesise that HWE filtering will have a 198 

substantial effect, especially on marginally or non-structured populations. Specifically, we 199 

hypothesise that the removal of genetic loci that depart from HWE across populations will 200 

reduce estimated population structure, whereas the removal of genetic loci that depart from 201 

HWE in any population will increase estimated population structure and divergence by 202 

reducing the impact of ‘noisy’ loci resulting from methodological artefacts (e.g. variant 203 

calling, null alleles). Finally, we hypothesize that HWE filtering schemes that consider 204 

population strata will reinforce the a priori sample groupings when genetic populations are 205 

conflated with sampling locations.  206 

 207 

Methods 208 

Literature Review 209 

We conducted a literature review for RADseq-based population genomic research using the 210 

Web Of Science (Supplementary Information 1 for specific search terms). From the initial 211 

results, we selected studies that contained any of the following terms “Hardy”, “Weinberg”, 212 

“HWE” or “Hardy-Weinberg”, and excluded those that met any of the following criteria: 213 
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1) Described a new panel of SNPs; these studies mostly describe a very small panel of 214 

genetic variants.  215 

2) Studied a single population; studying a single population means that HWE filtering 216 

will not have an impact on population structure inference. 217 

3) Focused on human populations; we excluded human datasets to avoid ethical concerns 218 

around demarcating human populations and the comparatively rare use of RADseq for 219 

humans compared to WGS.  220 

4) Consisted of transcriptome- or RNA-derived genetic variants; these variants are likely 221 

to display departures from HWE since they are transcriptionally expressed and 222 

therefore more likely to be under selection. 223 

5) Did not explicitly discuss HWE filtering; we were not able to discern if these studies 224 

had not applied any filtering or had just not mentioned it. Furthermore, it was difficult 225 

to ascertain whether this filter was overlooked or intentionally avoided, and would 226 

bring the scope of the literature review beyond what was manageable. 227 

6) Was not based on RADseq data; we focused on RADseq data since allelic dropout can 228 

be a substantial source of HWE departures, and RADseq is currently one of the 229 

predominant RRS approaches for non-model organism population genetics. 230 

 231 

The remaining studies were classified into one of the seven categories described in Table 2 232 

(Note that ‘No Filter’ likely underestimates the number of studies that do not utilize Hardy 233 

Weinberg filtering, as studies that do not discuss this would not be included in our search 234 

results – as we explicitly search for Hardy Weinberg associated studies). 235 
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 236 

Table 2 Description of categories used to group scientific studies based on their Hardy Weinberg filtering approaches.  237 

Category Definition 

HWE Out All Loci were excluded if they were out of HWE in every sample 

location. 

HWE Out Any Loci were excluded if they were out of HWE in at least one of the 

sampling locations. 

HWE Out Some Loci were excluded if they were out of HWE in at least a specific 

absolute number or relative proportion of the locations, but not in 

all locations. 

HWE Out Across Loci were excluded if they were out of HWE across all locations.  

No Filter The study explicitly mentions that no loci were removed due to 

HWE filtering. 

Unspecified HWE filtering was used, but no specific filtering approach was 

described. 

Mix A combination of these categories was used. 

 238 

 239 

Simulated data 240 

To investigate the impact of HWE filtering on inference of population structure, we used both 241 

simulated and empirical datasets. For all simulations, we used the SLiM forward 242 

genetic simulation framework (Messer 2013; Haller and Messer 2017). Due to the availability 243 

of well-characterized recombination rates (e.g. Comeron et al. 2012), we simulated a random 244 

genome based on the lengths of the 2L, 2R, 3L and 3R chromosomes of Drosophila 245 
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melanogaster. We used the recombination rates determined by Comeron et al. (2012) at 100 246 

kb intervals in combination with the “pseudo-chromosomes” option in SLiM to enable 247 

independent simulation of autosomal chromosomes. We assumed a sexually reproducing 248 

diploid organism. We chose an arbitrary but realistic mutation rate of 10-8, and an effective 249 

population size of 1000. Age-related mortality was implemented with maximum mortality at 250 

age seven, with density-dependent survival ensuring fluctuation of the population size around 251 

the effective population size.  252 

 253 

A single population was created which evolved for 135,000 generations (i.e., three times the 254 

number of generations that the initial population took to reach coalescence, namely 255 

approximately 45,000 generations), followed by divergence into twelve separate populations 256 

with an initial census population size of 80. These populations then evolved for another 257 

