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Abstract

Studies of the mouse visual system have revealed a variety of visual brain areas that are
thought to support a multitude of behavioral capacities, ranging from stimulus-reward
associations, to goal-directed navigation, and object-centric discriminations. However,
an overall understanding of the mouse’s visual cortex, and how it supports a range of
behaviors, remains unknown. Here, we take a computational approach to help address
these questions, providing a high-fidelity quantitative model of mouse visual cortex and
identifying key structural and functional principles underlying that model’s success.
Structurally, we find that a comparatively shallow network structure with a
low-resolution input is optimal for modeling mouse visual cortex. Our main finding is
functional – that models trained with task-agnostic, self-supervised objective functions
based on the concept of contrastive embeddings are much better matches to mouse
cortex, than models trained on supervised objectives or alternative self-supervised
methods. This result is very much unlike in primates where prior work showed that the
two were roughly equivalent, naturally leading us to ask the question of why these
self-supervised objectives are better matches than supervised ones in mouse. To this
end, we show that the self-supervised, contrastive objective builds a general-purpose
visual representation that enables the system to achieve better transfer on
out-of-distribution visual scene understanding and reward-based navigation tasks. Our
results suggest that mouse visual cortex is a low-resolution, shallow network that makes
best use of the mouse’s limited resources to create a light-weight, general-purpose visual
system – in contrast to the deep, high-resolution, and more categorization-dominated
visual system of primates.
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Author summary

Studies of mouse visual behavior have revealed a multitude of visual abilities, ranging
from stimulus-reward associations, to goal-directed navigation, and object-centric
discriminations. A principled system-wide model of mouse visual cortex would be useful
both in providing an organizing theory for this wide spectrum of behaviors, and
enabling practical technology for many model-driven studies of mouse neuroscience
more broadly. However, the standard approach to creating quantitatively accurate
models of primate visual cortex has been less successful with the mouse system. Here
we identify critical computational features needed to capture mouse-specific neural
stimulus-response patterns, and illustrate how these features can be interpreted as
giving the highly resource-limited mouse brain a comparative advantage in self-learning
a task-general visual representation.

Introduction 1

The mouse has become an indispensable model organism in systems neuroscience, 2

allowing unprecedented genetic and experimental control at the level of cell-type 3

specificity in individual circuits [1]. Moreover, studies of mouse visual behavior have 4

revealed a multitude of abilities, ranging from stimulus-reward associations, to 5

goal-directed navigation, and object-centric discriminations [2]. Thus, the mouse animal 6

model bridges fine-grained, low-level experimental control with high-level behavior. 7

Understanding the principles underlying the structure and function of the mouse visual 8

system and how it relates to more commonly studied visual organisms such as macaque, 9

is therefore important. 10

Computational models are an effective tool for understanding how mouse visual 11

cortex is capable of supporting such behaviors and for providing a normative account 12

for its structure and function. They allow us to identify the key ingredients leading to 13

the model with the best quantitative agreement with the neural data. We can also 14

assess the functional similarities and differences between rodent and primate visual 15

cortex, which otherwise would be hard to capture in the absence of a model from prior 16

literature, beyond failures to be homologous in higher visual areas past V1. 17

Furthermore, these models provide a natural starting point for understanding 18

higher-level processing downstream of the visual system, such as in memory and its role 19

during the navigation of rich visual environments [3–7]. Without an explicit model of a 20

visual system, it is difficult to disentangle the contributions to neural response variance 21

of the visual system from those of higher-level cognitive phenomena. Understanding the 22

computations underlying higher cognition and motor control in rodents will therefore 23

critically depend on an understanding of the upstream sensory areas that they depend 24

on. 25

Deep convolutional neural networks (CNNs) are a class of models that have had 26

success as predictive models of the human and non-human primate ventral visual 27

stream (e.g., [8–13]). In contrast, such models have been poor predictors of neural 28

responses in mouse visual cortex [14,15]. Our hypothesis is that this failure can be 29

understood via and be remedied by the goal-driven modeling approach [16]. This 30

approach posits that normative models in neuroscience should pay careful attention to 31

the objective functions (i.e., behavior), architectures (i.e., neural circuit), and data 32

stream (i.e., visual input). These structural and functional ingredients should be finely 33

tuned to the biology and the ecology of the organism under study. 34

In this work, we build a substantially improved model of mouse visual cortex by 35

better aligning the objective function, architecture, and visual input with those of the 36

mouse visual system. Firstly, from an objective function point of view, the primate 37
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ventral stream models are trained in a supervised manner on ImageNet [17,18], which is 38

an image set containing over one million images belonging to one thousand, mostly 39

human-relevant, semantic categories [19]. While such a dataset is an important technical 40

tool for machine learning, it is highly implausible as a biological model particularly for 41

rodents, who do not receive such category labels over development. Instead, we find 42

that models trained using self-supervised, contrastive algorithms provide the best 43

correspondence to mouse visual responses. Interestingly, this situation is different than 44

in primates, where prior worked showed that the two were roughly equivalent [20]. 45

Secondly, in terms of the architecture, these primate ventral visual stream models are 46

too deep to be plausible models of the mouse visual system, since mouse visual cortex is 47

known to be more parallel and much shallower than primate visual cortex [21–24]. By 48

varying the number of linear-nonlinear layers in the models, we find that models with 49

fewer linear-nonlinear layers can achieve neural predictivity performance that is better 50

or on par with very deep models. Finally, mice are known to have lower visual acuity 51

than that of primates [25,26], suggesting that the resolution of the inputs to mouse 52

models should be lower than that of the inputs to primate models. Indeed, we find that 53

model fidelity can be improved by training them on lower-resolution images. Ultimately, 54

the confluence of these ingredients, leads to a model, known as “Contrastive AlexNet” 55

