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Abstract 11 

While the quality of fat (e.g. saturated/unsaturated) and carbohydrate (e.g. whole grain/simple 12 
sugars) intake has been of great interest, less attention has been made to the type of protein and 13 
resulting amino acid intake profiles in human diets. Studies at the molecular level however 14 
demonstrate that dietary amino acid intake produces substantial effects on health and disease such 15 
as cancer by modulating metabolism. How these effects may manifest in human food consumption 16 
and dietary patterns is unknown. We developed a series of algorithms to map, characterize and 17 
model the landscape of amino acid content in human food, dietary patterns, and individual 18 
consumption including relations to health status, covering over 2,000 foods, ten dietary patterns, 19 
and over 30,000 dietary records. We found that the type of amino acids contained in foods and 20 
human consumption is highly dynamic with variability far exceeding that of fat and carbohydrate. 21 
Some amino acids positively associate with diseases such as obesity while others contained in the 22 
same food negatively link to disease. Using linear programming and machine learning, we show 23 
that these health trade-offs among can be accounted to satisfy biochemical constraints in food and 24 
human eating patterns to construct a Pareto front in dietary practice, a means of achieving 25 
optimality in the face of tradeoffs that are commonly considered in economic and evolutionary 26 
theories. Thus this study may enable the design of human protein quality intake guidelines based 27 
on a quantitative framework. 28 
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Introduction 33 

Diet is generally considered to be a major determinant of human health and disease1-5. Numerous 34 

dietary recommendations, such as the Dietary Guidelines for Americans6, have been developed. 35 

These dietary recommendations often focus on two major goals: to increase the diversity and 36 

nutrient density of the foods consumed, and to reduce the intake of certain components known to 37 

increase risk of disease7-9. Such restrictions involve limiting the intake of certain types of 38 

carbohydrate and fat such as added sugar, saturated fat and trans-fat, and has rationale based on 39 

epidemiology, human10-12 and model organism research13,14. While it has been widely 40 

acknowledged that the types of dietary carbohydrate and fat are important determinants of the 41 

quality of a diet, protein the other macronutrient15, is often neglected. In most human nutritional 42 

studies albeit with exceptions, protein is considered as a single variable and often held constant16. 43 

Nevertheless, each amino acid has its specific metabolism17 and is important for numerous cellular 44 

and physiological processes. A growing number of studies shows that variation in dietary intake 45 

of amino acids such as serine, glycine, asparagine, histidine, and methionine mediates health and 46 

disease including cancer through defined molecular mechanisms18-28.  Altogether there is a 47 

rationale for investigating in a systematic manner amino acid intake in human diets and possible 48 

consequences on health.  49 

 In this study, we investigated the variability of amino acids in human food and diets and find 50 

variability commensurate with what is observed in fats and carbohydrates. Based on optimizing 51 

associations with health status, we use these analyses to devise guidelines for dietary amino acids. 52 

Finally, we implement machine learning algorithms to design personalized diets based on amino 53 

acid intake that correspond to optimality in specified health statuses. 54 

 55 

Amino acid landscape of human food 56 

To characterize the variability of amino acid levels in human food, we first constructed a database 57 

consisting of amino acid profiles in three levels of human dietary components: individual foods, 58 

dietary patterns or representations of patterns of food consumption (e.g. Western, Mediterranean, 59 
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Japanese, Keto, etc), and dietary records containing daily reported food intake (Figure 1). The 60 

abundance of 18 amino acids in 2,335 foods was collected based on nutritional profiles in the 61 

United States of America Department of Agriculture National Nutrient Database for Standard 62 

Reference Legacy Release (USDA SR) (Figure 1a, methods). 18 of the 20 amino acids were 63 

considered because during quantitation, amino acids which largely exist in protein-bound forms, 64 

require hydrolysis into free amino acids during which amino groups from glutamine and 65 

asparagine are also hydrolyzed to make glutamic and aspartic acid. Thus, the abundance of 66 

glutamic acid and aspartic acid from measurements of free amino acid levels reflects the total 67 

abundance of glutamate and glutamine, and the total abundance of aspartate and asparagine, 68 

respectively. The distributions of amino acid abundance over 2,335 foods show that each amino 69 

acid has considerable variability across foods (Coefficient of variation > 0.2 for all amino acids, 70 

