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Abstract—Complex sensor arrays prohibit practical 

deployment of existing wearables-based algorithms for free-living 
analysis of muscle and joint mechanics. Machine learning 
techniques have been proposed as a potential solution, however, 
they are less interpretable and generalizable when compared to 
physics-based techniques. Herein, we propose a hybrid method 
utilizing inertial sensor- and electromyography (EMG)-driven 
simulation of muscle contraction to characterize knee joint and 
muscle mechanics during walking gait. Machine learning is used 
only to map a subset of measured muscle excitations to a full set 
thereby reducing the number of required sensors. We 
demonstrate the utility of the approach for estimating net knee 
flexion moment (KFM) as well as individual muscle moment and 
work during the stance phase of gait across nine unimpaired 
subjects. Across all subjects, KFM was estimated with 0.91 
%BW•H RMSE and strong correlations (r = 0.87) compared to 
ground truth inverse dynamics analysis. Estimates of individual 
muscle moments were strongly correlated (r = 0.81-0.99) with a 
reference EMG-driven technique using optical motion capture 
and a full set of electrodes as were estimates of muscle work (r = 
0.88-0.99). Implementation of the proposed technique in the 
current work included instrumenting only three muscles with 
surface electrodes (lateral and medial gastrocnemius and vastus 
medialis) and both the thigh and shank segments with inertial 
sensors. These sensor locations permit instrumentation of a knee 
brace/sleeve facilitating a practically deployable mechanism for 
monitoring muscle and joint mechanics with performance 
comparable to the current state-of-the-art. 
 

Index Terms—wearable technology; machine learning; 
musculoskeletal modeling; electromyography; gait analysis 
 

I. INTRODUCTION 

EMOTE patient monitoring, enabled by advances in 
wearable technology and algorithms for human 

movement analysis, promises to improve the assessment and 
treatment of musculoskeletal disease [1]. Recent work 
quantifying stride-by-stride gait mechanics at segment-, joint-, 
and muscle-specific levels has shown that these variables may 
provide more sensitive measures of patient health than the 
more typical gross measures of physical activity [2], [3]. 
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Despite these advances, many of the most clinically relevant 
variables have yet to be observed outside of controlled, 
laboratory environments. Ideally, assessments would quantify 
cumulative loading of muscle and articular tissue across every 
step taken in daily life to best characterize the mechanical 
stimuli driving tissue adaptation. Characterization at this level 
could enable personalized therapies and optimal evaluation of 
intervention efficacy. Further, remote monitoring of these 
variables could provide novel insight into musculoskeletal 
disease etiology. For example, in osteoarthritis, load is known 
to have a positive effect on healthy tissue and yet detrimental 
effects on diseased tissue [4]. It is not known when this 
transition occurs, but monitoring cumulative tissue loads 
under free-living conditions could allow the investigation of 
these and other cumulative load-dependent phenomena. 
However, new methods are needed for characterizing joint and 
muscle mechanics in remote environments to enable these 
important clinical and research advancements.  

The biomechanical variables associated with these analyses 
(e.g., joint moment, muscle force) provide far more clinical 
utility than what is typically evaluated remotely (e.g., physical 
activity, spatiotemporal gait variables). While both frontal and 
sagittal plane joint moment are important concerning 
musculoskeletal diseases of the knee, knee flexion moment 
(KFM) in particular, is thought to play an especially important 
role in early knee osteoarthritis [5], [6] and for monitoring 
patients following reconstructive surgery of the anterior 
cruciate ligament (ACLR) [7]–[10]. It is also critical to 
characterize individual muscle function. Muscle power, for 
example, is a well-known determinant of physical function 
[11] and the phenomena of work- [12] and load- [13] induced 
muscle hypertrophy motivate tracking cumulative muscle 
work and force which may provide a basis for optimal 
exercise prescription and understanding subsequent dose-
response relationships [14]. These analyses may be especially 
relevant for monitoring patients post-ACLR wherein the knee 
extensor and flexor musculature are compromised [15], [16] 
due to muscle atrophy [17] and muscle activation deficits [15]. 
In this case, early intervention is critical [18] and continuous, 
remote monitoring augments personalized rehabilitation for 
targeting specific biomechanical outcomes [19]. 

