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Abstract 21 

Personalized treatment of complex diseases has been mostly predicated on biomarker identification of 22 

one drug-disease combination at a time. Here, we used a novel computational approach termed 23 

Disruption Networks to generate a new data type, contextualized by cell-centered individual-level 24 

networks, that captures biology otherwise overlooked when performing standard statistics. The new data-25 

type extends beyond the ‘feature level space’, to the ‘relations space’, by quantifying individual-level 26 

breaking or rewiring of cross-feature relations. Applying disruption network to dissect high-dimensional 27 

blood data, we discover and validate that the RAC1-PAK1 axis is predictive of anti-TNF response in 28 

inflammatory bowel disease. Intermediate monocytes, which correlate with the inflammatory state, play 29 

a key role in the RAC1-PAK1 responses, supporting their modulation as a therapeutic target. This axis also 30 

predicts response in rheumatoid arthritis, validated in three public cohorts. Our findings support blood-31 

based drug response diagnostics across immune-mediated diseases, implicating common mechanisms of 32 

non-response. 33 

Keywords 34 

Precision medicine, Individual-level network analysis, Drug response, Anti-TNF antibodies, Infliximab, 35 

Immune-mediated diseases, Inflammatory bowel disease, Rheumatoid arthritis, Pan-disease drug 36 

response diagnostics. 37 

Introduction  38 

Biologic therapies are used in a broad range of therapeutic areas including immune-mediated diseases, 39 

oncology, and hematology and have demonstrated effectiveness by improving disease clinical course, 40 

morbidity and patient quality of life. However, a subset of patients do not respond to therapy and 41 

therefore are exposed to the consequences of uncontrolled disease activity, unwanted side effects and 42 

increasing care costs. Therefore, the development of biomarkers for response prediction is an unmet 43 

medical need, necessary for achieving a favorable therapeutic index, cost/benefit ratio and overall 44 

improved patient care. Although biologics’ targets are highly specific (e.g. PD1, TNFα) and target particular 45 

molecular processes across diseases (e.g. CD8 T-cell exhaustion,  or TNF induced inflammation), the 46 

presence of these pathways in an individual patient is necessary but not sufficient to predict response to 47 

therapy, implying a more nuanced therapeutic mechanism which may be disease specific1,2.    48 

One of the most frequently used biologic drug classes are anti-TNFα antibodies, with sales of over $US 25 49 

billion per year3.  Anti-TNF agents are thought to exert their effects through several mechanisms, including 50 

TNFα neutralization, induction of cell and complement cytotoxicity through the FC drug fragment and 51 

cytokine suppression via reverse signaling or apoptosis4. Similar to other drugs and across inflammatory 52 

diseases including inflammatory bowel disease (IBD) and rheumatoid arthritis (RA), a sizable proportion 53 

of 20-40% of the treated patients, will primarily not-respond to treatment5,6.   54 

Previous studies used systematic screening of in-house and meta-analysis data for the identification of 55 

biomarkers associated with anti-TNFα treatment failure. Different markers were identified in different 56 

disease contexts7. Among these, in IBD, Oncostatin M (OSM) was identified as a potent mucosal 57 

biomarker8. This gene correlated closely with Triggering Receptor Expressed On Myeloid Cells 1 (TREM1), 58 

a biomarker found by us, which was predictive of response in biopsy and importantly also in blood, albeit 59 

in an inverted ratio9. In RA, myeloid related sICAM1 and CXCL13, and type I IFN activity were associated 60 

with anti-TNF response10. The identification of these markers suggests that biomarkers of pretreatment 61 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.16.448558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448558


3 
 

immune status may be useful for patient screening. However, little is known regarding molecular 62 

dynamics of anti-TNF response and resistance, and whether drug biomarkers are disease dependent, or 63 

represent a patient-specific property which can be generalized across diseases. 64 

The availability of high-resolution molecular data provides opportunities for achieving improved modeling 65 

of the complex therapeutic landscape using systems biology and network-based approaches. Yet, most of 66 

the statistical methods used are based on population averages, which do not suffice to fully investigate 67 

these complex diseases. Although several personalized approaches were recently suggested for exploring 68 

sample-level network information11,12, these studies were not cell-centered, and did not decouple cell 69 

frequency and cell regulatory program changes. Network structure was used to identify individual 70 

alterations in cross-feature relationships between groups, however, these were validated only in the 71 

unicellular level. The same is true for the identification of individual-level time series analysis. Thus, 72 

immunologic as well as time-dependent qualifiers, within and across patients, must be accounted for 73 

when attempting to predict and reassess response to immunotherapy over the course of therapy and in 74 

context to standard methods of clinical response assessment. 75 

We therefore employed a longitudinal cell-centered systems analysis, combining high-dimensional data 76 

of whole blood from anti-TNF responding and non-responding IBD patients at baseline and following two 77 

and fourteen weeks post first treatment. We focused on immune responses in blood, because although 78 

presenting an analytical challenge due to high background noise, blood-biomarkers have a clear 79 

advantage of accessibility, standardization, and cost-effectiveness. To understand individual variation in 80 

drug resistance, we devised a single sample-based network approach, termed ‘Disruption Networks’, 81 

which generates a new data type providing individual information of cross-feature relations, indicating 82 

changes in regulation. Using the new data-type information, we inferred patient-specific hypotheses for 83 

lack of response with respect to a global response network. We demonstrate that the monocytic 84 

expression of the RAC1-PAK1 axis, which is a final common pathway of multiple immune-receptor 85 

signaling cascades, is predictive of anti-TNF response in IBD as well as for the same treatment in RA, 86 

providing validation for the signature’s predictivity and supporting common baseline elements that 87 

contribute to response across infliximab (IFX) treated immune-mediated diseases. 88 

 89 

Results 90 

Treatment response is associated with forward movement along an inflammatory axis, whereas non-91 

responders regress. 92 

To understand the cellular and molecular changes associated with IFX response and non-response, we 93 

performed longitudinal deep immunophenotyping of peripheral blood in Crohn's disease (CD) patients 94 

who received first-time therapy with IFX during standard clinical care (Fig. 1a, left, hereon IFX cohort). 95 

Patients were profiled by gene expression, CyTOF and Luminex, a total of three times: pre-treatment (day 96 

0), week 2 (W2) and week 14 (W14) post-treatment initiation. At W14, 15 patients showed clinical 97 

response whereas 9 were classified as non-responders at the study end (Supp. Table 1 for clinical 98 

demographics; see Methods for response classification).  99 

To define an individual-specific unbiased expectation of peripheral blood immune dynamics during 100 

disease course, we used a public gene expression dataset of whole blood samples from healthy individuals 101 

and 75 IBD patients in varying disease states treated with standard of care therapies (Fig. 1a, right; see 102 

Methods). We constructed an external data-driven reference IBD axis (Fig. 1b, left), which describes in a 103 
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dimensionality-reduced Principal Component Analysis (PCA) space the molecular transition from active- 104 

through inactive disease to healthy- state, based on differentially expressed genes (hereon ‘inflammatory 105 

axis’, see Methods). Next, we projected the position of our in-house IFX cohort on the PCA (Fig. 1b, right) 106 

and calculated the distance each patient traversed on the axis over time, providing continuous molecular 107 

information to characterize a patient’s immune state shift (Fig. 1c). Analyzing the distance between paired 108 

sample time-points, we observed that responders progressed on the inflammatory axis (i.e., a positive 109 

shift on the axis towards the centroid of healthy reference samples), while non-responders regressed on 110 

it (Figure 1c, P<0.05, one-sided permutation test). Breaking up these dynamics by time point, we observed 111 

that responders exhibited increased progress along the inflammatory axis following first drug treatment, 112 

and reduced progress in the following period (Figure 1c). The negative correlation between progress along 113 

the axis between baseline-W2 and progress in the following segment W2-W14 suggests that patients 114 

progressing to ‘response’ early, slow down during subsequent timepoints whereas those showing a slow 115 

progress initially, progress more thereafter (Fig. 1d). In fact, temporal patterns in axis progression provide 116 

statistically significant context to the rate of response to therapies, that depends on immune contexture. 117 

Importantly our results suggest that clinical non-responders are immunologically affected by treatment 118 

as well, with an overall opposite direction from responders’ progress. Collectively, our inflammatory axis, 119 

captures blood molecular changes which are clinically relevant for treatment response.  120 

Early IFX response reduces expression of innate immune pathways attributed mainly to monocyte 121 
function. 122 
To identify cellular changes following treatment in each response group, we characterized major immune 123 

cell compositional changes in 16 canonical immune populations (Fig. 2, Supp. Table 2-3 for CyTOF panel 124 

and Citrus clusters annotation). Then, to compare how cellular peripheral blood state differs as a function 125 

of treatment response, we computed a PCA on the fold change of patients’ cell phenotyping profiles (Fig. 126 

2a, left). We observed significant difference in cell abundance changes between responders and non-127 

responders for W2 and W14 changes relative to baseline (P=0.005, NPMANOVA).   128 

Multiple cell subset changes in responders were already apparent at W2 including reduced abundance of 129 

monocytes, granulocytes, Tregs, naïve CD4+ T cells, CD4+ central memory T cells and increased abundance 130 

of CD4+ and CD8+ effector memory T cells and B cells (FDR≤0.15, Paired Wilcoxon test; Supp. Fig. 1a). 131 

