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Abstract 
 
Feedback mechanisms within cell lineages are thought to be important for 
maintaining tissue homeostasis. Mathematical models that assume well-mixed 
cell populations, together with experimental data, have suggested that negative 
feedback from differentiated cells on the stem cell self-renewal probability can 
maintain a stable equilibrium and hence homeostasis. Cell lineage dynamics, 
however, are characterized by spatial structure, which can lead to different 
properties. Here, we investigate these dynamics using spatially explicit 
computational models, including cell division, differentiation, death, and migration 
/ diffusion processes. According to these models, the negative feedback loop on 
stem cell self-renewal fails to maintain homeostasis, both under the assumption 
of strong spatial restrictions and fast migration / diffusion. Although homeostasis 
cannot be maintained, this feedback can regulate cell density and promote the 
formation of spatial structures in the model. Tissue homeostasis, however, can 
be achieved if spatially restricted negative feedback on self-renewal is combined 
with an experimentally documented spatial feedforward loop in which stem cells 
regulate the fate of transit amplifying cells. This indicates that the dynamics of 
feedback regulation in tissue cell lineages are more complex than previously 
thought, and that combinations of spatially explicit control mechanisms are likely 
instrumental.  
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Introduction 

Tissue homeostasis is central to the functioning and survival of higher organisms. 

Adult tissues are maintained by tissue stem cells that can both self-renew and 

differentiate to give rise to transit amplifying cells, which in turn give rise to 

terminally differentiated cells. Stem cells can divide asymmetrically [1], where 

one daughter is another stem cell and the other is a differentiating cell. In 

mammalian systems, however, data indicate that a stochastic symmetric division 

model also plays an important part, where a stem cell gives rise to either two 

daughter stem cells or to two daughter differentiated cells [2-4]. In such settings, 

it is thought that feedback mechanisms are required to prevent unbounded cell 

growth and to maintain homeostasis. Corresponding feedback signaling 

molecules have been much discussed in the literature in different tissues, and 

loss of feedback signals have been implicated in carcinogenesis [5, 6]. Several 

feedback molecules have been shown to determine the fate of cell divisions, 

influencing whether self-renewal or differentiation can occur. Examples include 

GDF11 and Activin βB, which negatively regulate self-renewal rates in progenitor 

and stem cells in the olfactory epithelium of mice  [7, 8]; transforming growth 

factor beta (TGF-β) [9], which is mutated in a variety of tumors [10-12]; the bone 

morphogenetic protein 4 pathway (BMP4) that is inactivated in glioblastomas 

[13]; and the APC tumor suppressor gene that is inactivated in colorectal cancer, 

with concomitant activation of the Wnt cascade [14].  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

 A growing mathematical literature has emerged that investigates feedback 

control in relation to tissue homeostasis, and loss of feedback control in relation 

to carcinogenesis [6-8, 15-26]. One particular approach focused on the notion 

that feedback factors produced by differentiated cells might play an important 

role for determining the fate of cell divisions. Specifically, in the olfactory 

epithelium, there appears to be negative feedback from differentiated cells both 

on the probability of stem cell self-renewal and on the rate of cell division, 

mediated by GDF11 and Activin βB [7, 8]. These observations motivated 

mathematical models showing that such negative feedback from differentiated 

cells onto stem cell division patterns can play an important role for the 

maintenance of tissue homeostasis [8, 24, 27] [21-23]. Mathematical models 

predicted that in the absence of this feedback, unbounded growth occurs, while 

negative feedback inhibiting stem cell self-renewal can result in a stable 

equilibrium.   

 

  These mathematical models of negative feedback regulation were all 

based on ordinary differential equations (ODEs), which assume perfect mixing of 

cells and molecules.  In other words, no spatial structure was assumed. This 

applies to most mathematical models of stem cell regulation, with a few 

exceptions, e.g. [28]. Here, we re-formulate negative feedback models within cell 

lineages assuming spatially restricted dynamics, and specifically examine how 

this affects the ability of negative feedback loops to maintain tissue 

homoeostasis. We further construct models of other control mechanisms where 
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spatial interactions are important and determine their effect on tissue 

homeostasis.  We start by briefly reviewing the previously published ODE models 

that were used to study negative feedback from differentiated cells on stem cell 

division patterns in relation to the ability to maintain tissue homeostasis. We then 

introduce the spatial modeling framework and explore how this affects the 

dynamics.   

 

  

  

Basic models without spatial restriction 

An ordinary differential equation model has been used to describe tissue 

hierarchy dynamics in a healthy tissue [8, 15, 24], and the models presented 

here build on these approaches. While cell lineages consist of stem cells, transit 

amplifying cells, and terminally differentiated cells, we can make a simplification 

and take into account only stem cells (which encompass all the proliferating cells) 

and differentiated cells [6]. Denoting stem cells (SC) by S and differentiated cells 

(DC) by D, the model is given by: 

       (1) 

 Stem cells divide with a rate r. With a probability p, the division results in two 

daughter stem cells (self-renewal), and with a probability (1-p), the division 

results in two daughter differentiated cells (differentiating division). Differentiated 

a

= -

= - -

(2 1)

2 (1 )

dS rS p
dt
dD rS p D
dt

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

cells are assumed to die with a rate α. These equations capture a probabilistic 

model of tissue control, where on the cell population level a fraction of the 

symmetric divisions result in two daughter stem cells and the remaining fraction 

results in two daughter differentiated cells. In addition to symmetric divisions, 

asymmetric divisions may play a role in tissue renewal. With asymmetric cell 

division, a stem cell gives rise to one stem cell and one differentiated cell, thus 

maintaining a constant population of stem cells. While not included here, it has 

been previously shown that the incorporation of asymmetric cell divisions into this 

modeling framework does not fundamentally alter the properties of the model 

[29].   