Figure 1b), and amino acids most abundant in human food are glutamine/glutamate (median = 0.16 71 

g/g total amino acids), asparagine/aspartate (median = 0.095 g/g total amino acids), leucine 72 

(median = 0.082 g/g total amino acids), and lysine (median = 0.076 g/g total amino acids). On the 73 

other hand, amino acids with the lowest abundance in human foods are cystine (median = 0.012 74 

g/g total amino acids), tryptophan (median = 0.012 g/g total amino acids), methionine (median = 75 

0.024 g/g total amino acids), and histidine (median = 0.028 g/g total amino acids). This ordering 76 

largely resembles the abundance of amino acids in the proteomes which are conserved across living 77 

organisms29,30. Principal component analysis (PCA) shows that amino acid abundances can be 78 

clustered by different categories of foods (Figure 1c, d, methods). Highly variable amino acids 79 

include those whose dietary modulation has molecular links to cancer progression and health 80 

outcomes, such as methionine (0.031 g/g total amino acids in eggs compared to 0.013 in legumes) 81 

and serine (0.076 g/g total amino acids in eggs compared to 0.039 in lamb, veal, and game meat). 82 

To quantify the variability of amino acid abundance across foods, we computed the F-statistic from 83 

one-way analysis of variance (ANOVA), and compared the resulting F-statistic values with those 84 

of carbohydrates (i.e. dietary fiber and sugar) and fats (i.e. saturated fat, monounsaturated fat, and 85 

polyunsaturated fat). Notably, we found that the ANOVA F-statistics for amino acids were 86 
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comparable to or higher than those for carbohydrates and fats (Figure 1e, methods), especially for 87 

the amino acids methionine, histidine, lysine, and proline (F-statistic = 816.2 for methionine, 566.1 88 

for histidine, 504.3 for lysine, and 362.9 for proline compared to the range of 45.0 to 119.6 for 89 

carbohydrates and the range of 125.2 to 746.3 for fats, Figure 1e, f), highlighting the variability of 90 

amino acid abundance in foods which has been largely overlooked previously. Taken together, 91 

these results suggest that differences in food intake due to the high variability in amino acid content 92 

may lead to differences physiological and cellular effects on metabolism.  93 

 94 

Human dietary patterns are variable in amino acid content 95 

Dietary patterns can be grouped according to eating patterns that often have a cultural or societal 96 

element. They can be characterized by a combination of certain types of foods consumed (e.g. 97 

Mediterranean diet, which includes high amounts of plant-based foods, high to moderate amounts 98 

of seafood, low consumption of red meat, and olive oil as the main source of added fat31), or a 99 

specific intake profile of certain nutrients (e.g. ketogenic diet, which is defined by very high intake 100 

of fat and very low intake of carbohydrate). Adherence to certain dietary patterns, such as the 101 

Mediterranean diet or Japanese diet, has been associated with increased lifespan and lower risk of 102 

disease32-34. Moreover, some emerging dietary patterns, such as the ketogenic diet and the Paleo 103 

diet, have recently been shown in some settings to have benefits on metabolic health, neural 104 

function, and longevity35-38. However, it is unclear whether these dietary patterns differ in their 105 

amino acid content, and whether the variability in amino acid abundance across dietary patterns 106 

contributes to the health outcomes associated with these diets.  107 

To further understand the relationship between human dietary patterns and amino acid intake, 108 

we next developed an algorithm to quantitatively evaluate amino acid abundance in ten 109 

representative human dietary patterns (Figure 2a, S1, Supplementary Methods). Among these 110 

dietary patterns, the Mediterranean diet and Japanese diet are two traditional diets believed to have 111 

beneficial influences on health, while the Dietary Approaches to Stop Hypertension (DASH) diet 112 

consists of consumption of a variety of low-fat and minimally processed foods, and the American 113 
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diet, which represents the dietary behaviors of a typical individual in western society is also 114 

considered. We also include diets that restrict the consumption of certain foods (Paleo diet, 115 

vegetarian diet, plant-based diet), diets limiting carbohydrate intake (ketogenic diet, Atkins diet), 116 

and a USDA recommended diet defined based on the daily nutrient intake goals in the USDA 2015-117 