Based on the PCA loadings we deduced that monocytes and Tregs were the primary drivers of changes 132 

following treatment (Supp. Fig. 1b), evidence for which was also supported by the univariate comparison 133 

showing that monocytes were significantly reduced in responders throughout both W2 and W14, whereas 134 

in non-responders monocyte frequency was unchanged in W2 and elevated at W14  (P=0.0015 and 135 

P=0.048 in responders, as opposed to P= 0.64 and P=0.016 in non-responders at W2 and W14 respectively, 136 

Paired Wilcoxon test). Moreover, monocyte frequency was also correlated with changes in CRP 137 

(Spearman’s r = 0.4, P=0.01), suggesting their relevance to treatment response (Fig. 2a center, right and 138 

Supp. Fig. 1c for correlation of CRP with other cell-types). Taken together, our results demonstrate 139 

significant differential cell composition following IFX treatment as a function of response, with monocytes 140 

likely playing a major role.  141 

Given the observed cell composition alterations, we performed a cell-centered analysis to identify 142 

changes in transcriptional programs following treatment in each response group, by adjusting the gene 143 

expression for variation in major cell-type proportions. This procedure places focus on detection of 144 

differences between conditions of the gene regulatory programs the cells are undergoing rather than 145 

those differences detected due to cell compositional differences, and has been shown to unmask 146 
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additional signal (i.e. false-negative of direct bulk analysis) while decreasing false-positives (Fig. 2b, see 147 

Methods)9. In this analysis, we identified 1400 (5.99%) and 589 (2.52%) differential features in responders 148 

(FDR<0.15, permutation test; Supp. Tables 7) at W2 and W14 compared to baseline respectively, 149 

suggesting enhanced response at W2 followed by reduced dynamics in W14. Compared to responders, 150 

non-responders showed attenuated dynamics in the parallel treatment periods, with only 542 (2.32%, 151 

Supp. Table 7) differential features at W2 compared to baseline, and no significantly detected dynamics 152 

at W14. To ensure the differences in dynamics between the two response groups were not due to sample 153 

size, we subsampled responders to match the non-responder group size and observed that responding 154 

patients exhibit more dynamic changes compared to non-responders (Supp. Fig. 2). Furthermore, 155 

comparing the two response groups, we observed only a minor overlap in the post treatment dynamic 156 

features (23 features, 1.2% at W2). In line with the ‘inflammatory axis’, these results suggest that there 157 

are increased early dynamics in responders compared to non-responders and that responders and non-158 

responders presented different alterations following treatment.  159 

To understand the relationship during IFX response between gene regulatory programs in a biological 160 

context, we constructed a cell-centered co-expression network, which was expanded by known 161 

interacting genes, followed by functional enrichment analysis (see Methods, Supp. Tables 8 for network 162 

edges and Supp. Fig. 3b for functional enriched pathways respectively). Interestingly, despite this being a 163 

blood-based network, we noted genes which were previously associated with anti-TNF response in IBD 164 

biopsies such as TREM1 and OSM8,9, suggesting that relevant signals originally detected in tissue, are also 165 

reflected in blood. We identified potential mediating pathways, i.e. pathways possessing higher 166 

connectivity to other nodes in the response network, using degree and betweenness centrality 167 

measurements (Fig. 2c).  168 

We observed that most central pathways associated with the W2 early response were related to the 169 

innate immune system (Supp. Fig. 3b). At the pathway level, consistent with the ‘inflammatory axis’ and 170 

feature level analysis, we found augmented response at W2, which was attenuated in the following period 171 

(151 vs. 88 enriched dynamic pathways in responders at W2 and W14 respectively; Supp. Fig. 3a-b). As 172 

expected, among the innate related altered functions, we observed pathways related to downregulation 173 

of NF-kB and TNF signaling via NF-kB (Fig. 2c, FDR<0.005 for W2 vs. baseline pathway score comparison, 174 

by Wilcoxon test; FDR<0.01 for enrichment in network by GSEA). Pathways with high network centrality 175 

included downregulation of FC receptor signaling and phagocytosis, cytoskeleton organization, Toll-like 176 

receptors (TLRs) and vascular endothelial growth factor (VEGF) signaling responses (Fig. 2c; top 25th 177 

percentile for both degree and betweenness; FDR<0.005 for W2 vs. baseline, by Wilcoxon test; FDR<0.1 178 

for enrichment by GSEA). These pathways also correlated with CRP measured in the clinical setting 179 

(Spearman’s r FDR<0.05 and Supp. Fig. 3d). Of note, FCƳR is known to be regulated by TNFα13 and 180 

mediates a number of responses, including the phagocytosis of IgG-coated particles, accompanied by 181 

cytoskeleton rearrangements and  phagosome formation, central pathways that were downregulated in 182 

responders (Fig. 2c and Supp. Fig. 3b, FDR<0.001 for W2 vs. baseline, by Wilcoxon test; FDR<0.15 for 183 

enrichment by GSEA). We also observed the downregulation of reactive oxygen species (ROS) pathway, 184 

which is crucial for the digestion of engulfed materials in phagosomes (FDR<0.001 for W2 vs. baseline, by 185 

Wilcoxon test; FDR<0.05 for enrichment by GSEA). This pathway was also correlated with CRP (Spearman’s 186 

r 0.43, FDR<0.005, Supp. Fig. 3b and Supp. Fig. 3d). To identify the most likely cell expressing these 187 

pathways, we regressed the unadjusted fold change gene expression on major blood immune cell 188 

abundance changes (see Methods). We observed that monocytes and granulocytes were the major 189 

contributors associated with the dynamic pathways (Supp. Fig. 3c). This further supports the considerable 190 

contribution of monocytes to treatment response, on top of their significant frequency alteration and 191 

their frequency correlation with CRP. 192 
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‘Disruption Networks’ as a framework to understand individual variation in non-responders’ dynamics.  193 
Whether non-responders' transcriptional profile reflects fundamental routes of IFX resistance, is essential 194 

for tailoring treatment. To elucidate molecular mechanisms of individual-specific pathways of treatment 195 

non-response, we devised a systematic framework we term ‘Disruption Networks’ which generates a new 196 

data-type to provide individual-level information of cell-centered changes in cross-feature relations. The 197 

generation of the new data-type relies on studying relations between features across a predefined 198 

reference population of individuals (i.e., a population level reference network), and then inferring how 199 

these relations differ (i.e., are disrupted) at the single sample level. The new data-type can serve as an 200 

input to multiple analyses including integration, differential signal detection, patient stratification based 201 

on disruption profile, assessment of disruption in functional modules and evaluation of individual’s 202 

molecular network behavior under specific perturbation effects or biological conditions (Fig. 3a).  203 

To identify how non-responding-individuals differ with respect to the IFX response dynamics, we 204 

iteratively added a single non-responding patient to the response reference network we had studied and 205 

calculated the disruption in the correlation structure in each edge for that patient (hereon ‘dropout’). This 206 

procedure was performed separately for each non-responder. We considered only negative dropouts, 207 

that is, events in which the relation (i.e., correlation) between two features was weakened once the non-208 

responder data was spiked into the responders’ group, indicating deviance from treatment response 209 

(Supp. Fig. 4a, for an example). To evaluate non-responders’ dropout significance, we generated empirical 210 

null distribution of dropouts (‘normal response’ dropouts) by iterative addition of each responder’s 211 

sample to the other responders’ samples. We calculated P-values as a left-tail percentile, within the null 212 

distribution of the normal dropouts, which were further corrected for multiple testing (Fig. 3a; see 213 

Methods). By applying the ‘Disruption Networks’ framework, we considerably expanded the detected 214 

differential signal between response groups as compared to standard differential analysis (one feature by 215 

Wilcoxon test (FDR<0.1) vs. 180 features by mean drop intensity, including the single feature identified by 216 

Wilcoxon test (FDR<0.1 for dropout significance and 10th top percentile of mean drop intensity);  Fig. 3b 217 

and Supp. Fig. 4b for mean drop intensity, disrupted edge ratio parameters and the agreement of both 218 

respectively). 219 

To understand disruption in the functional context, we aggregated the dropouts to calculate a pathway-220 

level personalized disruption (Fig. 3c for mean drop intensity and Supp. Fig. 4c for disrupted edge and 221 

node ratio parameters; see Methods). We found that the major disrupted dynamics at W2 was related to 222 

the cytoskeleton/fiber organization and VEGFR signaling which were central functions during normal 223 

treatment dynamics. Interestingly, nodes related to these disrupted pathways exhibited high centrality 224 

(P<9.999e-05 and P=0.034 for degree and betweenness correspondingly by permutation test; Fig. 3d). On 225 

the meta-pathway level, monocytes were the most central cell-type associated with the disrupted 226 

pathways (Fig. 3e, left, top 5th percentile for degree and betweenness centrality). The disrupted meta-227 

pathway included the core genes consisting of the HCK-RAC1-PAK1 signaling cascade, which presented 228 

high combined degree and betweenness centrality (P=0.017, n=1000 random triple node subsampling). 229 

This core perturbed axis is a final common pathway involving signaling through several proximal immune-230 

receptors by a range of inflammatory ligands including chemokines, growth factors such as VEGFR, and 231 