  

 This system is only characterized by a neutrally stable family of nontrivial 

equilibria if p=0.5 [6, 8]. If p>0.5, infinite growth is observed. If p<0.5, the cell 

population goes extinct.  

 

 If we include the assumption that differentiated cells secrete negative 

feedback factors that influence stem cell division patterns, however, more 

realistic dynamics can be observed [6, 8, 24]. In particular, it has been shown 

that negative feedback from differentiated cells onto the probability of self-

renewal, p, results in the existence of a stable equilibrium of cells, which might 

contribute to tissue homeostasis. This is because increased numbers of 

differentiated cells shift the division pattern in favor of differentiation, which limits 

overall cell growth. Mathematically, this has been expressed by p = p’/(1+f1Dk1), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

where p’ is the basic self-renewal probability of stem cells in the absence of any 

feedback. The existence of a stable equilibrium requires p’>0.5.       

 

 In addition, feedback loops have been proposed where differentiated cells 

reduce the rate of stem cell division [8, 24], which can be expressed as r = 

r’/(1+f2Dk2), where r’ is the basic stem cell division rate in the absence of any 

feedback. While this feedback can influence the dynamics of the system, it does 

not contribute to the existence of a stable equilibrium, and hence homeostasis.   

 

 Under these assumptions, the stable equilibrium population size is given by     

𝑆∗ = 𝛼𝑒&'(
)*+,-
./

01/2/ 31 + 𝑓)𝑒
&'()*

+,-
./

0171/2/8 𝑟:,- 

𝐷∗ = 𝑒&'(
)*+,-
./

01/2/ 

 

An agent-based model with diffusion of feedback mediators 

We consider a two-dimensional spatial model of growing cell populations that are 

regulated by a population of diffusing negative feedback mediators. The model 

contains a cell layer and a layer that describes the dynamics of feedback factors.  

 

The dynamics of the cell population are described by a stochastic agent-based 

model, which assumes two cell populations: stem cells and differentiated cells. 

The agent-based model is given by a 2-dimensonal grid that contains nxn spots. 

Each spot can be empty, contain a stem cell, or contain a differentiated cell. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 8	

During one time step, the grid is sampled N times, where N is the total number of 

cells in the system. If the sampled spot contains a stem cell, a division event can 

occur with a probability pdiv. A target spot is chosen randomly from the eight 

nearest neighboring spots, into which the offspring cell can be placed. If that spot 

is already occupied, the division event is aborted. If the target spot is empty, a 

new stem cell is placed there with a probability pself (self-renewal), and a 

differentiated cell is placed there with a probability 1- pself. A stem cell can die 

with a probability pSdeath. If the sampled spot contains a differentiated cell, cell 

death occurs with a probability pDdeath. In addition to these processes, stem and 

differentiated cells can attempt a migration event with a probability pmig. A spot is 

selected randomly from the eight nearest neighbors and if this spot is empty, the 

cell moves there.      

 

The probability of self-renewal is influenced by the presence of feedback 

factors that can be secreted from differentiated cells. The dynamics of the 

feedback factors are described by a deterministic patch model. Each spot on the 

cell grid has a corresponding patch, in which the concentration of feedback 

factors is recorded. In each patch i, the concentration of the feedback factor, zi, is 

given by the following ODE: dzi/dt = c – bzi – mgzi + gZ. The parameter c 

represents the production rate of the feedback factor. We set c=0 if the spot does 

not contain a differentiated cell, otherwise c>0. Feedback factors are assumed to 

decay with a rate b in each patch. Feedback factors move to the nearest 

neighboring patches with a rate g, representing diffusion processes. The 
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parameter m denotes the number of neighboring patches. Typically m=8, except 

for boundary patches, where m<8. The variable Z denotes the sum of all 

feedback factor populations, zi, among the directly neighboring patches. For each 

time step of the agent-based model, the ODEs in each patch were run for one 

time unit. The probability of self-renewal for a given cell in the agent-based part 

of the model is thus given by pself = p(0)self / (1+hzi), where p(0)self denotes the self-

renewal probability in the absence of any feedback. The more feedback factors 

are locally present in the patch corresponding to the spot in the cellular grid, the 

lower the probability of stem cell self-renewal (and the larger the probability of 

differentiation).  The parameter h describes the strength of feedback inhibition, 

with larger values of h corresponding to more potent inhibition. For simplicity, we 

do not include feedback on the stem cell division rate, because this has been 

shown in the ODEs to not contribute to the existence of a stable equilibrium. This 

feedback can, however, be easily incorporated into the model in the same way.  

 

The degree of spatial restriction in this system is given by two parameters, 

i.e. the cell migration rate of cells, pmig, and the rate of feedback diffusion, g. If 

pmig=0 and the value of g is low, the system is characterized by strong spatial 

restriction. For large values of pmig and g, the system approaches mass action 

dynamics (perfect mixing).    

