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Abstract 

Time-resolved multivariate pattern analysis (MVPA), a popular technique for analyzing magneto- and 

electro-encephalography (M/EEG) neuroimaging data, quantifies the extent and time-course by which 

neural representations support the discrimination of relevant stimuli dimensions. As EEG is widely used 

for infant neuroimaging, time-resolved MVPA of infant EEG data is a particularly promising tool for 

infant cognitive neuroscience. MVPA methods have recently been applied to common infant imaging 

methods such as EEG and fNIRS. In this tutorial, we provide and describe code to implement time-

resolved, within-subject MVPA with infant EEG data. A pipeline for time-resolved MVPA based on 

linear SVM classification is described and implemented with accompanying code in both Matlab and 

Python. Results from a test dataset indicated that in both infants and adults this method reliably produced 

above chance classification accuracy. Extensions of the core pipeline are presented including both 

geometric- and accuracy-based representational similarity analysis, implemented in Python. Common 

choices of implementation are presented and discussed. As the amount of artifact-free EEG data 

contributed by each participant is lower in studies of infants than in studies of children and adults, we also 

explore and discuss the impact of varying participant-level inclusion thresholds on resulting MVPA 

findings in these datasets.  
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1. Introduction 

The contents of the infant mind are both fascinating and elusive. Without the benefit of verbal 

communication, inferring the mental states and representations of infants from behavior or neuroimaging 

data is an ongoing challenge. Functional imaging methods such as functional near-infrared spectroscopy 

(fNIRS) and electroencephalography (EEG) are popular in infant research due to their non-invasiveness 

and relative tolerance for movement while recording (Bell & Cuevas, 2012). These methods provide 

either fine-grained temporal with limited spatial information (EEG) or moderate spatial with limited 

temporal information (fNIRS) about neural responses, and typically consist of group average responses to 

stimuli (Dehaene-Lambertz & Spelke, 2015). While these methods can reveal information about 

conditional differences in timing or amplitude driven by different stimuli, they rely on averages from one 

or more electrodes/optodes (e.g., clusters of channels), ignoring information that may be represented in 

the patterns contained within these clusters.  

Machine learning approaches including multivariate pattern analysis (MVPA) or “decoding” that 

have historically been used with adult neural data are promising avenues for infant research. Rather than 

finding differences in average stimulus-response recordings, MVPA is used to map patterns of activation 

across a cluster of channels to specific stimuli, or other relevant dimensions of the task or of the 

individual participant (Haynes & Rees, 2006). Using machine learning classification techniques, the goal 

of MVPA is to reliably discriminate between the patterns of activation associated with particular stimuli, 

categories of stimuli, or other relevant aspects of the participant’s phenotype (e.g., their attentional state 

or intrinsic trait). If patterns of neural activation can reliably map to stimuli (i.e., enable above-chance 

classification accuracy), it is plausible that these neural patterns support the discrimination of these 

stimuli, although we cannot infer whether the detected information drives behavior without manipulating 

these neural patterns (Haxby et al., 2014; Isik et al., 2014). This technique has been applied to adult data, 

primarily fMRI voxels, to index the information that can be extracted from brain activity, including in 

multivariate, spatially distributed representations (Haxby, 2012). Multivariate methods have been used in 

many research contexts and stimulus modalities including discrimination of painful stimuli (e.g. 
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Brodersen et al., 2012), localized touch sensation (e.g. Lee et al., 2020), faces (e.g. Rivolta et al., 2014), 

and auditory properties (e.g. Lee et al., 2011) among many other applications (Haynes & Rees, 2006).  

Advances in the application of multivariate data driven methods to infant-friendly neuroimaging 

tools such as EEG and fNIRS bears promise for developmental researchers to begin answering questions 

beyond what can be addressed with traditional neuroimaging analysis techniques (Bayet et al., 2021; 

Norman et al., 2006; O’Brien et al., 2020; Zinszer et al., 2017). While this existing methodology lays the 

groundwork for infant study, challenges inherent to the collection and analysis of infant neural data 

require specific solutions and a thorough investigation into best practices. Infant data are often limited 

both by recruitment challenges, and extreme variation in usable trials due to unpredictable infant 

temperament, as well as movement when collecting neural data (Aslin & Fiser, 2005; Raschle et al., 

2012). As a result, many methods of analyzing adult data may need to be modified to effectively 

implement them for infant research.   