(first four layers), that best matches mouse visual cortex thus far. 56

We then address the question of why the Contrastive AlexNet is better at neural 57

predictivity from an ecological point of view, especially the role of contrastive, 58

self-supervised learning, which is novel and not expected by the known physiology and 59

behavioral experiments in mouse. To address this question, we use Contrastive AlexNet 60

to assess out-of-distribution generalization from its original training environment, 61

including using the visual encoder as the front-end of a bio-mechanically realistic virtual 62

rodent operating in an environment that supports spatially-extended reward-based 63

navigation. We show that visual representations of this model lead to improved transfer 64

performance over its supervised counterpart across environments, illustrating the 65

congruence between the task-transfer performance and improved neural fidelity of the 66

computational model. 67

Taken together, our best models of the mouse visual system suggest that it is a 68

shallower, general-purpose system operating on comparatively low-resolution inputs. 69

These identified factors therefore provide interpretable insight into the confluence of 70

constraints that may have given rise to the system in the first place, suggesting that 71

these factors were crucially important given the ecological niche in which the mouse is 72

situated, and the resource limitations to which it is subject. 73

Results 74

Determining the animal-to-animal mapping transform 75

Prior models of mouse visual cortex can be improved by varying three ingredients to 76

better match the biology and the ecology of mouse visual cortex. Before model 77

development, however, we must determine the appropriate procedure by which to 78

evaluate models. As in prior work on modeling primate visual cortex, we “map” model 79

responses to biological responses and the ability of the model responses to recapitulate 80

biological responses determines the model’s neural fidelity [8, 9, 17,20]. 81

How should artificial neural network responses be mapped to biological neural 82

responses? What firing patterns of mouse visual areas are common across multiple 83

animals, and thus worthy of computational explanation? A natural approach would be 84

to map artificial neural network features to mouse neural responses in the same manner 85

that different animals can be mapped to each other. Specifically, we aimed to identify 86
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the best performing class of similarity transforms needed to map the firing patterns of 87

one animal’s neural population to that of another, which we denote as the “inter-animal 88

consistency”. We took inspiration from methods that have proven useful in modeling 89

human and non-human primate visual, auditory, and motor cortices [16,27–29]. As with 90

other cortical areas, this transform class likely cannot be so strict as to require fixed 91

neuron-to-neuron mappings between cells. However, the transform class for each visual 92

area also cannot be so loose as to allow an unconstrained nonlinear mapping, since the 93

model already yields an image-computable nonlinear response. 94

We explored a variety of linear mapping transform classes (fit with different 95

constraints) between the population responses for each mouse visual area (Fig 1A). The 96

mouse visual responses to natural scenes were collected previously using both 97

two-photon calcium imaging and Neuropixels by the Allen Institute [15,22] from areas 98

V1 (VISp), LM (VISl), AL (VISal), RL (VISrl), AM (VISam), and PM (VISpm) in 99

mouse visual cortex (see number of units and specimens for each dataset in Table 1 and 100

further details in the “Neural Response Datasets” section). We focused on the natural 101

scene stimuli, consisting of 118 images, each presented 50 times (i.e., 50 trials per 102

image). For all methods, the corresponding mapping was trained on 50% of all the 103

natural scene images, and evaluated on the remaining held-out set of images. We also 104

included representational similarity analyses (RSA; [30]) as a baseline measure of 105

population-wide similarity across animals, corresponding to no selection of individual 106

units, unlike the other mapping transforms. For the strictest mapping transform 107

(One-to-One), each target unit was mapped to the single most correlated unit in the 108

source animal. Overall, the One-to-One mapping tended to yield the lowest inter-animal 109

consistency among the maps considered. However, Ridge regression (L2-regularized) 110

and Partial Least Squares (PLS) regression were more effective at the inter-animal 111

mapping, yielding the most consistent fits across visual areas, with PLS regression 112

providing the highest inter-animal consistency. We therefore used PLS regression in the 113

evaluation of a candidate model’s ability to predict neural responses. This mapping 114

transform confers the additional benefit of enabling direct comparison to prior primate 115

ventral stream results (which also used this mapping [8, 17]) in order to better 116

understand ecological differences between the two visual systems across species. 117

Under all mapping transforms, a log-linear extrapolation analysis (S5 Fig) reveals 118

that as the number of units increases, the inter-animal consistency approaches 1.0 more 119

rapidly for the Neuropixels dataset, than the calcium imaging dataset, which were 120

obtained from the average of the ∆f/F trace – indicating the higher reliability of the 121

Neuropixels data across all visual areas. We further noticed a large difference between 122

the inter-animal consistency obtained via RSA and the consistencies achieved by any of 123

the other mapping transforms for the responses in RL of the calcium imaging dataset 124

(green in Fig 1A). This difference, however, was not observed for responses in RL in the 125

Neuropixels dataset. This discrepancy suggested that there was a high degree of 126

population-level heterogeneity in the responses collected from the calcium imaging 127

dataset, which may be attributed to the fact that the two-photon field-of-view for RL 128

spanned the boundary between the visual and somatosensory cortex, as originally noted 129

by de Vries et al. [15]. We therefore excluded RL in the calcium imaging dataset from 130

further analyses, following Siegle et al. [31], who systematically compared these two 131

datasets. Thus, this analysis provided insight into the experiments from which the data 132

were collected, and allowed us to ascertain the level of neural response variance that is 133

common across animals and that therefore should be “explained” by candidate models. 134

For these reasons above, we present our main results on the newer and more reliable 135

Neuropixels dataset, as it is in a better position to separate models – with similar 136

results on the calcium imaging dataset presented in the Supporting Information. 137
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Fig 1. Inter-animal neural response consistency across mouse visual areas.
A. Inter-animal consistency was computed using different linear maps, showing that
PLS regression provides the highest consistency. Horizontal bars at the top are the
median and s.e.m. of the internal consistencies of the neurons in each visual area. Refer
to Table 1 for N units per visual area. B. The fraction of maximum split-half reliability
is plotted as a function of time (in 10-ms time bins) for each visual area.