 

 As initial conditions, a square of 7x7 spots in the center of the grid 

was filled with stem cells, and the simulation was run according to the rules 
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described above. Parameter values are largely unknown, and hence were 

chosen for the purpose of demonstration. Parameters quoted in the figures are 

scaled such that stem cells divide on average once a day [30, 31], and that 

terminally differentiated cells on average live for 10 days. The reported results, 

however, do not depend on these particular values.  

 

  

Dynamics assuming strong mixing of cells and feedback mediators 

We start by assuming large values of pmig and g, i.e. the migration rate of cells 

and the diffusion rate of feedback factors. In this limit, the average dynamics of 

the agent-based model converge to those predicted by a corresponding set of 

ordinary differential equations. Denoting the populations of stem cells, 

differentiated cells, and feedback factors by S, D, and Z, respectively, the ODEs 

are given as follows.  

𝑑𝑆
𝑑𝑡 = 𝑟𝑆(2𝑝 − 1) (1 −

𝑆 + 𝐷
𝐾 0 − 𝜂𝑆					 

𝑑𝐷
𝑑𝑡 = 2𝑟𝑆(1 − 𝑝) (1 −

𝑆 + 𝐷
𝐾 0 − 𝛼𝐷				(2) 

FG
FH
= x𝐷 − b𝑍, 

where negative feedback from differentiated cells onto the probability of self-

renewal is given by 𝑝 = *:

-JKLM
 , and p’ is the self-renewal probability of stem cells in 

the absence of feedback. In contrast to model (1) above, here we explicitly track 

the population of secreted feedback factors, Z. They are produced by 

differentiated cells with a rate x  and decay with a rate b. Another change in the 
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model (compared to model (1)) is the inclusion of a carrying capacity K, which 

corresponds to the maximum population size the system can sustain, 

independent of the negative feedback loop. This describes the finite grid size 

underlying the agent-based model. In the term describing the negative feedback 

on the stem cell self-renewal probability, the abundance of the secreted feedback 

mediator is divided by the carrying capacity K. The reason is that in the agent-

based model, a larger system results in a lower amount of soluble feedback 

mediators available per cell due to diffusion, and this has to be captured in the 

corresponding ODE. Finally, we assumed that stem cells can die with a rate h, in 

addition to being removed through differentiation. 

 

 

 

 

 

 

 

 

Figure 1. Properties of the spatially explicit computational model with negative feedback. (A) Dynamics of the agent-based model, depending 

the carrying capacity K under the assumption that cells migrate with a high rate (large pmig) and feedback mediators move across space at a 

high rate (large g). The straight lines represent equilibrium values derived from the corresponding ODE system (2).  Parameters are given as 

follows. For agent-based model: Pdiv=0.04167, p(0)
self=0.7, PSdeath=0, PDdeath=0.0083, pmig=0.67, h=1.6, c=8.33, b=4.167, g=83.33; n=100 and 

n=200 for the small and large system, respectively. The average over 46 simulations are shown for each case; standard errors are too small 

to see. For ODEs: r=0.04167, h=0, a=0.0083, x=8.33, b=4.167, p’=0.7, f=1.6, K=100x100 and 200x200 for the small and large systems, 

respectively. (B) Equilibrium properties of the corresponding ODE system (2) as a function of the carrying capacity, K. Parameters were 

chosen as follows. r=0.04167, h=0, a=0.0083, x=8.33, b=4.167, p’=0.7, f=1.6.  (C) Dynamics of the agent-based simulation, depending the 

carrying capacity K under the assumption of spatial restriction (pmig=0, low g). Parameters were chosen as follows. Pdiv=0.04167, p(0)
self=0.7, 

PSdeath=0.000083, PDdeath=0.004167, pmig=0., h=0.004, c=8.33, b=0.0083, g=0.833; n=100 and n=200 for the small and large system, 

respectively. The average over 46 simulations are shown for each case; standard errors are too small to see. Units of parameters are in 

hours.  

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

 

Figure 1A shows that this system of ODEs describes the average behavior of the 

agent-based model well for the limit of large cell migration and feedback diffusion 

rates. More generally, this ODE model is characterized by two equilibria. If 

p’<0.5, the cell population goes extinct and the system converges to the trivial 

equilibrium S(0)=0, D(0)=0, Z(0)=0. If p’>0.5, the system converges to a stable 

equilibrium at which all cell populations exist (not written down here due to 

complexity of expressions). An important property of this equilibrium is that the 

total cell population size is proportional to the carrying capacity, K (Figure 1B). As 

the value of the carrying capacity increases towards an infinitely large size, the 

number of cells also increase to an infinitely large size, despite the occurrence of 

negative feedback regulation. Therefore, in this model, negative feedback alone 

cannot maintain homeostasis of the cell population, defined by keeping the 

number of cells constant. The strength of negative feedback does, however, 

regulate the density of cells for a given carrying capacity, K. This behavior is in 

contrast to model (1) that does not take into account a carrying capacity. The 

reason is that model (1), as well as similarly structured models [24], assume that 

a given amount of feedback mediators is equally effective regardless of the 

system’s size, while model (2) assumes that the same amount of feedback 

mediators becomes less effective at suppressing stem cell self-renewal for larger 

system sizes, which corresponds to the formulation of the agent-based model 

and might be biologically more realistic.         
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Dynamics assuming spatial restrictions 