2020 dietary guidelines for Americans6. We first computed the range of amino acid intake (i.e. 118 

grams of each amino acid consumed per day) for each dietary pattern using a linear programming 119 

algorithm we developed (Figure 2b, Supplementary Methods) and found that, although none of 120 

these dietary patterns includes any constraint on amino acid intake, they still differ greatly with 121 

each other in the values of amino acid consumption. Moreover, each dietary pattern allowed for 122 

substantial flexibility in the intake of all amino acids (maximal daily intake/minimal daily intake > 123 

20 for all dietary patterns and amino acids, Figure 2b), revealing the possibility to modulate amino 124 

acid intake under a certain dietary pattern.  125 

To quantify the variability of amino acid composition that is independent of energy and protein 126 

intake, we developed a sampling algorithm based on the accelerated convergence hit-and-run 127 

method39 to quantify the amino acid composition of each diet by sampling 50,000 instances of 128 

each diet (Supplementary Methods). We first confirmed that the sample size of 50,000 was 129 

sufficient to capture the distribution of amino acid abundance in a dietary pattern based on the 130 

convergence of the sample mean and standard deviation values (Figure S2a). PCA of the sampled 131 

diets (Figure 2c) and comparison of mean values (Figure 2d) showed that the ten dietary patterns 132 

also have different signatures of amino acid composition. Notably, differences in amino acid 133 

composition also exists between dietary patterns similar to each other such as the vegetarian diet 134 

and plant-based diet. Indeed, we observed a 30% of difference in methionine abundance between 135 

vegetarian diet and plant-based diet (0.019 g methionine/g total AAs in vegetarian diet compared 136 

to 0.014 in plant-based diet), suggesting that small changes in the choice of foods result in 137 

substantial differences in amino acid intake (Figure 2d, Figure S2b). We also estimated 138 

compositions of carbohydrates and fats in these diets (Figure S2b), and quantified the variability 139 

of amino acid composition across human diets using F-statistic values from one-way ANOVA, and 140 
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compared it with the variability of carbohydrates and fats across dietary patterns (Figure 2e). 141 

Strikingly, we found that the variability of amino acid composition across diets was much higher 142 

than that of carbohydrates and fats, with the amino acids lysine, methionine, proline and histidine 143 

being the most highly variable across human dietary patterns (F-statistic > 50,000 compared to 144 

less than 10,000 for carbohydrates and fats, Figure 2e-f, S2b-c). Among these amino acids, lysine, 145 

histidine and methionine are significantly lower in instances of the plant-based diet, and proline is 146 

significantly lower in Paleo diet (Figure 2f). The amino acid signatures of human dietary patterns 147 

were further validated by measurements of fasting blood concentrations of the amino acids leucine, 148 

isoleucine, and alanine in human subjects eating plant-based or ketogenic diet (Figure S2d)40. 149 

Taken together, these results reveal that the biggest difference in macronutrient composition across 150 

human dietary patterns is in amino acid content, and not that of carbohydrates or fats. How the 151 

diversity in dietary amino acids results in different health outcomes remains an open question, 152 

which may begin to be answered with nutritional and health data in large populations of humans.  153 

  154 

Landscape of amino acid intake in human dietary records 155 

Next, we considered individual dietary amino acid intake records across a population of 156 

individuals from diverse ethnic and cultural backgrounds. We reconstructed the dietary amino acid 157 

intake profiles in more than 30,000 human subjects in the United States based on dietary records 158 

in the National Health and Nutrition Examination Survey (NHANES) 2007-2014 datasets (Figure 159 

3a). Since the NHANES datasets do not direct include dietary amino acid intake values, we 160 

developed a set of computational tools for data imputation and mapping to reconstruct the amino 161 

acid profiles for the dietary records based on two additional datasets, the USDA SR food nutritional 162 

database and the Food and Nutrient Database for Dietary Studies (FNDDS) (Figure 3a). Data 163 

imputation using random forest (RF) regression, which outperformed other methods in the 164 

accuracy of imputation (Figure S3a, b), was applied to estimate the missing values of amino acid 165 

levels in the USDA SR dataset. The imputed datasets were then used to construct amino acid 166 