FC receptor ligands which induce FC-mediated phagocytosis involving coordinated process of cytoskeleton 232 

rearrangement14. Indeed, these pathways were functionally enriched in the disrupted meta-pathway (q-233 

value<0.05, hypergeometric test; Fig. 3e, right). The latter are also linked to ROS and NADPH oxidase 234 

activation through the regulation of RAC115.Of note, suppression of RAC1-PAK1 signaling, predominately 235 

in innate immune cells was shown to mediate remission in CD16. Taken together, these observations 236 

showcase the power of ‘Disruption Networks’ to identify masked, individual level, signal and suggest that 237 

the RAC1-PAK1 signaling cascade, is significantly disrupted in non-responders, during treatment. 238 
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RAC1-PAK1 signaling is elevated in responders’ peripheral monocytes pre-treatment. 239 

We next asked whether cellular programs found to be disrupted during treatment dynamics can be 240 

identified pre-treatment, since direct differential analysis in the feature expression space did not yield 241 

significant signal. Looking at the feature level, we found that most of the pre-treatment differentially 242 

expressed genes were increased in responders, including genes involved in the RAC1-PAK1 axis (FDR<0.1, 243 

Wilcoxon test, Supp. Fig. 5a). On the pathway level we observed that the fiber organization pathway, 244 

presented pre-treatment disparity between the two response groups (FDR<0.1, NPMANOVA) and 245 

correlated with clinical CRP (Spearman’s r =0.4, P=0.06), in addition to its high centrality in the response 246 

network (Fig. 4a). The relative pathway score of the cytoskeleton-organization pathway was higher in 247 

responders pre-treatment compared to non-responders (P<0.0006, one-tailed Wilcoxon test), and was 248 

downregulated following efficient treatment (P<0.001 and P<0.05 for W2 and W14 compared to baseline, 249 

one-tailed Wilcoxon test; Fig. 4b). This was in contrast to non-responders which showed insignificant 250 

dynamics at W2 and even an opposite trend in W14 (P=0.52 and P=0.041 for W2 and W14 compared to 251 

baseline, one-tailed Wilcoxon test; Fig. 4b).  252 

The fiber organization pathway associated with treatment dynamics and response already at pre-253 

treatment state, represents distinctive differences in cellular transcriptional states between response 254 

groups, rather than differences reflecting cellular composition alterations, as our analyses accounted for 255 

cell proportions. Therefore, we next aimed to dissect the cellular origin of the fiber organization related 256 

core genes. First, we tested the correlation between the canonical cellular frequencies as obtained by 257 

CyTOF, and the bulk unadjusted expression of the fiber organization genes (Supp. Fig. 5b). We observed 258 

that the majority of the genes in the target pathway were positively associated with monocytes 259 

abundance. To further validate the cellular origin and the fiber organization related transcriptional cell 260 

state in the two response groups, we performed single-cell RNA sequencing (scRNA-seq) using peripheral 261 

blood mononuclear cells (PBMCs) from pre-treatment samples of a representative responder and non-262 

responder (Fig. 4c; see Methods). Assessment of the fiber organization related expression in the cellular 263 

level, confirmed that monocytes were highly associated with the distinctive pathway expression (P<2.2e-264 

16, for expression in monocytes compared to the other cell types, Wilcoxon test, Fig. 4c, right and Supp. 265 

Fig. 6).   266 

To understand the molecular events associated with the fiber organization pathway in the relevant cell 267 

and subset specific context, we expanded the fiber organization differential genes through intersection of 268 

knowledge- and data-driven based networks (see Methods). Then, we assessed the pathway related 269 

expression in monocyte subsets, which were previously shown to exhibit distinct phenotypes and 270 

functions in health, and immune-mediated disease states17. The results indicated that intermediate 271 

monocytes contributed most to the fiber organization distinctive expression between the response 272 

groups, pre-treatment (|FC|=2.13, P<2.2e-16 in intermediate monocytes vs. |FC|=1.3, P<2.2e-16 and 273 

|FC|=1.1, P<0.05 in classical and non-classical monocytes respectively by Wilcoxon test, Fig. 4d). 274 

Interestingly, we detected significantly increased membrane TNF (mTNF) on intermediate monocytes 275 

compared to the other subsets, by CyTOF (P<5e-07, one-tailed Wilcoxon test, Fig. 4e), suggesting these 276 

cells serve as drug targets, thereby explaining their tight linkage to drug response. 277 

Pre-treatment RAC1-PAK1 axis is predictive for IFX response across immune mediated diseases. 278 
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We next tested whether the pre-treatment fiber organization pathway could predict treatment response 279 

(see Methods). We observed that the pathway score of a set of 6 core genes (RAC1, PAK1, LYN, ICAM1, 280 

IL1B and FCGR3A) could discriminate responders from non-responders at a mean AUC of 0.90 (95CI 0.74, 281 

1; P=0.0001 by Permutation test), supporting a common mechanism of non-response to treatment (Supp. 282 

Fig. 5c). By applying targeted network analysis of the predictive fiber organization pathway in 283 

intermediate monocytes, we found that the FCƳR signaling and functionally related pathways including 284 

phagocytosis and ROS metabolism were highly enriched in the co-expression network effectively 285 

differentiating between response groups at baseline (Supp. Fig. 7). 286 

To further validate our findings, we tested an additional independent validation cohort of 29 CD patients, 287 

which were naive to biological treatment and were treated with thiopurines or steroids only as a co-288 

therapy (Supp. Table 9 for clinical demographics). The results indicated that the pre-treatment RAC1-PAK1 289 

axis, was differentially expressed between response groups in the validation cohort (P<0.01, Wilcoxon 290 

test) as well, supporting the primary findings and thereby demonstrating that reduced pre-treatment 291 

expression of the RAC1-PAK1 axis is associated with non-response (AUC=0.78; Fig. 5a).   292 

To assess whether the predictive RAC1-PAK1 axis is disease dependent or whether it could be generalized 293 

across diseases, we tested public datasets of blood samples from RA patients, pre-IFX treatment 294 

(GSE2069018, GSE3337719, GSE4229620). Gene expression was adjusted to major cell type contributions 295 

which was evaluated by deconvolution (see Methods). The results confirmed the increased pre-treatment 296 

expression of the axis genes in RA responders, (representative cohort GEO20690, Fig. 5b). Application of 297 

fiber organization predictive signature to multiple pre-treatment RA cohorts separated IFX response 298 

groups effectively (Meta ROC AUC=0.72, Fig. 5c). These findings expand the predictive value of the RAC1-299 

PAK1 axis to other IFX-treated related diseases such as RA. Taken together, these observations 300 

demonstrate that the baseline RAC1-PAK1 axis expression in monocytes differentiates response groups 301 

and ultimately impacts response potential across immune-mediated diseases.  302 

Discussion  303 

Despite substantial inter-individual heterogeneity and our growing ability to measure it, commonly used 304 

statistical frameworks for analyzing high-dimensional data describe changes happening on average 305 

between conditions or groups. This is especially true in the case of networks which form a natural way of 306 

describing the possible interactions occurring between measured biological species, yet are population-307 

based, and thus limited in their ability to monitor individual variation from those interactions and the 308 

ensuing emergent phenomena these interactions yield. Here we studied the dynamics of IFX response in 309 

IBD, in a small cohort, over time. To address this challenge, we devised the ‘Disruption Networks’ 310 

approach, a cell-centered personalized statistical framework which unmasks differences between 311 

individuals. The approach enables a systematic dissection of IFX effect on response dynamics from blood, 312 

by generating a new data-type which quantifies individual-level breaking or rewiring of cross-feature 313 

relations. The generated data-type is cell-centered considering both cellular composition changes and 314 

changes in cellular regulatory programs, allowing us to identify robust functional pathways deviating from 315 

normal response in non-responders, and robustly associate these with drug resistance in both IBD and 316 

RA. 317 

Although TNF is a pleiotropic cytokine, functioning in both the innate and adaptive immune system21, we 318 

found that the early response alterations following IFX treatment were mostly related to innate pathways 319 

of which monocytes were the major driver. Evidence supporting this has been previously implicated by 320 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 12, 2021. ; https://doi.org/10.1101/2021.06.16.448558doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448558


9 
 

the decreased frequency of monocytes during treatment in anti-TNF treated IBD22 and RA23 patients. 321 

Furthermore, the anti-proliferative and cell-activation suppressive effect of IFX was shown to depend on 322 

FC-expressing monocytes in a mixed lymphocyte reaction24. In addition, the regained long term response 323 

following granulocyte/monocyte adsorption treatment following loss of response during IFX treatment 324 

further corroborates our findings25. Taken together, these results support the potential for subset specific 325 

targeted therapy to augment IFX treatment.  326 

By applying the ‘Disruption Networks’ framework, we identified RAC1-PAK1 signaling, as a central 327 

pathway associated with IFX response. This pathway exhibited disrupted dynamics in non-responders and 328 

was predictive of treatment response at baseline. Although abnormal RAC1 signaling was linked to 329 

immune-mediated diseases pathogenesis26, its direct relation to anti-TNF response has not been 330 

demonstrated. The RAC1-PAK1 axis is a final common pathway shared by several proximal immune 331 

receptors, controlling actin cytoskeletal movement, activation of the respiratory burst and phagocytic 332 

activity in innate cells. RAC1 was identified as a susceptibility gene for IBD27, and TNF was shown to 333 

stimulate RAC1-GTP loading16, supporting efficacy of antagonizing this effect by anti-TNF. In line with our 334 

findings demonstrating IFX suppressive effect on the RAC1-PAK1 axis during treatment, thiopurines, 335 

another effective IBD treatment were also shown to inhibit RAC1 activity28. The superior effect of anti-336 