Here we assume that the processes of cell migration and the diffusion of 

feedback mediators are spatially restricted. For simplicity, we assume the 

strongest form of spatial restriction of cell migration, i.e. no migration occurs, and 

cells are assumed to leave their offspring in a nearest neighboring spot. For 

feedback mediators, the rate of diffusion will be varied from low to high. In 

general, similar properties are observed compared to the well-mixed system 

studied in the previous section. That is, negative feedback can only regulate the 

density of the cells, but not total numbers: The larger the size of the grid, the 

larger the total cell population size (Figure 1C). Beyond the properties of the well-

mixed model, however, we find that negative feedback inhibition can result in 

pronounced spatial patterns, in which a number of islands of stem and 

differentiated cells exist, separated by space that is not occupied by cells (Figure 

2A). As the strength of feedback inhibition is reduced (lower value of parameter 

h), the distribution of cells within the space becomes uniform (Figure 2B). We 

quantified the degree of clustering by calculating the ratio of the variance to 

mean of the number of cells (which we denote by s) assuming the grid is 

subdivided into a number of relatively small squares. A ratio that is significantly 

greater than one indicates that the cell population is clustered across space. 

Figure 2C shows that as the strength of negative feedback inhibition is reduced, 

there is a sharp transition from a clustered distribution of cells towards a uniform 

distribution. If the clustered population structure corresponds to a normal state, 

then it is possible that the transition to a uniform distribution due to reduced 
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Figure 2. Spatial patterns observed in the agent-based model with 

negative feedback. Dark blue is empty space, light blue represents stem 

cells, and yellow represents differentiated cells. (A) With a stronger degree 

of negative feedback on the stem cell self-renewal rate, clumped spatial 

patterns are observed. Islands of stem and differentiated cells form, 

separated by empty space. Stem cells are in the minority. The spatial 

picture is a snapshot in time at equilibrium, and the time series represents 

the average over 46 simulations; standard errors are too small to see.   (B) 

For weaker negative feedback, these spatial patterns break down, and a 

uniform distribution of cells across space is observed. Also, stem cells 

become the dominant population. The spatial picture is a snapshot in time 

at equilibrium, and the time series represents the average over 46 

simulations; standard errors are too small to see.  (C) The degree of 

clumpiness on the distribution of cells across space can be quantified by 

dividing the space up into relatively small squares, and the number of cells 

per square is recorded. If the ratio of s = variance / mean is greater than 1, 

the spatial pattern is clumped. If the ratio s is less than one, the distribution 

is uniform. The graph shows the value of s at the end of the simulation (at 

equilibrium).  As the rate of negative feedback inhibition is increased from 

low to high, we observe a relatively sharp transition in the ratio s, i.e. from 

a uniform to a clumped distribution of cells across the space. Baseline 

parameter values were chosen as follows. Pdiv=0.04167, p(0)
self=0.7, 

PSdeath=0.000083, PDdeath=0.004167, pmig=0., h=0.004, c=8.33, b=0.0083, 

g=0.833; n=200. For (A) h=0.004, (B) h=0.001, and for (C) the value of h 

was varied, as indicated. Units of parameters are in hours. 

	

negative feedback corresponds to a first step towards abnormal growth. 

Interestingly, in the presence of strong negative feedback and clustered 

population structure, the stem cell population is in the minority (Figure 2). For 

weak negative feedback and uniform cell distribution, however, the stem cell 

fractions are significantly larger (Figure 2).                                                           

Finally, we note that if the strength of negative feedback inhibition is large 

and crosses a threshold in this model, extinction of the cell population is 

observed. 
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Next we investigated how the different outcomes depend on model 

parameters. This was done by randomly drawing the logarithm of parameter 

values from a uniform distribution and recording the ratio s. In Figure 3, two 

parameters were varied simultaneously for any given plot: The rate of negative 

feedback inhibition on stem cell self-renewal, h, was always varied, together with 

a second parameter. The outcome of the simulation is color-coded in Figure 3, in 

which each dot represents the outcome of an individual simulation in the 

parameter space. A value of s>1.5 (clustering) is recorded in red, and a value of 

s<1.5 (uniform distribution) is recorded in blue. Runs in which population 

extinction occurred are shown in yellow. As mentioned above, clustered cell 

population persistence occurs for intermediate rates of negative feedback 

inhibition, while larger and smaller rates of feedback inhibition result in population 

extinction, or a uniform distribution of cells across space, respectively. The width 

of the parameter region in which cell clusters are observed depends on 

parameters (Figure 3). In particular, it depends on the diffusion rate of feedback 

mediators, and on the decay rate of the feedback mediators. Larger diffusion 

rates, g, and slower decay rates of feedback mediators, b, lead to a broader 

region of feedback inhibition rates for which cell clusters are observed (Figure 3). 

If the diffusion rate of feedback mediators is slow and their decay rate is fast, the 

mediators secreted by a given cell mostly act locally, and the clustering regime is 

narrow. In the limit, the clustering regime is so narrow that the behavior of the 

system essentially transitions from extinction to a uniform invasion of the space 

by cells (Figure 3). If the diffusion rate of feedback mediators is faster and they  
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Figure 3. Parameter dependencies of outcome. Each dot in the graph represents the long-term outcome of an individual 

simulation. Each simulation was run up to a time threshold, and the spatial distribution was determined by calculating s = variance 

/ mean. Yellow indicates the extinction of the cells. Blue indicates a distribution that is characterized by s < 1.5 (mostly uniform 

distribution). Red indicates s > 1.5 (clumped distribution of cells). For each graph, two parameters were varied: the strength of 

negative feedback on the stem cell self-renewal probability, h, and a second parameter, as indicated in the individual graphs. 