profiles for the FNDDS and NHANES records by mapping foods in the USDA dataset to foods in 167 
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the FNDDS dataset which were then used to compute nutrient intake values in the NHANES 168 

dietary records (Figure 3a, Supplementary Methods). To assess the limitations of self-reported 169 

dietary records in the NHANES data, we compared our computed nutrient intake values with 170 

measurements of blood concentrations of related metabolites such as Vitamin D (Figure 3b). Next, 171 

to validate the reconstructed amino acid intake levels, we first compared the total intake of amino 172 

acids and intake of protein in each dietary record and confirmed that the reconstructed total amino 173 

acid intake closely resembles the known total protein intake (Pearson correlation = 0.99, p-value 174 

< 10-323, Figure 3c), concentrations of amino acids in human blood (Spearman correlation = 0.52, 175 

p-value = 0.03, Figure 3d), uptake fluxes of amino acids in human cell lines, which reflect demands 176 

of amino acids in cultured human cells (Spearman correlation = 0.70, p-value = 0.01, Figure 3e), 177 

and amino acid composition of several culture mediums (Spearman correlation > 0.5 and p-value 178 

< 0.05 for 4 out of 7 culture media, Figure S3c). The high correlation between dietary amino acid 179 

intake and physiological parameters related to amino acids suggests that our reconstructed amino 180 

acid intake data may reflect some aspects of physiological metabolism, and suggest that the cellular 181 

behaviors and tissue microenvironment in amino acid metabolism reflect to some extent dietary 182 

intake of amino acids despite the many other factors that influence cellular metabolism. 183 

We then evaluated the overall variability in the intake of each amino acid based on the ratio 184 

of maximal to minimal intake values in the human dietary records (Figure 3f), and performed PCA 185 

on the reconstructed dietary amino acid profiles to report the association between dietary amino 186 

acid composition and demographic variables such as age, sex, and ethnicity (Figure 3g). We found 187 

that among the population included in the NHANES 2007-2014 cohorts, daily intake of amino 188 

acids typically varies by two to six fold (e.g. maximal intake/minimal intake = 4 for tryptophan, 189 

2.5 for methionine, 6.2 for glycine, and so on). Dietary amino acid composition profiles showed 190 

no difference between batches (Figure 3e), thus confirming that our reconstruction is not biased 191 

by batch effect. Interestingly, dietary intake of amino acids was found to correlate with age, while 192 

no dependency on other demographic variables such as sex and ethnicity was observed (Fig 3e, 193 

Figure S4). These reconstructed dietary amino acid intake profiles allow us to examine the 194 
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quantitative relationship between dietary amino acids and human health. 195 

 196 

Dietary amino acid intake associations with human health 197 

We next attempted to link dietary amino acid intake and incidence of several human diseases based 198 

on the reconstructed dietary amino acid intake profiles and clinical records available in the 199 

NHANES database. We focused on chronic diseases that are a major concern to human health such 200 

as cardiovascular disease, diabetes, and cancer. We retrieved the medical records of 18,196 adult 201 

subjects in the NHANES 2007-2014 datasets and defined quantitative scores describing the 202 

incidences of hypertension, obesity, cancer, and diabetes based on the examination, laboratory, and 203 

questionnaire datasets (Figure 4a, Methods). We first computed partial Spearman’s rank 204 

correlation coefficients as a metric to evaluate the association between dietary amino acid 205 

composition and the incidences of the four diseases while controlling for confounders including 206 

demographic and lifestyle-related factors (Supplementary Figure 5). We identified many amino 207 

acid intake-disease associations involving all four diseases considered (statistically significant 208 

associations in 21 out of 72 amino acid-disease pairs, Figure 4b, methods), among which obesity 209 

showed the strongest association with dietary amino acid composition (obesity incidence 210 

positively correlated with the intake of threonine, histidine, alanine, glycine, lysine and methionine, 211 

and negatively correlated with intake of tryptophan, phenylalanine, valine, serine, asparagine, 212 

aspartate, glutamine, and glutamate, Figure 4b). These associations between dietary amino acid 213 

intake and obesity were consistent with some observations in molecular studies, such as the anti-214 

obesity functions of dietary tryptophan and pro-obesity functions of methionine in mice41,42. As a 215 