While physics-based techniques exist for estimating these 
clinically relevant variables from wearables [20], [21], they 
require complex sensor arrays that discourage use outside of 
research contexts [22]. Regression algorithms have been 
proposed to reduce the number of required sensors [23], but at 

Wearables-Only Analysis of Muscle and Joint 
Mechanics: An EMG-Driven Approach 
Reed D. Gurchiek*, Nicole Donahue, Niccolo M. Fiorentino and Ryan S. McGinnis 

R 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448524doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524
https://doi.org/10.1101/2021.06.16.448524


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

2 

the expense of generalizability [24]. Further, machine learning 
techniques do not characterize the dynamics of some relevant 
internal state variables (e.g., muscle contraction dynamics) 
which are modeled in physics-based techniques and may be 
particularly useful in the application of these techniques for 
rehabilitation. To leverage the strengths of both approaches, 
hybrid solutions have been proposed wherein machine 
learning is used only where the physics are not well 
understood or insufficiently informed [23], [25]. To the 
authors’ knowledge, only one pilot study [26] has explored a 
hybrid method wherein KFM was estimated in an 
electromyography (EMG)-driven simulation. However, 
validation was for a single subject and machine learning was 
used to solve for some kinematics that could have been 
estimated from physics-based techniques (e.g., knee flexion 
angle from thigh- and shank-worn IMUs [27]). 

In the current work, we introduce a new method for 
characterizing muscle and joint mechanics during walking 
which utilizes EMG-driven simulation of muscle contraction 
and inertial measurement unit (IMU)-driven forward 
kinematics. This approach was designed to enable more 
effective management of musculoskeletal diseases of the knee 
joint.  We demonstrate the performance of the proposed 
approach for characterizing KFM as well as individual muscle 
moment and work by comparison to standard methods.  

II. PROPOSED TECHNIQUE  

Figure 1 summarizes the proposed technique. The idea is to 
model each muscle contributing to KFM as a Hill-type 
actuator and simulate contraction using an EMG-driven 
approach. The required inputs then are the excitation of each 
muscle and the length of each muscle-tendon unit (MTU). The 
novelty of the current work is to implement this approach with 
a reduced sensor array such that the technique may be feasibly 
deployed for remote monitoring. To this end, the proposed 
technique (now referred to as IMC-GP) uses two IMUs (one 
each on the thigh and shank) to solve for the system 
kinematics and compute MTU lengths in a process referred to 
as inertial motion capture (IMC) while the number of required 
electrodes is reduced by instrumenting only a subset of 
muscles whereupon the remaining excitation signals (would be 
unmeasured in practice) are informed by the measured subset 
using a Gaussian Process (GP) model of the associated muscle 
synergy functions [28]. In the current implementation, the 
subset included three muscles: medial (MG) and lateral (LG) 
gastrocnemius and vastus medialis (VM). These locations 
were chosen because they are close to the knee joint such that 
they could instrument a knee brace for practical deployment.  

The musculoskeletal model, Hill-type muscle models, and 
GP models all require a one-time calibration. Calibration of a 
sensor-to-segment model and EMG normalization is required 

 
Fig. 1. Schematic overview of the proposed technique. Gyroscope and accelerometer data from thigh- and shank-worn IMUs (red sensors, upper left) drive 
the system kinematics (inertial motion capture) from which the required MTU lengths are computed. EMG data from a subset of instrumented muscles 
(black sensors, upper left) are mapped to the required full set of excitations through Gaussian Process models of the associated muscle synergy functions. 
The MTU lengths and excitation signals then drive the simulation of muscle contraction from which the biomechanical variables of interest are computed. 
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each time the IMUs and electrodes are attached (e.g., daily). 
The following sections describe these models and their 
calibration as well as the IMC analysis, EMG-driven 
simulation of muscle contraction, and the computation of the 
biomechanical variables of interest. 

A. Musculoskeletal Model and Calibration 
The musculoskeletal model consisted of five segments 

including a foot, shank, thigh, patella, and pelvis; three joints 
including a two degree-of-freedom (DOF) ankle, single DOF 
knee (tibiofemoral), and a three DOF hip; and ten MTUs 
including the MG, LG, VM, vastus intermedius (VI), vastus 
lateralis (VL), rectus femoris (RF), long (BFL) and short 
(BFS) heads of the biceps femoris, semitendinosus (ST), and 
semimembranosus (SM). MTU path points (origin, insertion, 
and via points), cylindrical geometry of the femoral condyle, 
and the origin and insertion of the patellar ligament were taken 
from Horsman et al. [29]. Average path points were used for 
multi-element muscles (e.g., superior and inferior elements of 
the VL). A single via point was used for the MG and LG 
located at the apex of the shortest curve between origin and 
insertion points wrapping posteriorly around the cylinder 
modeling the femoral condyle. The model had 12 mechanical 
DOFs described by 28 generalized coordinates including 
translational (n=3) and rotational (n=4, quaternion) 
coordinates for each segment except the patella (configuration 
was a function of the knee flexion angle) subject to 16 equality 
constraints: four enforce the quaternion unit length constraints; 
nine enforce the non-translating joint constraints; and three 
enforce the hinge and universal joint constraints on the knee 
and ankle. The angle of the patella relative to the patellar 
ligament was modeled as a constant 20° [30]. The angle of the 
patellar ligament (constant length) relative to the shank was 
based on the results of van Eijden et al. [30]. 