Modeling mouse visual cortex 138

Building quantitatively accurate models 139

With this mapping and evaluation procedure, we can then develop models to better 140

match mouse visual responses. The overall conclusion that the mouse visual system is 141

most consistent with an artificial neural network model that is self-supervised, 142

low-resolution, and comparatively shallow. This conclusion holds more generally as well 143

on the earlier calcium imaging dataset, along with non-regression-based comparisons 144

like RSA (cf. S2 Fig, S3 Fig, and S4 Fig). Our best models attained neural predictivity 145

of 90% of the inter-animal consistency, much better than the prior high-resolution, deep, 146

and task-specific model (VGG16), which attained 56.27% of this ceiling (Fig 2A). We 147

also attain neural predictivity improvements over prior work [32, 33] (cf. the purple and 148

green bars in Fig 2A), especially the latter “MouseNet” of Shi et al. [33], which 149

attempts to map details of the mouse connectome [34,35] onto a CNN architecture. 150

There are two green bars in Fig 2A since we also built our own variant of MouseNet 151

where everything is the same except that image categories are read off of at the 152

penultimate layer of the model (rather than the concatenation of the earlier layers as 153

originally proposed). We thought this might aid the original MouseNet’s task 154

performance and neural predictivity, since it can be difficult to train linear layers when 155

the input dimensionality is very large. Our best models also outperform the neural 156

predictivity of “MouseNet” even when it is trained with a self-supervised objective 157

(leftmost red vs. “MouseNet” teal bars in Fig 2A). This is another conceptual 158

motivation for our structural-and-functional goal-driven approach, as the higher-level 159

constraints are easier to interrogate than to incorporate and assume individual 160

biological details, as this can be a very under constrained procedure. 161

In the subsequent subsections, we distill the three factors that contributed to models 162

with improved correspondence to the mouse visual areas: objective function, input 163

resolution, and architecture. 164

Objective function: Training models on self-supervised, contrastive 165

objectives, instead of supervised objectives, improves correspondence to 166

mouse visual areas 167

The success in modeling the human and the non-human primate visual system has 168

largely been driven by convolutional neural networks trained in a supervised manner on 169

ImageNet [19] to perform object categorization [9, 13]. This suggests that models 170
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Fig 2. Substantially improving neural response predictivity of models of
mouse visual cortex. A. The median and s.e.m. (across units) neural predictivity
difference with the prior-used, primate model of Supervised VGG16 trained on 224 px
inputs (“Primate Model Baseline”, used in [14,15,36]), under PLS regression, across
units in all mouse visual areas (N = 1731 units in total). Absolute neural predictivity
(always computed from the model layer that best predicts a given visual area) for each
model can be found in Table 3. Our best model is denoted as “AlexNet (IR)” on the far
left. “Single Stream”, “Dual Stream”, and “Six Stream” are novel architectures we
developed based on the first four layers of AlexNet, but additionally incorporates dense
skip connections, known from the feedforward connectivity of the mouse
connectome [34,35], as well as multiple parallel streams (schematized in S1 Fig). CPC
denotes contrastive predictive coding [32,37]. All models, except for the “Primate
Model Baseline”, are trained on 64 px inputs. We also note that all the models are
trained using ImageNet, except for CPC (purple), Depth Prediction (orange), and the
CIFAR-10-labeled black bars. B. Training a model on a contrastive objective improves
neural predictivity across all visual areas. For each visual area, the neural predictivity
values are plotted across all model layers for an untrained AlexNet, Supervised
(ImageNet) AlexNet and Contrastive AlexNet (ImageNet, instance recognition) – the
latter’s first four layers form the best model of mouse visual cortex. Shaded regions
denote mean and s.e.m. across units.
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trained with category-label supervision learn useful visual representations that are 171

well-matched to those of the primate ventral visual stream [17,20]. Thus, although 172

biologically implausible for the rodent, category-label supervision is a useful starting 173

point for building baseline models and indeed, models trained in this manner are much 174

improved over the prior primate model of VGG16 (black bars in Fig 2A). We refer to 175

this model as the “Primate Model Baseline”, since although many different models have 176

been used to predict neural activity in the primate ventral stream, this model in 177

particular was the de facto CNN used in the initial goal-driven modeling studies of 178

mouse visual cortex [14,15, 36]. This choice also helps explicitly illustrate how the three 179

factors that we study, which deviate in visual acuity, model depth, and functional 180

objective from the primate ventral stream, quantitatively improve these models greatly. 181

These improved, category-label-supervised models, however, cannot be an 182

explanation for how the mouse visual system developed in the first place. In particular, 183

it is unclear whether or not rodents can perform well on large-scale object recognition 184

tasks when trained, such as tasks where there are hundreds of labels. For example, they 185

obtain approximately 70% on a two-alternative forced-choice object classification 186

task [38]. Furthermore, the categories of the ImageNet dataset are human-centric and 187

therefore not relevant for rodents In fact, the affordances of monkeys involves being able 188

to manipulate objects flexibly with their hands (unlike rodents). Therefore, the 189

ImageNet categories may be more relevant to non-human primates as an ethological 190

proxy than it is to rodents. 191

We therefore turned to more ecological supervision signals and self-supervised 192

objective functions, where high-level category labeling is not necessary. These objectives 193

could possibly lead to models with improved biological plausibility and may provide 194

more general goals for the models, based on natural image statistics, beyond the 195

semantic specifics of (human-centric) object categorization. Among the more ecological 196

supervised signals, we consider categorization of comparatively lower-variation and 197

lower-resolution images with fewer labels (CIFAR-10-labeled black bars in Fig 2A; [39]), 198

and depth prediction (orange bars in Fig 2A; [40]), as a visual proxy for whisking [41]. 199