control, we also correlated the incidence of the four diseases with dietary intake of different types 216 

of carbohydrates and fats. Counterintuitively, we found much fewer statistically significant 217 

associations between dietary intake of carbohydrate and fat (9 significant associations out of 40 218 

disease-nutrient pairs, Figure 4c). These results together highlight the unexpectedly strong 219 

association between that dietary intake of amino acids and human disease which exceeds the 220 

association for dietary carbohydrates and fats. To further explore these questions, we performed a 221 
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comparison of the association between nutrients and human health using machine learning models 222 

predicting health outcomes from different types of nutritional variables (Figure 4d). We 223 

categorized nutritional variables included in the NHANES database into six groups, including 224 

energy, macronutrients, macronutrient compositions (i.e. fractions of different types of 225 

carbohydrate and fat in total carbohydrate and fat intake), vitamins, minerals, amino acid 226 

compositions (i.e. intake of each amino acid with the unit g/g total AA), and other nutrients. For 227 

each disease, nutritional variables in each group were used as covariates to build a logistic 228 

regression model to predict the incidence of that disease. The area under receiver operating 229 

characteristic curve (AUC) with 5-fold cross validation was used to assess the performance of each 230 

group of nutritional variables in predicting disease incidence, which reflects strength of the 231 

association between dietary intake of those nutrients and that disease. We found that dietary amino 232 

acid composition was predictive of incidence of all diseases except for cancer (AUC > 0.5, 5-fold 233 

cross validation), and achieved accuracy of prediction comparable to or higher than that of dietary 234 

carbohydrate and fat intake for obesity and hypertension (AUC = 0.55 for amino acids compared 235 

to 0.55 for macronutrient composition in predicting obesity, and AUC = 0.53 for amino acids 236 

compared to 0.52 for macronutrient composition in predicting hypertension, Figure 4e). The reason 237 

that dietary amino acid intake was unable to predict cancer outcome was probably for the reason 238 

that different types of cancers were not distinguished in the analysis, the population included 239 

remissions, and the frequency of cancer in the dataset is relatively low (1844 cases out of 18469 240 

individuals). Nevertheless, the higher accuracy of amino acid intake in predicting obesity and 241 

hypertension incidence in humans provides a rationale for optimization of dietary amino acid 242 

intake.  243 

 244 

Guidelines for dietary amino acids and diet design 245 

Dietary recommendations, such as these in the USDA Dietary Guidelines for Americans, often 246 

involve suggestions to consume a variety of minimally processed foods and recommended ranges 247 

for intake of nutrients including macronutrients, vitamins, and minerals. Since dietary intake of 248 
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amino acids has been associated with health outcomes both in molecular studies and by our 249 

analysis thus far, we sought to develop an Artificial Intelligence (AI) -based approach for 250 

identification of dietary guidelines for amino acids and design of personalized human diets 251 

optimizing their amino acid composition.  252 

First, we developed an algorithm for identification of amino acid intake guidelines based on 253 

the associations between dietary amino acid intake and human health (Figure 5a). We focused on 254 

obesity since it had the highest incidence and was found to have the strongest association with 255 

dietary amino acid intake among the four diseases considered in this study (Figure 4b). We 256 

classified obesity-associated amino acids into three categories (Figure 5b), including amino acids 257 

for which the intake positively associate with obesity incidence (‘positive association’), negatively 258 

associate with obesity incidence (‘negative association’), or associate with obesity incidence with 259 

a non-monotonic, U-shaped relationship (‘U-shaped relationship’). The amino acids phenylalanine, 260 

aspartate/asparagine, tryptophan, valine and glutamate/glutamine fell into the negative association 261 

group. On the other hand, the amino acids glycine, alanine, methionine, lysine, histidine were 262 

categorized into the positive association group. The association between intake of dietary amino 263 

acids and obesity was not due to changes in calorie intake, since amino acids positively associated 264 

with obesity were either negatively or positively correlated to calorie intake, and vice versa (Figure 265 