15,000 generations with constant migration between adjacent populations (Supp. Fig. 1). 258 

During this period, populations expanded to an effective population size of 1000. Differing 259 

migration rates in each scenario adjusted the degree of population structure, with the 260 

“Marginal” population structure migration rate at 0.1 (i.e., 0.1 or 10% of a population was 261 

transferred to the adjacent population/s in each generation, e.g. population 5 received 10% of 262 

both populations 4 and 6), “Low” population structure migration rate at 0.01, “High” 263 

population structure migration rate at 0.001, and “Extreme” population structure migration 264 

rate at 0.0001. At generation 150,000, 30 individuals were sampled randomly from every 265 

other adjacent population, resulting in a total of 180 individuals being sampled from 266 

populations 1, 3, 5 ,7 ,9, and 11 (Supp. Fig. 1).  267 

 268 
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The resulting VCF was processed by the program RADinitio, which simulates the RADseq 269 

process, including restriction enzyme digest and sources of error (e.g., sequencing error, 270 

variation in read depth across alleles) (Rivera‐Colón et al., 2021). We used PstI as a 271 

restriction enzyme, set mean coverage at 10x, and simulated nine PCR cycles, a read length of 272 

150 bp, and a mean insert length of 350 bp with a standard deviation of 35 bp. The simulated 273 

fastq reads were aligned to the reference using BWA v.0.7.17 (Li, 2013; Li & Durbin, 2009); 274 

we then used SAMtools v1.10 (Li et al., 2009) to convert the alignments to sorted bam files. 275 

SNPs were called using a reference-guided Stacks v2.53 workflow (Rochette et al., 2019). We 276 

called Stacks via ref_map.pl using default options: 0.05 as the significance level for calling 277 

variant sites (var-alpha) and genotypes (gt-alpha), PCR duplicates were not removed, paired-278 

end reads and read pairing were utilised (i.e., we did not use the rm-pcr-duplicates, ignore-pe-279 

reads, and unpaired flags), the minimum percentage of individuals in a population required to 280 

output a locus was zero (--min-samples-per-pop/-r), and the minimum number of populations 281 

a locus had to be present in was one (--min-populations/-p). We then used the populations 282 

module of Stacks to write one random SNP from each locus to a VCF file as input for 283 

downstream analyses (i.e., using the write-random-snp and VCF flags).  284 

 285 

Empirical data 286 

In order to validate our results against empirical data and across multiple SNP calling 287 

pipelines, we selected three publicly available datasets as they represented a range of 288 

organisms, with a range of population structure: A DArTseq (Diversity Arrays Technology 289 

sequencing) dataset of a New Zealand isopod (Isocladus armatus) (Pearman et al., 2020), and 290 

two RADseq datasets of the New Zealand fur seal (Arctocephalus forsteri) (Dussex et al., 291 

2018) and the Plains zebra (Equus quagga) (Larison et al., 2021). For the isopod dataset, the 292 
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DArTseq genotypes were provided by diversityarrays™, who generated them using their 293 

proprietary SNP calling software with a de novo assembly (SRA: PRJNA643849, 294 

https://osf.io/kjxbm/). For the other two datasets, a Stacks workflow similar to the in silico 295 

analyses was used to generate the SNP genotypes. SRA data (New Zealand fur seal: 296 

SRP125920, single-end data; and zebra: SRP288329, paired-end data) was obtained (using 297 

prefetch) and converted to fastq (using fastq-dump) with sratoolkit v2.9.6 (Leinonen et al., 298 

2011). Metadata associated with these datasets (Dussex et al., 2018; Larison et al., 2021) was 299 

used to generate popmap files. Conspecific genomes were used as references, namely 300 

Antarctic fur seal for the New Zealand fur seal analyses 301 

(GCA_900642305.1_arcGaz3_genomic: Humble et al., 2018) and horse for the zebra 302 

analyses (GCF_002863925.1_EquCab3.0_genomic: Kalbfleisch et al., 2018). The Stacks 303 

workflow then followed the previously described workflow for the in silico datasets. 304 

 305 

SNP filtering 306 

For both in silico and empirical datasets, we filtered data on a minor allele count of 2, 307 

missingness of 0.8, and then applied various filtering approaches for SNPs departing from 308 

HWE (Fig. 1). SNPs exhibiting departures from HWE corresponding to each filtering scheme 309 