Baseline parameters were chosen as follows. Pdiv=0.04167, p(0)
self=0.7, PSdeath=0.000083, PDdeath=0.004167, pmig=0., c=8.33, 

b=0.0083, g=0.833; n=200. Units of parameters are in hours. 
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decay slower, then the mediators secreted from a given cell affect cells in a 

larger area of the space, and the clustering behavior becomes pronounced 

(Figure 3). Therefore, the model suggests that the clustered persistence of cells 

requires feedback mediators to act beyond the immediate neighborhood of the 

cell from which they are secreted. Other model parameters do not have a 

significant influence on the range of feedback inhibition values across which 

clustered cell persistence is observed (Figure 3).       

      

Feedforward loop 

So far, we have considered regulatory loops where differentiated cells influence 

the behavior of stem cells. Data from the airway epithelial tissue from mice [32], 

however indicate that stem cells can also send a signal forward to their progeny 

and influence their behavior. In fact, this “feedforward” regulation is inherently 

spatial. The stem cells secrete a notch ligand to their daughter transit amplifying 

cells (secretory cells), and this signal is necessary to maintain the transit 

amplifying cell population. In the absence of this signal, the transit amplifying 

cells undergo terminal differentiation to become ciliated cells. Hence, the further 

the transit amplifying cells are located away from stem cells, the weaker this 

signal, and the more likely terminal differentiation occurs. Transit amplifying cells 

that are located closer to stem cells receive a stronger signal and are more likely 

to be maintained.  
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 We adapt our above described agent-based model to describe this 

scenario. To do so, we expand the model complexity to include a population of 

transit amplifying cells (TA) in addition to stem cells. Now, stem cell 

differentiation results in the generation of two TA cells. Similarly to stem cells, TA 

cells have a probability to divide (qdiv). With a probability qself, this is a self-

renewing division, giving rise to two TA daughter cells; with a probability 1-qself, 

this is a terminally differentiating division, giving rise to two daughter 

differentiated cells. TA cells are assumed to die with a probability qTdeath. 

Feedforward mediators are secreted from stem cells. The dynamics of the 

feedforward factors are again described by a deterministic patch model. Each 

spot on the cell grid has a corresponding patch, in which the concentration of 

feedforward factors is recorded. In each patch i, the concentration of the 

feedforward factor, wi, is given by the following ODE: dwi/dt = c2 – b2wi – mg2wi + 

g2W. The parameter c2 represents the production rate of the feedback factor. We 

set c2=0 if the spot does not contain a stem cell, otherwise c2>0. Feedforward 

factors are assumed to decay with a rate b2 in each patch. Feedforward factors 

move to the nearest neighboring patches with a rate g2, representing diffusion 

processes. The parameter m again denotes the number of neighboring patches. 

The variable W denotes the sum of all feedforward factor populations, wi, among 

the directly neighboring patches. Importantly, the probability of TA cell self-

renewal (and thus maintenance) is determined by the concentration of the 

feedforward factor according to 𝑞OP&. = 1 − -
-JQ7RS

. For large feedforward factor 

concentrations, the probability of TA self-renewal converges to one. 
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Figure 4. (A) Properties of the agent-based models with the feedforward control loop only. Dark blue represents empty space, light blue stem cells, 

green transit amplifying cells, and yellow terminally differentiated cells. (i) In the absence of stem and transit amplifying cell death, the cell population 

stops growing and converges to an equilibrium that is independent of the carrying capacity, K (not shown). The transit amplifying cells block stem cell 

divisions due to lack of available space, and this prevents the area of cells from expanding. The picture shown corresponds to the population at 

steady state. Parameters were as follows: Pdiv=0.04167, p(0)
self=0.8, qdiv=0.0583, PSdeath=0, PTdeath=0, PDdeath=0.004167, pmig=0., c2=0.833, b2=0.0083, 

g2=0.4167, h2=2, n=200. (ii) In the presence of cell death, however, this mechanism breaks down and the stem cells can continuously expand into 

empty space, provided by the death of transit amplifying cells. The picture represents a snap-shot during this cell expansion. Parameters were chosen 

as follows: Pdiv=0.04167, p(0)
self=0.8, qdiv=0.0583, PSdeath=0.000083, PTdeath=0.0001, PDdeath=0.004167, pmig=0., c2=0.833, b2=0.0083, g2=0.4167, h2=2, 

n=200.   (B) Properties of the agent-based model that contains both the feedforward and the feedback loop, and assumes the occurrence of death for 

all cell populations. (i) Time series, in which the system / grid size was varied, n=100 vs n=150. Blue and purple show stem cells for the smaller and 

larger grid size, respectively. Light green and dark green show TA cells, for the smaller and larger grid size, respectively.  Yellow and orange show 

differentiated cells, for the smaller and larger grid size, respectively. The lines present the average time series over 46 iterations of the simulation, and 

the dashed lines represent the average plus minus standard errors. (ii) A snapshot of the spatial configuration of cells at a specific time point during 

steady state. Parameters were chosen as follows. Pdiv=0.04167, p(0)
self=0.8, qdiv=0.0583, PSdeath=0.000083, PTdeath=0.0001, PDdeath=0.004167, pmig=0., 

c=8.33, b=0.0833, g=0, h=0.06, c2=8.33, b2=0.0833, g2=3.33, h2=2.5. Units of parameters are in hours.    
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In the absence of feedforward factors, the probability of TA self-renewal is zero. 