S6a).   266 

We also examined whether there exists a dietary pattern that can minimize the intake of the 267 

amino acids positively associated with obesity while maximizing the intake of the amino acids 268 

negatively associated with obesity. To our surprise, no dietary pattern was able to satisfy all of 269 

these requirements. For instance, the Paleo diet has the highest levels of aspartate and asparagine, 270 

which negatively associate with obesity. Nevertheless, the Paleo diet also has the highest intake of 271 

alanine, methionine and lysine, which all positively associate with obesity incidence. These results 272 

reveal the complexity in the relationship between dietary amino acid intake and obesity, indicating 273 

trade-offs between the goals of maximizing or minimizing different groups of amino acids which 274 

should be considered while designing dietary guidelines for amino acids.  275 
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We therefore sought to define dietary amino acid intake guidelines based on the association 276 

between dietary amino acids and obesity (Figure 5c), that is, to minimize the total intake of amino 277 

acids that positively associate with obesity (i.e. AAs-to-minimize, including glycine, alanine, 278 

methionine, lysine, histidine), and to maximize the total intake of amino acids that negatively 279 

associate with obesity (i.e. AAs-to-maximize, including tryptophan, phenylalanine, valine, 280 

aspartate+asparagine, glutamate+glutamine). We first confirmed that both total AAs-to-minimize 281 

and total AAs-to-maximize were significantly associated with obesity incidence (Chi-squared p-282 

value = 9.0×10-8 for total AAs-to-minimize and 4.9×10-10 for total AAs-to-maximize, Figure 5c).  283 

We then further characterized the trade-off between the requirements of minimizing total AAs-284 

to-minimize and maximizing total AAs-to-maximize by constructing the Pareto surface based on 285 

the two requirements (Figure 5d). The concept of Pareto optimality has been widely applied in 286 

economics and engineering, and introduced to biology to characterize the trade-off between 287 

multiple tasks of bacteria, cancer cells, and organisms43-46. For each dietary pattern, there exists a 288 

Pareto surface consisting of diets that best balance the needs to minimize total AAs-to-minimize 289 

and to maximize total AAs-to-maximize, meaning that for a diet within the Pareto surface, any 290 

other diet following this dietary pattern would never have both higher total intake of AAs-to-291 

maximize and lower total intake of AAs-to-minimize at the same time. We hence developed an 292 

algorithm to construct the Pareto surface for each of the ten dietary patterns considered in this 293 

study (Figure 5d, S6b, Methods), and quantified the extent by which a specific diet satisfies the 294 

two requirements of maximizing total AAs-to-maximize and minimizing total AAs-to-minimize 295 

using the deviation from Pareto surface (Figure 5d). For each dietary pattern, we computed the 296 

deviation of each NHANES dietary record from its Pareto surface, and found that the deviation 297 

from the Pareto surface strongly correlates with obesity incidence (Chi-squared p-values < 10-10 298 

for all dietary patterns), implying that diets on the Pareto surface of each dietary pattern are 299 

associated with lower risk of obesity. On average, an individual that eats a diet that is the top 20% 300 

furthest away from the Pareto surface has a 34% higher chance of being obese compared to one 301 

eating a diet among the 20% closest to the Pareto surface (Figure 5e).  302 
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These findings not only reveal novel relationship between dietary amino acid intake and health, 303 

but also allow us to design diets that have amino acid profiles associated with lower risk of obesity 304 

and satisfy personalized needs and requirements such as preferred dietary patterns according to the 305 

constructed Pareto surface of the preferred dietary pattern. Hence, based on such strategy, we 306 

developed an AI for designing diets including the Mediterranean, Paleo, and ketogenic diet (Figure 307 

5f). Each diet contains a variety of foods from diverse sources and keeps the features of the 308 

corresponding dietary pattern.  309 

 310 

Discussion 311 

This study develops data resources and computational techniques to begin to address two major 312 

limitations in the nutritional sciences: 1) the lack of systematic collections of nutritional 313 

information and 2) the lack of computational tools to probe the connections in food, dietary 314 

patterns and practices, and health status.  Consequentially, we made a number of findings about 315 

the variability of amino acids across different types of human foods and dietary patterns and the 316 

unexpected associations between dietary amino acid intake, food and dietary patterns, and health. 317 

