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Abstract 
The impacts of many inflammatory genes in prostate tumorigenesis remain 

understudied despite the increasing evidence that associates chronic inflammation with 

prostate cancer (PCa) initiation, progression, and therapy resistance. The overarching 

goal of this study was to identify dysregulated inflammatory genes that correlate with PCa 

progression and decipher their molecular mechanisms as well as clinical significance in 

PCa using integrative genomics, transcriptomics, and epigenomics approach. Our 

Weighted Gene Co-expression Analysis (WGCNA) and multivariate analysis identified 10 

inflammatory genes: IRAK1, PPIL5/LRR1, HMGB3, HMGB2, TRAIP, IL1F5/IL36RN, 

ILF2, TRIM59, NFKBIL2/TONSL, and TRAF7 that were significantly associated with PCa 

progression. We explored the potentials of IRAK1 and other inflammatory genes as 

diagnostic and/or prognostic biomarkers by performing both KM survival and AUROC 

curve analyses. Our results indicate the clinical significance of these inflammatory genes 

in predicting the development and progression of PCa. IRAK1 was found to be 

overexpressed and hypomethylated in most PCa samples. A significantly high percentage 

of castration-resistant PCa (CRPC) and neuroendocrine PCa (NEPC) samples display 

copy number variations, especially amplification of the IRAK1 gene compared to the 

indolent prostate adenocarcinoma (PRAD) samples. Furthermore, we identified missense 

and frameshift mutations of IRAK1 in a few PRAD samples with potential functional 

implications. In conclusion, the results from this study suggest that IRAK1 dysregulation 

may be an important contributor to chronic prostatitis (inflammation) and PCa 

progression. 
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Introduction 
Prostate cancer  (PCa) is the number one cause of cancer-related deaths and the 

second most diagnosed cancer in US men (Siegel, et al., 2021). One of the major 

drawbacks to the accurate diagnosis and treatment of inflammation-driven PCa 

progression is our limited understanding of the molecular mechanisms underlying 

aberrant inflammation signaling in PCa patients (Pezaro et al., 2014; Sciarra et al., 2008). 

Since asymptomatic chronic inflammation is hard to diagnose, we do not have adequate 

knowledge of how specific genes within the inflammatory cascade drive PCa initiation 

and progression (Schiller & Parikh, 2011; Wagenlehner et al., 2007). Integrative 

bioinformatics analysis involves the integration of different software, tools, and databases 

to identify anomalies, patterns, and correlations within large datasets to answer various 

biological questions and predict disease outcomes or future trends (Hasin et al., 2017). 

In this study, we adopted an integrative bioinformatics pipeline to analyze genomic and 

epigenomic data to identify inflammatory genes involved in prostate tumorigenesis.  

Omics data contain vital information, such as the genetic variation, gene 

expression, and DNA methylation of various oncogenes and tumor suppressor genes 

associated with clinical traits (Heindl et al., 2015). These data are usually disconnected; 

hence, we took an integrative bioinformatics approach that combined genetic, gene 

expression, and epigenetic data to explore inflammatory genes that are associated with 

PCa progression. This approach is expected to provide effective diagnostic and 

prognostic models to predict, manage, and prevent inflammation-driven PCa progression 

(Yang et al. 2015; Robinson et al. 2015). DNA methylation is an epigenetic modification 

that has been suggested to play an important role in regulating gene expression and 

therefore could be adopted as an alternative biomarker to gene expression (genomic) 

profiling (Koch et al., 2015; Héninger et al., 2015). Despite this knowledge, we still do not 

have an adequate understanding of the impacts of DNA methylation of inflammatory 

genes in PCa development and progression. 

Specifically, this study aims to characterize inflammatory genes as predictors of 

PCa progression, with a particular focus on the impact of aberrant signaling of interleukin-

1 receptor-associated kinases (IRAKs) on prostate tumorigenesis. We harnessed the 

richness of the large-scale genomic, transcriptomic, and methylation data available via 
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The Cancer Genome Atlas (TCGA) and the cBioPortal for Cancer Genomics (cBioPortal) 

databases to identify the gene alterations, expression, and methylation patterns of 

inflammatory genes associated with PCa progression like IRAK1 (Cerami et al., 2012; 

Gao et al., 2012; Weinstein et al., 2013). We also assessed the correlation between 

inflammation-associated genes and clinical features/traits such as progression and 

biochemical recurrence/cancer relapse. 

We applied weighted gene co-expression network analysis (WGCNA) to study and 

construct biological networks and generated clusters or modules containing genes that 

are highly correlated with PCa progression and relapse using a set of criteria designed 

into our bioinformatics analysis pipeline (Langfelder & Horvath, 2008). We then identified 

inflammation-associated genes within intramodular "hubs" of genes for further 

downstream analysis and investigative studies. The WGCNA approach deployed in this 

study identified significant modules and co-expression patterns among genes associated 

with PCa progression and chronic inflammation. We have identified an inflammatory 

signature of 10 genes (located in the magenta module) associated with PRAD 

progression and focused on IRAK1 for further downstream explorative analysis. Our study 

provides a framework for future mechanistic studies into the role of inflammatory genes 

in PCa progression (Xu et al., 2020). Understanding the pattern of genomic, epigenomic, 

and proteomic alterations of chronic inflammatory genes associated with PCa progression 

may provide us with effective prognostic and diagnostic tools to manage chronic 

inflammation-associated PCa (Tan et al., 2018). 

 

Materials and Methods 
Data sourcing from databases and bioinformatics pipeline design 

R studio Desktop v1.4.1106 (https://www.rstudio.com/), an open-access R 

programming language software platform for statistical computing was downloaded and 

installed on a MacBook computer to perform many of our integrated bioinformatics and 

statistical analyses (R studio Core Team, 2020). R packages and their dependencies 

needed for each analysis were also installed from Bioconductor software v3.14 

(https://www.bioconductor.org/install/) and the Comprehensive R Archive Network 

(CRAN) repository (https://cran.r-project.org/). The data used in this study were obtained 
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from the TCGA (https://portal.gdc.cancer.gov/) and the cBioPortal (http://cbioportal.org) 

databases. The cBioPortal database contains about 20 PCa cohort studies that we 

explored for the genetic alteration analysis portion of this study. 

For most of our analyses, the PanCancer Whole Exome sequencing (WES) and 

RNAseq datasets (n = 494) acquired from TCGA were utilized. The RNAseq dataset from 

matched normal prostate samples (n = 52) from PRAD patients as well as unmatched 

from GTEx (n = 245) were also added as the control group during the differential gene 

expression analysis (DGEA) to evaluate the clinical significance of gene expression 

between the primary tumor samples vs normal samples. The mRNA expression reads 

were derived from an Illumina HiSeq 2000 sequencer and aligned to Gencode 

hg19/GRCh37 to generate gene counts (overlapping reads), which are then Batch 

normalized to RSEM (RNASeqV2 by Expectation Maximization) for further analysis based 

on predetermined bioinformatics pipeline. An advantage of RSEM is that it can be used 

to estimate expression levels of genes and their isoforms by performing RSEM-prepare-

reference and RSEM-calculate-expression analysis. In addition to the genomic (RNAseq, 

WES, and methylation) datasets, TCGA and cBioPortal also provide metadata of clinical 

traits associated with the patients or tumor samples. After downloading all these 

documents, we designed a bioinformatics workflow or pipeline as briefly summarized in 

Figure 1. The Transcript counts were calculated using the Flux Capacitor program. 

Normalized and unnormalized RSEM counts were extracted for each prostate 

adenocarcinoma (PRAD) patient and developed into a matrix for further analysis. 

 

Batch effect identification and correction 
The protocols employed by TCGA for data collection and processing include 

transportation of biospecimens of Tumor and Normal tissue samples and their clinical 

data from patient donors through TCGA Biospecimen Core Resources (BCR) laboratories 

to various Tissue Source Sites (TSS) to ensure proper ethics and ensure that specimens 

meet the TCGA biospecimen criteria. Upon receiving these biospecimens, those that 

meet the required quality were cataloged, processed, and stored for further analysis. Any 

patient identifying information was removed during the biospecimen processing. 

Thereafter, biospecimens were grouped into batches based on the type of cancer and 
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each batch was identified by analytes and transported to sequencing centers for 

sequencing and processing into usable data. The output data were transferred 

electronically to the TCGA Genome Characterization Centers and Genome Sequencing 

Centers (CGCC and GSC) for interpretation and meta-analysis. The CGCC was involved 

in analyzing genetic changes involved in cancer while high-throughput TCGA Genome 

Sequencing Centers identify the changes in the DNA sequence associated with specific 

cancers before sharing it with the public through the TCGA Data Portal. 

Before performing any analysis, MBatch, an R programming package 

(https://bioinformatics.mdanderson.org/public-software/mbatch/) and Batch Effect Viewer 

(https://bioinformatics.mdanderson.org/public-software/tcga-batch-effects/) were used to 

assess, diagnose, and correct for any batch effects and data variance from the different 

sequencing centers in which the downloaded TCGA data were initially acquired or 

processed. MBatch has a statistical capability to analyze and quantify the presence of 

batch effects in the dataset. It does this by using algorithms such as Hierarchical 

Clustering and Principal Component Analysis. Dispersion Separability Criterion (DSC) 

quantifies the amount of batch effect in data similar to the Scatter Separability Criterion. 

DSC is a measure of the ratio of dispersion between batches (Db) and within dispersion 

(Dw) (i.e., DSC = Db/Dw). A higher DSC value means that there is a greater dispersion 

between batches than within batches. This means there is a higher probability of the 

samples within batches to be more identical to each other than the batches themselves 

are to each other. When the DSC values are significantly below 0.5, it means a weak 

batch effect, but the batch effect will have to be considered when the DSC is higher than 

0.5 with a significant p-value (Dy et al., 2004, Wodarz et al., 2014). DSC p-value provides 

information on the presence of outliers that may skew DSC values. The null hypothesis 

stating that there are no batch effects in the data set will be rejected if the p-value is found 

to be less than the 0.05 significance threshold. 

 

Data cleaning, outliers removal, and detecting low-quality counts 
Following batch correction and effect viewing using MBatch and Batch Effect 

Viewer, TAMPOR was used to perform deep data cleaning to ensure that our final input 

data is devoid of any incomplete data or outlier that may skew our outputs. TAMPOR 
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(https://github.com/edammer/TAMPOR) helps to maintain the integrity of our data by 

performing robust batch effect correction through the removal of batch artifacts and batch-

wise variance as well as the removal of genes or samples with ≥ 50 percent missing or 

zero values, and removal of replicates or cluster outliers. At the end of TAMPOR 

analyzes, our total gene has been reduced from 20,506 to 17,794 genes, and the number 

of patients/samples from 494 to 472. 

 

Logarithm transformation and normalization of PRAD dataset 
Following removal of outliers and low-quality data, we log2 transformed (i.e., log2 

(expression value +1)) and quantile normalized our data using the Limma package or 

DESeq package in R. Read Counts were further converted into expression values such 

as Counts Per Million, Reads Per Million, Reads Per Kilobase Millions (RPKM), Fragment 

Per Kilobase Million (FPKM), and Transcripts Per Kilobase Million (TPM), depending on 

the processing requirement of the analysis being performed. 