(i.e., Out Any, Out All, Out Across) were identified using the function hwe.test in the pegas R 310 

package (Paradis, 2010), corrected for multiple testing using a Benjamini-Hochberg 311 

correction, and subsequently removed using VCFtools.  312 

 313 

Data analysis 314 

To examine variance in our parameter estimates, we sampled with replacement from the total 315 

number of SNPs in the filtered VCF to generate ten VCF files consisting of 4,000 SNPs each. 316 
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To examine population structure, we conducted Principal Component (PCA), FST, and 317 

STRUCTURE analyses. PCAs were conducted in R 4.02 (R Core Team, 2020), using a 318 

genotype matrix with scaled genotypes following procedures outlined in Linck and Battey 319 

(2019) in the adegenet R package (Jombart & Ahmed, 2011). PCAs were compared using the 320 

PCST metric, which represents one minus the ratio of the mean within-population distance to 321 

total-population distance within a PCA. Higher values of PCST are consistent with higher 322 

levels of population structure (see Linck & Battey (2019) for an in-depth explanation). FST 323 

was calculated using the R package STaMMP (version 1.6.1) (Pembleton et al., 2013).  324 

STRUCTURE was run using an admixture model with no a priori information regarding 325 

population structure, using a K of 6 for our in silico data, or a K equivalent to the number of 326 

sampled populations for the real data. Pairwise comparisons of filters within each scenario 327 

were tested for significance using Mann-Whitney U tests and Bonferroni adjustment (alpha = 328 

0.05) in R 4.02 using rstatix (version 0.7.0) (Kassambara, 2021; R Core Team, 2020). Figures 329 

were created using the tidyverse and cowplot packages (Wickham et al., 2019; Wilke, 2020).  330 

 331 

Randomisations 332 

To examine if filtering could introduce artificial population structure, we took two of the 333 

simulated scenarios (Marginal [M=0.1] and Extreme [M=0.0001]) and randomly assigned 334 

individuals to populations before repeating the FST and PCST analyses. As no population 335 

structure would be expected to in these analyses, any increase in observed population 336 

structure due to filtering would have been artificially introduced by the respective filtering 337 

approach. 338 

 339 
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Results 340 

Literature Review 341 

 342 

Our literature review of 219 scientific publications concerning HWE filtering of RADseq data 343 

showed that 53.88% of the publications (n=118) specified their HWE filtering approach (Fig. 344 

2A). Overall, 21% of the publications used some intermediate threshold (‘Out Some) to filter 345 

SNPs departing from HWE, 10.5% used ‘Out Across’, 10% used ‘Out Any’, 7.8% explicitly 346 

chose not to filter for HWE departure and outlined their reasons, and 2.3% used ‘Out All’ 347 

(Fig. 2B; see Table 2 for definition of filtering approaches). The remaining 101 publications 348 

(46.12% of all publications) did not specify the HWE filtering approach in sufficient detail 349 

(Fig. 2A): 45 publications (20.6% of all publications) specified only the filtering tool they 350 

used, whereas the remaining publications (25.6% of all publications) did not specify any 351 

information (“Unspecified”; Fig. 2C). If the default behaviour of the specified filtering tools 352 

is assumed, another 11.9% of all publications (n=26) used ‘Out Across’ (Fig. 2C). Overall, 353 

this means that at least 22% of the publications that filtered for departure from HWE have 354 

most likely used the ‘Out Across’ approach, but we expect this proportion to be even higher 355 

due to the large proportion of unspecified publications. Finally, some publications (8.7%, 356 

n=19) used filtering tools that explicitly consider population stratification in HWE 357 

calculations (such as Arlequin (Excoffier et al., 2005) or Genepop (Rousset, 2008)), but the 358 

publications did not report the exact filtering approach (“Within”, Fig. 2C). 359 

 360 
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  361 

Figure 2 A) Distribution of publications that specified their HWE filtering approach (orange) versus publications that did not 362 
specify the approach in sufficient detail (grey). B) The distribution of publications that specified their HWE filtering 363 
approach across different filtering schemes: ‘Mix’ (mix of the following filters), ‘No Filter’ (no HWE filter), ‘Out Across’ 364 
(loci removed if out of HWE across the pooled dataset), ‘Out All’ (loci removed if out of HWE in each sampling location), 365 
‘Out Any’ (loci removed if out of HWE in any sampling location), and ‘Out Some’ (loci removed if out of HWE in at least a 366 
certain number/relative proportion of sampling locations, but not in all locations). C) The distribution of publications that did 367 
not specify Hardy-Weinberg filtering approach and with the default behaviour of the filtering tools used (where specified) 368 
assumed: ‘Out Across’ (as defined above), ‘Within’ (the paper specified that they used population information for HWE 369 
filtering, but not specifically whether this was ‘Out All’, ‘Out Any’, or ‘Out Some’) and ‘Unspecified’ (the paper did not 370 
specify the tool). 371 