Unexpected links from amino acid intake to pathology such as obesity highlight non-intuitive diet-318 

disease associations and inherent tradeoffs in amino acid content in food.  319 

While we were able to use the tools we devised to study and make discoveries about the 320 

landscape of amino acid intake, these capabilities are generalizable to any systematic analysis of 321 

human food and diet.  For instance, it is still unclear how dietary patterns and human dietary 322 

records differ with each other in micronutrients such as vitamins, minerals, dietary fiber, added 323 

sugars, and how personalized diets can be designed to cover more nutritional goals. Application of 324 

the algorithms we developed in this study may help address these questions. 325 

This study has some limitations. First, the association between dietary amino acids and human 326 

diseases is observational and does not directly imply causality. Nevertheless, some amino acid-327 

disease associations identified by our analysis have been observed in experimental studies. For 328 

instance, tryptophan, which was found to be negatively associated with obesity in our study, was 329 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448627doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448627
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

shown in mice to reduce appetite and weight gain through the production of serotonin in brain41. 330 

On the other hand, dietary restriction of methionine in mice and human has been shown to improve 331 

metabolic health and increase fat oxidation, which may contribute to the anti-obesity effects of 332 

dietary methionine restriction42,47,48. Further studies, such as randomized controlled trials that 333 

directly compare the health outcomes of diets differing with each other in amino acids, are 334 

necessary but also limited to the cohort in consideration and the pre-determined end points. 335 

We also note that the datasets used in this study are not completely free of bias. The majority 336 

of records in the databases of foods and human dietary records are western, while foods frequently 337 

consumed in other geographical regions and by other cultural groups, such as Asians and Africans, 338 

are largely underrepresented. Therefore, application of our findings to non-western populations 339 

may be limited. Nevertheless, we are optimistic that this limitation could be addressed by 340 

extending the coverage of the existing nutritional and epidemiological datasets to non-western 341 

populations49,50. 342 

 343 

Methods 344 

Computer algorithms and their implementation 345 

Details about the computer algorithms used in this study, including these for reconstruction of 346 

amino acid landscape in human foods, dietary patterns, and dietary records, are explained in the 347 

Supplementary Methods. The algorithms for imputation and reconstruction of amino acid profiles 348 

in the NHANES database, including imputation of missing data, and mapping of foods in the 349 

USDA SR, FNDDS, and NHANES databases, were implemented in R. All other algorithms used 350 

in this study were implemented in MATLAB. The database for amino acid abundance in human 351 

foods, dietary patterns and dietary records was implemented in both Microsoft Access database 352 

file and Microsoft Excel files. All database files are freely available for download at the GitHub 353 

repository: https://github.com/ziweidai/AA_human_diet/tree/main/6-Database.   354 

Statistical analysis 355 

Principal component analysis was performed using the MATLAB built-in function ‘pca()’. One-356 
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way ANOVA was performed using the MATLAB built-in function ‘anova1()’. Logistic regression 357 

models were constructed, trained, and evaluated using the MATLAB built-in functions ‘glmfit()’, 358 

‘glmval()’, and ‘perfcurve()’. Chi-squared test was performed using the MATLAB built-in 359 

function ‘crosstab()’. Relationships with p-value < 0.05 were considered significant. Partial 360 

Spearman’s rank correlation coefficients were computed using the MATLAB built-in function 361 

‘partialcorr()’ with p-values adjusted using the Benjamini-Hochberg procedure. Associations with 362 

adjusted p-value < 0.05 were considered significant. Average amino acid abundances in food 363 

categories or dietary patterns were computed using the mean values of amino acid abundances 364 

across all foods in that food category or instances in that dietary pattern. 365 

Data and code availability 366 

All code, scripts, and datasets used or generated in this study are available at the GitHub page of 367 

Ziwei Dai: https://github.com/ziweidai/AA_human_diet.  368 
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 508 