TNF -thiopurines combination over monotherapy29 suggests that the enhanced therapeutic effect is 337 

mediated not only by controlling anti-drug antibody (ADA) levels, but conceivably also by the induction of 338 

a mutual additive effect on RAC1 suppression. Interestingly, the TREM adaptor (TYROBP/DAP12), which 339 

we previously found to be predictive for anti-TNF response by meta-analysis9, was detected in the 340 

differential RAC1-PAK1 signature, exhibiting significant correlation with the RAC1-PAK1 axis in monocytes, 341 

and is also functionally related through shared signaling30 .  342 

The monocytes single-cell based RAC1-PAK1 co-expression network demonstrated pre-treatment 343 

differential expression, primarily in intermediate monocytes, related to FcyR dependent phagocytosis and 344 

interferon signaling. This is consistent with prior reports showing that FcγR affinity affects anti-TNF 345 

therapeutic response31–33. Interestingly, the RAC1-PAK1 axis was predictive of IFX responsiveness also in 346 

RA, an observation which provides additional validation for the signature predictivity and supports 347 

common baseline elements contributing to response across IFX-treated immune-mediated diseases. 348 

Similarly to IBD, also in RA, the RAC1-PAK1 upstream activator FcγR was linked to disease 349 

susceptibility34,35. The FcγR3A, which is a part of the predictive signature, is known as a key receptor for 350 

monocytes effector response including antibody-dependent cellular cytotoxicity (ADCC), immune IgG-351 

containing complexes clearance and phagocytosis36,37. These further corroborate the common element of 352 

enhanced RAC1-PAK1 signaling through increased expression or affinity for FcγR3A expressed on 353 

monocytes that may enhance the efficacy of IFX in IBD and RA. These results extend the relevance of 354 

molecular commonalities for disease activity38 and pan-pathology39, also to interconnected pathways of 355 

drug responsiveness across immune-mediated diseases.  356 

Whether the RAC1-PAK1 axis and the upstream FcγR are applicable to IFX response in other immune-357 

related diseases or other anti-TNF therapeutic antibodies remains to be determined. While we identified 358 

the RAC1-PAK1 axis as predictive for therapy response in IFX-naive patients, our results do not yet provide 359 

an understanding of how this axis is expressed in previously-treated patients. Considering the backwards 360 

immune shift in non-responders along the ‘inflammatory axis’ we identified, analysis of previously-treated 361 

patients should be addressed separately. The ‘inflammatory axis’ further provides a potential explanation 362 

for the inferior response rates to subsequent treatments in treatment-experienced compared to naïve 363 
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patients treated with the same agents40. Of note, our real-life cohorts consisted of clinically comparable 364 

responding and non-responding groups, in terms of demographics and concurrent therapies, except for 365 

lower drug levels in non-responders at W14 in the primary cohort. The disrupted axis was identified at 366 

the early W2 response period in which drug levels were comparable and thus response is not expected to 367 

be affected by the subsequent difference. In this context, the lower drug levels are likely a consequence 368 

rather than a cause of non-response, maybe due to “inflammatory sink” drug consumption, or  drug loss 369 

through a “leaky gut”41,42.  370 

Blood-based pre-treatment biomarkers are highly important for precision medicine, since when identified 371 

across diseases and drugs as performed here, they offer the vision of data-driven choices for physician 372 

treatment and personalized care. Our results suggest that the road to this vision may be shorter than 373 

anticipated, as at least for immunotherapies, blood is a relevant tissue for signal detection and non-374 

response mechanisms appear to be conserved across immune-mediated diseases. We note that this pan-375 

disease drug response conserved pattern may not necessarily hold in biopsies from the site of disease, 376 

which being different tissues, may present different cells playing a role. Our combined experimental-377 

computational approach, where small time series experiments are combined with an individual-level 378 

analytical framework, can be generalized to other diseases and conditions including mechanisms of drug 379 

mode of action, drug non-response, comparison of drug effects and disease courses. These will ultimately 380 

allow to make sense of blood and accelerate an era of immune-based precision diagnostics.  381 

 382 

Methods 383 

Patients and study design 384 

Primary real-life IBD cohort 385 

A primary real-life cohort consisting of 24 Crohn’s disease (CD) patients who received IFX treatment at the 386 

gastroenterology department of the Rambam Health Care Campus (RHCC). All patients met the study 387 

inclusion criteria as follows: 1) Adequately documented active luminal CD, as phenotyped by a 388 

gastroenterologist with expertise in IBD. 2) Documented decision to initiate full IFX induction regimen 389 

with 5 mg/kg induction dosing (i.e., at weeks 0, 2, 6). Patients that had past exposure to Infliximab, 390 

Adalimumab or Vedolizumab, or patients who had active infection including febrile diseases or intra-391 

abdominal or perianal abscess were excluded. The study was approved by the institutional review board 392 

(0052-17-RMB), and patients provided written informed consent. Demographic and clinical characteristics 393 

of the patients are shown in Supp. table 1.  394 

Patient samples were obtained at three time points: at baseline, before IFX treatment, and two and 395 

fourteen weeks post first treatment and assayed for gene expression microarray data, high-resolution 396 

granulocytes and lymphocytes subtype frequencies and functional markers by CyTOF, and a panel of 51 397 

cytokines and chemokines by Luminex. CyTOF panel including Clone, vendor, and conjugation 398 

information, and Luminex panel are detailed in Supp. table 2 and 3 respectively. 399 

Patient response classification was defined by decision algorithm, which we used and described previously  400 
9. Briefly, patients were classified as responders based on clinical remission, which was defined as 401 

cessation of diarrhea and abdominal cramping or, in the cases of patients with fistulas, cessation of fistula 402 

drainage and complete closure of all draining fistulas at W14, coupled with a decision of the treating 403 
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physician to continue IFX therapy at the current dosing and schedule. In patients that were initially 404 

clinically defined as partial responders, classification was determined by a decision algorithm that 405 

included the following hierarchical rules: 1) steroid dependency at week fourteen; 2) biomarker dynamics 406 

(calprotectin and CRP) and 3) response according to clinical state at week 26. Applying the decision 407 

algorithm and exclusion criteria, yielded a final study cohort of 15 and 9 responding and non-responding 408 

patients respectively.  409 

As shown in Supp. table 1, responders significantly reduced CRP, already at W2 post first treatment while 410 

non-responders presented a trend of reduced CRP at W2, but their CRP level following 14 weeks was 411 

elevated and significantly higher than CRP level in responders. No significant difference was found in 412 

target TNFα levels, neither in responders or non-responders, as measured by either serum cytokine level 413 

using Luminex or by adjusted gene expression. As expected, IFX drug levels were shown to be significantly 414 

reduced, in both responders and non-responders at W14 compared to W2, due to the transition from 415 

induction to maintenance therapy. Drug levels of responders were significantly higher compared to non-416 

responders at W14. However, at W2, no significant difference in drug levels was measured. Responders 417 

also showed improved albumin levels along treatment, with significantly higher levels compared to non-418 

responders at W14. All other parameters were comparable between the two response groups. 419 

Validation real life IBD cohort 420 

The validation cohort consisted of 29 CD patients from the RHCC, which were classified to 20 and 9 clinical 421 

responding and non-responding respectively patients according to the above-described decision 422 

algorithm (Supp. table 9).  423 

CyTOF sample processing and analysis 424 

A total of 2 × 106 cells of each sample were stained (1 h; room temperature) with a mixture of metal-425 

tagged antibodies (complete list of antibodies and their catalog numbers is provided in Supp. table 2). This 426 

mix contained antibodies against phenotyping markers of the main immune populations and some central 427 

cytokine and chemokine receptors. All antibodies were validated by the manufacturers for flow 428 

application (as indicated on the manufacturer's datasheet, available online) and were conjugated by using 429 

the MAXPAR reagent (Fluidigm Inc.). Iridium intercalators were used to identify live and dead cells. The 430 

cells were fixed in 1.6% formaldehyde (Sigma-Aldrich) at 4°C until they were subjected to CyTOF mass 431 

cytometry analysis on a CyTOF I machine (Fluidigm Inc.). Cell events were acquired at approximately 500 432 

events/s. To overcome potential differences in machine sensitivity and a decline of marker intensity over 433 

time, we spiked each sample with internal metal-isotope bead standards for sample normalization by 434 

CyTOF software (Fluidigm Inc.) as previously described43. 435 

For data preprocessing, the acquired data were uploaded to the Cytobank web server (Cytobank Inc.) to 436 

exclude dead cells and bead standards. The processed data were analyzed using Citrus algorithm, which 437 

performs hierarchical clustering of single cell-events by a set of cell-type defining markers and then assigns 438 

per sample, per cluster its relative abundance in each sample as well as the median marker expression for 439 

each functional marker per cluster44. Citrus analysis was applied separately on PBMCs and Granulocytes 440 

population in each sample using the following parameters: minimum cluster size percentage of 0.01 and 441 

0.02 for PBMCs and Granulocytes respectively, subsampling of 15,000 events per sample and arcsin 442 

hyperbolic transform cofactor of 5. The gating for the classification of the clusters is detailed in Supp. table 443 

3.  444 
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Blood transcriptome analysis 445 

Whole blood was maintained in PAXgene Blood RNA tubes (PreAnalytiX). RNA was extracted and assayed 446 

using Affymetrix Clariom S chips (Thermo Fisher Scientific). The microarray data are available at the Gene 447 

Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). The raw gene array data were 448 

processed to obtain a log2 expression value for each gene probe set using the RMA (robust multichip 449 

average) method available in the affy R package. Probe set annotation was performed using affycoretools 450 

and clariomshumantranscriptcluster.db packages in R. Data were further adjusted for batch effect using 451 

empirical Bayes framework applied by the Combat R package. 452 

Gene expression data were further adjusted for variations in frequency of major cell types across samples 453 

as measured by CyTOF, including CD4+ T cells, CD8+ T cells, CD19+ B cells, NK cells, monocytes and 454 

granulocytes, to allow detection of differential biological signals that do not stem from cell proportion 455 

differences, which might be otherwise masked in unadjusted gene expression data.  Adjustment was 456 

performed using the CellMix R package. 457 

Cytokines and chemokines measurement using Luminex bead-based multiplex assay 458 

Serum was separated from whole blood specimens and stored at -80°C until used for cytokine 459 

determination. Samples were assayed in duplicate according to the manufacturers' specifications 460 

(ProcartaPlex™ Immunoassay, EPX450-12171-901, eBioscience, Cytokine/Chemokine/Growth Factor 45-461 

Plex Human Panel 1, Supp. table 4). 462 

Data were collected on a Luminex 200 instrument and analyzed using Analyst 5.1 software (Millipore) and 463 

NFI (Median Fluorescence Intensity) values were used for further data processing. A pre-filtering was 464 

applied as follows: samples with low mean bead count, below 50 were excluded from analysis.  In addition, 465 

duplicates with high CV values (Coefficient of variation) above 40% were omitted. NFI values with low 466 

bead count, below 20 were filtered out, but in cases which one replicate had acceptable bead count and 467 

the CV values for both replicates were less than 25%, NFI values were retained.  468 

Finally, net MFI values were calculated by blank reduction followed by log2 transformation. Data were 469 

further adjusted for batch effect using the empirical Bayes framework applied by the Combat R package. 470 

Characterization of IFX responders and non-responders’ dynamics through integrative molecular 471 
response axis combining external and in-house data 472 

An integrative molecular response axis was constructed to recapitulate the complex nature of anti-TNFα 473 

response progression dynamics which enables to track individual immune dynamics of both responding 474 

and non-responding patients. This methodology was assessed using an external data-based axis.  475 

For unbiased definition of the ’inflammatory axis’ and validation of our own data we used public gene 476 

expression data of whole blood from 25 UC patients and 50 CD patients in active or inactive disease states, 477 

available in Gene Expression Omnibus (GSE94648). The patients in this external cohort were treated with 478 

different medications including 5-ASAs, Immunosuppressants, anti-TNF agents, steroids and combinations 479 

of these therapies, as previously described45, representative of a relatively large portion of the treated 480 

IBD patient population. The analysis was performed in several steps: (1) Differential expression analysis 481 

between active disease and healthy states for UC and CD separately (Supp. Table 5), using the limma R 482 
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package, followed by PCA (Principal Component Analysis). (2) Ordinal lasso was used to select the principal 483 

components that best describe the desired directionality from active through inactive to healthy state, 484 

based on optimal absolute coefficient values and percentage of variance explained parameters (Supp. 485 

Table 6). (3) The ‘inflammatory axis’ coordinates were defined based on initial and terminal points 486 

determined as the mean of the two end-point coordinates of active and healthy states. (4) Applying vector 487 

multiplication (dot product) for the calculation of the projection of sample vector from our in-house 488 

cohort in the direction of the external ‘inflammatory axis’, to estimate sample position on the axis. (5) 489 

Evaluation of the distance of patient samples between two time points based on sample axis location. 490 

Multi-omics network of anti-TNF blood response dynamics 491 

Core co-expression response network 492 

To identify features that change over time in responders, a linear mixed-effects model was used, in which 493 

time was treated as a fixed effect and individuals were treated as a random effect (lmer R package) to 494 

allow testing differential expression by time while accounting for between-subject variations. P-values 495 

were calculated empirically through a permutation test (n perm=1000). In each permutation, feature 496 

measurements were shuffled between visits for each responding patient. Permutation based p-values 497 

were obtained by comparing the absolute value of the non-permuted β coefficient for each feature to the 498 

null distribution of permuted β coefficients for the same feature. In order to calculate FDR based on the 499 

permutation results, permuted p-value was determined for each permuted β coefficient, by comparing 500 

the tested permuted β coefficient to the distribution of the other permuted β coefficients for each feature. 501 

Then FDR was estimated by comparing the non-permuted p-values to the null distribution of the 502 

permuted p-values. A similar calculation was performed for non-responders (max n perm =512).   503 

In addition to the determination of dynamic features in the full responders’ sample data, a random 504 

subsampling of samples from the responders group, without replacement, was applied to achieve equal 505 

sample size between responders and non-responders. Two-hundred subsamples were generated and 506 

tested using linear mixed-effects models. In this part, for the comparison of equally sized responders and 507 

non-responders’ groups, p-values were calculated based on the t-statistic using the Satterthwaite 508 

approximation, implemented in the lmerTest R package, followed by multiple hypotheses correction 509 

using the Benjamini-Hochberg procedure. 510 

Co-expression network based on V1-V2 fold-change expression values of the significantly altered features 511 

(FDR<0.15) was constructed, based on pairwise Spearman’s rank correlation using the psych R package. 512 

Filtering was applied to remove feature-pairs with insignificant correlation with a cutoff of FDR<0.1.  513 

Network propagation 514 

Network propagation procedure was applied to enhance the biological signal of the obtained networks as 515 

previously described 46 with slight modifications. Briefly, for each node in the network, protein interactors 516 

with a combined score above 700 were extracted based on STRING database (functional protein 517 

association networks; https://string-db.org/cgi/download.pl) using STRINGdb R package. A node 518 

interactor was added as a linker gene to the network if its own interactors (hubs) were significantly 519 

enriched in the core network features. Enrichment was calculated using the hypergeometric test in the 520 

stats R package. Calculated p-values were adjusted for multiple hypotheses using the Benjamini-Hochberg 521 

procedure. A cutoff of FDR<0.05 was selected for significant enrichment of the tested interactor hubs in 522 

the immune network.  523 

Functional enrichment assessment for the response network 524 
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To assess dynamics in the functional level, genes were grouped to functional sets by using a semi-525 

supervised approach combining both network structure and known gene set annotations from Hallmark, 526 

Kegg, Reactome, Biocarta, PID and BP Go terms. Each edge in the network was classified to a specific 527 

pathway if its two linked nodes were annotated in the same biological group. Pathways with less than 5 528 

mapped edges were filtered out. This was followed by a global gene set enrichment analysis using fGSEA 529 

(FDR<0.15, nperm=1000, minSize=10, maxSize=400). 530 

The dynamic enriched pathway structures were further tested for significance by comparing the density 531 

(graph density score) of each pathway associated sub-network to a parallel sub-network density obtained 532 

from 100 random networks with a matched size according to the Erdos-Renyi model which assigns equal 533 

probability to all graphs with identical edge count (igraph R package). P-value was evaluated as the 534 

proportion of random module density scores that were higher than the real module density score. 535 

Additional filtering was applied according to the number of connected components in a pathway sub-536 

graph (igraph R package). Only highly connected pathways (percentage of largest connected 537 

component>50%, size of the connected component>10 ) were included. 538 

The dynamic pathways list was further condensed by filtering out high overlapping pathways using Jaccard 539 

index. Accordingly, in overlapping pathways pairs that presented a Jaccard index above 0.5 the smaller 540 

module was omitted.  541 

To further associate the assigned pathways with treatment response, the Wilcoxon test was used to 542 

compare V1 to V2 and V1 to V3 relative pathway scores in responders and non-responders. p-values were 543 

adjusted for multiple hypotheses using the Benjamini-Hochberg procedure (FDR<0.05). Relative pathway 544 

scores were calculated for each sample as previously described 38,47 (see Relative pathway score 545 

evaluation). To assess cellular contributions for each pathway, the non-adjusted expression of each gene 546 

in the dynamic pathways was regressed over the major peripheral cell type frequencies as determined by 547 

CyTOF including granulocytes, CD4 and CD8 T cells, B cells, NK cells and monocytes. The cell-specific 548 

contribution to each pathway was determined as the mean of the coefficients of the tested cell type across 549 

all genes in the module. The centrality of each pathway in the response network was also evaluated by 550 

calculating the pathway based mean betweenness and degree across all gene members of the pathway 551 

(igraph R package). To further assess the clinical relevance of the dynamic pathways to the treatment 552 

response, the calculated pathway score at all tested time points was correlated with CRP using Spearman's 553 

rank correlation test.  554 

Relative pathway score evaluation 555 

The expression of each gene in the pathway was standardized by the z-score transformation, to enable 556 

comparable contribution of each gene member to the pathway score, followed by mean value calculation 557 

across the transformed genes in the pathway for each sample.  558 

‘Disruption Networks’ framework  559 
To understand individual variation in non-response dynamics, we developed an approach termed 560 

‘Disruption Networks’ in which individual non-responders are iteratively added to the obtained normal 561 

IFX response network, and the disruption in the correlation structures is assessed for each edge in the 562 

reference response network. The disruption is evaluated in the node (gene/cell) or the module level to 563 

determine biological mechanisms that may explain patterns of the non-response.   564 