 372 

In silico data analysis 373 

Measurements of population stratification extracted from PCAs (PCST) were largely robust 374 

across different HWE filtering approaches regardless of population structure, with the 375 

exception of ‘Out Across’ (Fig. 3). 376 

 377 

 378 
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 379 

Figure 3 Distributions of PCST across HWE filtering approaches and degrees of inferred population structure. A represents 380 
marginal population structure (i.e. high migration, M=0.1), B represents low population structure (M=0.01), C represents 381 
high population structure (M=0.001), and D represents extreme population structure (i.e. low migration, M=0.0001). Red 382 
lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, 383 
Bonferroni adjustment). 384 

The effect of ‘Out Across’ became apparent with increasing population structure, reducing 385 

PCST estimates in comparison with other filtering approaches (Fig. 3). The remaining filtering 386 

approaches delivered qualitatively similar PCST estimates (except for extreme population 387 

structure where all filtering approaches led to different results but ‘Out Across’ still 388 

dominated the divergence in PCst estimates; Fig. 3D). This indicates that the ‘Out Across’ 389 

filter reduces estimated population structure evident in a PCA in relation to the other filtering 390 

schemes.  391 

 392 

 393 

Figure 4 Distributions of inferred FST across HWE filtering approaches and degrees of inferred population structure. A 394 
represents marginal population structure (i.e. high migration, M=0.1), B represents low population structure (M=0.01), C is 395 
high population structure (M=0.001), and D represents extreme population structure (i.e. low migration, M=0.0001). Red 396 
lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, 397 
Bonferroni adjustment). 398 
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In the case of FST, we similarly observed an increasingly strong effect of the ‘Out Across’ 399 

filtering approach on reducing inferred FST with increasing levels of population structure (Fig. 400 

4). While ‘Out All’ and ‘No Filter’ consistently delivered similar FST estimates, we found that 401 

‘Out Any’ led to larger inferred FST values, with the exception of extreme population structure 402 

where FST was slightly (but significantly) reduced for this filtering approach.  403 

 404 

 405 

Figure 5 Distributions of average nucleotide distance between inferred population clusters from STRUCTURE, across 406 
differing filtering regimes and levels of population structure. A represents marginal population structure (i.e. high migration, 407 
M=0.1), B represents low population structure (M=0.01), C is high population structure (M=0.001), and D represents extreme 408 
population structure (i.e. low migration, M=0.0001). Red lines indicate median values, black vertical bars indicate 409 
statistically significant comparisons (Mann-Whitney U tests, Bonferroni adjustment). 410 

For the STRUCTURE analyses, we observed that ‘Out Any’ and ‘Out Across’ filters 411 

significantly increased the average nucleotide distance between inferred population clusters in 412 

the marginal and low population structure scenarios, while ‘Out Across’ decreased the 413 

inferred amount of structure in the high and extreme population structure scenarios (Fig. 5).  414 

 415 
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Randomised data 416 

 417 

Figure 6 Distributions of PCST of the randomized SNP datasets across HWE filtering approaches. A represents marginal 418 
population structure (A; i.e. high migration M=0.1) and B represents extreme (M=0.0001) population structure. Red lines 419 
indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, Bonferroni 420 
adjustment). 421 

In the randomized datasets, PCST distributions were broadly similar across filtering regimes in 422 

the case of marginal population structure (Fig. 6A). In the case of extreme population 423 

structure scenario (Fig. 6B), the filtering schemes ‘No Filter’, ‘Out Any’ and ‘Out All’ were 424 

all significantly different to ‘Out Across’, all leading to slightly higher levels of structure. 425 

Given, however, that the ‘No Filter’ approach led to significantly higher estimated structure 426 

than the ‘Out Across’ approach, this suggests that our filtering approaches do not lead to any 427 

spurious inference of structure for panmictic scenarios. Similar results were obtained for FST 428 

estimates (Fig. 7). 429 
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 430 

Figure 7 Distributions of FST of the randomized SNP datasets across HWE filtering approaches. A represents marginal 431 
population structure (A; i.e. high migration M=0.1) and B represents extreme (M=0.0001) population structure. Red lines 432 
indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, Bonferroni 433 
adjustment). 434 