 

Gene clustering and networking analysis using Weighted Gene Co-expression 
Network Analysis (WGCNA) 

Before running the WGCNA, the clinical data containing phenotypic information 

about the clinical traits of each sample was downloaded and curated. The non-numeric 

variables were converted to numeric or binary units (Supplementary Method S1). The 

WGCNA package was installed from the Comprehensive R Archive Network (CRAN), the 

standard repository for R add-on packages. To run the WGCNA package, the installation 

tools/algorithms for the needed packages were obtained from Bioconductor and installed 

in R (Supplementary Method 2). 

WGCNA algorithm was used to identify gene co-expression networks in our 

dataset by robustly calculating the eigengene, bicor rho, and p values for each module 

and then correlating the first principal component of each module (module eigengenes) 

with clinical traits or phenotypes of interest. WGCNA does this by constructing a sample 

dissimilarity matrix (1-topology overlap) and grouping genes that have similar expression 

patterns within the patient cohort together. The network construction was performed using 

WGCNA blockwiseModules function with parameters as follows: WGCNA dynamic tree-
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cutting algorithm, CutreeHybrid, Power achieving scale-free topology=10, Sd out=3, 

Adjust Threshold=0.002, mergeHeight=0.15, MaxBlocksize=25000. PAMstage=True, 

DeepSplit=2, minModuleSize=100, Net=blockwiseModules(t(cleanDat), Power=power, 

DeepSplit=ds, Verbose=3, PamStage=PAMstage, SaveTOMs=FALSE, CorType=”bicor”, 

NetworkType=”signed”, MergeCutHeight=mergeHeight, PamRespectsDendro=TRUE, 

TOMDenom=”mean, ReassignThresh=0.05, Biweight midcorrelation “bicor”, biweight 

midcorrelation was used as opposed to Pearson correlation to robustly correlate with less 

weight given to outlier measures (Ohandjo et al., 2019). 

The WGCNA R-script and outputs for this study can be visualized or downloaded 

from GitHub via https://github.com/soseni2013/WGCNA-for-Cancer. 

 

Gene ontology and upstream/downstream regulator analysis 
The biological functions, cellular processes, and molecular functions of each 

module were predicted using WebGestalt (http://www.webgestalt.org/), an R package, 

and GO-Elite, a Python program (http://www.genmapp.org/go_elite/help_main.htm). 

Visualization of the outputs was performed using a custom R script. WebGestalt (WEB-

based Gene SeT AnaLysis Toolkit) is a functional enrichment analysis web tool that 

supports three well-established and complementary methods for enrichment analysis, 

including Over Representation Analysis (ORA), Gene Set Enrichment Analysis (GSEA), 

and Network Topology-based Analysis (NTA) (Wang et al., 2017; Zhang et al., 2005). 

GSEA involves using predefined lists for classifying genes of interest, such as biological 

processes, cellular component categories, and molecular functions, and testing for 

statistical overrepresentation of the category members, in this case to gene lists based 

on module membership. A gene set is defined as any group of genes that share a 

common biological function while enrichment analysis is an important step in 

computational biology for inferring knowledge about an input gene set by matching it to 

annotated or known gene sets from prior experimental or computational studies. 

Enrichment analysis checks whether the input set of genes significantly overlaps 

with annotated gene sets. WebGestalt was supplemented with GO Elite to perform a 

second itinerary gene ontology enrichment analysis on our module of interest to identify 

the functional annotations and biological functions of genes located in the module 
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(Zambon et al., 2012). In addition to the standard ensemble v62 database with 3 standard 

ontology categories, the GSEA molecular signature C2 database (v6.2) was used as a 

reference to identify the association of network modules with the curated lists related to 

published studies with a varying focus on health and disease, particularly cancer-

dysregulated gene lists. The GSEA C3 database was also used to identify enriched 

upstream and downstream regulators among the members of each module. 

 
Module-based differential gene expression analysis 

Differential gene expression analysis was performed to compare PRAD patients 

who progressed (n = 93) versus those who did not progress (n = 401). A non-parametric 

ANOVA (Kruskal-Wallis) was used to remove noisy/skewed RNAseq data and to 

accommodate the unequal sample sizes in each group. Fold change (FC) between the 

two groups was calculated for genes located in each module. A volcano plot of the -log 

p-value on the y-axis vs the FC (the difference between the gene expression values of 

the progressed and non-progressed) was made for each module. 

Furthermore, differential gene expression analysis was performed for the 

normalized data to show inflammatory gene expression profiles between prostate tumor 

and paired adjacent normal or unpaired non-cancer normal samples using DESeq2 

package in R (https://bioconductor.org/packages/release/bioc/html/DESeq.html) and the 

expression pattern among cancer patients/samples visualized using TNM plotter (Bartha 

& Győrffy, 2021) as well as Heatmap3 package in R studio interface. Correlations 

between the inflammatory genes of interest and known PCa-associated genes were 

determined using the CorrPlot package in R to plot correlograms for the genes in indolent, 

metastatic/castration-resistant, and neuroendocrine/lethargic PCa patients. Also, 

principal component analysis for dimensionality reduction was used to identify the pattern 

of expression between the PRAD and normal/non-cancer samples (Tang et al., 2017). 

 

Functional enrichment analysis of inflammatory genes in the module of interest 
After identifying the differential gene expression pattern between patients with 

progressive and non-progressive tumors, we decided to determine if the deregulation of 

chronic inflammation genes in this module can contribute to progression. Enrichr 
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(https://maayanlab.cloud/Enrichr/) was used to validate enrichment analysis performed 

using WebGestalt and Go-Elite. Enrichr allows for profiling of gene ontology of interest 

whereby we selected those associated with the inflammatory super pathway axis 

(Kuleshov et al., 2016). Using this method, Enrichr provides the functional annotation of 

the genes that are heavily involved in inflammatory signal transduction. We then created 

a set of criteria that each gene must meet to be included in the inflammatory signature, 

followed by the ranking of genes according to how they perform and then selecting the 

most significant gene in the gene set based on our ranking system. Some of the criteria 

used for ranking include kME (Eigengene) value, inflammation score, oncoscore, and 

whether signaling through the TLR/IL-1R/NF-κB super pathway. 

 

Upstream and downstream regulator analysis using Ingenuity Pathway Analysis 
(IPA), Cytoscape, and String_db software 

To identify the biological function of the significantly associated modules to traits 

of interest, we investigated the genes within the module of interest participating in the 

same biological process, such as inflammation regulation. Since we have identified 

IRAK1 as our preferred candidate, we conducted upstream regulator analysis using IPA 

software (QIAGEN; https://www.qiagenbioinformatics.com/products/ingenuitypathway-

analysis). IRAK1 was found to be regulated or interactive with genes in the TLR/IRAK/NF-

κB pathway while other non-canonical pathways were also identified. We used Enrichr 

and String_db to enrich cancer-associated and inflammation-associated genes within our 

gene set which was curated and filtered to select a few that have a stronger confidence 

score and significant adjusted p-value. String_db network analysis tool was then used to 

predict their regulatory interaction with IRAK1, which provided us a better insight into the 

biological and molecular functions of IRAK1 with regards to tumorigenesis (Szklarczyk et 

al., 2019). Cytoscape is open-source software for integrating biomolecular interaction 

networks with high-throughput expression data into a unified conceptual framework. 

Cytoscape was also used to identify the co-expression or regulatory interaction between 

IRAK1 and other neighboring genes in the magenta module (Shannon et al., 2003). 
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Genetic alteration analyses of IRAKs in PRAD patients/samples 
To determine whether the overexpression in IRAK1 was caused due to genetic 

alterations, the MutSigCV and GISTIC (v. 2.0) algorithmic tools were used to identify 

somatic mutations and copy number alterations/variations (CNVs/CNAs – deep or 

shallow deletion, gains, diploid, and amplifications), respectively, from a total of 20 PCa 

cohort studies of 6044 patients (6329 samples) downloaded from cBioPortal database 

(Lawrence et al., 2013; Mermel et al., 2011; Cerami et al., 2012). The genomic and clinical 

data sets were preprocessed and analyzed as previously described in our methodology. 

Variant calling of somatic mutations and copy number variation had been 

previously performed and the annotations of the mutations standardized using Genome 

Nexus and Canonical UniProtKB Transcript. Following the validation of genetic 

alterations, Mutation Assessor (MA; http://mutationassessor.org/r3/), Catalogue Of 

Somatic Mutations In Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic), 

Polymorphism Phenotyping v2 (PolyPhen-2; http://genetics.bwh.harvard.edu/pph2/), and 

Sorting Intolerant from Tolerant (SIFT; https://sift.bii.a-star.edu.sg/) variant calling and 

analysis tools were used to predict the functional impact of observed mutations, in silico 

(Adzhubei et al., 2013; Gnad et al., 2013; Ng et al., 2003; Sim et al, 2012; Sondka et al., 

2018). 

Mutation Assessor can predict the functional impact of amino-acid substitutions in 

proteins, such as mutations discovered in cancer or missense polymorphisms based on 

the evolutionary conservation of affected amino acid in protein homologs. SIFT predicts 

whether an amino acid substitution in naturally occurring nonsynonymous polymorphisms 

or laboratory-induced missense mutations affects protein function based on sequence 

homology and the physical properties of amino acids. PolyPhen-2 predicts the possible 

impact of an amino acid substitution on the structure and function of a human protein 

using straightforward physical and comparative considerations. The functional impact 

scores for SIFT, PolyPhen, COSMIC, and Mutational Assessor were integrated and 

ranked to form a new scoring method (severe, moderate, and mild) for our analysis. 

Mutual exclusivity and co-occurrence trends between altered gene pairs within a gene 

set per patient were determined by calculating the odds ratio (OR), which reflects the 
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probability that a gene pair is mutually exclusive or co-occurring. The significance of the 

relationship between a gene pair is determined by Fisher’s exact test (p < 0.05). 

To determine the transcriptomic effects of oncogenic somatic mutations in PRAD 

samples, the Mann-Whitney U test was performed for 17,794 genes using the “TARGET” 

analysis module of the muTarget software (http://www.mutarget.com/) to identify 

differentially expressed genes between mutated and wild-type patient cohorts of PRAD. 

The output of the analysis generated a list of genes whose mutation status was 

significantly (p < 0.05) associated with upregulation or downregulation of the IRAK1 gene. 

Boxplots were generated to show the distribution of the most significant genes using the 

“ggplot2” package to visualize expression differences (Nagy and Győrffy, 2021). 

 

Differential methylation analysis of IRAK1 in PRAD dataset 
The Illumina Infinium Human Methylation 450k BeadChip (Illumina 450K array) 

prostate adenocarcinoma dataset was downloaded from the TCGA consortium database. 

SMART (Shiny Methylation Analysis Resource Tool; http://www.bioinfo-

zs.com/smartapp/), DNMIVD (DNA Methylation Interactive Visualization Database; 

http://www.unimd.org/dnmivd/), Wanderer (http://maplab.imppc.org/wanderer/), and 

MEXPRESS (https://mexpress.be/), and tools were used to identify, analyze, visualize 

and compare significant DNA methylation lesions at the CpG promoter and transcriptional 

regions in IRAK1 between PRAD and normal patients (Díez-Villanueva et al., 2015; Ding 

et al., 2020; Koch et al., 2015; Li et al., 2019). CpG islands were predicted by searching 

the IRAK1 sequence one nucleotide base at a time, scoring each dinucleotide (+17 for 

CG and -1 for others), and then identifying the maximally scoring segments. Each scored 

segment was then evaluated for the following criteria for GC content of 50% or greater 

and base-pair length of greater than 200 bp as well as observed/expected CpG ratio 

greater than 60%. The observed CpG is the number of CpG dinucleotides in a segment 

while the expected CpG is calculated by multiplying the number of 'C' and the number of 

'G' in a segment and then dividing the product by the length of the segment. 