More specifically, consider a feature matrix Fn×m where n is the number of samples for a given condition, 565 

in our case, n is the number of samples of responding patients and m is the number of features, where 566 
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f(i,j) refers to a fold change measured value at a given time point relative to baseline, of the j-th feature 567 

in the i-th sample. Let matrix Rm×m be the feature pairwise Spearman’s rank correlation matrix based on 568 

F which represents the global response network, where r(j,k)=cor(j,k) for genes j and k. Insignificant 569 

correlation values according to FDR thresholds, as described above, were presented as NAs in the matrix.  570 

The ‘Disruption Networks’ construction was assessed individually for each non-responder as follows: a 571 

new F’(n+1) ×m matrix was generated by the addition of the tested non-responder to the responders’ 572 

samples. Based on F’, a new pairwise Spearman’s rank correlation matrix was calculated to obtain R’m×m, 573 

in which r’(j,k) is the correlation between j and k genes when including the non-responder in the 574 

responders’ samples.   575 

For correlation coefficients comparison, correlation coefficient values were transformed using Fisher z-576 

transformation by the following formula:  577 

𝑧(𝑟) = 0.5 ∗ 𝑙𝑛(
1+𝑟

1−𝑟
) and a standard error of 𝑆𝐸𝑧(𝑟) =

1

√𝑛−3
 where n is the number of samples. 578 

We define a ‘disruption’ term as the drop in the Fisher z transformed values between two genes as a result 579 

of the non-responder addition using the statistical z score which is defined as: 580 

 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛(𝑗, 𝑘) = 𝑧𝑠𝑐𝑜𝑟𝑒 =
𝑧(𝑟′)−𝑍(𝑟)

𝑃𝑜𝑜𝑙𝑒𝑑.𝑆𝐸𝑧
=

𝑧(𝑟′)−𝑍(𝑟)

√
1

(𝑛+1)−3
+

1

𝑛−3

. 581 

Only negative values of 𝑠𝑖𝑔𝑛(𝑟 ∗ (𝑧(𝑟′) − 𝑍(𝑟))), which indicate weakening of the original 582 

correlation obtained in responders were included, while positive values were set to zeros. Drop degree of 583 

confidence for non-responders was assessed empirically for each drop value in each edge, based on the 584 

non-responder drop value percentile in the responders’ normal drop distribution. This was further 585 

corrected for multiple testing using the Benjamini-Hochberg procedure. Edges with drop adjusted 586 

percentile <0.1 were considered as significantly disrupted. Insignificant drop values were set to zeros. 587 

Analysis of disruption parameters in the feature level, revealed a considerably expansion of the detected 588 

differential signal between response groups, compared to standard differential analysis by Wilcoxon test. 589 

While using the Wilcoxon test we detected only one feature (0.06%), with significant differential dynamics 590 

between response groups at W2, we identified this feature together with 179 additional features (10%) 591 

when using disruption parameter of top mean drop intensity (FDR<0.1 by Wilcoxon test,  FDR<0.1 for 592 

significant dropout and top 0.1 percentile of mean drop intensity, Figure 3b). We observed similar results 593 

for the disrupted edge ratio (0.06% Vs. 14.4% significant features identified by Wilcoxon test (FDR<0.1) 594 

and top disrupted edge ratio parameter (FDR<0.1 for significant dropout and top 0.1th percentile of node 595 

disrupted edges) respectively, Supp. figure 4a). Testing the agreement of both disruption parameters, we 596 

identified 9.4% dynamics differential features including the single feature identified by Wilcoxon test 597 

(Supp. figure 4b). 598 

Disruption was also measured in the pathway level for each individual using three different 599 

measurements: (1) Pathway specific mean drop intensity in which a mean drop intensity was calculated 600 

across the relevant edges in the module, for a specific individual. (2) Pathway specific percentage of 601 

disrupted edges which determines the percentage of edges in the pathway that the specific individual is 602 
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significantly disrupted in. (3) Pathway specific percentage of disrupted nodes which evaluate the 603 

percentage of disrupted nodes for a specific individual out of all module nodes. 604 

For binary classification of disrupted pathways, we quantify the disruption measure across a range of 605 

percentile values in each parameter. For each parameter, in each percentile, the selected positive 606 

disrupted modules were those that were disrupted in at least 50% of the non-responding patients and in 607 

less than 20% of the responders, or in cases where the difference between the percentage of disrupted 608 

non-responders to responders is higher than 50%. The top significantly positive disrupted modules were 609 

defined as those with a complete agreement of all three parameters in the highest percentile with shared 610 

selected pathways across all parameters, which in our case was determined as the 0.8 percentile.  611 

Single cell RNA sequencing  612 

Peripheral blood mononuclear cells (PBMCs) cryopreservation and thawing 613 

Blood samples were drawn before IFX first infusion. PBMCs were isolated using density gradient 614 

centrifugation by spinning blood over UNI-SEPmaxi+ tubes (Novamed Ltd.) following the manufacturer’s 615 

protocol. Isolated cells were resuspended in 1 ml freezing solution, containing 10% DMSO and 90% FCS. 616 

The samples were kept in Nalgene Mr. Frost® Cryo 1°C Freezing Container (ThermoFisher scientific) with 617 

Isopropyl alcohol at -80OC over-night, and immediately after placed in a liquid nitrogen container for long-618 

term storage.  619 

For thawing, frozen PBMCs were immediately transferred to a water bath at 37°C for 2-3 min, until a 620 

tiny ice crystal was remained. Thawed cells were transferred into 50 mL centrifuge tubes and rinsed with 621 

1 mL of warm (37 °C) RPMI 1640 supplemented with 10% of FCS which was added dropwise to the 622 

DMSO containing fraction while gently shaking the cells. Next, the cells were sequentially diluted by first 623 

adding 2 mL of medium followed by another 4, 8 and 16 mL respectively with 1 min wait between the 624 

four dilution steps. The diluted cell suspension was centrifuged for 5 min at 300 g. Most of the 625 

supernatant was discarded leaving ~1 ml, and the cells were resuspended in 9 ml of medium followed by 626 

additional centrifugation for 5 min at 300 g and resuspended with the same media to reach the desired 627 

cell concentration. 628 

Single cell RNA sequencing in 10X genomics platform  629 

PBMCs from responder and non-responder patients pre-treatment (N=2) were prepared for scRNA-seq 630 

according to the 10x Genomics Single Cell protocols for fresh frozen human peripheral blood mononuclear 631 

cells (see above for cell preservation and thawing). The cells were adjusted to a final cell concentration of 632 

1000 cells/Ul and placed on ice until loading into the 10x Genomics Chromium system. The scRNA 633 

sequencing was performed in the genomic center of the biomedical core facility in the Rappaport faculty 634 

of medicine at the Technion - Israel Institute of Technology. Libraries were prepared using 10x Genomics 635 

Library Kits (Chromium Next GEM Single Cell 3’ Library & Gel Bead Kit v3.1, PN-1000121) using 20,000 636 

input cells per sample. Single cell separation was performed using the Chromium Next GEM Chip G Single 637 

Cell Kit (PN-1000120). The RNAseq data was generated on Illumina NextSeq500, high-output mode 638 

(Illumina, FC-404-2005), 75 bp paired-end reads (Read1- 28 bp, Read2- 56 bp, Index- 8 bp). 639 

Single cell data analysis  640 

Cell Ranger single cell software suite was used for sample de-multiplexing, alignment to human reference 641 

genome (GRCh38-3.0.0), cell barcode processing and single cell UMI counting following default settings. 642 

The UMI count matrix was further processed using the Seurat R package (version 3.1.4). First, as a QC 643 
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step, cells that had a unique feature count of less than 200 were filtered out. Additional filtering was 644 

applied to remove features detected in less than 3 cells.  we further filtered cells based on mitochondrial 645 

gene content above 0.25%. After this step, 19275 single cells and 20673 genes in total were retained and 646 

included in downstream analyses. This was followed by Global-scaling library size normalization. Genes 647 

were scaled in comparison to all other cells and regressed out the effects of unwanted sources of variation 648 

including UMI counts and percentage of mitochondrial genes for the remaining cells. At the next step, we 649 

performed linear dimensionality reduction on the scaled data of the top 2000 highly variable genes.  650 

Resampling test based on the jackstraw procedure and Elbow plot were performed to identify the first 30 651 

significance principal components that were used for downstream visualization by t-SNE plot.  652 

SingleR  was used to annotate cell types based on correlation profiles with two different resolutions of 653 

cell classification using the Blueprint-Encode48  and the Monaco Immune Cell49 reference datasets of pure 654 

cell types. Differential expression analysis between responders and non-responders was performed for 655 

each cell population using a Wilcoxon Rank Sum test implemented in the FindAllMarkers function in the 656 

Seurat package.  657 

Relative pathway score based on the expended fiber-organization baseline differential genes was 658 

calculated for each single cell and compared between cell subsets and response groups using Wilcoxon 659 

test (for the expended fiber organization differential genes assessment see below description for selection 660 

and evaluation of predictive model for IFX treatment response; see the above description for relative 661 

pathway score calculation). 662 

To identify cell specific enriched pathways that are associated with the predictive fiber-organization 663 

related signature, we constructed a co-expression network based on the pre-treatment expression of the 664 

predictive genes: RAC1, PAK1, ICAM1, LYN, FCGR3A and IL-1β,  in intermediate monocyte subset in each 665 

response group using the MTGOsc R package (Spearman's correlation, thinning net by 0.1 top percentile). 666 