Empirical data analysis 435 

The results from the empirical datasets were generally concordant with those from the 436 

simulations. No significant differences were observed among filters for PCST in the species 437 

with the weakest population structure, the New Zealand fur seal (Fig. 8A). In the species with 438 

more pronounced population structure (zebra and isopod, Fig. 8B-C), the ‘Out Across’ filter 439 

had significantly reduced PCST in comparison with the other filters. ‘Out Any’ had marginally 440 

higher estimated structure than ‘No Filter’ or ‘Out All’ in the isopod dataset. 441 

 442 

Figure 8 PCST distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus forsteri), B 443 
represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). Red lines 444 
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indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons (Mann-445 
Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to high 446 
population structure (isopod). 447 

Similar results were obtained for FST (Fig. 9), where the filtering approaches had only small 448 

impacts for the inference of population structure in the species with low population structure 449 

(New Zealand fur seal), while ‘Out Across’ significantly reduced FST estimates for the species 450 

with higher levels of population structure (Plains zebra and isopod).  451 

 452 

Figure 9 FST distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus forsteri), B 453 
represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). Red lines 454 
indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons (Mann-455 
Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to high 456 
population structure (isopod). 457 

The ‘Out Across’ filtering approach similarly reduced the estimated nucleotide distance 458 

between clusters for zebra and isopod (the species with the most marked population 459 

structure). In addition, the ‘Out Any’ filtering approach led to a significant reduction in 460 

estimated nucleotide distance in the isopod dataset (Fig. 10).  461 

 462 

Figure 10 Nucleotide distance distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus 463 
forsteri), B represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). 464 
Red lines indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons 465 
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(Mann-Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to 466 
high population structure (isopod). 467 

Discussion 468 

There are many good reasons to impose a filter for HWE, such as removal of loci under 469 

extreme selection, paralogs, and sequencing or library preparation artifacts. Thus, HWE 470 

filtering can be helpful in standardizing and denoising a dataset. However, in this paper, using 471 

both empirical and simulated datasets, we demonstrate that filtering SNPs based on HWE can 472 

have substantial impacts on population genetic inferences. In particular, we found that the 473 

‘Out Across’ filtering approach, where loci that depart from HWE across all pooled samples 474 

are removed, significantly reduces the amount of inferred population structure relative to ‘No 475 

Filter’ or other filtering approaches. This occurs because this filter leads to the inadvertent 476 

introduction of a Wahlund effect by not considering any existing population structure, with 477 

loci important for delineating population structure being removed by the HWE filter. Despite 478 

the strong impact of HWE filtering, our literature review shows that the vast majority of 479 

scientific publications that report filtering for HWE do not include sufficient detail to allow 480 

replication of this aspect of their analyses. This often occurs because only the filtering tool or 481 

significance threshold is reported, while population stratification for filtering is not defined. 482 

When default behaviour of filtering tools is assumed, up to 50% of publications may be 483 

misapplying HWE filtering (Fig. 2), by using the ‘Out Across’ filtering approach. Some 484 

commonly used filtering tools such as VCFtools and plink do not consider population 485 

structure when calculating deviations from HWE, and therefore the reliance on default 486 

settings may lead to the removal of the very loci that are informative for population structure. 487 

Importantly, even the implementation of an extremely conservative significance level for 488 

identifying “problematic” loci will not solve the issues of the ‘Out Across’ filtering approach, 489 
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as an extreme Wahlund effect will be observed in instances of extreme population structure – 490 

which would naturally draw loci closer to even stringent significance levels.  491 

  492 

We hypothesized that 1) use of an ‘Out Across’ filter would substantially reduce inferred 493 

population structure, and 2) that the use of an ‘Out Any’ filter would lead to an increase in 494 

inferred population structure. Consistent with these hypotheses we found that 1) filtering 495 

across populations (‘Out Across’) had the greatest effect, substantially reducing inferred 496 

population structure, and 2) filtering loci that were out of HWE in any population (‘Out Any’) 497 

had a marginal, but consistent effect in increasing the degree of estimated population structure 498 

in the case of FST inference (but not in the cases of STRUCTURE or PCST analyses).  499 

 500 

Impact of filtering on different measures of population structure 501 

PCST is a non-parametric measure of population structure developed by Linck and Battey 502 