Two calibration trials were used to calibrate the subject-
specific musculoskeletal model. A static calibration (standing 
in anatomical position) was used as the reference 
configuration in which relative positions of segment-fixed 
points define each rigid body segment including markers (see 
[31] for marker set) and MTU path points. A functional 
calibration trial was used to identify joint centers and the knee 
flexion axis. The subject exercised multiple movements of 
each joint exciting all joint DOFs through the full range of 
motion. In this case, segment kinematics were computed 
independently without regard for any mechanical constraints: 
orientation via Davenport’s solution to Wahba’s problem [32] 
wherein every unique two-marker combination for all 
segment-fixed markers during the static calibration trial were 
used as the reference vectors (weighted by their length 
squared) and position as done by Spoor and Veldpaus [33]. 
Hip and ankle joint centers were estimated using the pivoting 
algorithm [34] and the knee flexion axis using the SARA 
method [35]. Knee joint center was defined as the point on the 
knee flexion axis closest to the femoral epicondyle midpoint. 

Segment-fixed coordinate systems were constructed with 
basis vectors coincident with the principal axes of inertia and 
origin with the segment center of mass (inertial parameters 

taken from [36]). Local MTU path points were scaled based 
on an anthropometric measure of each segment relative to the 
same from the data reported in [29] (e.g., segment length). 
Knee extensor and medial hamstring insertion points were 
adjusted to better align their knee flexion moment arms with 
published data [37], [38]. 

B. Sensor-to-Segment Model Calibration 
The daily sensor-to-segment model calibration requires 

three calibration trials: the same static and functional 
(hip/knee joint) calibration trials used for calibrating the 
musculoskeletal model and straight walking. The system 
configuration during the daily static calibration is assumed 
equivalent to the reference configuration. The TRIAD 
algorithm [39] was used to determine the orientation of the 
IMU frames relative to the segment frames. Reference vectors 
were the knee joint flexion axis and gravity vector with full 
trust given to the former. The representation of these vectors 
in the segment frames were taken from the reference 
configuration. The representation of the gravity vector in each 
IMU frame was computed as the average direction of the 
accelerometer output during the static calibration trial. The 
representation of the knee joint flexion axis in each IMU 
frame and the position of the knee joint center relative to each 
IMU were determined using a nonlinear least-squares method 
[27], [40]. Data recorded during the hip and knee joint 
movements of the daily functional calibration trial were used 
for both calibrations (knee joint flexion axis and knee joint 
center) in addition to the walking calibration trials for 
calibrating the knee joint flexion axis. 

C. Inertial Motion Capture 
Shank and thigh IMU data were first expressed relative to 

their segment coordinate systems based on the calibrated 
sensor-to-segment model. The medio-lateral component of the 
shank gyroscope signal was used to identify foot contact and 
foot off events [41]. Shank accelerometer data were used to 
identify the most still quarter of the identified stance phase 
(interval for which the sum of the accelerometer signal 
variances was least) during which the average acceleration 
was used to estimate shank orientation at the middle of the 
interval (assuming zero heading angle) [42]. Shank orientation 
before and after this mid-stance instant was obtained using the 
analytic solution to the quaternion kinematic equation [43] 
following an assumption of constant angular rate between 
measured samples equal to the average of the two samples. 
Knee flexion angle (") was estimated using an RTS Kalman 
smoother [44] implementation of a complementary filter [27]. 
Thigh orientation was determined from shank orientation and 
knee flexion angle. Pelvis orientation was assumed neutral 
except that the heading angle was constant and equal to the 
average shank heading angle during stance. The acceleration 
of the knee and ankle joint centers was computed from shank 
accelerometer data (after removing gravity) along with shank 
gyroscope-measured angular velocity and the known joint 
center position relative to the shank IMU [45]. Ankle joint 
center position was computed by double (trapezoidal) 
integration of ankle joint center acceleration. Foot heading 
angle was equivalent to that of the shank, roll angle was zero, 
and pitch angle was computed based on a simple foot-ground 
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contact model (Fig. 2). Given all segment orientations and the 
ankle joint center position throughout stance phase, the 
remaining generalized coordinates were given from the 
calibrated musculoskeletal model. MTU length and knee 
flexion moment arm were computed as in [46].  

D. EMG-Driven Simulation of Muscle Contraction 
MTU geometry was modeled as in [47] such that pennation 

angle ($) and tendon length (ℓ!) were explicit functions of 
MTU (ℓ"!#) and muscle fiber (ℓ$) length as per 
 

$ = asin +
ℓ% sin$%
ℓ$

, (1) 

 
ℓ! = ℓ"!# − / (2) 

 
where /	(equal to the product ℓ$ cos$) is the projection of the 
fiber length onto the MTU, ℓ% is the optimal fiber length, and 
$% is the pennation angle when ℓ$ = ℓ% (taken from [29]). 
Tendon force (4!) was modeled similar to [48] as per 
 