Pairwise correlation analysis was performed to explore the correlation between 

IRAK1 gene expression or transcript level (log2 scale (TPM+1) values) and DNA 

methylation with significance derived when the beta (b) values or methylation (m) values 
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of CpG probes are less than 0.05. Pearson, Spearman, and Kendall correlation methods 

were employed for correlation analysis. Both the IRAK1 gene expression and methylation 

data of PRAD (n = 492) and normal (n = 50) samples were included for the correlation 

analysis. Also, the mean methylation (aggregation) value for all CpGs was calculated and 

tested for statistical significance (Wilcoxon test, p < 0.05). 

Following the estimation of gene-level CNV of IRAK1 using the GISTIC2 threshold 

method. The estimated values representing homozygous deletion (-2), single copy 

deletion (-1), diploid normal copy (0), low-level copy number amplification(+1), and high-

level copy number amplification (+2) were correlated with the methylation values of 

IRAK1. 

 

Predicting the clinical significance of IRAK1 and other inflammatory genes from 
the magenta module in PRAD samples/patients 

To evaluate the diagnostic and prognostic significance of IRAK1 in PRAD samples 

or patients, we performed an Area Under the Receiver Operator Characteristic (AUROC) 

analysis using EasyROC software, which helps to predict the diagnostic potential of our 

gene as a progression and PRAD biomarker (Goksuluk et al., 2016). Univariate and 

multivariate proportional hazards regression (Cox regression) model and KM Plotter were 

used to assess the correlation between IRAK1 gene expression and the overall survival 

status (OS), the progression-free survival status (PFS), and relapse-free survival 

(RFS)/disease-free survival status (DFS) (Győrffy et al., 2010). The OS_STATUS refers 

to the overall survival status ("0" -> "living" or "1" -> "deceased") and the event of interest 

is death from PRAD. This provides a very broad sense of the mortality of the groups. The 

OS_MONTHS indicates the number of months from time of diagnosis to time of death or 

last follow-up. The event of interest for DFS or RFS is the relapse of a disease rather than 

death (“0” -> “Alive or dead tumor-free”, “1” -> “Dead or alive with tumor” because patients 

may have relapsed but are not deceased. DFS curves are usually lower than OS curves. 

PFS_STATUS uses the progression of a disease as an end-point (i.e., tumor growth or 

spread). It indicates whether the patient’s disease has recurred/progressed. This is useful 

in isolating and assessing the effects of our gene of interest on the disease condition. The 

PFS_MONTHS indicates at what time the disease progressed/recurred or the last time 
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the patient was seen. Disease-specific (DS) survival curves (also known as cause-

specific survival) utilize death from the disease of interest as the endpoint. We also 

performed a similar analysis on genes interacting with IRAK1 in the magenta module as 

well as for the 10 identified inflammatory genes. 

 

Results 

Batch effect correction analysis of PRAD dataset in preparation for WGCNA 
Genomic and clinical trait data were downloaded from cBioPortal and TCGA 

databases (Table 1), data-mined, and analyzed as highlighted in our bioinformatics 

pipeline (Figure 1). Before WGCNA analysis, a robust preprocessing analysis on the 

acquired PRAD sample data, including removal of outliers, and detection and removal of 

low-quality counts using 3 separate methods (TAMPOR, MBatch, and Empirical Bayes 

(ComBat)) was performed (Supplementary Figure S1). As stated in the methods 

section, these batch effect correction analyses ensured that our final input dataset is 

devoid of any factors that could skew the outcome of our downstream analyses. Following 

batch effect correction, we were able to refine our initial data to 472 patients from 494 

patients, and 17,794 genes from an initial total of 20,506. 

 

Module eigengenes and gene relationships in PRAD dataset 
WGCNA organizes genes with similar characteristics and expression patterns and 

associates them with clinical traits of interest. The correlation of the clustered genes with 

the clinical traits helps to identify modules containing hub genes of clinical significance. 

Each gene-containing module was correlated with specific clinical outcomes such as 

progress-free survival (PFS) status, disease-free survival (DFS) status, cancer status, 

cancer biochemical recurrence, TNM staging pathology, race, gender, radioresistance 

status, and overall survival (OS) status obtained from TCGA and cBioPortal databases 

(Table 1). 

For a better understanding of the genomic and transcriptomic landscape of 

diagnosed PRAD patients that progressed after initial treatment, we analyzed our data 

using the WGCNA algorithm in R with some modifications as highlighted in the methods 

section. The transcriptomes comprising 17,794 gene products across 472 PRAD samples 
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were examined for systems-level relationships by determining co-expression 

subnetworks (modules) of gene transcripts and gene connectivity (or module 

membership) using WGCNA with transcript adjacency based on biweight correlation, as 

described in the methods section. 

We generated a similarity co-expression matrix, adjacency matrix (signed), 

topological overlap matrix (TOM), and dissimilarity matrix (1-TOM) using WGCNA. In 

total, 9 modules, excluding the junk (grey) module were identified and the module 

eigengenes were calculated and computed (kMEs, numbered by their size rank from 

largest to smallest) (Supplementary Figures S2 – S3). The grey (M0) module contains 

junk (not significantly correlated) genes (n = 4739). The other modules, and the number 

of genes, were turquoise (M1; n = 3245), blue (M2; n=2245), brown (M3; n = 1851), yellow 

(M4; n = 1469), green (M5; n=1340), red (M6; n = 895), black (M7; n = 825), pink (M8; 

n=597), and magenta (M9; n = 588) (Table 2). After the kMEs were identified, their 

relatedness was determined using a correlation-based relatedness dendrogram (Figure 
2A). The relatedness dendrogram showed the proximity clustering between M9 and M1 

modules, M3 and M4 modules, and M2 and M8 modules. The relationship between each 

module and each clinical trait was assessed using the biweight midcorrelation method 

(Figure 2B). 

 

Significant modules and co-expressed hub genes positively correlated with PCa 
progression 

The WGCNA generated 9 (color-coded) modules containing various significantly 

upregulated and downregulated genes. To identify inflammation-associated hub genes 

associated with PCa progression, we categorized modules based on enriched genes and 

correlated each module with clinical traits (Module-trait relationship). The consensus kME 

(Eigengene-based connectivities) for all genes were calculated per their respective 

modules. Significant highly connected (hub) genes (kME > 3.0) were identified in each 

module based on their module-dependent connectedness. The magenta (p = 4.0e-6, r = 

0.21), green (p = 2.0e-5, r = 0.19), blue (p = 0.02, r = 0.11) and pink (p = 0.03, r = 0.099) 

modules were found to be positively correlated with PCa progression while only the brown 

module was negatively correlated (p = 0.02, r= -0.11) with progression (Figure 3). Genes 
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were isolated from the most statistically significant and highly correlated module 

(Magenta) and associated with our clinical trait of interest (progression) (Table 2). 

The magenta module has 588 genes in it (Supplementary Figure S11) and about 

326 of them were found to be significantly upregulated and positively correlated with the 

progression status of PRAD patients (Figure 3). Overall, magenta (M9) contains genes 

that have positive correlation with cancer progression (bicor r = 0.21, p = 4e-06), age 

(bicor r = 0.11, p = 0.02), cancer relapse (bicor r = 0.21, p = 2e-05), lymph node (N-stage) 

pathology (bicor r = 0.23, p = 5e-06), tumor (T-stage) pathology (bicor r = 0.36, p = 5e-

16), and Gleason score ((bicor r = 0.094, p = 0.04) but negatively correlated with period 

(months) of progression-free status (bicor r = 0.1, p = 0.03). The kME values for the IRAK 

family members were also identified per module: IRAK1 (magenta; kME = 0.394), IRAK2 

(red: kME = 0.5112), IRAK3 (brown: kME = 0.8043), and IRAK4 (grey: kME = 0.0995). 

 

Association of IRAK family genes with PRAD progression 
Because the IRAK family is made up of 4 genes, we were interested to know if the 

other members of this family also contribute to PRAD progression (Table 2). We first 

located the modules that the others are located and calculated their kME values as well 

as their biweight (bicor r) correlation with progression. There was no significant difference 

(p-value = 0.485) in IRAK1 expression between progressed and non-progressed patients 

(F-value: 0.488; FDR (BH): 0.662;  FC: -0.064). Also, IRAK4 was not significantly 

associated (p-value = 0.285) with the progression status of PRAD patients (F-value: 

1.147; FDR (BH): 0.479; FC: 0.039). Interestingly, IRAK3 was found to be significantly (p-

value = 0.038) and negatively correlated with the progression status of PRAD patients (F-

value: 4.351; FDR (BH): 0.133; FC: 0.223). This indicates that the downregulation of 

IRAK3 in PRAD patients may favor PRAD progression. 

 

Differential gene expression analysis between progressed and non-progressed 
PRAD patients per module 

Differentially expressed genes in all modules including grey modules for all PRAD 

patients that progressed versus those that did not progress were identified using the 

ANOVA-Turkey statistical method. There were 3230 significantly upregulated and 2342 
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downregulated genes in total with fold change (the difference between progressed and 

non-progressed) ranges of -1.58 to 1.4. Of significance, the volcano plots of -log10 p-value 

vs. log2 fold change (FC) of the PRAD progression status showed that magenta (M9) and 

green (M5) have 326 and 813 significantly upregulated genes and both contain no 

significantly downregulated genes. The blue module has 813 upregulated and 33 

downregulated genes, pink has 192 upregulated genes and 6 downregulated genes while 

yellow has 328 upregulated and 12 downregulated genes. The red module has 157 

upregulated and 14 downregulated genes while the turquoise module has 50 upregulated 

and 898 downregulated genes. The brown module has 3 upregulated and 647 

downregulated genes while the black module has 16 upregulated and 146 downregulated 

genes. Lastly, the grey has 477 upregulated and 586 downregulated genes (Figure 4). 

 

Functional enrichment analyses of inflammatory genes in the magenta module 
 Go-Elite was used to analyze and identify the functional annotation and gene 

ontology for each module based on their co-expression, relatedness, and kME scores 

(Figures 5 and Supplementary Figure S16). Based on the significant association of the 

magenta module with PRAD progression in the WGCNA analysis, we decided to focus 

on the genes in this module. We used WebGestalt to perform gene set enrichment 

analysis (GSEA) as well as over-representation analysis (ORA) for the magenta (M9) 

module which categorized the genes in this module based on their biological processes, 

cellular components, and molecular functions. Many of these genes in the magenta were 

found to be associated with cellular processes such as metabolism and biological 

regulation of cell communication, cell cycle, cell division, cell proliferation, cell 

reproduction, cell growth, cell response to stimuli, and many others. A greater percentage 

of the magenta genes were also found to be localized in the nucleus and cytosol. Some 

of the identified molecular functions of these genes include protein binding, nucleic acid 

binding, ion binding, enzyme regulator activity, and many others (Figure 6). 
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Predicting protein-protein interaction and differential gene expression analyses of 
inflammatory genes between progressed and non-progressed PRAD samples 

The inflammatory gene sets for each module were identified and computed from 

KEGG, DAVID, and GeneCards. Enrichr and Gene Ontology Consortium were used to 

validate, curate, filter, and categorize gene sets into high, middle, and low priority groups 

based on their association with the inflammatory signaling cascade. IRAK1 (kME = 0.394) 

was identified as one of the 9 inflammatory significant genes in the magenta module. The 

other 9 inflammatory genes present in the magenta module are TRIM59 (kME = 0.5975), 

TRAIP (kME = 0.5849), NFKBIL2/TONSL (kME = 0.5749), HMGB3 (kME = 0.4571), 

TRAF7 (kME = 0.4568), PPIL5/LRR1 (kME = 0.4513), ILF2 (kME = 0.4256), HMGB2 

(kME = 0.4184), and IL1F5/IL36RN (kME = 0.3707). Enrichr was mined to generate 

diverse functional ontologies for the 10 inflammatory genes, categorized based on 

biological processes, cellular components, molecular functions, and enriched pathways. 