Here, we note that in Fig 2A, all models except for those indicated by CIFAR-10 200

(black), CPC (purple), or Depth Prediction (orange), are trained on ImageNet images. 201

Therefore, even if we remove the category labels from training, many of the images 202

themselves (mainly from both ImageNet and CIFAR-10) are human-centric so future 203

models could be trained using images that are more plausible for mice. 204

Turning to self-supervision, early self-supervised objectives include sparse 205

autoencoding (pink bars in Fig 2A; [42]), instantiated as a sparsity penalty in the latent 206

space of the image reconstruction loss, which has been shown to be successful at 207

producing Gabor-like functions reminiscent of the experimental findings in the work of 208

Hubel and Wiesel [43]. These objectives, however, have not led to quantitatively 209

accurate models of higher visual cortex [8, 20]. Further developments in computer vision 210

have led to other self-supervised algorithms, motivated by the idea that “non-semantic” 211

features are highly related to the higher-level, semantic features (i.e., category labels), 212

such as predicting the rotation angle of an image (blue bars in Fig 2A; [44]). Although 213

these objectives are very simple, models optimized on them do not result in “powerful” 214

visual representations for downstream tasks. We trained models on these objectives and 215

showed that although they improve neural predictivity over the prior primate model 216

(VGG16), they do not outperform category-label-supervised models (Fig 2A; compare 217

pink, blue, and orange with black). 218

Further developments in self-supervised learning provided a new class of contrastive 219

objectives. These objectives are much more powerful than prior self-supervised 220

objectives described above, as it has been shown that models trained with contrastive 221

objectives leads to visual representations that can support strong performance on 222
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downstream object categorization tasks. At a high level, the goal of these contrastive 223

objectives is to learn a representational space where embeddings of augmentations for 224

one image (i.e., embeddings for two transformations of the same image) are more 225

“similar” to each other than to embeddings of other images. We trained models using the 226

family of contrastive objective functions including: Instance Recognition (IR; [45]), a 227

Simple Framework for Contrastive Learning (SimCLR; [46]), Momentum Contrast 228

(MoCov2; [47]), Simple Siamese representation learning (SimSiam; [48]), Barlow 229

Twins [49], and Variance-Invariance-Covariance Regularization (VICReg; [50]). Note 230

that we are using the term “contrastive” broadly to encompass methods that learn 231

embeddings which are robust to augmentations, even if they do not explicitly rely on 232

negative batch examples – as they have to contrast against something to avoid 233

representational collapse. For example, SimSiam relies on asymmetric representations 234

via a stop gradient; Barlow Twins relies on regularizing with the cross correlation 235

matrix’s off diagonal elements; and VICReg uses the variance and covariance of each 236

embedding to ensure samples in the batch are different. Models trained with these 237

contrastive objectives (red bars in Fig 2A) resulted in higher neural predictivity across 238

all the visual areas than models trained on supervised object categorization, depth 239

prediction, and less-powerful self-supervised algorithms (black, orange, purple, pink, and 240

blue bars in Fig 2A). 241

We hone in on the contribution of the contrastive objective function (over a 242

supervised objective, and with a fixed dataset of ImageNet) to neural predictivity by 243

fixing the architecture to be AlexNet, while varying the objective function (shown in S9 244

Fig left). We find that across all objective functions, training AlexNet using instance 245

recognition leads to the highest neural predictivity. We additionally note that the 246

improvement in neural predictivity extends beyond the augmentation used for each 247

objective function, as shown in S7 Fig. When the image augmentations intended for 248

contrastive losses is used with supervised losses, neural predictivity does not improve. 249

Across all the visual areas, there is an improvement in neural predictivity simply by 250

using a powerful contrastive algorithm (red vs. black in Fig 2B and S9 Fig left). Not 251

only is there an improvement in neural predictivity, but also an improvement in 252

hierarchical correspondence to the mouse visual hierarchy. Using the brain hierarchy 253

score developed by Nonaka et al. [51], we observe that contrastive models outperform 254

their supervised counterparts in matching the mouse visual hierarchy (S10 Fig). The 255

first four layers of Contrastive AlexNet (red; Fig 2B), where neural predictivity is 256

maximal across visual areas, forms our best model for mouse visual cortex. 257

Data stream: Training models on images of lower resolution improves 258

correspondence to mouse visual areas 259

The visual acuity of mice is known to be lower than the visual acuity of primates [25,26]. 260

Thus, more accurate models of mouse visual cortex must be trained and evaluated at 261

image resolutions that are lower than those used in the training of models of the 262

primate visual system. We investigated how neural predictivity of two strong contrastive 263

models varied as a function of the image resolution at which they were trained. 264

Two models were used in the exploration of image resolution’s effects on neural 265

predictivity. Contrastive AlexNet was trained with image resolutions that varied from 266

64× 64 pixels to 224× 224 pixels, as 64× 64 pixels was the minimum image size for 267

AlexNet due to its architecture. The image resolution upper bound of 224× 224 pixels 268

is the image resolution that is typically used to train neural network models of the 269

primate ventral visual stream [17]. We also investigated image resolution’s effects using 270

a novel model architecture we developed, known as “Contrastive StreamNet”, as its 271

architecture enables us to explore a lower range of image resolutions than the original 272

AlexNet. This model was based on the first four layers of AlexNet, but additionally 273

September 21, 2023 8/44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2021.06.16.448730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448730
http://creativecommons.org/licenses/by/4.0/


incorporates dense skip connections, known from the feedforward connectivity of the 274

mouse connectome [34,35], as well as multiple parallel streams (schematized in S1 Fig). 275