Functional enrichment analysis was performed based on the co-expressed network nodes, by a 667 

hypergeometric test based on the Reactome database using the Clusterprofiler R package (P-adjust<0.05). 668 

Wilcoxon test was assessed to identify significant differences in pathway scores between response groups 669 

for each enriched pathway in each monocyte subset. P-values were further adjusted for multiple testing 670 

using the Benjamini-Hochberg procedure. 671 

Predictive model for IFX treatment response  672 

Given the significant linkage between monocytes and the differential fiber organization pathway, in order 673 

to build a cell specific pre-treatment classifier, we expanded the fiber organization adjusted-bulk based 674 

differential genes through intersection of knowledge based- (combined score>900, 675 

9606.protein.links.detailed.v11.0 from the STRING protein interaction database: http://string-db.org/ and 676 

data-driven networks (Monocytes single-cell based co-expression from a representative responder and 677 

non-responder patients at baseline , Spearman’s r, thinning percentile: 0.05, MTGOsc R package). This 678 

yielded a combined network of 42 edges containing 23 nodes. To build a predictive signature, we used 679 

elastic net regularized logistic regression for predictors selection, which has the advantage of including all 680 

correlated predictors sharing transcriptional signal (grouping effect), rather than selecting one variable 681 

from a group of correlated predictors while ignoring the others50. We used the glmnet R package 682 

implemented within the caret R package for model fitting by tuning over both alpha (ranging from 0.5-1, 683 

n=6) and lambda (ranging from 0.0001-1, n=20) parameters with 100 repeated 2-fold cross-validation. 684 

The optimized model was chosen based on the best performance value using the Receiver operating 685 

characteristic (ROC) metric (alpha=0.5, lambda=0.26). 686 
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After variable selection, we calculated AUC based on relative pathway score combining the selected genes 687 

using the pROC R package.  688 

Internal validation was performed by bootstrapping (n=1000 bootstrap samples) for the AUC by randomly 689 

drawing subjects with the same sample size from the original cohort (with replacement).  690 

A permutation test was used for estimating one-tailed P-value (n=10000 permutations) by shuffling the 691 

subject labels between the response groups and the expression of the selected signature genes. Then we 692 

tested the null hypothesis that the observed AUC was drawn from this null distribution. 693 

External validation of the predictive signature using additional independent real-life IBD cohort 694 

For independent validation of the predictive signature, we used an independent IBD cohort of 29 patients 695 

(see Patient in the validation real life cohort). RNA was then extracted using RNeasy mini kit (QIAGEN) 696 

according to the manufacturer’s  instruction (for preservation and thawing of PBMCs see Peripheral blood 697 

mononuclear cells (PBMCs) cryopreservation). Complementary DNA was synthesized using Maxima first 698 

strand cDNA synthesis kit with dsDNase (Thermo Scientific). qPCR was performed using 7300 Real-Time 699 

PCR System (AB Applied Biosystems). Relative cytokine expression was calculated following normalization 700 

to glyceraldehyde-3 phosphate dehydrogenase (GAPDH) expression (Supp. table 10 for the PCR primer 701 

sets). Primers were purchased from Sigma Aldrich. The expression of the genes in the predictive signature 702 

was calculated relative to CD14 expression, to measure monocytes' centered differential expression 703 

between response groups pre-treatment. Relative pathway score was used to assess prediction 704 

performance (see Relative pathway score evaluation). 705 

Assessment of the predictive signature performance in RA 706 

The prediction performance of the RAC1-PAK1 signature in RA public expression datasets was evaluated 707 

using the following datasets: GSE20690 (n=68 of which 43 and 25 are responders and non-responders 708 

respectively), GSE33377 (n=42 of which 18 and 24 are responders and non-responders respectively) and 709 

GSE42296 (n=19 of which 13 and 6 are responders and non-responders respectively). 710 

Gene expression was adjusted to major cell type contributions (see Blood transcriptome analysis), which 711 

were evaluated by deconvolution using a linear regression framework in which individual samples were 712 

regressed based on a characteristic expression of marker genes expressed in 17 cell-types (CellMix R 713 

package). This was followed by performance prediction calculation for each study based on the relative 714 

signature score based on the adjusted gene expression. Due to differences in expression platforms 715 

between studies, there were genes in the signature which were not present in a specific dataset, therefore 716 

those genes were not used in the calculation of the relative signature score for the prediction of the 717 

specific study. To combine prediction performance from these independent studies we constructed a 718 

summary ROC curve (meta-ROC) using the nsROC R package which performs a simple linear interpolation 719 

between pairs of points of each individual ROC. 720 

721 
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Figure titles and legends 878 

Fig 1| External data-driven disease specific molecular response metric, termed ‘inflammatory axis’, 879 
indicated that responders exhibit a trajectory of treatment-induced immune dynamics while non-880 
responders exhibit an overall opposite direction. a, Overview of the ‘inflammatory axis’ analysis. b, 881 
‘Inflammatory axis’ assessment. Left panel, external public (GSE94648) based ‘inflammatory axis’ which 882 
defines a transition from IBD active disease through inactive disease to healthy state by PCA based 883 
differential expressed genes between disease/health states. Right panel, the projection distance of 884 
responding and non-responding patients’ samples from our real-life cohort on the ‘inflammatory axis’ at 885 
W2 compared to baseline. c, Boxplots comparing responders’ and non-responders’ projection dynamics 886 
on the ‘inflammatory axis’ at each treatment interval (One-tailed permutation P-values shown, n=10000). 887 
d, Scatterplot of the relationship between progress on the ‘inflammatory axis’ between W2 to baseline 888 
and between W2 to W14 (n=23, Spearman’s r=-0.44, P<0.1).  889 

Fig 2| Normal infliximab dynamics correlated with changes in monocytes and reduced expression of 890 
innate immune related pathways. a, Cell frequency alterations following IFX treatment. Left panel, PCA 891 
presenting immune cell frequency changes following treatment based on 16 canonical immune 892 
populations determined by CyTOF. Arrow tail and head indicate the early W2 and later W14 relative to 893 
baseline compositional changes correspondingly. Ellipses represent the Euclidean distance from the 894 
center. Center panel, boxplots showing change in monocytes abundance following treatment relative to 895 
baseline in responders and non-responders (paired-Wilcoxon P-values shown). Right panel, scatterplot 896 
showing the relationship between changes in monocytes abundance (log transformed fold change relative 897 
to baseline) and changes in CRP (fold change relative to baseline) (n=23, Spearman correlation=0.4, 898 
P=0.01). b, Venn diagram showing dynamic features which significantly changed over time at 2 weeks and 899 
14 weeks post treatment compared with baseline for each response group using linear mixed-effects 900 
models (FDR<0.15, n=1000 & n=519 permutations for responders and non-responders respectively). c, 901 
Scatterplot presenting the normal response network centrality of significantly enriched dynamic pathways 902 
at the early response period (GSEA, FDR<0.25, n perm=1000). Colors indicate pathway median fold change 903 
expression at the early response period relative to baseline in responders (colored dots denote significant 904 
change in relative pathway score by Wilcoxon test, FDR<0.05). 905 

Fig 3| ‘Disruption Networks’ as a framework to perform sample level inferences to identify individual 906 
variation in drug response. a, ‘Disruption Networks’ concept and applications. Bulk gene expression 907 
constitutes both effects of cell composition and cell-specific regulatory programs. ‘Disruption Networks’ 908 
initially decouples cell composition and cell-specific regulatory programs from bulk gene expression 909 
providing a cell-centered regulatory network of genes and cells. Then, ‘Disruption Networks’ learns 910 
individual-level breaking or rewiring of cross-feature relations, and by that forms a new data-type 911 
providing complementary biological information which increase signal detection. The new data-type can 912 
be used for diverse downstream analyses including data integration that accounts for both dimensions of 913 
feature expression and relation levels, disruption assessment in functional modules, stratification of 914 
patients by disruption profile, assessment of perturbation effects by measuring disruption level 915 
throughout the network. b, Feature specific differential signal between responders and non-responders 916 
dynamics at the early response period using disruption measurement of top mean drop intensity (x axis) 917 
and standard statistics by Wilcoxon test (y axis). c, ‘Disruption Networks’ statistic was aggregated across 918 
pathways to estimate sample specific disruption in the functional level, according to mean drop intensity, 919 
a representative disruption parameter out of three different defined parameters. The heatmap represents 920 
the disrupted dynamics for each pathway and sample at W2 compared to baseline. Top significantly 921 
disrupted pathways are presented, defined as those with a complete agreement of all three parameters 922 
in the 0.8 percentile. Line graphs describe the percentage of disrupted patients in each response group. 923 
d, Distribution of degree and betweenness centrality for nodes belonging to the top disrupted pathways 924 
compared to other nodes in the network. Significance was determined using permutation test (n 925 
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perm=10000). e, Meta disrupted pathway. Left panel, response network subgraph consist of nodes from 926 
the baseline differential disrupted pathways (FDR<0.1). Diamond shape and orange color represent cell 927 
frequency; circle shape represent cell centered expression; Red circles indicate the fiber organization 928 
pathway related central axis. Right panel, enrichment analysis of the disrupted pathways by 929 
hypergeometric test. 930 