4! = 4$%5(exp(9:!) − 1) (3) 
 
where 4$% is the maximal isometric force of the muscle, 5 is 
constant and equal to exp(−0.049), :! is the tendon strain 
modeled as a function of ℓ! and tendon slack length (ℓ&) [49], 
and the parameter 9	(?4!/?:! when :! = 4%) was set to 
35.00. Muscle force projected onto the 4! line of action (4$) 
was modeled as per [47] 
 

4$ = 4$%A4'4ℓ4) + 4* + CDE$F cos$ . (4) 
 
The parenthesized term in (1) is the normalized muscle force 
which is scaled by 4$% and projected onto the 4! line of action 
via multiplication with cos$. The functions 4', 4ℓ, and 4* 
model the force-velocity, active force-length, and passive 
force-length properties of muscle, respectively. Fiber length 
ℓ$ normalized by ℓ% is input to both 4ℓ and 4*. The input to 4' 

is fiber velocity (D$) normalized by the maximal fiber 
shortening velocity (set to 15 optimal fiber lengths per second 
[50]); denoted DE$. In this study, 4' and 4ℓ were both modeled 
as in [48] and 4* as in [51] with passive muscle strain due to 
maximal isometric force (:%$ in [51]) set to 0.55. The input to 
the activation nonlinearity function (4)), modeling the 
nonlinear relationship between activation and muscle force 
[52], [53], is the activation signal (G), the dynamics (Ġ) of 
which were driven by the muscle excitation signal (I). The 
output of 4) is also used in 4ℓ to model the dependency of the 
optimal fiber length on muscle activation as in [54]. The 
product CDE$ models damping effects within the fiber where 
the coefficient (C) was set to 0.01 [55]. Several parameters 
not yet specified (e.g., 4$%, 4), Ġ, ℓ%, ℓ&) were determined in a 
calibration process described in section II.F.  

In the current implementation, fiber length ℓ$ and muscle 
activation G were the state variables for the muscle contraction 
dynamics and system inputs were MTU length ℓ"!# and 
muscle excitation I (computed from raw EMG as in [54]). The 
excitation of the BFS, SM, and VI was assumed equivalent to 
that of the BFL, ST, and the average of VM and VL, 
respectively. The equivalence between the tendon (4!) and 
muscle (4$) force gives rise to the equilibrium equation 
 

4$ − 4! = 0 (5) 
 
which is an implicit formulation for the dynamics of the fiber 
length state variable [47], [54], [56]. An implicit solver 
(ode15i in MATLAB) was used to numerically integrate (5). 
Initial conditions for ℓ$ and D$ consistent with (5) were 
found numerically (decic in MATLAB). This required an initial 
guess that may not satisfy (5) for which a rigid tendon was 
assumed. Activation dynamics were simulated using a Runge-
Kutta formula (ode45 in MATLAB). 

E. Computation of the Biomechanical Variables of Interest 
Net KFM was computed as the sum of the flexion moments 

generated by each MTU given by the product of 4$ and the 

 
Fig. 2. Foot-ground contact model for estimating foot pitch angle (!) in the IMC analysis. Ankle joint center position during stance was available as described in 
the main text. Planar translation was assumed and thus only the world frame {W} vertical and horizontal coordinates were needed. Ankle joint center height at 
mid-stance (middle) was set equal to that in the reference configuration (black dashed line) from which the positions of the initial stance rotation point (red dot, 
inferior to the heel) and terminal stance rotation point (green dot, inferior to the toe) were computed. Assuming rotation was about these points in the respective 
intervals, ! was computed as the angle between the rotation point-to-joint center vectors at each time instant during initial stance (red dashed arrow) or terminal 
stance (green dashed arrow) and the same in the reference configuration (solid red and green arrows at mid-stance). 
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knee flexion moment arm. Cumulative concentric (K+,-) and 
eccentric (K.++) work were computed using a trapezoidal 
approximation to the line integral 
 

K/ = L|4/	?/| (6) 
 
for O ∈ {IRR, RTU} where |∙| denotes absolute value and 
 

4+,- = X	 	4$,								?/ < 0			
					0,							TZℎI\]^/I (7) 

 

4.++ = X	 	4$,								?/ > 0			
					0,							TZℎI\]^/I . (8) 

 

F. Gaussian Process Model Calibration 
The proposed technique uses excitations computed from the 

raw EMG of the three instrumented muscles to estimate the 
other four (unmeasured in practice). To this end, four GP 
models were trained (using open-source toolboxes [28], [57]) 
to approximate the four associated muscle synergy functions 
[28]. Input muscles were VM, MG, and LG. Input window 
length was 1.50 s with a 0.75 s window relative output time. 
The GP model covariance function was the isotropic squared 
exponential and the mean function was constant [28].  