We trained it using a contrastive objective function (instance recognition) at image 276

resolutions that varied from 32× 32 pixels to 224× 224 pixels. 277

Training models using resolutions lower than what is used for models of primate 278

visual cortex improves neural predictivity across all visual areas, but not beyond a 279

certain resolution, where neural predictivity decreases (Fig 3). Although the input 280

resolution of 64× 64 pixels may not be optimal for every architecture, it was the 281

resolution that we used to train all the models. This was motivated by the observation 282

that the upper bound on mouse visual acuity is 0.5 cycles / degree [25], corresponding 283

to 2 pixels / cycle × 0.5 cycles / degree = 1 pixel / degree. Prior retinotopic map 284

studies [52] estimate a visual coverage range in V1 of 60-90 degrees, and we found 285

64× 64 pixels to be roughly optimal for the models (Fig 3) and was also used by Shi et 286

al. [36], by Bakhtiari et al. [32], and in the MouseNet of Shi et al. [33]. Although 287

downsampling training images is a reasonable proxy for the mouse retina, as has been 288

done in prior modeling work, more investigation into appropriate image transformations 289

may be needed. 290

Overall, these data show that optimization using a simple change in the image 291

statistics (i.e., data stream) is crucial to obtain improved models of mouse visual 292

encoding. This suggests that mouse visual encoding is the result of “task-optimization” 293

at a lower resolution than what is typically used for primate ventral stream models. 294
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Fig 3. Lower-resolution training leads to improved neural response
predictivity (Neuropixels dataset). Contrastive AlexNet and Contrastive
StreamNet (Dual Stream) were trained using images of increasing resolutions. For
AlexNet, the minimum resolution was 64× 64 pixels. For Dual StreamNet, the minimum
resolution was 32× 32 pixels. The median and s.e.m. neural predictivity across all units
of all visual areas is plotted against the image resolution at which the models were
trained. Reducing the image resolution (but not beyond a certain point) during
representation learning improves the match to all the visual areas. The conversion from
image resolution in pixels to visual field coverage in degrees is under the assumption
that the upper bound on mouse visual acuity is 0.5 cycles per degree [25] and that the
Nyquist limit is 2 pixels per cycle, leading to a conversion ratio of 1 pixel per degree.
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Architecture: Shallow models suffice for improving correspondence to mouse 295

visual cortex 296

Anatomically, the mouse visual system has a shallower hierarchy relative to that of the 297

primate visual system (see, e.g., [21–24]). Furthermore, the reliability of the neural 298

responses for each visual area provides additional support for the relatively shallow 299

functional hierarchy (Fig 1B). Thus, more biologically-plausible models of mouse visual 300

cortex should have fewer linear-nonlinear layers than those of primate visual cortex. By 301

plotting a model’s neural predictivity against its number of linear-nonlinear operations, 302

we indeed found that very deep models do not outperform shallow models (i.e., models 303

with less than 12 linear-nonlinear operations), despite changes across loss functions and 304

input resolutions (Fig 4). In addition, if we fix the objective function to be “instance 305

recognition”, we can clearly observe that AlexNet, which consists of eight 306

linear-nonlinear layers, has the highest neural predictivity compared to ResNets and 307

VGG16 (S9 Fig right). Furthermore, models with only four convolutional layers 308

(StreamNets; Single, Dual, or Six Streams) perform as well as or better than models 309

with many more convolutional layers (e.g., compare Dual Stream with ResNet101, 310

ResNet152, VGG16, or MouseNets in S9 Fig right). This observation is in direct 311

contrast with prior observations in the primate visual system whereby networks with 312

fewer than 18 linear-nonlinear operations predict macaque visual responses less well 313

than models with at least 50 linear-nonlinear operations [17]. 314
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Fig 4. Neural predictivity vs. model depth. A model’s median neural predictivity
across all units from each visual area is plotted against its depth (number of
linear-nonlinear layers; in log-scale). Models with fewer linear-nonlinear layers can
achieve neural predictivity performances that outperform or are on par with those of
models with many more linear-nonlinear layers. The “Primate Model Baseline” denotes
a supervised VGG16 trained on 224 px inputs, used in prior work [14,15,36].

Mouse visual cortex as a general-purpose visual system 315

Our results show that a model optimized on a self-supervised contrastive objective the 316

most quantitatively accurate model of the mouse visual system. However, unlike 317

supervised object categorization or other more-classical forms of self-supervised learning 318

such as sparse autoencoding, whose ecological function is directly encoded in the loss 319

function (e.g., predator recognition or metabolically-efficient dimension reduction), the 320
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functional utility of self-supervision via a contrastive objective is not as apparent. This 321

naturally raises the question of what behavioral function(s) optimizing a contrastive 322

self-supervision objective might enable for the mouse from an ecological fitness 323

viewpoint. 324

Analyzing the spectrum of models described in the above section, we first observed 325

that performance on ImageNet categorization is uncorrelated with improved neural 326

predictivity for mouse visual cortex (Fig 5), unlike the well-known correlation in 327

primates (Fig 5; inset). In seeking an interpretation of the biological function of the 328

contrastive self-supervised objective, we were thus prompted to consider behaviors 329

beyond object-centric categorization tasks. We hypothesized that since self-supervised 330

loss functions are typically most effective in task-agnostic stimulus domains where 331

goal-specific labels are unavailable, optimizing for such an objective might enable the 332

rodent to transfer well to complex multi-faceted ecological tasks in novel domains 333

affording few targeted opportunities for hyper-specialization. 334

To test this hypothesis, we used a recently-developed “virtual rodent” framework 335