Fig. 4| Fiber-organization signaling, highly expressed in monocytes, predicts infliximab response at 931 
baseline. a, Baseline expression differences in the disrupted pathways between response groups 932 
(NPMANOVA; bottom primary axis). Colors denote response network betweenness. The line graph 933 
represent correlation of changes in pathway score with changes in CRP  (top secondary axis). b, The fiber 934 
organization differential nodes dynamics assessed by mean relative score across visits for each response 935 
group (Wilcoxon one-tailed P-values shown). c, Analysis of the cellular origin of the baseline differential 936 
fiber organization pathway using scRNA-seq analysis of PBMCs collected from representative responder 937 
and non-responder pre-treatment. Left panel, tSNE plot representing cell types identities annotated using 938 
singleR based on correlation profiles based on two reference datasets: the Blueprint-Encode and the 939 
Monaco Immune Cell datasets. Right panel, tSNE plot colored by the expended fiber organization scaled 940 
expression. The fiber organization baseline differential genes were expended through intersecting 941 
knowledge based (stringDB) and data-driven based (Monocyte single cell data) networks. d, The expended 942 
fiber organization scaled expression in the different monocyte subsets (Wilcoxon P-values shown). e, 943 
Mean mTNF expression in the different monocyte subsets as measured by CyTOF (Wilcoxon one-tailed P-944 
values shown).  945 

Fig. 5| Validation of the fiber organization predictive signature in an independent IBD cohort and three 946 
public RA cohorts pre IFX treatment. a, Validation of the pre-treatment predictive fiber organization 947 
signature in an additional independent cohort of 20 and 9 responders and non-responders respectively 948 
by qPCR. Gene values were normalized to CD14 expression for cell-centered values. Left panel, bar graph 949 
of the pre-treatment normalized expression of the signature genes and signature pathway score in each 950 
response group (Wilcoxon one-tailed P-values shown). Right panel, ROC based on the predictive signature 951 
relative score. b, Prediction performance of fiber organization signaling signature in RA public expression 952 
datasets. Left panel, boxplots comparing the fiber organization signature related genes and the pathway 953 
score between IFX RA responders (n=43) and non-responders (n=25) in a representative public dataset 954 
GSE20690 (Wilcoxon one-tailed P-values shown). Right panel, ROC based on the predictive signature 955 
relative score of the relevant cohort. c, Meta-ROC presenting the predictive performance of three 956 
independent public RA cohorts.  957 

958 
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Supplemental Information titles and legends 959 

Supp. Fig 1| CyTOF reveals multiple cell subset changes in responders following treatment and 960 
differences between response groups. a, Loading plot of PC2 based on major canonical cell composition 961 
changes at W2 and W14 compared to baseline. b, Cell-type specific alteration in cellular relative 962 
abundance during IFX treatment in responders and non-responders (paired-Wilcoxon P-values shown). c, 963 
Correlation of cell abundance changes at W2 and W14 relative to baseline, with changes in CRP 964 
(Spearman’s correlation coefficients are shown, P-values are calculated by two tailed probability of the t-965 
statistic, P<0.05 for significant p-values). 966 

Supp. Fig 2| The cumulative number of discovered dynamic features, at a range of target FDR values by 967 
data-type for each response group. Top and bottom panels represent significant changes at W2 and W14 968 
relative to baseline respectively. FDR was calculated using the Benjamini-Hochberg procedure. 969 
Responders were subsampled (n=200) to match the non-responder group size. For responders, mean± 970 
SEM values are shown.  971 

Supp. Fig 3| Functional pathways associated with IFX response. a, Scatterplot of p-values obtained by a 972 
comparison of pathway scores between W2 and baseline against those obtained by comparing W14 to 973 
baseline (-log10 of paired-Wilcoxon P-values shown). Only globally enriched and network connected 974 
pathways were included.  b,  Pathway score related dynamics between W2 and W14 relative to baseline. 975 
Top 70 pathways are shown. Pathways are ordered by fold change effect size. P-values for pathway score 976 
differences between time points were calculated by paired-Wilcoxon test. Significance was determined 977 
by FDR<0.05 (Benjamini-Hochberg procedure). c, Heatmap representing a cell-specific contribution for 978 
the change in the dynamic pathways. The contribution was determined for each gene in the pathway by 979 
regressing its unadjusted fold change expression over the major peripheral cell type frequencies. The 980 
reported values represent the mean of the coefficients across all genes in the pathway.  d,  Correlation of  981 
pathway score expression with CRP. All time point and response groups are included. (Spearman’s 982 
correlation coefficients are shown, P-values are calculated by two tailed probability of the t-statistic, 983 
Pathway which significantly correlated with CRP (FDR<0.05, Benjamini-Hochberg procedure) are colored. 984 

Supp. Fig 4| Additional disruption parameters and comparison of the differential signal between 985 
response groups dynamics as obtained by the ‘Disruption Networks’ framework and standard statistics. 986 
a, Representative highly disrupted edge demonstrating significant dropout values for non-responders. b, 987 
Feature-specific differential signal between responders and non-responders’ dynamics at W2 relative to 988 
baseline, based on the disruption parameters and standard statistics. Left panel, top disrupted edge ratio 989 
(x axis, FDR<0.1 for dropout significance and 10th top percentile of disrupted edge ratio) and standard 990 
statistics by Wilcoxon test (y axis, FDR<0.1); Right panel, Scatterplot showing feature specific disruption 991 
parameters of mean drop intensity against disrupted edge ratio. Points are colored by quartile thresholds 992 
(FDR<0.1 for dropout significance and 10th top percentile of the specific disruption parameter). The 993 
feature which agreed with the disruption parameters and standard Wilcoxon test is marked with black 994 
border. c, Aggregation of ‘Disruption Networks’ statistic across pathways to estimate sample specific 995 
disruption in the functional level, according to percentage of disrupted edges and percentage of disrupted 996 
nodes. Heatmaps represent the disrupted dynamics in each parameter for each pathway and sample at 997 
W2 compared to baseline. Top significantly disrupted pathways are presented, defined as those with a 998 
complete agreement of all three parameters in the 0.8 percentile. Line graphs describe the percentage of 999 
disrupted patients in each response group. 1000 

Supp. Fig 5| Baseline differences of the significantly dynamics disrupted pathways. a, Heatmap 1001 
representing the feature-level baseline differences among genes in the dynamics meta-disrupted pathway 1002 
(FDR<0.1, Wilcoxon test).  b, Correlation between the canonical cellular frequencies as obtained by CyTOF, 1003 
and the bulk unadjusted expression of the fiber organization related genes in responders (Spearman’s 1004 
correlation coefficients are shown, P-values are calculated by two tailed probability of the t-statistic). Only 1005 
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significant correlation values are shown (P<0.05 and |r|≥0.5). c, Baseline prediction of IFX response in the 1006 
primary IFX cohort based on the expended fiber organization predictive signature score, in the cell 1007 
adjusted space. Left panel, receiver operating characteristic (ROC) plots of 200-bootsraps. The predictive 1008 
signature was determined using elastic net (a=0.5, lambda=0.26, 100 repeated 2-fold CV) based on the 1009 
adjusted baseline differential fiber organization related genes. Significance was determined by 1010 
permutation test (n perm=10000). Right panel, boxplots of the fiber organization predictive signature 1011 
score pre-treatment, in the different response groups in the cell-centered bulk expression 1012 

Supp. Fig 6| scRNA-seq based comparison of the baseline fiber organization related expression between 1013 
the main cell-types and response groups. The fiber organization scaled score based on its baseline 1014 
differential genes was compared between PBMCs major cell types, and between response groups for 1015 
monocytes (Wilcoxon P-values shown).  1016 

Supp. Fig 7| Intermediate monocytes functional pathways associated with the predictive fiber 1017 
organization signature. Heatmap representing the top 20 intermediate-monocytes specific enriched 1018 
pathways associated with the predictive fiber-organization related signature is shown. Pathways were 1019 
determined by co-expression network based on the pre-treatment expression of the signature predictive 1020 
genes in intermediate monocyte based on the scRNA-seq data in each response group followed by 1021 
enrichment analysis (Spearman's correlation, thinning net by 0.1 top percentile, P-adjust<0.05 for 1022 
functional enrichment significance by hypergeometric test). Pathways displaying significant differences 1023 
between response groups in each cell subset are colored (FDR<0.05 by Wilcoxon test). 1024 
 1025 

Supplementary Table titles 1026 

ST1: Clinical and demographic characteristics of patients included in the primary real life CD cohort 1027 

ST2: CyTOF Panel 1028 

ST3: Cell type unsupervised clustering using Citrus algorithm 1029 

ST4: Luminex Panel. List of analytes tested in the Luminex assay 1030 

ST5: Differentially expressed features between CD and UC active patients, and healthy controls for the 1031 

construction of an external reference 'inflammatory axis' 1032 

ST6: Selection of highly informative PCs to best describe an inflammatory axis directionality from active, 1033 

through inactive disease states to healthy state using ordinal lasso 1034 

ST7: Dynamic features at W2 and W14 relative to baseline in responders and non-responders using  1035 

linear mixed-effects models 1036 

ST8: Normal anti-TNF response dynamics network at the early W2 response period 1037 

ST9: Clinical and demographic characteristics of patients included in the validation real-life CD cohort 1038 

ST10: qPCR primers used in the IBD validation cohort for measuring expression of the fiber organization 1039 

predictive signature 1040 
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