G. Hill-Type Muscle Model Calibration 
A set of calibration walking trials from which a ground 

truth estimate of KFM based on inverse dynamics (ID) and a 
reference EMG-driven (referred to as OMC-Full) estimate 
were required for identifying Hill model parameters. 
Biomechanical variables were computed via OMC-Full in the 
same way as for IMC-GP except kinematics were solved using 
optical motion capture (OMC, described below) and a full set 
of measured excitations as opposed to the three-muscle subset. 
 
1) Inverse Dynamics 
 The 28 generalized coordinates were found by minimizing a 
squared-error objective [58] (errors between model-based and 
measured marker positions) subject to the 16 mechanical 
constraints described previously. The optimal solution was 
found using the interior-point algorithm (fmincon in MATLAB) 
with analytic Jacobian and Hessian matrices of the objective 
and constraint equations. The constraint tolerance was set to 
1e-6 and all markers were weighted equally. Segment linear 
and angular velocities and accelerations were approximated 
using the 5-point central difference method (quaternion 
velocities were computed first and mapped to angular 
velocities [43]) and were low-pass filtered using a 4th order, 
zero-phase, Butterworth filter (6 Hz cutoff frequency) with 
double-pass adjustments [59]. The knee flexion moment arm 
and length of each MTU were computed as for the IMC 
analysis. Intersegmental forces and moments were computed 
using the recursive Newton-Euler algorithm and KFM by 
projecting knee intersegmental moment onto the flexion axis. 
 
2) Parameter Optimization 

Several physiological parameters related to the contraction 
dynamics must be optimized for each person and muscle 

(usually via global optimization [49]). A novelty of the current 
work is the inclusion of categorical parameters in the tunable 
parameter set. Specifically, we use Bayesian optimization to 
optimize two functions, the activation nonlinearity function 4) 
and the model of the activation dynamics Ġ, in addition to five 
scalar parameters. Optimal fiber length ℓ% and tendon slack 
length ℓ& are often included in the tunable parameter set. 
However, to prevent overfitting [49] we chose to reduce the 
number of tunable parameters (which would otherwise be 
larger by inclusion of 4) and Ġ) by removing ℓ% and ℓ&. 
Instead, ℓ% and ℓ& were optimized similar to previous work 
[60] so that the range of ℓ$ normalized by ℓ% during walking 
gait would be within the range (ℓb$,$1-, ℓb$,$23) of published 
data [50], [61] if a rigid tendon model were used. In this case, 
 

c		
ℓ"!#,$23

ℓ"!#,$1-
		d = e		

1 ℓb$,$23 cos$$23

1 ℓb$,$1- cos$$1-
		f c		

ℓ&

ℓ%
		d (9) 

 
where $/ = asinAℓb$,/45 sin$%F for O ∈ {hij, h^U} and the 
range of MTU lengths (ℓ"!#,$1-, ℓ"!#,$23) were subject-
specific and taken from the walking calibration trials. The 
solution to (9) yields the optimal ℓ% and ℓ&. 

Bayesian optimization was used to tune a scalar that scaled 
the maximal isometric force 4$% and five muscle activation 
parameters: activation dynamics model Ġ, activation time 
constant k2, activation-to-deactivation ratio k2/k6 where k6 is 
the deactivation time constant, activation nonlinearity function 
4), and a parameter in 4). Muscles were grouped such that 
those belonging to the same group were assumed to have the 
same properties. Similar to previous work [54], three groups 
were permitted based on MTU structure and function: knee 
extensors, hamstrings, and gastrocnemii. Further, due to the 
association between fiber type distribution and the activation-
force relationship [53], we required muscles in the same group 
to have a similar proportion of type I (slow-oxidative) fibers 
[62]. All muscles within the three groups described previously 
with this fiber type proportion less than 60% were placed in a 
new group as were those greater than or equal to 60%. This 
was the case only for the hamstrings where SM and ST were 
both 50% type I, while BFL and BFS were both 65%. Thus, 
the four muscle groups were the knee extensors (VL, VM, VI, 
RF), lateral (BFL, BFS) and medial (SM, ST) hamstrings, and 
gastrocnemii (MG, LG) yielding 24 total tunable parameters. 

The strength scalar (range: 0.5 – 2.0) scaled 4$% initialized as 
the product of the physiological cross-sectional area [29] and 
the muscle stress when 4$ = 4$% (set to 0.30 MPa). Five 
activation dynamics models were considered (see appendix for 
details): (1) a 1st order, linear model [63], (2) a 1st order, 
nonlinear, piecewise-continuous model [48], (3) a 1st order, 
bilinear model [64], (4) a 2nd order, linear model [65], and (5) 
a piecewise version of model (4). All models were unity gain 
with an electromechanical time delay (40 ms [54]). The range 
of k2 was 10-60 ms and of the ratio k2/k6 was 0.25-1.00. 
Three functions were considered for 4) (see appendix for 
details): (1) an exponential model [54], (2) the A-model [66], 
and (3) the twice differentiable A-model [67]. 