Figure captions 509 

Figure 1. Amino acid landscape of human foods 510 

a. Workflow for construction of the database for amino acid abundances in human foods. 511 

b. Ranges of amino acid abundance in human foods. The horizontal lines indicate median 512 

values. 513 

c. Principal Components Analysis (PCA) of amino acid profiles in human foods. Each dot 514 

represents a food. Colors of the dots indicate different categories of the foods. 515 

d. Average amino acid abundance in different categories of human foods. 516 

e. F-statistic values from one-way ANOVA comparing abundance of amino acids, different 517 

types of carbohydrate, and different types of fat across human foods. 518 

f. Violin plots showing the distributions of abundance of amino acids, carbohydrates, and fats 519 

that are the most variable across human foods. The circles indicate median values. Green 520 

dots indicate individual values. 521 

 522 

Figure 2. Amino acid landscape of human diets 523 

a. Workflow for the computational modeling of amino acid abundance in human dietary 524 

patterns. 525 

b. Absolute levels of amino acids in human dietary patterns quantified by the minimal and 526 

maximal daily intake values of amino acids in each dietary pattern. 527 

c. PCA of relative amino acid compositions of human diets sampled for all ten dietary patterns. 528 

Each dot represents for a diet. Colors of the dots indicate different dietary patterns. 529 

d. Average amino acid composition of the ten human dietary patterns. 530 

e. F-statistic values from one-way ANOVA comparing the composition of amino acids, 531 

carbohydrates, and fats across human dietary patterns. 532 

f. Violin plots showing the distributions of amino acids that are the most variable across 533 

human dietary patterns. The circles indicate median values. 534 
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 535 

Figure 3. Landscape of human dietary amino acid intake 536 

a. Workflow for reconstruction of the database consisting of amino acid intake profiles in 537 

human dietary records. 538 

b. Comparison between nutrient intake values in the self-reported dietary records and 539 

laboratory measurements of nutrient-related metabolites in blood. 540 

c. Comparison between total dietary amino acid intake in the reconstructed amino acid intake 541 

database and dietary protein intake in the original dietary records. 542 

d. Comparison of the reconstructed human dietary amino acid intake values to blood 543 

concentrations of amino acids. The dots represent for mean values and error bars for 544 

standard deviations. 545 

e. Comparison of the reconstructed human dietary amino acid intake values to uptake fluxes 546 

of amino acids. The dots represent for mean values and error bars for standard deviations. 547 

f. Distributions of amino acid intake in human dietary records. The circles indicate median 548 

values. 549 

g. PCA analysis of amino acid intake values in human dietary records showing their 550 

association with age, sex, ethnicity, and batch of the data.  551 

 552 

Figure 4. Amino acid intake is predictive of human health 553 

a. Workflow for the analysis of association between dietary amino acid intake and human 554 

health. 555 

b. Partial Spearman correlation between incidences of human diseases and dietary intake of 556 

amino acids. 557 

c. Partial Spearman correlation between incidences of human diseases and dietary intake of 558 

different types of carbohydrate and fat. 559 

d. Framework of the machine learning model predicting incidence of human diseases from 560 

different groups of dietary variables. 561 
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e. AUC values for predicting incidence of human diseases from different groups of dietary 562 

variables. Error bars indicate standard deviations. 563 

 564 

Figure 5. AI for dietary amino acid guidelines and personalized diet design 565 

a. Workflow for AI-assisted identification of dietary amino acid guidelines and design of 566 

personalized diets. 567 

b. Three types of association between dietary amino acid intake and obesity in humans. 568 

c. Identification and confirmation of amino acid intake guidelines based on the association 569 

between dietary amino acids and obesity. 570 

d. Ranges of intake of total amino-acids-to-maximize and amino-acids-to-minimize in the 571 

dietary pattern of USDA-recommended diet (grey shaded region) and the Pareto surface 572 

(orange bold curve) corresponding to the two guidelines, i.e. maximizing total amino-573 

acids-to-maximize, and minimizing total amino-acids-to-minimize. 574 

e. Associations between the obesity incidence and deviation of dietary records from the 575 

Pareto surface. Chi-squared p-values were computed to assess the significance levels of the 576 

associations. 577 

f. Examples of diets designed according to the amino acid intake guidelines and personalized 578 

preferences of dietary patterns. 579 
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Figure 3. Landscape of human dietary amino acid intake
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Figure 4. Amino acid intake is predictive of human health
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AA intake guidelines

AAs-to-minimize (positively associated with 

obesity): Glycine, alanine, methionine, lysine, histidine

AAs-to-maximize (negatively associated with 

obesity): Tryptophan, phenylalanine, valine, 

aspartate+asparagine, glutamate+glutamine
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Figure 5. AI for dietary amino acid guidelines and personalized diet design
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