About 50 of the 150 biological functions associated with these genes were found 

to be statistically significant (p < 0.05) and related to inflammatory processes. HMGB2 

and IRAK1 were the most biologically enriched among the 10 genes. However, IRAK1 

was the most associated with inflammation (Supplementary Table S1). Furthermore, 

protein-protein interaction (PPI) and enrichment (PPE) tools from Reactome and String-

db. (v11) were used to predict and visualize the interaction networks between the 

inflammatory genes/proteins of interest and other genes within the inflammatory pathway. 

 To further determine if these genes were upregulated and differentially expressed 

genes between patients with PRAD progression and those that did not progress, we used 

ANOVA at p < 0.05 to test our hypothesis and calculated the F-value, false discovery rate 

(FDR), and fold change (FC) between the two groups. The ANOVA-TURKEY test output 

identified the IRAK1 gene to have a FC = 0.119;  p-value = 0.026; F-value = 4.968; FDR 

= 0.106. The ANOVA output for the enriched inflammatory genes is listed in Table 3. 

 

Correlogram and differential gene expression (DGE) analysis of inflammatory 
genes between PRAD and non-PRAD normal samples 
 After identifying the 10 inflammatory genes in the magenta module, we conducted a 

DGE analysis using the DESeq package in R studio interface to identify their differential 
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expression patterns (fold change) relative to non-malignant normal samples. The RNAseq 

expression values of 52 matched prostate tumors and adjacent normal samples were 

compared for the matched/paired analysis while the RNAseq of 492 tumors and 204 

normal samples from non-cancerous patients were compared for the 

unmatched/unpaired analysis (Figure 7). A non-parametric test, Wilcoxon Rank Sum 

Test (Mann-Whitney U test) was used to determine the fold change (FC) and significant 

difference (p < 0.05) in gene expression levels between the tumor and normal samples 

for both the paired and unpaired analyses (Table 4). 

 All of the 10 inflammatory genes showed upregulation in the prostate tumor samples 

relative to the normal samples. HMGB2 has the lowest FC (0.88 and 1.07) while 

IL1F5/IL36RN has the highest FC (8.61 and 8.69) for both the matched and unmatched 

analyses, respectively. No significant difference (p > 0.05) between the PRAD and normal 

samples was observed for PPIL5/LRR1 and HMGB2 in the paired and unpaired analyses. 

Also, correlogram analysis between the 10 inflammatory genes in the magenta module 

reveals both positive and negative associations between the genes (Figure 8). IRAK1 

differential expression correlates positively with TRAF7 and NFKBIL2/TONSL but 

negatively correlates with HMGB2 expression, while TRAIP differential expression 

correlates positively with TRAF7, NFKBIL2, HMGB2, and TRIM59 expression. 

 

Prognostic significance of IRAK1 overexpression in PRAD patients  

 To establish the prognostic and clinical significance of IRAK1, we correlated the 

expression RNAseq dataset and clinical data on progress-free survival for 472 PRAD 

patients. The expression levels of the IRAK1 gene were divided into two groups, IRAK1 

high-expressing patients (n = 236) vs low-expressing patients (n = 236) using the median 

expression cut-off value. The two groups were compared by a Kaplan-Meier survival plot. 

The Kaplan-Meier survival analysis estimated and plotted the survival curves, including 

the overall survival (OS), disease-free survival (DFS), and progression-free survival 

(PFS). The Cox proportional hazards model calculated the hazard ratio with a 95% 

confidence interval between the two groups. The log-rank test was used to statistically 

test the significance (p < 0.05) of our null hypothesis. The number of patients at risk for 

each time interval in months (i.e., 0, 50, 100, 150 months) was also calculated. While no 
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significance was found for OS using the median cut off, PRAD patients with high 

expression of IRAK1 were associated with poor outcomes i.e., lower progression-free 

survival time and lower disease-free survival (Supplementary Figure S4) as well as 

increased risk of progression with a significant log-rank p-value of 0.018 and a hazard 

ratio (HR) of 1.68 (95% CI: 1.09 – 2.59). The hazard ratio indicates that IRAK1 high-

expressing PRAD patients have a 68% (HR = 1.68) higher risk of progression compared 

to the low-expressing PCa patients (Figure 9). 

 
Protein-protein network and co-expression analyses of genes in the magenta 
module 

Cytoscape software was used to reveal the degree of co-expression gene network 

interaction for all the 588 genes in the magenta module, with special emphasis on IRAK1 

(Figure 12A). The identified genes with the closest interaction with IRAK1 include among 

others, malate dehydrogenase (MDH2), importin-4 (IPO4), and mannosyl (alpha-1,3-)-

glycoprotein beta-1,4-N acetylglucosaminyltransferase, isozyme B (MGAT4B). Some of 

these genes have been studied and shown to have direct or indirect relevance in 

carcinogenesis. For instance, MDH2 catalyzes the reversible oxidation of malate to 

oxaloacetate, which is important in the malate-aspartate shuttle and ATP production in 

the TCA cycle. Overexpression of MDH2 has been implicated in PCa resistance to 

docetaxel-chemotherapy, doxorubicin-resistant uterine cancer cells, and P-glycoprotein-

induced multi-drug resistance (MDR) by pumping chemotherapeutic drugs out of the cells 

(Liu et al., 2013). Downregulation of MDH2 has been shown to increase drug sensitivity 

and appears to be a potential therapeutic target to enhance the efficacy of anticancer 

drugs. IPO4 has been suggested to contribute to gastric cancer progression and poor 

prognosis (Xu et al., 2019). Inhibition of IPO4-mediated nuclear import of CEBPD has 

also been shown to enhance chemosensitivity by repression of PRKDC-driven DNA 

damage repair in cervical cancer (Zhou et al., 2020). The role of IRAK1 in IPO4 

deregulation and signaling has not been studied, either in PCa or cancer-associated 

inflammation. MGAT4B has been shown to play a critical role in N-glycan branching on 

the surface of tumor cells and therefore important in tumorigenesis directly or indirectly 

(Ashkani and Naidoo, 2016). 
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To further understand the biological topography of IRAK1 to prostate 

carcinogenesis, protein-protein interaction (PPI) and enrichment (PPE) tools from 

Reactome and String-db (v11) were used to rank, analyze, and visualize the interaction 

networks between IRAK1 and proteins that have been associated with cancer stemness, 

cell survival, neuroendocrine differentiation, and chronic inflammation in PCa (Figure 
12B). The PPI and E analyses were able to predict new biological functions for IRAK1 

based on direct or indirect interactions by varying confidence levels, evidence-based 

criteria, and mode of action (Supplementary Figure S10). PPE analysis predicted 

biological functions such as cell death, cell communication, cell differentiation, cell 

migration, cell cycle, regulation of response to stress, cell proliferation, and stress 

response, for IRAK1. Indeed, some of these biological functions have been observed in 

other tumors that overexpress IRAK1, which further justifies our interest in IRAK1 and its 

role in PCa progression. Our PPI analysis predicted a posttranslational modification of 

IRAK1 by AKT1, IRAK2, and IRAK4 as well as uncharacterized effects between 

PI3K/AKT genes and IRAK1. Also, IRAK1 could directly bind to TLR4, TLR8, TLR9, 

MYD88, IRAK2, IRAK3, and IRAK4 (Supplementary Figure S10). The predicted 

interactions between IRAK1 and these genes/proteins include gene neighborhood, gene 

fusions, gene co-occurrence, gene co-expression, and protein homology. 

 

Clinical significance of the nearest co-expressed neighbors of IRAK1 in the 
magenta module 

Cytoscape identified novel genes interacting with IRAK1 within the magenta 

module. Some of these genes have been reported in the literature to drive tumor 

progression while the oncogenic effects of others are unknown. To establish if they have 

any clinical significance in PCa progression, we performed a threshold analysis using 

AUROC with the line of significance set at 0.05 (Figure 13). The AUC result and plot 

showed that only one of the three genes directly interacting with IRAK1 could significantly 

(p < 0.05) predict poor outcomes in PRAD patients (Figure 13). MGAT4B gene is one of 

the nearest neighbors of IRAK1 in the magenta module and has the potential to be used 

as a prognostic biomarker for PRAD progression (AUC of 0.685, 95% CI: 0.6243 - 0.7458, 

Z-score: 5.97144). Our AUROC result indicates that MGAT4B can predict progression in 
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69% of PRAD patients. The other close neighbors to IRAK1 such as MDH2 and IPO4 do 

not have significant p-values and are therefore poor biomarkers for PRAD progression. 

Both IPO4 and MDH2 have a similar AUC value of 0.54 (i.e., 54% predictability of PRAD 

progression). 

 

Identifying IRAK1 as a clinical biomarker for prostate cancer 

Once we have established the clinical significance of increased expression of 

IRAK1 in all subtypes of PCa patients as well as in progression was established, we 

decided to determine its significance as a biomarker for PCa development and compared 

its clinical significance with other members of the IRAK family using AUROC analysis 

(Figure 11). IRAK1 was able to predict the presence of PCa in 83% of 472 PRAD samples 

(AUC: 0.83, 95% CI: 0.79412 - 0.88118, Z-score:15.204; p < 0.05) with a sensitivity of 

0.708 (95% CI: 0.666 - 0.748) and specificity of 0.865 (95% CI: 0.742 - 0.944) (Figure 
11A). Though IRAK1 overexpression was able to predict and differentiate PCa patients 

from normal patients with high sensitivity and specificity, IRAK1 was only able to predict 

PCa progression in 58% (AUC: 0.582; 95% CI: 0.51 - 0.65; Z-score: 2.3380, p-value = 

0.01939) of PRAD patients (Figure 11B). Also, the IRAK1 differential expression profile 

was able to predict PCa recurrence/relapse in 60.5% of PRAD patients (Supplementary 
Figure S5). Further analysis will be needed with a larger population/sample size. This is 

because a larger sample size gives room for more reliable results with greater precision 

and power. It will also make sense to determine the predictability of IRAK1 using AUC in 

other PCa patient subtypes – CRPC and NEPC. 