Recent work shows that applying MVPA to quantify the post-stimulus timecourse and 

representational characteristics of visual objects from infant EEG and fNIRS is feasible and opens new 

avenues for developmental research (Bayet et al., 2020; Emberson et al., 2017; Jessen et al., 2019; 

Mercure et al., 2020). In Bayet et al. (2020), EEG data from 12-15 month old infants as well as adults 

viewing images of animals and parts of the body were used to train a linear support vector machine 

(SVM) classifier, an analytic method that maps response features from neuroimaging data onto a high-

dimensional space of stimulus dimensions. The accuracy of this stimulus-response mapping function is 

then assessed via 4-fold cross validation – a process of repeatedly training the SVM classifier on a subset 

of the data and testing that trained classifier on the withheld subset (25% = 4-fold). Patterns of activation 

in Bayet et al. yielded above-chance discrimination of 8 different visual stimuli in both adults and infants. 

Building on these results, here we outlined the steps required to perform time-resolved, within-subject 

MVPA with infant EEG data, summarized classification and validation best practices, and discussed the 

effectiveness of these methods given the limited number of trials typically available from infant EEG 
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datasets. With this tutorial, we aim to make this powerful method more accessible, thereby expanding the 

tools available to developmental researchers.  

 

2. Sample Dataset 

 The main idea of MVPA is to quantify the amount of information about a relevant dimension 

(e.g., was the stimulus a cat or a dog) that is available in the neural data, often by training and testing a 

classifier to discriminate between subsets of the neural data. As an example, here we focused on the 

pairwise decoding of visual stimuli from a sample dataset of infant (N=21) and adult (N=9) EEG data 

from a previously published report (Bayet et al., 2020). These data consisted of processed, normalized 

EEG voltages from 12-15-month-old infants and adults as they passively watched 8 static visual images 

of familiar animate objects (cat, dog, rabbit, bear, hand, foot, mouth, or nose). Processing steps that were 

applied to these EEG signals include line noise removal, filtering, re-referencing to the average, artifact 

removal, and epoching (Bayet et al., 2020). In addition, voltages were normalized by taking the z-score of 

the segmented EEG voltages with respect to the baseline period for each individual trial and channel (i.e., 

univariate noise normalization). The sample dataset is openly available at [Github link to be included after 

acceptance] as a .mat file.  

 

3. MVPA Implementation 

3.1 Programming implementations 

To make EEG MVPA as widely accessible as possible, we provided a dual implementation of the core 

analysis code documented here in both MATLAB (R2019b) and Python (Python 3). Additional steps are 

provided in Python only. However, the libraries required have Matlab parallels, should one wish to 

implement them in Matlab as well. The clear advantage of Python is its portability and availability as an 

open source programming language. However, some matrix operations compute faster in Matlab. Both 

implementations produce comparable results, and a permutation based one-way ANOVA with cluster 

correction for multiple comparisons identified no clusters of difference within the data.  
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3.2 Cross-validation and pseudo-averaging 

 A key component of many MVPA implementations is the use of cross-validation. With cross-

validation, only a portion of the available trials, the “training set”, is used to train the classifier. The 

remaining trials are held-out, forming the “test set”. A classifier is first trained on a substantial portion of 

the data from each participant (e.g., 75%) to estimate the activation patterns associated with the 

dimension or category of interest. Then the classifier’s performance is assessed based on its ability to use 

these estimates to make predictions about the withheld test set (Figure 1) (Bhavsar & Panchal, 2012).  