In other words, the feedforward factors secreted by stem cells are responsible for 

the maintenance of the TA cell population, and in the absence of these 

mediators, terminal differentiation is the only fate of the division. 

 

 It is instructive to start examining the dynamics of this system under the 

assumptions that stem cells and TA cells do not die (and only disappear through 

differentiation). In this case, a structure forms where stem cells are located in the 

center, surrounded by an area of TA cells, with differentiated cells at the 

periphery (Figure 4Ai). Interestingly, this structure is self-contained and stops 

growing after a while. The size of this structure is independent of the grid size, 

and determined by the diffusion rate of the feedforward factor. The further the 

feedforward factors can diffuse from the stem cells, the larger the area of the TA 

cell population. In other words, in this scenario, the feedforward regulation can 

maintain homeostasis of cell numbers, and the same cell numbers are 

maintained no matter how large the available space is. Hence, this is true 

homeostasis. The reason for this behavior is that there is competition between 

stem and TA cells for space, similar to the dynamics described by Hillen et al 

[33]. Stem cells enable self-renewal of TA cells in their immediate vicinity, and 

the TA cells block the stem cells from dividing further. Hence, the growth of the 

overall cell population is limited. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448623doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448623
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

 This homeostasis, however, represents a somewhat artificial situation due 

to the assumption that stem and TA cells can only be eliminated through 

differentiation processes, and no explicit cell death is assumed to occur. If cell 

death is assumed to occur in stem and TA cells, the spatial competition dynamics 

either go in favor of the TA cells, resulting in the exclusion of stem cells and thus 

in the extinction of the whole cell population, or in favor of stem cells, in which 

case the stem cell population can expand outward over time, leading to cell 

population growth limited by the available space (Figure 4Aii), similar to the 

simulations with negative feedback on stem cell self-renewal. Hence, the 

homeostasis observed in this system is lost in the presence of stem cell death. 

 

Combination of negative feedback and feedforward regulation        

The above sections considered negative feedback on the stem cell self-renewal 

probability, and feedforward regulation separately. For each model, these 

mechanisms failed to maintain homeostasis of cell numbers. Here, we consider a 

modified version of the agent-based model that includes both of these control 

processes at the same time. The two control mechanisms are implemented in the 

same way as described above. We now observe parameter regions in which true 

homeostasis is maintained (Figure 4B), i.e. the number of cells converges to an 

equilibrium value that is independent of the size of the grid or carrying capacity 

(including parameter regions where stem and transit amplifying cells are 

assumed to die).  The reason for this behavior is as follows. With the feedforward 

loop, the death of transit amplifying cells can make space for the invasion of self-
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renewing stem cells. If only the feedforward loop exists, this results in a 

continuous expansion of the stem cell population through space, which results in 

a concomitant expansion of transit amplifying and differentiated cells, and hence 

in uncontrolled growth. The addition of negative feedback on stem cell self-

renewal, however, counters this process. The negative feedback mediators are 

assumed to be secreted from differentiated cells, which are located 

predominantly at the surface of the cell mass (Figure 4B). As the stem cells 

expand in space and reach locations closer to the differentiated cells, the 

negative feedback loop becomes important and counters this outward stem cell 

expansion by forcing terminal differentiation to occur. This prevents the 

unbounded expansion of the stem cells and ensures the existence of an 

equilibrium that is independent of the grid size (carrying capacity). This effect is 

observed even if the negative feedback factors act predominantly on a local 

level, including with zero diffusion rates (as long as the feedback mediators 

remain present for long enough to stop an expanding front of stem cells).  

 

 Exploration of the parameter space is computationally not feasible on a 

larger scale because each parameter combination needs to be run many times to 

obtain the average trajectories and thus to determine whether grid size 

determines the equilibrium number of cells. Additional simulations, however, are 

shown in the Supplementary Materials demonstrating that these dynamics are 

observed over varying parameter ranges. 
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It is important to point out that homeostasis is a result of spatial dynamics. 

It is possible to describe a non-spatial version of the feedforward control 

mechanism, where stem cells promote the self-renewal of TA cells regardless of 

spatial location. A corresponding  ODE model that takes into account both the 

feedforward and the negative feedback mechanisms is presented in the 

Supplementary Materials. In the absence of space, the ability to of these controls 

to maintain homeostasis is lost, and the equilibrium cell population sizes are 

directly proportional to the carrying capacity of the system.           

 

 

Discussion 

Previous mathematical modeling approaches [6, 8, 24, 27], based on the 

assumption that cells mix perfectly (mass action), suggested that negative 

feedback from differentiated cells on the self-renewal probability of stem cells is 

an important determinant of tissue homeostasis. Here, we extended this analysis 

into a spatially explicit scenario where cells grow in a finite space, characterized 

by a given carrying capacity (maximum possible number of cells the system can 

sustain). This suggests that the negative feedback from differentiated cells onto 

the stem cell self-renewal probability cannot by itself maintain tissue 

homeostasis. The number of cells at equilibrium always scales with the carrying 

capacity of the system, even under the assumption that cells and feedback 

mediators mix relatively well due to fast migration and diffusion processes. In 

these models, an infinitely large space available for cell growth will lead to 
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infinitely large cell population sizes, despite the presence of the negative 

feedback loop. 