The functional impact score for each IRAK1 mutation was predicted using 

COSMIC (recurrent or non-recurrent), Mutation Assessor (high, medium, low, neutral), 

SIFT (deleterious, deleterious low_confidence, tolerated low_confidence, tolerated), and 

Polyphen-2 (probably damaging, possibly damaging, benign) algorithms (Flanagan et al., 

2010; Gnad et al., 2013). These scores were integrated and ranked to form a new scoring 

scale (severe, moderate, mild) (Table 7). The missense mutations (R666Q, P614S, 

L92Q, and M34V) of IRAK1 were predicted to have mild to moderate functional impacts 

on PRAD progression while the frameshift mutations (L56Afs*102 (Insertion) and  

F290Pfs*58 (Deletion)) of IRAK1 were predicted to have severe functional impacts on 
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PRAD progression. Of all the IRAK family genes identified, IRAK1 was found to have the 

highest CNVs (especially amplifications) in CRPC and NEPC compared to mPRAD and 

iPRAD patients. Interestingly, no mutation was identified in CRPC and NEPC patients. 

The strong correlation or co-expression of IRAK CNVs, mutations, and mRNA expression 

levels with AR, PI3K, and AURKA signaling pathway genes suggest a possible role in 

PCa progression (Figure 14C). 

Also, the TARGET module of the muTarget software was able to identify mutations 

in PRAD samples that are significantly (p < 0.05) associated with changes to IRAK1 

expression. IRAK1 was found to be significantly (p < 0.05) and differentially expressed in 

PRAD patients with mutations in APC (Adenomatous Polyposis Coli Regulator of WNT 

Signaling Pathway), CDH1 (Chromodomain Helicase DNA Protein 1), TRIO (Trio Rho 

Guanine Nucleotide Exchange Factor), MUC17 (Mucin 17) and ADAMTSL1 (A Disintegrin 

and Metalloproteinase with Thrombospondin Motif) (Figure 15). IRAK1 was highly 

expressed in PRAD samples with mutations in APC, CHD1, and MUC17 genes compared 

to those without (Wildtype) whereas lower expression of IRAK1 was observed in PRAD 

samples/patients with ADAMTSL1 and TRIO mutations compared to the wildtype. 

 

Hypomethylation of IRAK1 correlates with its overexpression and deregulation in 
PRAD samples/patients 

To determine whether DNA methylation and epigenetic modifications played any 

role in the dysregulation and overexpression of IRAK1 in PRAD patients, we analyzed 

methylation data sets as highlighted in the methods section. Around 13 CpG sites were 

found in the IRAK1 gene transcript, with most of the methylation lesions located either 

close to or exactly on the promoter sites of the IRAK1 transcript known as “Island” (Figure 
16). Concerning the CpG island (CGI), the CpG island shores were located within 2 kb 

regions either upstream (N-Shore) or downstream (S_Shore) of the CpG islands. The 

Shelves are located within a 2 kb region either upstream (N_Shelf) or downstream 

(S_Shelf) of the CpG island shores. Open Seas are isolated CpGs in the IRAK transcript. 

To identify the CpG islands (CGI) for IRAK1, we located regions with nucleotide regions 

with approximately 200bp in length and greater than 50% GC (Guanine-Cytosine) as well 

as observed/expected CpG ratio greater than 60%. 
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About 7 of the CPG sites or probes were located on the CGI island, while 2 were 

located north of the island (N_Shore) and 2 on the southern side of the Island (S_Shore). 

The other two were located at the N_Shelf and the Open Sea (Table 6). The 13 CpG 

probes including cg08401365, cg20494209, cg23604959*, cg02742918*, cg06334238, 

cg18998000, cg23121114, cg01353347*, cg09520212, cg27167979*, cg03050491, 

cg19572242*, and cg27616996* were identified on both the promoter and transcription 

sites (CGI positions: Islands, N_Shores, S_Shores, N_Shelves, S_Shelves, and Open 

Seas). About 6 CpG probes (*) out of the 13 associated with the IRAK1 gene were found 

to be statistically significant (Wilcoxon test; p < 0.05) and hypomethylated based on the 

significance of their methylation value (or a beta-value <0.05) in PRAD patients (n = 492) 

compared to normal patients (n = 50) (Figure 17). The mean methylation values for all 

CpGs (Aggregation) for IRAK1 were calculated and found to have a negative correlation 

with IRAK1 gene expression (r = -0.41, p = 2.2e-16) as seen in Figure 18. This indicates 

that hypomethylation of IRAK1 may have some impact on the overexpression of the gene 

in PRAD patients. 

We also determined the correlation between DNA methylation (CpGs m-values) of 

IRAK1 and the observed copy number variation (CNVs; − 2: homozygous deletion; − 1: 

single copy deletion; 0: diploid normal copy; + 1: low-level copy number amplification; + 2: 

high-level copy number amplification) in PRAD samples. Our analysis showed that there 

is a significant difference between methylation of IRAK1 and the various CNVs identified 

in IRAK1 (Figure 19). 6 of the 13 CpGs show a significant difference between IRAK1 

methylation and each CNV. cg18996000 has a higher level of hypomethylation with 

single-copy deletion compared to others (m value, p = 0.0056). cg20494209 has a lower 

level of hypermethylation with homozygous deletion compared to others (m value, p = 

0.0034), while cg02742918 has a lower level of hypermethylation with high-level copy 

number amplification compared to others (m value, p = 0.045). cg27616996 has a higher 

level of hypomethylation with single-copy deletion compared to others (m value, p = 

0.0056), while cg09520212 has a lower level of hypomethylation in all CNVs compared 

to the diploid normal copy (m value, p = 0.047), while cg2312114 has a lower level of 

hypomethylation in low-level and high-level copy number amplification compared to 

others (m value, p = 0.015). The mean aggregate methylation value for all CpGs shows 
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a higher level of hypomethylation for homozygous deletion, single copy deletion, low-level 

copy number amplification, high-level copy number amplification compared to the diploid 

normal copy (m value, p = 6e-04). 

Additionally, we analyzed the correlation between IRAK1 methylation values and 

each IRAK1 transcript/isoform. Of all the 13 transcripts or isoforms identified for IRAK1, 

only 6 showed significant negative correlation (p < 0.05) with IRAK1 methylation. The 

mean aggregate methylation values of the 6 IRAK1 isoforms: ENST00000369974.6 (r = 

-0.338; p = 8.4e-15), ENST00000369980.7 (r = -0.19; p = 8e-06), ENST00000429936.6 

(r = -0.15; p = 0.00079), ENST00000455690.5 (r = -0.14; p = 0.00085), 

ENST00000463031.1 (r = -0.13; p = 0.0023), ENST00000467236.1 (r = -0.21; p = 1.36e-

6) were found to be significantly and negatively correlated with expression of each IRAK1 

isoform (Supplementary Figures S18A - M). 

 

IRAK1 is overexpressed in PRAD patients and PCa cell lines at mRNA and protein 
levels 

To better understand how IRAK1 interacts with its upstream and downstream 

regulators in PRAD patients, we performed both IPA and correlogram analysis and 

visualized the data outputs using heatmaps. Our analysis revealed that IRAK1 is 

overexpressed in most PRAD, CRPC, and NEPC patients (Figures 19 - 21, right panel). 
There was a positive correlation between IRAK1 and NF-κB-associated genes in indolent 

PRAD samples (Figure 19, left panel). A similar pattern was observed in CRPC and 

NEPC patients (Figures 20 - 21, left panel). However, more upstream and downstream 

inflammatory genes were found to be positively correlated with IRAK1 expression in 

NEPC and CRPC compared to samples with indolent PRAD. Furthermore, we confirmed 

that IRAK1 was highly expressed in 19 of the 30 diverse tumor types when compared to 

normal samples based on analysis of the TCGA PanCancer dataset (Figure 22). IRAK1 

is the most upregulated of the 4 IRAK family genes while IRAK3 is most downregulated 

in PRAD, NEPC, and CRPC samples (Supplementary Figures S6 - S8). Also, high 

IRAK1 expression was found in PCa cell lines. The expression profile of IRAK1 appears 

to be higher in androgen receptor-negative (AR-) PCa cell lines (PC3 and DU143) 

compared to the androgen receptor-positive (AR+) PCa cell lines (LNCaP and C42). PC3 
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cells displayed the highest mRNA expression followed chronologically by DU143, C42, 

and LNCaP (Figure 23). IRAK1 protein profile of PRAD microarray tissues present in the 

protein atlas database shows that IRAK1 is highly expressed in high-grade compared to 

the low-grade PCa tissue samples (Figures 24 and 25). All normal prostate tissues (n = 

3) included in the microarray showed low to no IRAK1 expression (Uhlén et al., 2005). 

 

Discussion 
In this study, we have characterized the transcriptome, genome, and epigenome 

features of PCa tumorigenesis with emphasis on inflammatory and PCa progression 

signaling mechanisms. We identified inflammatory genes undergoing deregulation, 

genetic alteration (mutation and CNA/CNV), and DNA methylation in our RNAseq dataset 

that could drive PCa progression from indolent PRAD to metastatic CRPC or NEPC. 

WGCNA was able to construct modules within the biological networks based on the 

pairwise correlation between expressed genes in each module and the clinical/phenotypic 

traits of interest to describe the module relatedness and identify putative hub genes of 

clinical significance. Importantly, WGCNA facilitated a network-based identification and 

characterization of inflammatory genes that are simultaneously associated with PCa 

progression as candidate diagnostic or prognostic biomarkers and therapeutic targets 

(Langfelder & Horvath, 2008). Overall, our analysis identified 10 inflammatory genes: 

IRAK1, PPIL5/LRR1, HMGB3, HMGB2, TRAIP, IL1F5/IL36RN, ILF2, TRIM59, 

NFKBIL2/TONSL, and TRAF7, found to be associated with PCa progression. 

Interleukin-1 receptor-associated kinase 1 (IRAK1) is a critical regulator of the 

TLR/IL-1 pathway and one of the four mammalian members of the IRAKs. IRAKs are a 

family of regulatory proteins with an important role in the inflammatory signaling cascades 

of two receptor families, toll-like receptors (TLRs) and interleukin-1 receptors (Jain et al., 

2014). To this point, only four mammalian members of the IRAK family have been 

identified: IRAK1, IRAK2, IRAK3/IRAKM, and IRAK4. Interestingly, only IRAK1 and 

IRAK4 exhibit kinase-like activity, which makes them druggable and targetable 

candidates compared to IRAK2 and IRAK3, which are pseudokinases (Flannery & Bowie, 

2010; Jain et al., 2014; Rothschild et al., 2018). 
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Functionally, IRAKs signaling is important in the activation of downstream 

inflammatory molecules, some of which are known to promote tumor growth, metastasis, 

immune suppression, and chemoresistance in tumor cells (Singer et al., 2018). 

Importantly, IRAK1 is involved in the activation of the NF-κB transcription activities (Zhang 

et al., 2016). The inhibition of IRAK1 and IRAK4 has been reported to be therapeutically 

beneficial in the treatment of melanoma, leukemia, pancreatic, Kaposi sarcoma, 

hepatocellular, cervical, and breast cancer, among others (Hu et al., 2018; Li et al., 2015; 

Sun et al., 2006; Sun et al., 2014; Wee et al., 2015; Zhang et al., 2016). Despite the 

available reports and data on the roles of IRAKs in several chronic diseases, including 

tumors, the oncogenic significance of IRAKs at the molecular level in PCa remains 

unclear. 