In this way, classification accuracy reflects the extent to which the classifier successfully extracted 

patterns from the training set that supported the discrimination of the relevant dimension in the training 

set (e.g., cat or dog) and that generalized to the test set. To avoid an idiosyncratic partitioning of the data 

into training and test sets, this procedure is repeated multiple times to randomly assign observations to the 

training and test sets. In our example, trial order was permuted (i.e., repeatedly sampled at random) within 

each participant and condition to form four folds (75%-25%) for cross-validation (Grootswagers et al., 

2017). Previous work has demonstrated that such k-fold (here, k=4) cross validation techniques provide a 

more stable estimate of accuracy than comparable methods that have too many (such as leave-one-out) or 

too few (split-half) divisions of the entire dataset (Varoquaux et al., 2017).  

The most straightforward way of implementing cross-validation is to treat each trial within a fold 

as an independent event. However, EEG data are noisy and so a more robust implementation involves 

some averaging of trials within each fold. For example, if there were two stimuli (e.g., cat or dog) and 20 

repetitions of each with 4-fold cross validation, then within each fold the 5 trials of cat and the 5 trials of 

dog would be averaged, resulting in four “pseudotrials” (Grootswagers et al., 2017; Isik et al., 2014). 

Pairwise, within-subject classification of trials was performed such that two stimuli (e.g., cat vs. dog) 

were compared for each time point, with three pseudo-trials used for training and the fourth for testing. 

This procedure was repeated for 200 permutations of trial order, and classification accuracy was averaged 

over these permutations to yield a more robust estimate (Bayet et al., 2020) (Figure 1).  
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 In some cases, additional testing of the model on an independent dataset can be desirable, going 

beyond cross-validation. For example, if researchers use cross-validation accuracy as a guide to choose 

their classification model (e.g., deciding on features, classifier type, or kernel based on which decision 

yields the highest cross-validation accuracy), then cross-validation alone would provide an overly 

optimistic estimate of the final model’s performance (Hastie et al., 2009). Even when it is not used to 

guide model selection, certain research questions may necessitate to assess model generalization beyond 

the parameters of a specific dataset (e.g., if assessing biomarkers, or if seeking to assess the 

generalizability of individual participants’ neural representations across multiple days, etc.). In such 

cases, testing the final model on additional held-out data may be required to better estimate the model’s 

performance. 

 

Figure 1. Process for pseudotrial generation and classification, repeated for all pairs of conditions. 

Available trials for each condition are randomly permuted, then divided into 4 bins of approximately equal 

size (+/- 1 when trial number is not evenly divisible by 4). The trials in each bin are averaged to create 4 

pseudotrials per condition, which are then used for training and testing the classifier. The resulting 

classification accuracies are averaged over all 200 trial order permutations for final pairwise accuracies. 
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3.3 Choosing response features to be used for classification 

 In this example, normalized voltage values across channels were used as features to train the 

classifier independently for each time point. The resulting decoding accuracy function represents how 

effectively the normalized amplitude values across channels predict which stimulus was present on a 

given trial in the test set at each time point after stimulus onset. Alternatively, researchers may wish to 

implement MVPA with summary statistics (e.g., average voltage during a rolling time-window) or 

spectral power across channels and frequency bands instead of voltages (Xie et al., 2020). Both feature 

approaches (i.e., time-domain and frequency-domain) have been demonstrated to effectively decode 

stimuli; however, at least in certain paradigms, different features may reflect different aspects of 

perception, cognition, or attention (Desantis et al., 2020). For example, Desantis et. al. demonstrated that 

voltage amplitude and alpha-band power both reliably decoded attention orientation, however alpha-band 

power was more associated with attention orienting in space while voltage amplitude signaled perceptual 

processes associated with attention. While the specific differences between frequency and amplitude 

measures of neural representations are unclear, both can be effective for decoding. In practice, using 

frequency features increases the granularity of the data because each channel provides multiple 

frequency-band components (e.g., alpha, theta, delta, gamma), thereby increasing signal to noise ratio. 