(2019) to standardize comparisons of PCAs. In contrast, FST and nucleotide distance (inferred 503 

from STRUCTURE) are widely used parametric analyses that have explicit underlying 504 

biological assumptions. 505 

 506 

Contrary to our hypothesis where we assumed the ‘Out Any’ filter would strengthen the 507 

inference of population structure due to the removal of ‘noisy’ loci, we observed little to no 508 

effect of this filter on PCST in any of our simulations. The lack of effect of ‘Out Any’ on PCST 509 

may be explained by the fact that PCA (1) makes no assumptions about the underlying 510 

population structure, (2) is non-parametric, or (3) that PCST is calculated based on only the 511 

first ten principal components, thereby limiting the impact of ‘noisy’ loci on this metric due to 512 

the first ten principal components capturing only the majority of the variation. 513 
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 514 

In contrast to the PCST results, for two different parametric methods – STRUCTURE and FST  515 

– different filtering approaches strongly impacted inferred estimates of population structure. 516 

For inferred FST we observe that, with the exception of the extreme population structure 517 

scenario (i.e. low migration [M=0.0001]), ‘Out Any’ tended to lead to inference of marginally 518 

higher structure than other filters, in line with our hypothesis that this filter would strengthen 519 

inference of population structure. The increase in observed FST in these scenarios (low 520 

population structure [M=0.1] to high population structure [M=0.001]) is indicative that 521 

filtering using an ‘Out Any’ approach may increase the ability to detect marginal population 522 

structure. This inference of marginal structure does not appear to be artificially introduced due 523 

to the filtering regime, as when population allocations are randomized – the filtering regime 524 

did not introduce artificial structure (Fig. 7). This is in contrast to our hypothesis that filtering 525 

approaches might reinforce the structure between a priori groupings corresponding to 526 

sampling locations, rather than “true” underlying populations.  527 

 528 

Similarly, with the exception of marginal population structure (i.e. high migration [M=0.1]), 529 

‘Out Across’ resulted in reduced inferred population structure in comparison to the other 530 

filtering approaches. In the marginal population structure scenario, the migration rate was so 531 

high that it is likely that all sampling locations could be considered a single population; 532 

therefore, the use of ‘Out Across’ did not have any major impact.  533 

 534 

In the case of STRUCTURE analyses, we used the average of the nucleotide distance matrix 535 

from the STRUCTURE output as a metric to compare analyses, with larger average 536 

nucleotide distances between inferred clusters indicative of greater population structure. We 537 
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found that at lower levels of underlying population structure, the filtering approaches had a 538 

greater impact on STRUCTURE results, with ‘Out Across’ and ‘Out Any’ both leading to 539 

marginally higher inferred population structure than the other two filters. As population 540 

structure increased, these effects were reduced and ‘Out Any’ became comparable with other 541 

filters, while ‘Out Across’ increasingly reduced the average nucleotide distance between 542 

populations.   543 

 544 

The observation of a reduction in inferred structure associated with filtering across 545 

populations (‘Out Across’) can be largely attributed to the introduction of a Wahlund effect, 546 

where loci that are informative for population structure (i.e., fixed in one population but not 547 

another) are removed due to exhibition of a reduction in heterozygosity as assessed across the 548 

total pooled samples. The observation of an increase in inferred population structure 549 

associated with filtering loci that depart from HWE in any population (‘Out Any’) could 550 

possibly be explained by the selection of loci that conform best to the a priori population 551 

groupings. However, in our analyses of simulated panmictic populations, we did not find that 552 

the ‘Out Any’ filtering approach introduced artificial structure. Instead, we conclude that this 553 

filtering approach largely increases estimates of pre-existing structure rather than introducing 554 

artificial structure, potentially by removing ‘noisy’ loci that are not consistently found out of 555 

HWE in each population, but likely would be found to be out of HWE if per-population 556 

sample sizes were larger. 557 

 558 

Comparison to empirical data 559 

Broadly, the patterns observed in our simulated data were also observed, albeit to a slightly 560 

lesser extent, in empirical datasets. Specifically, ‘Out Across’ tended to reduce the inferred 561 
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amount of population structure for the Plains zebra and New Zealand isopod – both of which 562 

have generally high population structure in all other analyses, while for the New Zealand fur 563 

seal, no effect of ‘Out Across’ was observed – consistent with our observations of low 564 

population structure in the simulated datasets. However, some discrepancies were observed – 565 

for FST, the Plains zebra dataset showed reduced inferred population structure in the case of 566 

the ‘Out Any’ filtering approach – contrasting with an increased FST in the simulations with 567 

comparable population structure. However, this difference was not statistically significantly 568 

different from any other filtering approach except ‘Out Across’. We further found a 569 

significant reduction in STRUCTURE-inferred average nucleotide distance for the New 570 