Peptidylprolyl Isomerase (Cyclophilin)-Like 5 (PPIL5)/Leucine-Rich Repeat Protein 

1 (LRR1) is a negative regulator of TNFRSF9/4-1BB, a member of the tumor necrosis 

factor receptor (TNFR) superfamily. Overexpression of LRR1 is believed to suppress the 

activation of NF-κB induced by TNFRSF9 or TNF receptor-associated factor 2 (TRAF2) 

(Jang et al., 2001). Both High Mobility Group Boxes 2 and 3 (HMGB2 and HMGB3) are 

known to act as chemokines that promote the proliferation and migration of epithelial and 

endothelial cells. They sometimes act as damage-associated molecular patterns 

(DAMPs) by inducing proinflammatory responses. HMGB1, another isomer, had 

previously been reported to induce sterile inflammation in prostate tumors (Pandey et al., 

2015). 

TRAF Interacting Protein (TRAIP) is known to interact with TRAF1 and TRAF2. It 

is a negative regulator of innate immune signaling and inhibits the activation of NF-κB1 

mediated by TNF in immune cells. TRAIP has also been shown to promote malignant 

behaviors in liver cancer, melanoma, and breast cancer (Guo, 2020). However, its 

importance in PCa progression is unknown and needs to be defined. Tumor necrosis 

factor 7 (TRAF7) is another inflammatory gene identified in the magenta module. It is 

highly involved in inflammation by activation of the NEMO-RelA-NF-κB signaling 

pathways, as well as induction of tumor progression (Zhu et al 2018). The clinical 

significance of TRAF7 in PCa has not been studied and needs to be outlined. Interleukin 

Enhancer Binding Factor 2 (ILF2) is a transcriptional factor known to be involved in the 
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expression of IL-2. The knockdown of ILF2 has been shown to impede cell growth while 

its upregulation has been linked with poor prognosis and clinical outcome in gastric 

cancer and hepatocellular carcinoma (Cheng et al., 2016, Yin et al., 2017). Whether 

dysregulation of ILF2 is clinically significant in PCa progression has not been studied. 

IL-1 Family member 5 (IL1F5)/Interleukin 36 Receptor Antagonist (IL36RN) 

encodes an anti-inflammatory cytokine known as IL36Ra. This gene has been associated 

with tumor progression in breast, colorectal, bladder, ovarian, and lung cancers (Walsh & 

Fallon, 2018). Whether a similar effect can be replicated in PCa is unknown. However, 

IL1F is mainly produced by epithelial cells and is shown to have multiple roles through its 

interaction with several inflammatory genes in cancers (Queen et al., 2019). Tripartite 

Motif Containing 59 (TRIM59) is a multifunctional regulator of the innate immune signaling 

pathway. The overexpression of TRIM59 has been correlated with poor prognosis in 

multiple tumors, including pancreatic cancer, breast cancer, and ovarian cancer (Mandell 

et al., 2020). Also, its upregulation has been shown to promote cancer cell proliferation 

(Liu et al., 2018). The clinical importance of TRIM59 in PCa is currently unknown and 

needs to be clarified. Though NF-κB Inhibitor-like Protein 2 (NFKBIL2)/Tonsoku-like DNA 

Repair Protein (TONSL) interacts with NF-κB to prevent its activation, the overexpression 

of TONSL has been identified as an independent unfavorable prognostic indicator of 

hepatocellular carcinoma (Yu et al., 2019). 

Although many of the identified inflammatory genes have both inflammatory and 

non-inflammatory properties, what makes them significant in tumor progression depends 

not only on their inflammatory functions but also on their non-inflammatory oncogenic or 

tumor-suppressing abilities such as DNA binding and repair abilities, apoptosis regulation, 

regulation of cell differentiation, division, metabolism and proliferation (Supplementary 
Table S1). Detailed mechanistic studies are needed to specifically elucidate the individual 

role of these inflammatory genes in PCa progression will be beneficial in developing novel 

therapeutic strategies targeting the dysregulation of these genes in PRAD/PCa cells. 

There is no doubt that the 10 inflammatory genes identified have the potential to 

play a significant impact in PRAD progression based on results from our WGCNA and 

post hoc or multivariate analyses (Figures 2 - 26 and S1 - S18, Tables 2 - 7 and S1 - 
S2). AUROC and KM survival analyses revealed the diagnostic potentials of some of 
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these inflammatory genes, especially with regards to PRAD development and 

progression. Nevertheless, the expression of most genes in the magenta module was 

predicted to be positively correlated with PRAD progression and relapse. In this study, 

we specifically focused on IRAK1 due to its critical role in the inflammatory signaling 

cascades as well as its association with carcinogenesis from previous studies (Kutikhin 

& Yuzhalin, 2012; Li et al., 2015; Sun et al., 2014). Further downstream analyses were 

performed on IRAK1 as a representative of the 10 identified inflammatory genes. 

Functional enrichment analysis is an important approach for the interpretation of 

gene lists derived from the large-scale genome, transcriptome, and proteome studies 

(Zambon et al., 2012). WebGestalt and Enrichr, among others, were able to provide a 

platform for the identification and characterization (gene ontology, pathway, and network 

module analysis, gene-phenotype association, gene-disease association, gene-drug 

association, and chromosomal location) of the 10 inflammatory genes in the magenta 

module, especially the most studied inflammatory gene candidate in this study, IRAK1 

(Kuleshov et al., 2016; Wang et al., 2017; Zhang et al., 2005). The differential gene 

analysis revealed the upregulation of IRAK1 in PCa samples compared to non-PRAD 

normal samples. 

Variable degrees of CNAs and mutations have been identified and described in PCa 

(Lalonde et al., 2014; Taylor et al., 2010). Consistent with previous literature, we identified 

several missense and frameshift mutations of IRAK1 in PCa samples that may be of 

clinical significance. The functional impact of each identified mutation was predicted using 

COSMIC, SIFT, Mutation Assessor, and Polyphen algorithms, and found to be mutation-

dependent (Flanagan et al., 2010; Gnad et al., 2013). For instance, frameshift (insertion 

and deletion) mutations of IRAK1 were found to be more functionally impactful or severe 

when compared to the missense mutations (Table 7). 

Also, the genetic alteration frequencies of most inflammatory genes were found to 

be positively correlated with the aggressive status of PCa. For instance, the CRPC and 

NEPC samples analyzed in this study show extensive burdens of CNA and lesser somatic 

mutations of IRAK1 compared to indolent and low-Gleason PRAD samples (Figure 14B 
& C). This is in accordance with previous studies that found a link between cancer relapse 

and the pattern of CNA in 168 primary tumors, raising the possibility of CNA as a 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.447920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.447920
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

prognostic biomarker (Taylor et al., 2010). Another study also found CNA burden across 

the genome, the percentage of the tumor genome affected by CNA to be associated with 

PCa biochemical recurrence and metastasis after surgery in two cohort studies 

(Hieronymus et al., 2014). Further mechanistic studies will be needed to understand the 

biological and clinical significance of these mutations and CNVs in prostate 

tumorigenesis. Next, we identified hypomethylation lesions in IRAK1 by identifying CpG 

sites of IRAK1 with significant methylation values in correlation with CNVs and transcript 

or gene expression profiles of IRAK1 in PRAD samples. 

Collectively, our integrative genomic analyses show a co-occurrence or 

interdependence between alterations of IRAKs and diverse genes associated with 

castration resistance, stemness, immunosuppression, and NED in PCa patients. IRAK1 

was shown to be the most significant and frequently altered gene among the 10 

inflammatory genes and IRAKs in the aggressive PCa samples. Previously, inhibition of 

IRAK1 and/or IRAK4 by either gene silencing or small molecule inhibitors have been 

shown to induce apoptosis and decrease in cell viability of lymphoblastic leukemia, 

hepatocellular carcinoma,  melanoma, gastric cancer, pancreatic cancer, and cervical 

cancer (Hu et al., 2018; Li et al., 2015; Sun et al., 2006; Sun et al., 2014; Wee et al., 2015; 

Zhang et al., 2016). The upregulation of IRAK1 has been reported to enhance 

angiogenesis and metastasis of breast cancer (Singer et al., 2018). Other studies suggest 

that dysregulation of IRAK1 may drive tumorigenesis by activating oncogenic pathways 

necessary for cancer cell survival, proliferation, and metastasis (Hu et al., 2018; Li et al., 

2015; Sun et al., 2014; Wee et al., 2015; Zhang et al., 2016). However, how dysregulation 

of IRAK1 drives prostate tumorigenesis, especially PCa progression, has not been 

explored. 

The PI3K and its downstream kinases (i.e., AKT/PKB and mTOR) are frequently 

upregulated and genetically altered in CRPCs. A previous study has found PI3K, AKT, 

and mTOR oncogenes to be genetically altered in 42% of primary prostate tumor samples 

and 100% of metastatic prostate tumor samples (Bitting & Armstrong, 2013). Since PI3K 

signal transduction drives castration resistance and CRPC survival, the link between 

IRAK1-mediated inflammation signaling and PI3K/AKT/mTOR signaling needs to be 

clearly defined in PCa. Though our analysis revealed an association between the PI3K-
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AKT-mTOR and IRAKs signaling pathways, whether the dysregulation of IRAK1 in PRAD 

and CRPCs promotes castration resistance via the AR and PI3K-AKT-mTOR pathway 

has not been studied. In liver cancer, IRAK1 overexpression was found to be important 

for the maintenance of aggressive tumor-initiating/stem cells (Cheng et al., 2018). 

Our analysis revealed a significant correlation between the co-expression/co-

modification of IRAK1 and genes associated with PCa stemness, neuroendocrine, and 

castration resistance signaling. Since PCSCs are maintained by upregulation of the PI3K-

AKT-mTOR-NF-κB, SOX2-OCT4-KLF4-MYC, Wnt-β-catenin, Notch, TGF-β, and 

Hedgehog signaling pathways, more mechanistic studies will be needed to elucidate and 

define the role of IRAK1 signaling and dysregulation in PCa stemness, neuroendocrine 

differentiation, immunosuppression, metabolic reprogramming, and castration resistance 

(Rybak et al., 2011; Rybak et al., 2015). 

 

Conclusion 
We have identified 10 inflammatory genes associated with PCa progression and 

characterized IRAK1 as a potential therapeutic target in PCa. The dysregulation of IRAK1 

in PRAD patients was shown to possibly have genetic and epigenetic causal effects, 

which justifies further studies on its impact in chronic inflammation-driven PCa 

progression as well as its use as a diagnostic or prognostic biomarker. DNA 

hypomethylation of IRAK1 was found to correlate with its overexpression in PRAD 

patients/samples, which suggests that the contribution of post-translational modifications 

such as DNA methylation plays an important role in the dysregulation of IRAK1 in PCa 

cells. Collectively, we have provided evidence that suggests the potential therapeutic 

benefits of targeting chronic inflammation in PCa as a means to prevent progression and 

aggressiveness of the disease in survivors. 

 

Data Availability 
Data can be accessed from the corresponding author upon request. The 

codes/WGCNA script and the multivariate analysis result outputs can be found on GitHub: 

https://github.com/soseni2013/WGCNA-for-Cancer 
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Results: Figures and Tables 

Figure 1: Flow chart summarizing the bioinformatics pipeline designed for this study. 

 
Table 1: Distribution of some of the reported clinical traits among prostate adenocarcinoma (PRAD, n = 

494) patients. 