However, these frequency components must be extracted over a temporal window, thereby resulting in 

some loss of temporal resolution and increase in the potential dimensionality of the data (Vidaurre et al., 

2020).  

   

3.4 Choosing a classification algorithm 

Here, we utilized a linear SVM to classify patterns of voltages across channels at each time-point. 

The tools leveraged for Matlab and Python were Libsvm (Chang & Lin, 2011) and scikit learn SVC 

(Pedregosa et al., 2011), respectively. The scikit learn SVC implementation is based on Libsvm and 

yields comparable results. Libsvm supports several variations to the SVM classifier. In the Python 

implementation all arguments to SVC were left as defaults. The Matlab implementation specifies a linear 
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kernel, and a multi-class classification in the call to the SVM training function. The SVM classification 

method, which generates hyperplanes that maximize separation between categories in a high dimensional 

space, is particularly effective given the large number of features considered for classification in 

comparison to the small available number of training trials (observations) (Bhavsar & Panchal, 2012). 

SVM classifiers select samples that maximize the distance between categories, or support vectors to 

define the margins between categories. Support vectors are calculated such that they maximize the 

distance between the support vectors and the hyperplane that divides the categories. The decision 

boundaries defined in the training step are then used to classify the test data.  

Alternatives to a linear SVM classifier include non-linear classifiers (e.g., Gaussian kernel SVM, 

Deep Neural Network) as well as other types of linear classifier such as logistic regression, Linear 

Discriminant Analysis, etc. Previous MVPA work suggests that most linear classification methods should 

perform similarly, as measured by prediction accuracy and stability of weights (Varoquaux et al., 2017). 

While a non-linear classifier can account for significantly more features than a linear approach, without a 

very large sample size such classification models are prone to overfitting (D’souza et al., 2020), i.e., 

fitting spurious patterns in the training data. It is also important to note that the SVM seeks any difference 

in the high-dimensional representation of the EEG features, including noise in the data. Since noise is a 

function of sample size, the success of the classifier could be due to a mismatch in the number of trials 

per stimulus rather than the underlying EEG features. 

 

4. Resulting metrics and statistical testing 

4.1 Output 

In the provided pipeline, the output of the decoding function (in both language implementations) 

will be a Matlab (.mat) file containing the fields ‘out’ and ‘results’. The ‘out’ field contains the string 

name of the file. The ‘results’ field contains a 4-d double matrix of the resulting decoding accuracies 

‘DA’, a structure containing the decoding parameters ‘params_decoding’, a matrix containing the number 
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of trials completed for each participant in each condition ‘nreps’, and an array ‘times’ that is a list of all 

time points.  

The ‘DA’ field is a 4-d matrix of the shape (number of participants, number of timepoints, 

number of conditions, number of conditions). That is, for each participant, at each timepoint, there is an 

upper diagonal matrix of average pairwise decoding accuracies for each stimulus pair. Of note, to avoid 

duplication, only the upper diagonal matrix (i.e., matrix elements above the diagonal) will contain 

numbers, while the diagonal and lower diagonal matrix will contain NaNs (not a number).  

 

4.2 Within-subject pairwise classification accuracy against chance 

To assess overall classification accuracy across the timeseries, the decoding accuracy (DA) 

matrix can be averaged over all subjects and conditions and compared to chance (50% in the case of 

pairwise classification). To derive an average timeseries over all participants, the condition by condition 

matrices need to be averaged over participants (i.e., the first, third, and fourth dimensions of the matrix in 

either Python or Matlab). This results in a one-dimensional array containing one average accuracy value 

per time point. To examine the pairwise decoding accuracy over the time series for each participant 

separately, accuracies should only be averaged over conditions (i.e., only the third and fourth 

dimensions): This results in a matrix of size (number of participants, number of time points) containing 

average classification accuracies at each time point for each participant. (Figure 2).  