Zealand isopod when comparing the ‘Out Any’ filter approach with ‘No Filter’ or ‘Out All’, 571 

while our comparable simulations showed no effect of this filter on inferred population 572 

structure via STRUCTURE. The discrepancies between the simulated and isopod analyses 573 

likely arise from the fact that simulations do not encapsulate the full complexity of real 574 

populations: Our simulations do not consider selection, while the isopod dataset was based on 575 

morphotypes thought to be under selection (Pearman et al., 2020; Wells & Dale, 2018).  576 

 577 

Conclusions and recommendations 578 

We conclude that, despite being a widely used filtering approach, filtering across populations 579 

(‘Out Across’) is inappropriate and leads to reduced levels of inferred population structure – 580 

especially when population structure is high. Removing loci exhibiting HWE departures in 581 

any population (‘Out Any’) can marginally increase the ability to detect population structure 582 

in datasets. The impact of removing loci that exhibit departures in every single population 583 

(‘Out All’) is similar to not filtering at all (‘No Filter’). Thus, we suggest that authors conduct 584 

thorough exploratory analyses before applying HWE filters, and in general avoid the use of an 585 
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‘Out Across’ filter. Instead, the application of either a ‘No Filter’ or ‘Out All’ regime should 586 

be considered. While ‘Out Any’ is more likely to detect population structure, authors should 587 

consider the trade-off between the number of loci lost through application of this filter relative 588 

to the information gained. 589 
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Table 3 Description of commonly used filtering approaches in the analysis of RADseq data (“Filter”), the reason for their 793 
usage (“Usage”), and how they impact population genomic inference (“Impact”). 794 

Filter Usage Impact Reference 
Hardy-Weinberg 

equilibrium (HWE) 
• Removes loci under 

selection 

• Removes library and 

sequencing artifacts 

• Unknown  (Gruber et al., 2018; 

Sethuraman et al., 

2019; Waples, 2015) 

Linkage within loci • Mitigates effects of 

non-independence of 

Single Nucleotide 

Polymorphisms 

(SNPs) by removing 

physically linked 

SNPs. 

• Reduces false 

signals of population 

structure 

• Necessary for 

STRUCTURE (If 

LD correction is not 

used) 

 

(O’Leary et al., 2018) 

Locus level diversity • Loci with high SNP 

density (i.e. many 

SNPs within a locus) 

may be the result of 

polyploidy 

• Can remove putative 

paralogous loci 

(Hohenlohe et al., 

2011; Mastretta‐

Yanes et al., 2015)  

Minor Allele Frequency 

(MAF)/Count (MAC) 
• Identification of 

genotyping errors 

 

• Can remove 

informative loci if 

not applied carefully 

• MAF will affect loci 

differently based on 

missingness 

• Removes 

genotyping errors 

(Linck & Battey, 

2019; O’Leary et al., 

2018) 

Variant call rate • Ensures SNP panel 

is well represented 

across individuals 

• Can dramatically 

reduce number of 

loci 

• Helps ensure 

samples are 

comparable 

(O’Leary et al., 2018) 

 795 

 796 

Table 4 Description of categories used to group scientific studies based on their Hardy Weinberg filtering approaches.  797 

Category Definition 

HWE Out All Loci were excluded if they were out of HWE in every sample 

location. 

HWE Out Any Loci were excluded if they were out of HWE in at least one of the 

sampling locations. 
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HWE Out Some Loci were excluded if they were out of HWE in at least a specific 

absolute number or relative proportion of the locations, but not in 

all locations. 

HWE Out Across Loci were excluded if they were out of HWE across all locations.  

No Filter The study explicitly mentions that no loci were removed due to 

HWE filtering. 

Unspecified HWE filtering was used, but no specific filtering approach was 

described. 

Mix A combination of these categories was used. 