The objective function was the average normalized mean 
squared error between the ID and OMC-Full estimate of KFM 
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across all calibration walking trials where normalization was 
by the variance of the ID estimate. Optimization was executed 
using bayesopt in MATLAB with the expected-improvement-
plus acquisition function, 0.5 exploration ratio, 96 seed points 
(four times the number of parameters), 300 GP active set size, 
and the number of maximum objective function evaluations 
was set to 576 (the number of parameters squared). 

III. EXPERIMENTAL VALIDATION 

A. Data Collection 
The proposed technique was validated on nine unimpaired 

subjects (four female, age: 21 ± 1 years, height: 1.77 ± 0.11 m, 
mass: 72.10 ± 12.30 kg). Each subject performed 10 
overground walking trials at a self-selected normal speed (1.36 
± 0.20 m/s) for which the right foot completely contacted the 
force plate for a single contact. Thus, one stance phase for the 
right leg was analyzed per trial. Marker position data were 
captured using 19 cameras (Vicon Motion Systems, Oxford, 
UK, 100 Hz). Force plate (AMTI, Watertown, MA, USA) and 
raw EMG (BioStamp, MC10, Inc., Cambridge, MA, USA) 
data were collected at 1000 Hz. Electrodes were placed over 
the MG, LG, VM, VL, RF, ST, and BFL according to 
SENIAM recommendations [68]. Force plate data were 
downsampled to 100 Hz for synchronization with marker data 
as were EMG data after excitations were computed. Shank and 
thigh IMUs (BioStamp, MC10, Inc., Cambridge, MA, USA, 
gyroscope range: ± 2000°/s, accelerometer range: ± 16g, 250 
Hz) were placed over the distal lateral shank and anterior 
thigh, respectively. IMU data were downsampled to 100 Hz 
and digitally time synchronized with marker position data. All 
subjects provided written consent to participate and all 
activities were approved by the University of Vermont 
Institutional Review Board (#18-0518). 

Each subject performed the static and functional calibration 
trials described previously for calibrating the musculoskeletal 
model. The first seven overground walking trials were set 
apart for calibrating the MTU parameters and GP models and 
the last three (test trials) were set apart for validation. The 
sensor-to-segment model calibration trials were the same static 
and functional calibration trials used for calibrating the 
musculoskeletal model and the test trials were used as the 
walking calibration trials. This mimics how calibration would 
be done in practice: the identified walking activity being 
evaluated would also be available for calibration. 

B. Statistical Analysis 
Statistics characterizing performance of IMC-GP are 

reported only for the three test trials. Net KFM from IMC-GP 
was compared with both ID and OMC-Full and individual 
muscle moment was compared between IMC-GP and OMC-
Full using Pearson’s correlation coefficient (r) and root mean 
square error (RMSE). RMSE was expressed as a percentage of 
the average range of the two time-series being compared 
(denoted %range) and of the product of subject body weight 
(in N) and height (in m); denoted %BW•H. To compare our 
results to previous work [20], [21], r and RMSE were 
computed for every time-series and then averaged. Average 
correlations were corrected using Fisher’s z transformation 

[69] and interpreted as weak (r ≤ 0.35), moderate (0.35 < r ≤ 
0.67), strong (0.67 < r ≤ 0.90), and excellent (r > 0.90) [21]. 
Peak knee extension moment (KEM) during initial stance was 
compared between IMC-GP and ID using r, mean absolute 
error (MAE), and Bland-Altman analysis: mean error (ME) 
and 95% limits of agreement (LOA) with compensation for 
repeated measures [70]. Pearson’s r was used to evaluate the 
sensitivity of the IMC-GP analysis to variation in muscle work 
across subjects by comparison to the OMC-Full analysis. 
Work was considered only for the contraction type (eccentric 
or concentric) in which each muscle did the most work. 

IV. RESULTS  

All three techniques yielded the same general trend in the 
KFM time-series (Fig. 3). This was supported statistically by 
strong to excellent correlations between IMC-GP estimates 
with those from ID (range: r = 0.68-0.96, average: r = 0.87) 
and OMC-Full (range: r = 0.74-1.00, average: r = 0.95) with 
RMSE less than 1.00 %BW•H (Table I). Correlations between 
IMC-GP and OMC-Full estimates of individual muscle 
moment (see online supplementary material for a graphical 
comparison) were strong to excellent (r = 0.81-0.99) across all 
muscles with RMSE between 6.46-26.33 %range (Table I). 
Peak KEM was estimated to within 0.57 %BW•H MAE of the 
ID estimate (ME: -0.22 %BW•H, LOA: -1.54 to 1.11 
%BW•H) with excellent (r = 0.92) correlation (Fig. 4). 
Excellent correlations were also observed between IMC-GP 
and OMC-Full estimates of cumulative muscle work across all 
muscles (Fig. 5) except for the VL (r = 0.88).  