In our example, the significance of the classification accuracy against chance was calculated 

using a one-way right-tailed t-test, with cluster-based correction for multiple comparisons (Maris & 

Oostenveld, 2007). Alternatively, non-parametric equivalents (e.g., permutation-based) may be used. Of 

note, standard parametric or non-parametric statistical methods applied to classification accuracy do not 

support population level inference (Allefeld et al., 2016). In other words, because the actual value of the 

estimated classification accuracy can never be below chance, a t-test can only suggest that there is an 

effect in some individuals in the sample, a conclusion that does not generalize to the population. If 
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population inference is necessary, alternative strategies have been proposed, such as examining the 

prevalence of the observed effect in the sample, as opposed to group means (Allefeld et al., 2016). 

 

 

 

4.3 Representational Similarity Analyses 

Representational similarity analysis (RSA) is a multivariate analysis method that assesses and 

compares the implied “geometry” of neural representations, i.e., how similar, or dissimilar patterns of 

neural activity are in response to different stimuli (Diedrichsen & Kriegeskorte, 2017; Haxby et al., 2014; 

Kriegeskorte & Kievit, 2013). The resulting measures of similarity or dissimilarity may then be compared 

between processing stages, groups, task conditions, or species, or between experimental and model 

data(Diedrichsen & Kriegeskorte, 2017; Haxby et al., 2014; Kriegeskorte & Kievit, 2013). In other words, 

Figure 2. Mean overall decoding accuracy across the time series as generated by the 

Matlab and Python implementations for infants (B, n=10), and adults (A, n=8) with 

standard error highlighted. Time windows of cluster corrected above chance accuracy 

are denoted by the horizontal solid lines.  
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RSA projects response differences from any dependent variable into a common space, thereby allowing 

those response differences to be compared with other responses differences or measures of difference 

regardless of the measures themselves (e.g., EEG, fMRI, model responses, behavioral ratings of 

dissimilarity) (Anderson et al., 2016; Bayet et al., 2020). Dissimilarity can be quantified in multiple ways 

such as within-class distance, Euclidean distance, pairwise correlations, and decoding accuracy 

(Guggenmos et al., 2018). Here we focused on classification accuracy, which is directly available from 

standard MVPA decoding, and cross-validated Euclidean distance, which has shown particular reliability 

as a measure of dissimilarity (Guggenmos et al., 2018).  

The first step to RSA is constructing representational dissimilarity matrices (RDMs), which 

describe the difference between EEG feature patterns for the classes of stimuli (Figure 3). The accuracy 

based RDM is simply a matrix of pairwise classification accuracies across the set of stimuli. Measuring 

representational similarity based on Euclidean distance requires a separate decoding step. The procedure 

for Euclidean decoding was much the same as decoding with SVM, however the Euclidean distance 

between values, with additional cross-validation steps to improve signal-to-noise ratio, was calculated 

instead of classification accuracy. Following the formula described by Walther et. al., the difference 

between the mean EEG voltage values for two stimuli were calculated for test and training sets of 

pseudotrials, and multiplied (Walther et al., 2016). This created a more stable estimate of representational 

difference, given that noise is assumed to be independent between the two sets. Euclidean based RDMs 

were calculated using the same procedure described above. Regardless of how dissimilarity is calculated, 

decoding accuracy is based on which RDM from the training set is most similar to the RDM in the test 

set. RDMs can be used to test computational and cognitive theories, and allows for the comparison of 

representations without identifying the transformation between representational spaces (Kriegeskorte & 

Kievit, 2013). Note, in practice the ability to make group comparisons with RSA is limited by the number 

of stimuli. In this example, RDMs contain 28 distances between pairs of 8 stimuli; based on this number 

of distances, analyses correlating RDMs between groups or time-windows can theoretically detect 
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correlations of r~0.45 or higher with 80% power (one-tail linear correlation,  = 5% for a single test; 

G*Power 3.1). 