NA: Not available 

Clinical Traits Classification Number of 
Patients/Samples 

Race 

Caucasian-American 147 
African-American 7 
Asian-American 2 

NA 338 
Gender Male 494 

Progression-free Survival 
(PFS) 

Censored 401 
Progression 93 

Disease-free Status (DFS) or 
Relapse-free Status (RFS) 

Disease-free 304 
Recurred/Progressed 30 

NA 160 

Biochemical Recurrence 
No 355 
Yes 81 
NA 58 

Overall Survival (OS) or 
Vital Status 

Living 484 
Deceased 10 

Resistance to Radiotherapy 
No 389 
Yes 59 
NA 46 

Cancer Status 
Tumor-free 314 
With tumor 94 

NA 86 
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Figure 2: Gene dendrogram of clustered dissimilarity, based on consensus topological overlap, with the 

corresponding module colors and correlation. A. Relatedness dendrogram and correlation heatmap of 

modules identified by weighted gene co-expression network analysis (WGCNA) showing the dendrogram 

of consensus module eigengenes obtained by WGCNA on the consensus correlation. B.  Heatmap plot of 
the pairwise correlations (adjacency matrix) of module eigengenes. Red boxes represent positive pairwise 

correlation, and blue boxes represent anti-correlation or negative correlation while the white boxes 

represent the non-pairwise correlation. Each colored row represents a color-coded module, which contains 

a group of highly connected genes. A total of 9 modules (excluding grey modules) were identified. The 

relationship between each relevant clinical trait was evaluated for each color-coded module. Biweight mid-

correlation (bicor) was used as a robust alternative to the Pearson correlation coefficient. The red arrows 

are pointing to branches of the Dynamic Tree Cut which uses a non-constant height cut-off to detect clusters 

in a dendrogram based on connectedness and correlation coefficient. This plot was generated based on 
the cutreeHybrid code included in our WGCNA script.  
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Figure 3: Module-trait relationship based on p-value and bicor correlation coefficient to reveal modules 

associated with PRAD clinical traits. A.  showing the heatmap of module-trait relationships based on the 

bicor (r) value. Each row in the heatmap corresponds to a specific clinical trait and each column to a module. 
The module colors are shown on the lower side of each column. Boxes colored blue and red signify negative 

and positive correlations to PRAD clinical traits or phenotypes, respectively. Modules with significant 

Module-trait biweight correlation (bicor) color scale (-1 = blue; 0 = white; +1 = red) were indicated by 

including the significant p-value in the boxes. B. showing the heatmap of the module-trait relationship based 

on the p-value significance. Each column corresponds to specific clinical traits and each row to a module. 

The module colors are shown on the left side of each row. The color gradient of the heatmap boxes from 

purple to white denotes the correlation p-value with significance from 0 to 0.05 as well as no significance 

from 0.05 to upward. 
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Table 2: WGCNA modules output and the corresponding number of genes per module. 
Table showing the module colors and IDs as well as the number of gene clusters present in each module 

out of a total of 17, 794 processed genes.  472 PRAD patients/samples analyzed after batch corrections, 

normalization, and log2 transformation. IRAK1, IRAK2, IRAK3, & IRAK4 were located in the magenta, red, 
brown, and grey (junk) modules, respectively. 
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Figure 4: Volcano plots (-log10 p-value vs log2 fold change) of differentially expressed genes between 

progressed vs non-progressed PRAD patients in each module. Differential gene expression was performed 

to compare PRAD patients who progressed (n = 93) with those that do not have progression (n = 401). The 

first volcano plot on the left is showing the DGE of all genes (n = 17,794) located in all the modules together 

while others are plots for each module. Magenta, green, pink, blue, red, yellow modules appear to have 
mostly upregulated genes correlated to progression in PRAD patients while turquoise, brown and black 

modules are mostly made up of downregulated genes in correlation with progression in PRAD patients. 

The p-values were computed using ANOVA-Tukey statistical test. On the y-axis of each volcano, the plot 

is the -log10 of p-value while on the x-axis is the log2 of FC. The horizontal dotted lines show the line of 

significance at p-value < 0.05. 
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Figure 5: GO Elite ontologies of the four biologically significant modules positively correlated with PRAD 

progression. Gene ontology of the magenta, pink, green, and blue modules was determined based on their 

biological processes, molecular functions, and cellular components. The x-axis represents the calculated 

Z-scores for the gene ontologies. The y axis has the biological processes (green bars), the molecular 
functions (blue bars), and the cellular components for each module (brown bars). The red vertical lines 

shown across the bars represent the direction of the standard deviations.  
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Figure 6: WebGestalt gene-enrichment analysis and biological ontologies for the magenta module.  
The x-axis represents the gene ontologies predicted based on their biological processes (red bar chart), 

molecular functions (green bar chart), and cellular components (blue bars). The y-axis represents the 

number of genes. 
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Table 3: WebGestalt gene-enrichment analysis and biological ontologies for the magenta module. 
The table is showing the calculated F-value, Benjamini and Hochberg false discovery rate (FDR), ANOVA 

p-value = 0.05, and the fold change (FC, the difference in mean gene expression values between 

progressed vs non-progressed patients). 

 

Gene F-Value FDR P-value FC 

IRAK1 4.96776529 0.10641623 0.02629606 0.11896523 

PPIL5/LRR1 8.54238016 0.03089667 0.00363703 0.12637696 

HMGB3 4.46690454 0.12773763 0.03508388 0.13009469 

HMGB2 7.87684581 0.03820747 0.00521516 0.19869876 

TRAIP 20.6970149 0.00086135 6.86e-06 0.31806626 

IL1F5/IL36RN 8.32987379 0.03303962 0.00408493 1.0060423 

ILF2 2.63225541 0.25575456 0.10538342 0.05404065 

TRIM59 3.76977041 0.1651797 0.05278405 0.13270392 

NFKBIL2/TONSL 10.5579031 0.01629371 0.00123986 0.25775675 

TRAF7 3.73438085 0.16748158 0.05390396 0.08140051 
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Figure 7: Matched/paired (7A) and unmatched/unpaired (7B) differential gene expression analysis plots. 

Each whisker boxplot plot shows the gene expression distribution of identified inflammatory genes in the 

magenta module between prostate tumor vs normal samples. 
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Table 4: Wilcoxon Rank Sum Test (Mann-Whitney U test) output for the inflammatory signature gene set 

in the magenta module. The table shows the p-values and fold change (FC) in gene expression levels 

between prostate tumor vs normal samples from the matched and unmatched analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Samples Matched/Paired Unmatched/Unpaired 

Genes P-value FC P-value FC 

IRAK1 1.11e-3 1.27 1.8e-24 1.46 

PPIL5/LRR1 0.719 0.95 1.77e-9 1.25 

HMGB3 7.78e-6 1.58 1.37e-58 2.23 

HMGB2 5.88e-2 0.88 0.752 1.07 

TRAIP 5.54e-3 1.25 9.65e-6 1.29 

IL1F5/IL36RN 5.24e-03 8.61 1.61e-16 8.69 

ILF2 5.42e-2 1.21 6.54e-29 1.5 

TRIM59 6.06e-4 1.36 9.13e-7 1.29 

NFKBIL2/TONSL 3.18e-6 1.54 2.31e-13 1.47 

TRAF7 2.28e-7 1.48 2.55e-24 1.46 
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Figure 8: Correlogram plot showing the correlation between the 10 inflammatory genes in the magenta 

module. The positively and negatively correlated genes are shown in red and blue colors, respectively. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 9: Kaplan-Meier survival analysis of PFS in IRAK1 low-expressing vs high-expressing PRAD 

patients. Kaplan-Meier survival analysis was performed for the PRAD dataset (n = 472). PRAD patients 

were stratified into two groups of IRAK1 high-expressing patients (n = 236) vs IRAK1 low-expressing 
patients (n = 236). Log-rank p-value and Hazard ratio were calculated for progression-free survival using 

the median expression value for all samples as the cut-off. 
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Table 5: AUROC statistics for magenta inflammatory genes. Column 1 is the Gene marker and Column 2 

is the AUC values. Columns 3 and 4 have the lower and upper AUC limits at 95% CI. Column 5 has the Z-

scores, and Column 6 has the Wilcoxon test p-values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Genes Marker AUC Lower Limit 
(95% CI) 

Upper Limit 
(95% CI) Z-score P-value 

IRAK1 0.58209 0.5137 0.65047 2.35261 0.01864 
HMGB2 0.60169 0.53338 0.66999 2.91778 0.00353 
HMGB3 0.57261 0.50423 0.64098 2.08129 0.03741 

IL1F5/IL36RN 0.60415 0.53535 0.67295 2.96707 0.00301 
ILF2 0.56505 0.49671 0.6334 1.86566 0.06209 

PPIL5/LRR1 0.59286 0.5245 0.66122 2.66254 0.00776 
TRAF7 0.56271 0.49438 0.63104 1.79882 0.07205 
TRAIP 0.64193 0.57424 0.70962 4.10972 4.00e-05 

NFKBIL2/TONSL 0.61821 0.55008 0.68634 3.40083 0.00067 

TRIM59 0.57125 0.50288 0.63962 2.04248 0.0411 
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Figure 10: Receiver Operator Characteristic (ROC) analysis for the 10 inflammatory genes. The AUROC 
plot shows the prediction of 4 of the 10 genes as potential biomarkers for PRAD progression. Y-axis 

represents the specificity while the x-axis represents the 1-specificity. The black dotted line is the line of 

significance (p < 0.05). The Area under the Curve (AUC) shows that HMGB2 (AUC=0.6), IL1F5 (AUC=0.6), 

TRAIP (AUC=0.64), and NFKBIL2 (AUC=0.61) have the potential to predict poor outcome in ~60% of PRAD 

patients with a significant p-value at p < 0.05. 
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Figure 11: Receiver Operating Characteristic (ROC) analysis for IRAK1 in PRAD vs normal samples and 

progressive vs non-progressive PRAD samples. This ROC analyzes the capability of IRAK1, a 

representative of inflammatory genes in the magenta module to predict survival risk. The x-axis represents 

sensitivity while the y-axis represents 1-specificity. The black dotted lines represent the line of significance 

(p-value = 0.05). The ROC curves represent the gold standard of diagnostic accuracy (i.e., genes with AUC 

greater than 0.6 are assumed to be a potentially good diagnostic biomarker). As diagnostic test accuracy 
improves, the AUC approaches 1. A. Denotes the AUROC comparing PCa samples from normal samples. 

AUC of  IRAK1 (0.83) shows that IRAK1 is an excellent diagnostic biomarker compared to other members 

of the family in PRAD patients, for differentiating between PCa and non-PCa tissue samples. B. Denotes 
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the AUROC comparing progressed PRAD patients to non-progressed PRAD patients, with an AUC of 0.58 

(58%). 

 
 
 
 
 
 
 
 

 
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

Figure 12: Protein-protein enrichment and network analyses of the PRAD dataset. A. Cytoscape network 

analysis showing the molecular network interaction of magenta module-hub genes. The deeper the color 

of nodes, the more the known significance of the gene in PCa progression. IRAK1 was found to closely 
interact with IPO4, MDH2, and MGAT4B. Cytoscape analysis showed that these genes have protein to 
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protein interactions with PCa-associated genes. This is the first report to show such interaction. B. Protein-

protein interaction (PPI) and enrichment (PPE) network analyses of IRAK1 and selected inflammation and 

PCa-progression proteins. showing known and predicted interaction between selected IRAK proteins and 

PCa progression-associated proteins. Pathway interactions were determined using evidence-based 
functional annotations/gene ontology and edge confidence which predicts the degree of interaction between 

proteins as determined using the String (v11) software. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 13: Receiver Operating Characteristic (ROC) curve analysis for IRAK1 and its closest neighbors in 
the magenta module. The ROC analysis reveals the capability of IRAK1 and its interacting neighbors in the 

magenta module to predict progression survival risk. The x-axis represents the sensitivity, and the y-axis 

represents the 1-specificity. The black dotted lines represent the line of significance. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.447920doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.447920
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Figure 14: Gene alteration analysis output for IRAKs and associated genes. A. A Lollipop plot showing 

common structural mutation (missense and spliced) of IRAK1 in PCa patients from the 20 cohort studies 

analyzed. B. Frequency bar charts of alterations of MYD88 and IRAK1-4  genes in different PCa subtypes. 