V. DISCUSSION 

The most promising result from this validation was the 
estimation of KFM with strong correlations (r = 0.87) and low 
errors (0.91 %BW•H, 18.25 %range RMSE) using IMC-GP. 
These results compare favorably with the current state-of-the-
art in physics-based, wearables-only techniques. For example, 
Karatsidis et al. present an IMU-driven inverse dynamics 
analysis (17 IMUs, 17 segments) and optimization-based 
muscle force estimation [20]. KFM was estimated for 11 
healthy men across three walking speeds with a moderate 

 
 
Fig. 3. Ensemble average net KFM. Positive (negative) values indicate a 
flexion (extension) moment. The shaded area is ± 1 s.d. (ID, IMC-GP). 
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correlation (r = 0.58) and 1.9 %BW•H (29.8 %range) RMSE. 
Dorschky et al. present an approach based on optimal control 
of a musculoskeletal model wherein state variables tracked 
measured sensor signals (seven IMUs, seven segments) via 
trajectory optimization [21]. KFM (full gait cycle) was 
estimated for 10 healthy men across three walking speeds with 
strong correlations (r = 0.81) and 1.5 %BW•H (27.1 %range) 
RMSE. Compared to these methods, the proposed technique 
presents a significant reduction in sensor array complexity 
with comparable estimation performance.  

 The proposed technique also compares well with machine 
learning techniques. For example, estimation of KFM from the 
proposed technique was comparable to a neural network (NN) 
using EMG inputs (r2 = 0.81 vs. 0.76 for IMC-GP) [71] and a 
linear model using data from an instrumented insole (r = 0.89) 
[72]. In more recent developments, NN-based architectures 
with IMU inputs have been used to estimate KFM with 1.14 
%BW•H RMSE and r = 0.98 in a four-sensor, four-segment 
configuration [73] and with 18.4 %range RMSE and r = 0.72 
in a two-sensor, two-segment configuration [74]. In addition 
to characterization of KFM, IMC-GP provides complementary 
insight into the function and loading of individual muscles 
which are not modeled in machine learning techniques.   

One study (a recent conference paper [26]) has presented 
results for a hybrid approach similar to IMC-GP: machine 
learning informed both MTU kinematics and the mapping 
from an EMG subset to a full set. KFM (full gait cycle) was 
estimated with 26, 30, and 26 %range RMSE for walking at 
1.5, 3.0, and 5.0 km/h, respectively, compared to 18.25 
%range RMSE in the current study.  

Peak KEM during initial stance was estimated to within 
0.57 %BW•H MAE (i.e., 9.98 %BM, percentage body mass) 
which is less than observed inter-limb differences for patients 
post-ACLR (1.08 %BW•H [7]), differences between patients 
post-ACLR and healthy controls (17 %BM [8], 1.72 %BW•H 
[7], 1.10 %BW•H for patellar tendon graft [9]), and gender 
differences observed for patients 12 months post-ACLR 
(33.50 %BM [10]). Therefore, the proposed technique appears 
able to detect clinically meaningful differences. From at least 
one study [8], the observed LOA and 9.98 %BM MAE may 
appear too large to observe differences pre- and post-ACLR. 
Nevertheless, the observed excellent correlation (r = 0.92, Fig. 
4) suggests the proposed technique is sensitive to variation in 
peak KEM and thus could track patient recovery post-ACLR. 

The proposed technique is dependent on EMG-driven 
simulation of muscle contraction and thus the OMC-Full 
analysis represents the theoretical ceiling of performance. Our 
comparison of IMC-GP to OMC-Full supports the proposed 
technique as a promising surrogate for EMG-driven analyses 
in remote monitoring applications (Table I). Estimation was 
best for the instrumented muscles (VM, MG, and LG in the 
current implementation). In a post-hoc comparison, we found 
that accurate estimation of individual muscle moment was due 
in large part to accurate estimation of muscle activation (from 
the GP models) based on similar RMSE (%range) of the two 
signals: 13.41 in activation RMSE vs. 13.56 in KFM RMSE 
for VL, 17.25 vs. 20.63 for RF, 25.63 vs. 24.65 for ST, and 
25.81 vs. 18.18 for BFL. For instrumented muscles, estimation 
was better for VM than for MG and LG (Table I). IMU-driven 
forward kinematics likely explain this discrepancy wherein 
estimation of knee flexion angle (r = 0.98, 4.08º RMSE) was 
better than for ankle dorsiflexion (r = 0.53, 9.93º RMSE). 
Knee flexion angle was estimated using a Kalman smoother 
implementation of a previously validated complementary filter 
[27]. However, to avoid the need for a foot-worn sensor, ankle 
dorsiflexion was given following a simple foot-ground contact 
model (Fig. 2). A more complex contact model (e.g., including 
toes) and/or a data fusion approach (e.g., fusing contact model 
estimates with a forward dynamic estimate driven by ankle 
muscles) may improve estimation. Still, the strong correlations 
and relatively low errors motivate use of IMC-GP for 
evaluating relative muscle contributions to KFM which has 
clinical implications for managing musculoskeletal disease. 