 

 

 

5. Impact of limited trial numbers and criteria for participant inclusion 

Difficulties collecting enough valid trials for analysis frequently impede infant research. A range of valid 

trials thresholds were tested here to assess the relative impact of the number of available valid trials on the 

stability of decoding accuracy within the test set. At each of the trial thresholds, decoding was performed 

on all participant data with enough artifact-free trials, both cut off at exactly the trial threshold (i.e., at a 

threshold of 4, 4 trials from each condition were randomly selected for analysis if a participant had more 

than 4 available) and including all available trials. Within the example datasets, the number of 

participants included in the analysis was reduced as the trial threshold for participant inclusion in the 

analysis became more stringent (Figure 4). 

Figure 3. Representational dissimilarity matrices of pairwise classification accuracy and cross 

validated Euclidean distance for the subsets of adults (n=8) and infants (n=15) with highest overall 

RDM reliability. RDMs calculated in the time windows during which classification accuracy rises 

above chance (A), during the window of highest classification accuracy (B) and following the 

window of highest classification accuracy (C).  
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5.1 Impact on classification accuracy  

In both infants and adults there was an expected decrease in decoding accuracy when trials were 

cut off at the threshold compared to when all available trials were used. The results showed very similar 

time windows of above chance accuracy regardless of trial number threshold in both the infant and adult 

data (Figure 5). Higher numbers of valid trials led to higher classification accuracy in the adult dataset as 

expected. However, this pattern was perhaps less marked in the infant dataset (Figures 5-6), presumably 

due to a ceiling effect as well as to some level of trade-off between the number of available trials and the 

number of available participants with at least that number of available trials. Decoding accuracy in infants 

was numerically higher at the most stringent threshold of 10 trials per condition, however this pattern of 

results may reflect the particularities of the small amount of participant data included (Figure 6). In 

general, it is not possible to state a priori how many valid trials per stimulus are required to generate 

asymptotic decoding accuracy because of differences in the discriminability among a set of stimuli. 

However, analysis of reliability tradeoff when lowering the trial threshold in pilot data may provide 

guidance on this issue. 

Figure 4. Number of participants from the test data included vs. trial threshold for infants (A) and 

adults (B). Trial thresholds tested are highlighted in purple, and number of participants included at 

each threshold are noted at the top of the bars.  
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Figure 5. Overall average decoding accuracy when number of trials per condition was 

restricted to exactly each of the trial thresholds, with 95% confidence interval highlighted, 

for (A) infants and (B) adults. Time windows of cluster corrected above chance accuracy 

are denoted by the horizontal solid lines. Participants with fewer than the specified number 

of artifact-free trials are excluded (see Figure 1). 
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5.2 Impact on the reliability of Representational Dissimilarity Matrices 

 To assess the feasibility of RSA in the infant EEG dataset, we also examined the reliability by 

which the dissimilarity between neural responses to different stimulus types could be estimated at the 

group level – i.e., the noise ceiling (Nili et al., 2014). To that end, we used the Spearman-Brown split-half 

Figure 6. Average classification accuracy at different trial thresholds with (A) infants (time window 

100-500 ms) and (B) adults (time window 50-500 ms) and Euclidean distance with (C) infants (time 

window 100-500 ms) and (D) adults (time window 50-500 ms). Blue denotes the distribution when the 

number of trials included was cut off at the threshold, and orange denotes when all trials were included 

for all participants who met the threshold of trials per condition.  
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reliability method which involves correlating dissimilarity matrices, composed of the pairwise 

dissimilarities between all stimuli pairs, between two halves of the dataset (Lage-Castellanos et al., 2019). 

Specifically, the Pearson’s correlation coefficient was calculated between group-level RDMs estimated 

from random half-splits of the full group, repeated for 100 split halves (Nili et al., 2014). The statistical 

significance of these estimates was determined by repeating the same split half procedure, only this time 

shuffling dissimilarities in one of the splits in each iteration, repeated for 10,000 permutations (Lage-

Castellanos et al., 2019) to form a null distribution against which to compare empirical reliability values 

(Figure 7).  