Gene amplifications are common in CRPCs and NEPCs and relatively higher in IRAK1. C. Patient-based 

gene alteration profiles for IRAKs (MYD88 & IRAK1-4), castration resistance (AR-PI3K-AKT-mTOR), self-

renewal/cancer pluripotency (MYC-SOX2-KLF4-POU5F1-NANOG-NOTCH1), neuroendocrine 
differentiation (MYCN-AURKA-EZH2), and “Don’t eat me” or immune evasion (CD47-SIRPA) signaling 

genes in CRPC (n = 52) and NEPC (n = 30) patients. Each box represents each PCa patient and the color-

coding represents alteration type. 
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Figure 15: Box plots showing the association between mutation of APC, CHD1, TRIO, MUC17, and 
ADAMTSL1 and IRAK1 expression in PRAD samples. IRAK1 was significantly (p < 0.05) and highly 

expressed in PRAD samples with mutations in APC, CHD1, and MUC17 genes compared to those with no 

mutations (Wild-type). Whereas lower expression of IRAK1 was observed in PRAD samples/patients with 

ADAMTSL1 and TRIO mutations compared to the wild-type. Results were generated using the “TARGET” 

analysis module of MuTarget software, available at http://www.mutarget.com/. 
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Table 6: Identification of 13 DNA methylation sites in IRAK1, located on Chromosome X. 13 CpG probes 

were identified for our analysis based on the CpG regions in the IRAK1 transcript. The Shore indicates 0 to 

2kb from the CpG island, including N_Shore (0-2 kb upstream from CGI) and S_Shore (0-2 kb downstream 

from CGI). While the Shelf indicates 2-4 kb from CpG island, including N_Shelf (2-4 kb upstream from CGI) 
and S_Shelf (2-4 kb downstream from CGI). Open Sea: Isolated CpGs in the genome. 

 

 

 
Figure 16: A schematic illustration of IRAK1 transcript showing the different CpG sites, including the 

Islands, N_Shores, S_Shores, N_Shelf, S_Shelf, and Open Seas. 
 

CpG Probe Chromosome Start End CGI position Strand 
cg08401365 chrX 154011509 154011510 Open Sea + 
cg20494209 chrX 154016771 154016772 N_Shelf - 
cg23604959 chrX 154018243 154018244 N_Shore + 
cg02742918 chrX 154018652 154018653 N_Shore - 
cg06334238 chrX 154019448 154019449 Island + 
cg18998000 chrX 154019508 154019509 Island + 
cg23121114 chrX 154019667 154019668 Island - 
cg01353347 chrX 154019707 154019708 Island - 
cg09520212 chrX 154020171 154020172 Island - 
cg27167979 chrX 154020194 154020195 Island - 
cg03050491 chrX 154020203 154020204 Island - 
cg19572242 chrX 154020339 154020340 S_Shore + 
cg27616996 chrX 154020483 154020484 S_Shore - 
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Figure 17: Box plots of the differential methylation between PRAD and normal samples. The red boxes 

represent the distribution of CpG lesions in tumor samples while the blue boxes represent the distribution 

of CpG lesions in normal samples. Based on the p-value of the Wilcoxon test, cg23604959, cg02742918, 
cg01353347, cg27167979, cg19572242, and cg27616996 were found to be hypomethylated compared to 

the normal samples. Further mechanistic studies will be needed to better understand the functional impacts 

of IRAK1 hypomethylation (epigenetics) on PCa initiation and progression. 
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Figure 18: Correlation analysis plots using Pearson coefficient to identify the correlation between IRAK1 

methylation and its transcript or gene expression. The aggregate mean methylation values for all13 
methylation lesions shows a negative correlation to IRAK1 expression (p = 2.2e-16, r = -0.41). A total of 7 

CpG probes show a negative correlation at a significant p-value of less than 0.05 while only one probe 

(cg27616996) shows a positive correlation at a p < 0.05. 
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Figure 19: Box plots showing the relationship between methylation values (for each CpG probe) and copy 

number variations (CNVs) of IRAK1. Of the 13 CpGs identified, 6 show a significant difference between 

IRAK1 methylation and each CNV (−2: homozygous deletion; − 1: single copy deletion; 0: diploid normal 
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copy; + 1: low-level copy number amplification; + 2: high-level copy number amplification). cg18996000 

shows a higher level of hypomethylation with single-copy deletion compared to others (m value, p = 0.0056). 

cg20494209 shows a lower level of hypermethylation with homozygous deletion compared to others (m 

value, p = 0.0034). cg02742918 shows a lower level of hypermethylation with high-level copy number 
amplification compared to others (m value, p = 0.045). cg27616996 shows a higher level of hypomethylation 

with single-copy deletion compared to others (m value, p = 0.0056). cg09520212 shows a lower level of 

hypomethylation in all CNVs compared to the diploid normal copy (m value, p = 0.047). cg2312114 shows 

a lower level of hypomethylation in low-level and high-level copy number amplification compared to others 

(m value, p = 0.015). The mean aggregate methylation value for all CpGs shows a higher level of 

hypomethylation for homozygous deletion, single copy deletion, low-level copy number amplification, high-

level copy number amplification compared to the diploid normal copy (m value, p = 6e-04). Each box is 

colored to represent: -2 (coral), -1 (olive green), 0 (green), +1 (blue), and +2 (magenta). 
 
Table 7: Functional impacts analysis and mutational landscape of IRAK1 in PRAD patients from 20 cohort 

studies. We identified 4 missense mutations (SNPs) and 2 frameshift mutations (insertion and deletion). 
The integrated functional impact analysis shows the frameshift mutations to be more pathogenic (severe) 

compared to the missense mutations (mild to moderate). The bioinformatics tools/algorithms and the 

ranking rubrics can be found in Supplementary Table S2. 

 

Protein 

Change 

Functional 

Impact 

Mutation 

Type 

Variant 

Type 

Start 

Position 

End 

Position 
Ref Var 

R666Q Moderate Missense SNP 153278063 153278063 C T 

P614S Mild Missense SNP 153278584 153278584 G A 

L56Afs*102 Severe Frameshift INS 153285020 153285021 - C 

F290Pfs*58 Severe Frameshift DEL 153283483 153283498 
AGCCGTTG 

GGCAGGAA 
- 

M34V Moderate Missense SNP 153285164 153285164 T C 

L92Q Mild Missense SNP 153284911 153284911 A T 
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Figure 20: Heatmaps and correlogram showing gene expression profiles of inflammatory genes in PRAD 

samples or patients and the correlation between different inflammatory genes. IRAK1 was found to be 
highly expressed in almost all PRAD samples (n = 472). Other IRAK (2, 3, and 4) genes show low or 

moderate expressions in all PRAD samples. IRAK1 expression correlated positively with NF-kB 

transcriptional factor activators and co-expressors (Left Panel). Thus, indicating the potential role of 

targeting IRAK1 as a means to inhibit NF-kB signaling and pro-tumor function in PRAD patients. 
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Figure 21: Heatmap and correlogram showing gene expression profiles of inflammation-associated genes 
in castration-resistant PCa (CRPC) samples or patients and the correlation between different inflammation-

associated genes. IRAK1 was found to be highly expressed in almost all CRPC samples (n = 444). Other 

IRAK (2, 3, and 4) genes show low or moderate expressions in all CRPC samples. IRAK1 correlated 

positively with NF-κB transcriptional factor activators and co-expressors (Left Panel). Thus, indicating the 

potential role of targeting IRAK1 as a means to inhibit NF-κB signaling and pro-tumor function in CRPC 

patients. 
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Figure 22: Heatmap and correlogram showing gene expression profiles of inflammation-associated genes 

in Neuroendocrine PCa (NEPC) samples or patients and the correlation between different inflammatory 

genes. IRAK1 was found to be highly expressed in almost all NEPC samples (n = 30). Other IRAK (2, 3, 

and 4) genes show low or moderate expressions in all NEPC samples. IRAK1 correlated massively and 

positively with NF-kB transcriptional factor activators and co-expressors as well as with many TLRs (Left 

Panel). Thus, indicating the potential role of targeting IRAK1 as a means to inhibit NF-kB signaling and 

pro-tumor function in NEPC patients. 
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Figure 23: Box plot showing differential expression of IRAK1 in multiple tumor types in the TCGA 

Pancancer data set. Most tumors show very high expression of IRAK1 compared to normal samples. Each 
acronym represents the names of cancer types as described below. LAML: Acute Myeloid Leukemia, ACC: 

Adrenocortical carcinoma, BLCA: Bladder Urothelial Carcinoma, LGG: Brain Lower Grade Glioma, BRCA: 

Breast invasive carcinoma, CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma, 

CHOL: Cholangiocarcinoma, LCML: Chronic Myelogenous Leukemia, COAD: Colon adenocarcinoma, 

CNTL: Controls, ESCA: Esophageal carcinoma, GBM: Glioblastoma multiforme, HNSC: Head and Neck 

squamous cell carcinoma, KICH: Kidney Chromophobe, KIRC: Kidney renal clear cell carcinoma, KIRP: 

Kidney renal papillary cell carcinoma, LIHC: Liver hepatocellular carcinoma, LUAD: Lung adenocarcinoma, 
LUSC: Lung squamous cell carcinoma, DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma, 

MESO: Mesothelioma, OV: Ovarian serous cystadenocarcinoma, PAAD: Pancreatic adenocarcinoma, 

PCPG: Pheochromocytoma and Paraganglioma, PRAD: Prostate adenocarcinoma, READ: Rectum 

adenocarcinoma, SARC: Sarcoma, SKCM: Skin Cutaneous Melanoma, STAD: Stomach adenocarcinoma, 

TGCT: Testicular Germ Cell Tumors, THYM: Thymoma, THCA: Thyroid carcinoma, UCS: Uterine 

Carcinosarcoma, UCEC: Uterine Corpus Endometrial Carcinoma, UVM: Uveal Melanoma; P-value (* < 

0.05; ** < 0.01; *** < 0.001). 
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Figure 24: Bar chart showing the mRNA expression profile of IRAK1 in 4 prostate cancer cell lines. The 
PC3 cell line has the highest IRAK1 expression level while the LNCaP cell line has the lowest IRAK1 levels. 
https://maayanlab.cloud/archs4/gene/IRAK1#tissueexpression  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Bar chart showing the IRAK1 protein expression profile in PRAD tissue microarray (n=22) 

acquired from the human protein atlas database. About 61% of high-grade (Stage 8-10) and 17% of low-

grade PCa samples show high expression of IRAK1. 
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Figure 26: Representative Immunohistochemistry images of tissue samples from normal prostate & PCa 

(high-grade) stained with anti-IRAK1 antibody (brown). The nuclei were counter-stained with Hematoxylin 

(blue). All images were obtained from The Human Protein Atlas; http://www.proteinatlas.org. Scale bar = 

100μm. 
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