The results of the correlation analysis suggest the proposed 
technique was sensitive to variation in muscle work from the 
reference EMG-driven analysis (Fig. 5). Muscle work is a 
known stimulus for hypertrophy [12] and objectively 
quantifies exercise intensity. Thus, the proposed technique 
points toward continuous monitoring of individual muscle 
loading in daily life. This could be transformative for 
personalized therapy enabling novel patient profiling (e.g., 
characterizing patient-specific exercise dose-response 
relationships over time), evaluation of intervention efficacy, 
and the potential to adapt loading prescriptions for managing 
tissue over- and under-loading. While we demonstrated the 

TABLE I 
Estimation of Net KFM and Individual Muscle Moment 

  r RMSE 
(%BW•H) 

RMSE  
(%range) 

     
 ID 0.87 0.91 (0.31) 18.25 (3.88) 
 OMC-Full 0.95 0.59 (0.30) 12.86 (5.01) 
     

M
us

cl
e 

C
on

tr
ib

ut
io

ns
 MG 0.98 0.14 (0.13) 10.02 (5.70) 

LG 0.96 0.06 (0.05) 13.09 (6.54) 
VM 0.99 0.08 (0.05) 6.46 (3.31) 
VL 0.96 0.23 (0.14) 13.56 (5.85) 
VI 0.98 0.08 (0.05) 9.83 (4.49) 
RF 0.90 0.09 (0.05) 20.63 (7.88) 

BFL 0.92 0.08 (0.04) 18.18 (6.97) 
BFS 0.81 0.04 (0.02) 26.33 (12.53) 
ST 0.83 0.14 (0.09) 24.65 (10.28) 
SM 0.87 0.10 (0.06) 21.02 (8.51) 

     
Bold entries indicate muscles for which measured excitations were 
used to simulate contraction whereas the others were based on the GP 
synergy function models 

 
 
Fig. 4. Scatter plot of peak KEM from the proposed technique (IMC-
GP) compared to the ground truth inverse dynamics (ID) analysis. 

0 1 2 3 4 5 6 7
IMC-GP Peak KEM (%BW H)

0

1

2

3

4

5

6

7

ID
 P

ea
k 

KE
M

 (%
BW

H
)



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

8 

characterization of individual muscle function via 
quantification of moment and work, other variables are 
necessarily characterized (see online supplementary material) 
including joint, MTU, and muscle kinematics, power, and 
force. This thorough characterization of the musculoskeletal 
system is due to the physics-based nature of the proposed 
approach and is nonexistent in machine learning alternatives. 
For the latter, all desired outcome variables are modeled 
separately and physical relationships between inputs and 
outputs are not necessarily maintained.  

Several limitations should be considered. Validation was 
only for unimpaired subjects walking at self-selected normal 
walking speeds. However, walking speeds ranged from 0.88-
1.76 m/s which is similar to the range of speeds used in 
previous multi-speed validations [21] and the range of stride 
times (0.98-1.13 s) encompass the majority of those observed 
in free-living, unimpaired gait [75]. Future work should 
investigate performance across multiple conditions (e.g., 
multi-speed, multi-load) and in impaired populations. EMG-
driven simulation of muscle contraction requires normalized 
excitations (by maximal voluntary contraction) which may 
vary throughout the day due to changes in the properties of the 
skin-electrode interface [76]. Thus, compensatory methods 
must be developed that are robust to these variations. The knee 
was modeled as a single DOF hinge joint. However, more 
complex models with translational DOFs may be more 
appropriate [77]. Only flexion moments were estimated and 
muscles with negligible contribution were ignored as in 
previous studies [78]. Modeling additional musculature would 
enable analysis of other DOFs and joint contact forces. The 
foot-ground contact and GP muscle synergy function models 
assumed walking gait. This would not be problematic for 
remote monitoring as walking activity is identified in the 
processing pipeline [2]. However, analysis of other tasks 
would require development of other task-specific models. 

VI. CONCLUSION 

This study presents a hybrid machine learning- and physics-
based technique for analysis of muscle and joint mechanics 
during walking using only wearable sensor data. Machine 

learning was used to reduce the number of required surface 
electrodes for EMG-driven simulation while data from two 
IMUs drove the system kinematics via physics-based 
techniques. The proposed technique performed well compared 
to laboratory standard inverse dynamics and EMG-driven 
analyses with comparable performance to other wearables-
only techniques with more complex sensor arrays. The 
proposed approach may be easily generalized for analysis of 
other muscles and joints not considered herein.  Importantly, 
the proposed technique allows sensor placement near the knee 
joint such that they could be integrated into a knee brace or 
sleeve for practical deployment. Future work should target 
remaining barriers to deployment including EMG 
normalization for long-duration recordings and integrating the 
required sensors into a wearable accessory. 
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