 

 

 

 

 

In the adult dataset, the number of artifact-free trials used as inclusion threshold was numerically 

correlated with the observed split-half reliability of the corresponding group-level RDMs when including 

exactly N trials per condition in decoding, i.e., there was a trend for reliability to decrease when 

decreasing the amount of available data. When decoding was performed using all available data in adults 

who met the trial threshold for inclusion, there was little change between thresholds and an overall 

Figure 7. Average pairwise split-half reliability of the group-level Representational Dissimilarity 

Matrices of both classification accuracy and Euclidean distance obtained at each trial number 

threshold with corresponding average and 2.5-97.5 percentiles of the null split-half noise ceiling 

calculated in the time windows preceding above chance classification (A), during the window of 

highest classification accuracy (B) and following the window of highest classification accuracy (C).  
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negative correlation between trial threshold. The pattern was less clear in infants, where numerically the 

number of artifact free trials used as inclusion threshold was negatively correlated with reliability when 

including exactly n trials per condition in decoding, and when using all available data from included 

participants (Figure 7). Correlations were not statistically significant but suggest that, for group-level 

RSA with small infant datasets, decreasing the number of artifact-free trials needed for participant-

inclusion may not necessarily decrease how reliable the resulting group RDMs are, and may in fact yield 

more reliable estimates if the number of included participants can be increased (i.e., there is a trade-off 

between the number of trials per stimulus per infant and the number of infants).  

 

6. Discussion 

This tutorial aims to expand access to time-resolved MVPA and facilitate its future application to 

novel developmental research. Due to the number of logistical difficulties involved with collecting fMRI 

data from awake infants (for examples where this is successfully done, see e.g. (Dehaene-Lambertz et al., 

2002; Ellis & Turk-Browne, 2018) and the relative ease of collecting EEG data, a standard methodology 

for applying MVPA to infant EEG is extremely valuable. Providing implementations in two commonly 

used programming languages (Matlab, Python) significantly increases the availability of this method. As 

demonstrated here, both implementations give comparable results. Both infant and adult EEG data were 

successfully used to achieve reliable decoding of two or more stimuli, with infant classification at above 

chance levels even with restrictions on trial numbers.  

There are several important limitations to MVPA as a means of accessing neural representations. 

First, similar to univariate analyses, MVPA is sensitive to any pattern that differentiates categories. It is 

not guaranteed that the underlying cause of such a multivariate pattern is a cognitive process of interest, 

as opposed to some spurious factor such a low-level difference in stimulus brightness, size, or number of 

trials. Second, while linear classification requires fewer data to yield robust results than non-linear 

methods such as artificial neural networks (Alwosheel et al., 2018), this method is limited by the 

assumption of linearity inherent in the classification method. While there are theoretical and practical 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.16.448720doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448720
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

reasons to favor the use of linear classifiers when employing MVPA to assess neural representations 

(Hung et al., 2005; King et al., 2018), there is always a possibility that discrimination within the brain 

relies on nonlinear patterns of activation that do not fall within the linear constraints of the classifier 

(Naselaris & Kay, 2015; Popov et al., 2018).  

There are also caveats to the current example results that should be kept in mind when 

implementing this method. Primarily, the data set used to produce example decoding results was small. 

While the method was successfully executed on these data, the limited sample size could have skewed the 

presented results. It is also worth noting that there could be discrepancies that would be apparent with a 

larger data set. These specific findings also may not generalize to other sensory domains, EEG sensor 

types, or age groups. In a similar vein, the example results shown here may not generalize to other kinds 

of visual stimuli. Future research may address these limitations by replicating the current analyses in 

different, larger datasets of infant EEG data.  

By applying MVPA to infant EEG data in a pre-verbal age group, developmental researchers can 

draw conclusions about the nature and consistency of neural representations of perceived stimuli beyond 

what is afforded by univariate behavioral or neuroimaging methods. Future research may further expand 

the use of MVPA with infant data to other neuroimaging modalities (e.g., fMRI, time-frequency 

decomposition of EEG data, source-localized EEG data) and tailor data collection and analysis methods 

to better address limitations of infant neuroimaging including the quality and quantity of data available 

for data-intensive analyses such as MVPA.  
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