 

 The negative feedback on stem cell self-renewal can only maintain cell 

density, not total cell numbers in the models considered here. In the spatially 

explicit model versions (without significant migration of cells), this negative 

feedback can further lead to the formation of spatial patterns. In the presence of 

relatively strong negative feedback, clumps of cells (containing both stem and 

differentiated cells) form in the model, separated by empty space. This is 

interesting, because it suggests that this negative feedback loop might be 

involved in the formation of spatial structures in the cellular microenvironment. At 

the same time, however, the formation of spatial structures around stem cell 

populations, in particular the formation of stem cell niches, is highly complex and 

includes many components not currently taken into account in our model [34]. As 

the strength of feedback inhibition is reduced, there is a sharp transition in the 

model away from the clumped spatial structure towards a uniform distribution of 

cells, where the stem cell population is dominant. This means that loss of 

negative feedback on stem cell self-renewal might lead to a collapse of spatial 

organization, which might be a first step towards malignancy, even though 

uncontrolled growth does not yet occur. Whether this is indeed the case requires 

further investigation, in particular using models that take into account a higher 

biological complexity that characterize stem cell niche morphology. 
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 While the model suggests that negative feedback on stem cell self-

renewal can lead to spatial structures, the model further indicates that stronger 

spatial restrictions of feedback mediator diffusion limits the parameter regime in 

which this behavior is observed. The pattern formation is observed over relatively 

wide parameter regions only if the rate of feedback mediator diffusion is fast, i.e. 

if feedback factors secreted by a given cell can affect cells in a location further 

away. If feedback mediators are assumed to act only locally (through limited 

diffusion), the parameter region in which the spatial patterns form becomes 

vanishingly small. In this case, as the strength of the negative feedback is 

reduced from high to low, the model behavior more or less transitions from 

population extinction (stronger feedback) to a uniform distribution of cells (weaker 

feedback). 

 

 It was interesting to observe, however, that a combination of the negative 

feedback loop with a feedforward loop from stem cells to transit amplifying cells 

can lead to true homeostasis, where cell numbers settle around an equilibrium 

that is independent of the amount of space available (carrying capacity). The 

feedforward loop assumed in the model was based on data from the airway 

epithelium in mice, where stem cells were shown to secrete a notch ligand, which 

enabled the maintenance of the transit amplifying cells [32]. In the absence of 

this feedforward signal, transit amplifying cells were shown to undergo terminal 

differentiation. This is an inherently spatial process, since the concentration of 

the feedforward mediator decreases with distance from the originating stem cell. 
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This leads to the formation of a structure, where stem cells are located in the 

center, surrounded by transit amplifying cells, while differentiated cells are 

located at the surface of this area. The presence of only the feedforward control 

loop cannot maintain homeostasis because the stem cell population can expand 

outward and replace transit amplifying cells. The concomitant presence of the 

negative feedback loop, however, results in increased differentiation (rather than 

self-renewal) of stem cells, limiting their ability to spread outwards in space. This 

contributes to a stable equilibrium that is independent of the carrying capacity of 

the system. This type of equilibrium is observed even if the diffusion rate of the 

negative feedback mediator is assumed to be slow, i.e. if the negative feedback 

loop acts largely on a local level. Importantly, an equivalent non-spatial model 

was not characterized by control-mediated cell homeostasis. These results 

suggest that the interplay between different feedback control mechanisms within 

a cell lineage in a spatial setting can lead to true homeostasis, which we could 

not observe in a model without spatial structure. 

 

 While the combination of these particular feedback and feedforward 

mechanisms can maintain true homeostasis in our model, it is likely that other 

feedback configurations exist that give rise to similar results. In addition, it is 

important to point out that this is a relatively simple model that was aimed to test 

how previously described homeostatic mechanisms [6, 8, 24] translate into 

spatial settings. As mentioned above, additional biological complexities, 

especially those that characterize stem cell niches, need to be considered to gain 
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a more detailed picture of cell dynamics under homeostatic conditions. Besides 

the control loops involved in cells of a given lineage, complex signaling 

mechanisms between the cell lineage and its microenvironmental components 

exist that together yield homeostatic properties. These processes will need to be 

decoded with a combination of experiments and dynamical models. The results 

described here form a basis for understanding feedback dynamics in such more 

complex and realistic settings.          
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Figure Legends 

 

Figure 1. Properties of the spatially explicit computational model with negative 

feedback. (A) Dynamics of the agent-based model, depending the carrying 

capacity K under the assumption that cells migrate with a high rate (large pmig) 

and feedback mediators move across space at a high rate (large g). The straight 

lines represent equilibrium values derived from the corresponding ODE system 

(2).  Parameters are given as follows. For agent-based model: Pdiv=0.04167, 

p(0)self=0.7, PSdeath=0, PDdeath=0.0083, pmig=0.67, h=1.6, c=8.33, b=4.167, g=83.33; 

n=100 and n=200 for the small and large system, respectively. The average over 

46 simulations are shown for each case; standard errors are too small to see. For 