(adapted from Merel et al. [53] and also used by Lindsay et al. [54]), in which a 336

biomechanically-validated mouse model is placed in a simulated 3D maze-like 337

environment (Fig 6A). The primary purpose of the experiments with the virtual rodent 338

are not to necessarily make a specific statement about rodent movement repertoires, but 339

mainly to how well our self-supervised visual encoder enables control of a 340

high-dimensional body with high-dimensional continuous inputs – a problem that many 341

(if not all) animals have to solve. Of course, given that we were trying to better 342

understand why self-supervised methods are better predictors of specifically mouse 343

visual cortical neurons, we wanted a reasonable ecological task for that species (e.g., 344

navigation) and that its affordances were somewhat similar to that of an actual rodent 345

via the biomechanical realism of its body. In particular, if we used our shallow, lower 346

acuity, self-supervised visual encoder for controlling a virtual monkey simulation for a 347

task that a monkey is adapted to (e.g., object manipulation), we would not expect this 348

to work as well, given that such a task likely requires high visual acuity and good object 349

recognition abilities at a minimum. 350

We used the model that best corresponds to mouse visual responses as the visual 351

system of the simulated mouse, coupled to a simple actor-critic reinforcement-learning 352

architecture (Fig 6B). We then trained the simulated mouse in several visual contexts 353

with varying objective functions, and evaluated those models’ ability to transfer to a 354

variety of tasks in novel environments, including both a reward-based navigation task, 355

as well as several object-centric visual categorization and estimation tasks (Fig 6C). 356

We first evaluated a simulated mouse whose visual system was pretrained with 357

ImageNet images in terms of its ability to transfer to reward-based navigation in the 358

Maze environment, training just the reinforcement learning portion of the network on 359

the navigation task with the pretrained visual system held constant. As a supervised 360

control, we performed the same transfer training procedure using a visual front-end 361

created using supervised (ImageNet) object categorization pretraining. We found that 362

the simulated mouse with the contrastive self-supervised visual representation was able 363

to reliably obtain substantially higher navigation rewards than its counterpart with 364

category-supervised visual representation (Fig 7A). 365

Conversely, we trained the simulated mouse directly in the Maze environment. In 366

one variant, we trained the visual system on the contrastive self-supervised objective 367

(but on the images of the Maze environment). In a second variant, we trained the agent 368

end-to-end on the reward navigation task itself – the equivalent of “supervision” in the 369

Maze environment. We then tested both models on their ability to transfer to 370

out-of-sample visual categorization and estimation tasks. Again, we found that the 371

self-supervised variant transfers significantly better than its “supervised” counterpart 372
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(blue vs. purple bars in Fig 7B). 373

Returning to analyses of neural predictivity, we found that both self-supervised 374

models (trained in either environment) were better matches to mouse visual cortex 375

neurons than the supervised counterparts in their respective environments (red and blue 376

vs. black and purple in Fig 7C). This result illustrates the congruence between general 377

out-of-distribution task-transfer performance and improved neural fidelity of the 378

computational model. 379

Furthermore, Lindsay et al. [54] found that less powerful self-supervised 380

representation learners such as CPC and autoencoding did not match mouse visual 381

responses as well as their RL-trained counterpart (in terms of representational 382

similarity). This is consistent with our finding that CPC and autoencoding in Fig 3A 383

themselves do not match neural responses as well as contrastive self-supervised methods 384

(red vs. pink and purple bars). 385

It is also noteworthy that, comparing models by training environment rather than 386

objective function, the ImageNet-trained models produce more neurally-consistent 387

models than the Maze-trained models, both for supervised and self-supervised 388

objectives (red vs. blue and black vs. purple in Fig 7C). Using the contrastive 389

self-supervised objective function is by itself enough to raise the Maze-trained model to 390

the predictivity level of the ImageNet-trained supervised model, but the training 391

environment makes a significant contribution. This suggests that while the task domain 392

and biomechanical model of the Maze environment are realistic, future work will likely 393

need to improve the realism of the simulated image distribution. 394

Overall, these results suggest that contrastive embedding methods have achieved a 395

generalized improvement in the quality of the visual representations they create, 396

enabling a diverse range of visual behaviors, providing evidence for their potential as 397

computational models of mouse visual cortex. While we expect the calculation of 398

rewards to be performed outside of the visual system, we expect the mouse visual 399

system would support the visual aspects of the transfer tasks we consider, as we find 400

that higher model areas best support these scene understanding transfer tasks (S8 Fig). 401

This is not unlike the primate, where downstream visual areas support a variety of 402

visual recognition tasks [55]. 403

Discussion 404

In this work, we showed that comparatively shallow architectures trained with 405

contrastive objectives operating on lower-resolution images most accurately predict 406

static-image-evoked neural responses across multiple mouse visual areas, surpassing the 407

predictive power of supervised methods and approaching the inter-animal consistency. 408

The fact that these goal-driven constraints lead to a better match to visual responses, 409

even in “behaviorally-free” data where mice are passively viewing stimuli, suggests that 410

these constraints may be good descriptions of the evolutionary and the developmental 411

drivers of mouse visual cortical structure and function. 412

In the primate ventral visual stream, models trained on contrastive objectives led to 413

neural predictivity performance that was on par with that of supervised models [20], 414

suggesting they are a more ecologically-valid proxy for a categorization-specialized 415

system. This is in stark contrast with our findings in our models of mouse visual cortex 416

– we found that models trained on contrastive objectives substantially surpassed the 417

neural predictivity of their supervised counterparts. We investigated the advantages 418

that contrastive objectives might confer over supervised objectives for mouse visual 419

representations and found that they provide representations that are generally improved 420

over those obtained by supervised methods. The improvement in generality of 421

contrastive models enabled better transfer to a diverse range of downstream behaviors 422
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Fig 5. Neural predictivity is not correlated with object categorization
performance on ImageNet. Each model’s (transfer or supervised) object
categorization performance on ImageNet is plotted against its median neural
predictivity across all units from all visual areas. All ImageNet performance values can
be found in Table 3. Inset. Primate ventral visual stream neural predictivity from
BrainScore is correlated with ImageNet categorization accuracy (adapted from Schrimpf
et al. [17]). This relationship is in stark contrast to our finding in mouse visual cortex
where higher ImageNet categorization accuracy is not associated with higher neural
predictivity. Color scheme as in Fig 2A. See S2 Fig for neural predictivity on the
calcium imaging dataset.
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Visual Scene UnderstandingMaze Environment