 798 

Figure 1. Four commonly applied Hardy-Weinberg Equilibrium (HWE) filtering options (loci removed indicated by grey 799 
crosses). In the case of ‘No Filter’, no loci are removed, even if they exhibit departures from HWE. In the case of ‘Out Any’ 800 
and ‘Out All’, loci are removed if they exhibit departures from HWE in either any sampling location, or all sampling 801 
locations respectively. ‘Out Some’ can be considered a subset of ‘Out All’, where loci are removed if they are out of HWE in 802 
a certain proportion of populations. Finally, in ‘Out Across’, loci are removed if they exhibit HWE departures when sampling 803 
locations are grouped together  804 

Figure 2 A) Distribution of publications that specified their HWE filtering approach (orange) versus publications that did not 805 
specify the approach in sufficient detail (grey). B) The distribution of publications that specified their HWE filtering 806 
approach across different filtering schemes: ‘Mix’ (mix of the following filters), ‘No Filter’ (no HWE filter), ‘Out Across’ 807 
(loci removed if out of HWE across the pooled dataset), ‘Out All’ (loci removed if out of HWE in each sampling location), 808 
‘Out Any’ (loci removed if out of HWE in any sampling location), and ‘Out Some’ (loci removed if out of HWE in at least a 809 
certain number/relative proportion of sampling locations, but not in all locations). C) The distribution of publications that did 810 
not specify Hardy-Weinberg filtering approach and with the default behaviour of the filtering tools used (where specified) 811 
assumed: ‘Out Across’ (as defined above), ‘Within’ (the paper specified that they used population information for HWE 812 
filtering, but not specifically whether this was ‘Out All’, ‘Out Any’, or ‘Out Some’) and ‘Unspecified’ (the paper did not 813 
specify the tool). 814 

Figure 3 Distributions of PCST across HWE filtering approaches and degrees of inferred population structure. A represents 815 
marginal population structure (i.e. high migration, M=0.1), B represents low population structure (M=0.01), C represents 816 
high population structure (M=0.001), and D represents extreme population structure (i.e. low migration, M=0.0001). Red 817 
lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, 818 
Bonferroni adjustment). 819 

Figure 4 Distributions of inferred FST across HWE filtering approaches and degrees of inferred population structure. A 820 
represents marginal population structure (i.e. high migration, M=0.1), B represents low population structure (M=0.01), C is 821 
high population structure (M=0.001), and D represents extreme population structure (i.e. low migration, M=0.0001). Red 822 
lines indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, 823 
Bonferroni adjustment). 824 

Figure 5 Distributions of average nucleotide distance between inferred population clusters from STRUCTURE, across 825 
differing filtering regimes and levels of population structure. A represents marginal population structure (i.e. high migration, 826 
M=0.1), B represents low population structure (M=0.01), C is high population structure (M=0.001), and D represents extreme 827 
population structure (i.e. low migration, M=0.0001). Red lines indicate median values, black vertical bars indicate 828 
statistically significant comparisons (Mann-Whitney U tests, Bonferroni adjustment). 829 

Figure 6 Distributions of PCST of the randomized SNP datasets across HWE filtering approaches. A represents marginal 830 
population structure (A; i.e. high migration M=0.1) and B represents extreme (M=0.0001) population structure. Red lines 831 
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indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, Bonferroni 832 
adjustment). 833 

Figure 7 Distributions of FST of the randomized SNP datasets across HWE filtering approaches. A represents marginal 834 
population structure (A; i.e. high migration M=0.1) and B represents extreme (M=0.0001) population structure. Red lines 835 
indicate median values, black vertical bars indicate statistically significant comparisons (Mann-Whitney U tests, Bonferroni 836 
adjustment). 837 

Figure 8 PCST distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus forsteri), B 838 
represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). Red lines 839 
indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons (Mann-840 
Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to high 841 
population structure (isopod). 842 

Figure 9 FST distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus forsteri), B 843 
represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). Red lines 844 
indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons (Mann-845 
Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to high 846 
population structure (isopod). 847 

Figure 10 Nucleotide distance distributions for empirical datasets, A represents New Zealand fur seal data (Arctocephalus 848 
forsteri), B represents from the Plains zebra (Equus quagga), and C represents a New Zealand isopod (Isocladus armatus). 849 
Red lines indicate the median value for each distribution, black vertical bars indicate statistically significant comparisons 850 
(Mann-Whitney U tests, Bonferroni adjustment). Species ordered from low population structure (New Zealand fur seal) to 851 
high population structure (isopod). 852 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448615doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448615
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title: Commonly used Hardy-Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data
	Authors: William S. Pearman1,2*, Lara Urban2, Alana Alexander2
	Abstract
	Introduction
	Methods
	Literature Review

	Results
	Literature Review
	In silico data analysis
	Randomised data
	Empirical data analysis


	Discussion
	References