ODEs: r=0.04167, h=0, a=0.0083, x=8.33, b=4.167, p’=0.7, f=1.6, K=100x100 

and 200x200 for the small and large systems, respectively. (B) Equilibrium 

properties of the corresponding ODE system (2) as a function of the carrying 

capacity, K. Parameters were chosen as follows. r=0.04167, h=0, a=0.0083, 

x=8.33, b=4.167, p’=0.7, f=1.6.  (C) Dynamics of the agent-based simulation, 

depending the carrying capacity K under the assumption of spatial restriction 

(pmig=0, low g). Parameters were chosen as follows. Pdiv=0.04167, p(0)self=0.7, 

PSdeath=0.000083, PDdeath=0.004167, pmig=0., h=0.004, c=8.33, b=0.0083, 

g=0.833; n=100 and n=200 for the small and large system, respectively. The 

average over 46 simulations are shown for each case; standard errors are too 

small to see. Units of parameters are in hours.  
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Figure 2. Spatial patterns observed in the agent-based model with negative 

feedback. Dark blue is empty space, light blue represents stem cells, and yellow 

represents differentiated cells. (A) With a stronger degree of negative feedback 

on the stem cell self-renewal rate, clumped spatial patterns are observed. Islands 

of stem and differentiated cells form, separated by empty space. Stem cells are 

in the minority. The spatial picture is a snapshot in time at equilibrium, and the 

time series represents the average over 46 simulations; standard errors are too 

small to see.   (B) For weaker negative feedback, these spatial patterns break 

down, and a uniform distribution of cells across space is observed. Also, stem 

cells become the dominant population. The spatial picture is a snapshot in time 

at equilibrium, and the time series represents the average over 46 simulations; 

standard errors are too small to see.  (C) The degree of clumpiness on the 

distribution of cells across space can be quantified by dividing the space up into 

relatively small squares, and the number of cells per square is recorded. If the 

ratio of s = variance / mean is greater than 1, the spatial pattern is clumped. If 

the ratio s is less than one, the distribution is uniform. The graph shows the value 

of s at the end of the simulation (at equilibrium).  As the rate of negative 

feedback inhibition is increased from low to high, we observe a relatively sharp 

transition in the ratio s, i.e. from a uniform to a clumped distribution of cells 

across the space. Baseline parameter values were chosen as follows. 

Pdiv=0.04167, p(0)self=0.7, PSdeath=0.000083, PDdeath=0.004167, pmig=0., h=0.004, 
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c=8.33, b=0.0083, g=0.833; n=200. For (A) h=0.004, (B) h=0.001, and for (C) the 

value of h was varied, as indicated. Units of parameters are in hours. 

 

Figure 3. Parameter dependencies of outcome. Each dot in the graph represents 

the long-term outcome of an individual simulation. Each simulation was run up to 

a time threshold, and the spatial distribution was determined by calculating s = 

variance / mean. Yellow indicates the extinction of the cells. Blue indicates a 

distribution that is characterized by s < 1.5 (mostly uniform distribution). Red 

indicates s > 1.5 (clumped distribution of cells). For each graph, two parameters 

were varied: the strength of negative feedback on the stem cell self-renewal 

probability, h, and a second parameter, as indicated in the individual graphs. 

Baseline parameters were chosen as follows. Pdiv=0.04167, p(0)self=0.7, 

PSdeath=0.000083, PDdeath=0.004167, pmig=0., c=8.33, b=0.0083, g=0.833; n=200. 

Units of parameters are in hours. 

 

   

Figure 4. (A) Properties of the agent-based models with the feedforward control 

loop only. Dark blue represents empty space, light blue stem cells, green transit 

amplifying cells, and yellow terminally differentiated cells. (i) In the absence of 

stem and transit amplifying cell death, the cell population stops growing and 

converges to an equilibrium that is independent of the carrying capacity, K (not 

shown). The transit amplifying cells block stem cell divisions due to lack of 

available space, and this prevents the area of cells from expanding. The picture 
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shown corresponds to the population at steady state. Parameters were as 

follows: Pdiv=0.04167, p(0)self=0.8, qdiv=0.0583, PSdeath=0, PTdeath=0, 

PDdeath=0.004167, pmig=0., c2=0.833, b2=0.0083, g2=0.4167, h2=2, n=200. (ii) In 

the presence of cell death, however, this mechanism breaks down and the stem 

cells can continuously expand into empty space, provided by the death of transit 

amplifying cells. The picture represents a snap-shot during this cell expansion. 

Parameters were chosen as follows: Pdiv=0.04167, p(0)self=0.8, qdiv=0.0583, 

PSdeath=0.000083, PTdeath=0.0001, PDdeath=0.004167, pmig=0., c2=0.833, 

b2=0.0083, g2=0.4167, h2=2, n=200.   (B) Properties of the agent-based model 

that contains both the feedforward and the feedback loop, and assumes the 

occurrence of death for all cell populations. (i) Time series, in which the system / 

grid size was varied, n=100 vs n=150. Blue and purple show stem cells for the 

smaller and larger grid size, respectively. Light green and dark green show TA 

cells, for the smaller and larger grid size, respectively.  Yellow and orange show 

differentiated cells, for the smaller and larger grid size, respectively. The lines 

present the average time series over 46 iterations of the simulation, and the 

dashed lines represent the average plus minus standard errors. (ii) A snapshot of 

the spatial configuration of cells at a specific time point during steady state. 

Parameters were chosen as follows. Pdiv=0.04167, p(0)self=0.8, qdiv=0.0583, 

PSdeath=0.000083, PTdeath=0.0001, PDdeath=0.004167, pmig=0., c=8.33, b=0.0833, 

g=0, h=0.06, c2=8.33, b2=0.0833, g2=3.33, h2=2.5. Units of parameters are in 

hours.    
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