ImageNet Reward-Based Navigation

A B

C

Object properties Texture

Decision Making

Fig 6. Evaluating the generality of learned visual representations. A. Each
row shows an example of an episode used to train the reinforcement learning (RL)
policy in an offline fashion [56]. The episodes used to train the virtual rodent (adapted
from Merel et al. [53]) were previously generated and are part of a larger suite of RL
tasks for benchmarking algorithms [57]. In this task (“DM Locomotion Rodent”), the
goal of the agent is to navigate the maze to collect as many rewards as possible (blue
orbs shown in the first row). B. A schematic of the RL agent. The egocentric visual
input is fed into the visual backbone of the model, which is fixed to be the first four
convolutional layers of either the contrastive or the supervised variants of AlexNet. The
output of the visual encoder is then concatenated with the virtual rodent’s
proprioceptive inputs before being fed into the (recurrent) critic and policy heads. The
parameters of the visual encoder are not trained, while the parameters of the critic head
and the policy head are trained. Virtual rodent schematic from Fig 1B of Merel et
al. [53]. C. A schematic of the out-of-distribution generalization procedure. Visual
encoders are either trained in a supervised or self-supervised manner on ImageNet [19]
or the Maze environment [57], and then evaluated on reward-based navigation or
datasets consisting of object properties (category, pose, position, and size) from Hong et
al. [55], and different textures [58].
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Fig 7. Self-supervised, contrastive visual representations better support
transfer performance on downstream, out-of-distribution tasks. Models
trained in a contrastive manner (using either ImageNet or the egocentric maze inputs;
red and blue respectively) lead to better transfer on out-of-distribution downstream
tasks than models trained in a supervised manner (i.e., models supervised on labels or
on rewards; black and purple respectively). A. Models trained on ImageNet, tested on
reward-based navigation. B. Models trained on egocentric maze inputs (“Contrastive
Maze”, blue) or supervised on rewards (i.e., reward-based navigation; “Supervised
Maze”, purple), tested on visual scene understanding tasks: pose, position, and size
estimation, and object and texture classification. C. Median and s.e.m. neural
predictivity across units in the Neuropixels dataset.

in novel, out of distribution environments, including reward-based navigation in 423

egocentric maze environments and visual scene understanding. 424

As mentioned previously, the goal-driven modeling approach allows us to understand 425

the principles that govern the system under study and further allows for direct 426

comparisons across systems. Our high-fidelity model of mouse visual cortex and the 427

principles underlying its construction can be compared with models of primate visual 428

cortex. While the primate ventral visual stream is well-modeled by a deep hierarchical 429

system and object-category learning, mouse as a model visual system has not had such 430

a coherent account heretofore. Our results demonstrate that both primate and rodent 431

visual systems are highly constrained, albeit for different functional purposes. The 432

results summarized above further suggest that mouse visual cortex is a light-weight, 433

shallower, low-resolution, and general-purpose visual system in contrast to the deep, 434

high-resolution, and more categorization-dominated visual system of primates, 435

suggested by prior work [20]. 436

Although we have made progress in modeling the mouse visual system in three core 437

ways (the choice of objective function, data stream, and architecture class), some 438

limitations remain both in the modeling and in the neural data. 439

On the architectural front, our focus in this work was on feedforward models, but 440

there are many feedback connections from higher visual areas to lower visual areas [21]. 441

Incorporating these architectural motifs into our models and training these models 442

using dynamic inputs may be useful for modeling temporal dynamics in mouse visual 443

cortex, as has been recently done in primates [29,59,60]. 444

By incorporating recurrent connections in the architectures, we can probe the 445

functionality of these feedback connections using self-supervised loss functions in 446

scenarios with temporally-varying, dynamic inputs. For example, given that powerful 447

self-supervised methods obtained good visual representations of static images, it would 448

be interesting to explore a larger spectrum of self-supervised signals operating on 449

dynamic inputs, such as in the context of forward prediction (e.g., [61–63]). 450

Constraining the input data so that they are closer to those received by the mouse 451

visual system was important for improved neural fidelity. Our resizing (i.e., 452

downsampling) of the images to be smaller during training acted as a proxy for low-pass 453

filtering. We believe that future work could investigate other appropriate low-pass 454

filters and ecologically-relevant pixel-level transformations to apply to the original image 455
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or video stream [64,65]. 456

Our inter-animal consistency analyses make recommendations for qualities of 457

experiments that are likely to provide data that will be helpful in more sharply 458

differentiating models. Under all mapping functions, a log-linear extrapolation analysis 459

revealed that as the number of units increases, the inter-animal consistency approaches 460

one more rapidly for the Neuropixels dataset, than for the calcium imaging dataset, 461

indicating the higher reliability of the Neuropixels data (S5 Fig). Moreover, when 462

assessing inter-animal consistency, correlation values between animals were significantly 463

higher for the training set than for the test set, indicating that the number of stimuli 464

could be enlarged to close this generalization gap (S6 Fig A). As a function of the 465

number of stimuli, the test set inter-animal consistencies steadily increased, and would 466

likely continue to increase substantially if the dataset had more stimuli (S6 Fig B). 467

Thus, while much focus in experimental methods has been on increasing the number of 468

neurons in a dataset [66], our analyses indicate that increasing the number of stimuli 469

may drastically improve model identification. Doing so would likely raise the 470

inter-animal consistency, providing substantially more dynamic range for separating 471

models in terms of their ability to match the data, potentially allowing us to obtain 472

more specific conclusions about which circuit structure(s) [67,68] and which 473

(combinations of) objectives (e.g., [45, 46,48]) best describe mouse visual cortex. 474

We endeavor that our work in modeling mouse visual cortex will meaningfully drive 475

future experimental and computational studies in mice of other sensory systems and of 476

visually-guided behaviors. The input-domain-agnostic nature of these contrastive 477

objectives suggest the tantalizing possibility that they might be used in other sensory 478

systems, such as barrel cortex or the olfactory system. By building high-fidelity 479

computational models of sensory cortex, we believe that they can be integrated with 480

models of higher-order systems (e.g., medial temporal lobe), with the goal of providing 481

us with greater insight into how sensory experience contributes to adaptive or 482

maladaptive behaviors. 483

Methods 484

Neural Response Datasets 485

We used the Allen Brain Observatory Visual Coding dataset [15,22] collected using both 486

two-photon calcium imaging and Neuropixels from areas V1 (VISp), LM (VISl), AL 487

(VISal), RL (VISrl), AM (VISam), and PM (VISpm) in mouse visual cortex. We 488

focused on the natural scene stimuli, consisting of 118 images, each presented 50 times 489

(i.e., 50 trials per image). 490

We list the number of units and specimens for each dataset in Table 1, after units 491

are selected, according to the following procedure: For the calcium imaging data, we 492

used a similar unit selection criterion as in Conwell et al. [18], where we sub-selected 493

units that attain a Spearman-Brown corrected split-half consistency of at least 0.3 494

(averaged across 100 bootstrapped trials), and whose peak responses to their preferred 495

images are not significantly modulated by the mouse’s running speed during stimulus 496

presentation (p > 0.05). 497

For the Neuropixels dataset, we separately averaged, for each specimen and each 498

visual area, the temporal response (at the level of 10-ms bins up to 250 ms) on the 499

largest contiguous time interval when the median (across the population of units in that 500

specimen) split-half consistency reached at least 0.3. This procedure helps to select the 501

most internally-consistent units in their temporally-averaged response, and accounts for 502

the fact that different specimens have different time courses along which their 503

population response becomes reliable. 504
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Finally, after subselecting units according to the above criteria for both datasets, we 505

only keep specimens that have at least the 75th percentile number of units among all 506

specimens for that given visual area. This final step helped to ensure we have enough 507

internally-consistent units per specimen for the inter-animal consistency estimation 508

(derived in the “Inter-Animal Consistency Derivation” section). 509

Dataset Type Visual Area Total Units Total Specimens

Calcium Imaging

V1 7080 29
LM 4393 24
AL 2064 9
RL 1116 8
AM 847 9
PM 1844 19

Neuropixels

V1 442 8
LM 162 6
AL 396 6
RL 299 7
AM 257 7
PM 175 5

Table 1. Descriptive statistics of the neural datasets. Total number of units and
specimens for each visual area for the calcium imaging and Neuropixels datasets.

Noise-Corrected Neural Predictivity 510

Linear Regression 511

When we perform neural fits, we choose a random 50% set of natural scene images (59 512

images in total) to train the regression, and the remaining 50% to use as a test set (59 513

images in total), across ten train-test splits total. For Ridge regression, we use an α = 1, 514

following the sklearn.linear model convention. PLS regression was performed with 515

25 components, as in prior work (e.g., [8, 17]). When we perform regression with the 516

One-to-One mapping, as in Fig 1B, we identify the top correlated (via Pearson 517

correlation on the training images) unit in the source population for each target unit. 518

Once that source unit has been identified, we then fix it for that particular train-test 519

split, evaluated on the remaining 50% of images. 520

Motivated by the justification given in the “Inter-Animal Consistency Derivation” 521

section for the noise correction in the inter-animal consistency, the noise correction of 522

the model to neural response regression is a special case of the quantity defined in the 523

“Multiple Animals” section, where now the source animal is replaced by model features, 524

separately fit to each target animal (from the set of available animals A). Let L be the 525

set of model layers, let rℓ be the set of model responses at model layer ℓ ∈ L, M be the 526

mapping, and let s be the trial-averaged pseudo-population response. 527

max
ℓ∈L

median
⊕
B∈A

〈
Corr

(
M
(
rℓtrain; s

B
1,train

)
test

, sB2,test

)
√
C̃orr

(
M
(
rℓtrain; s

B
1,train

)
test

,M
(
rℓtrain; s

B
2,train

)
test

)
× C̃orr

(
sB1,test, s

B
2,test

)
〉
,

where the average is taken over 100 bootstrapped split-half trials, ⊕ denotes 528

concatenation of units across animals B ∈ A followed by the median value across units, 529

and Corr(·, ·) denotes the Pearson correlation of the two quantities. C̃orr(·, ·) denotes the 530
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Spearman-Brown corrected value of the original quantity (see the “Spearman-Brown 531

Correction” section). 532

Prior to obtaining the model features of the stimuli for linear regression, we 533

preprocessed each stimulus using the image transforms used on the validation set during 534

model training, resizing the shortest edge of the stimulus in both cases to 64 pixels, 535

preserving the aspect ratio of the input stimulus. Specifically, for models trained using 536

the ImageNet dataset, we first resized the shortest edge of the stimulus to 256 pixels, 537

center-cropped the image to 224× 224 pixels, and finally resized the stimulus to 64× 64 538

pixels. For models trained using the CIFAR-10 dataset, this resizing yielded a 64× 81 539

pixels stimulus. 540

Representational Similarity Analysis (RSA) 541

In line with prior work [18,36], we also used representational similarity analysis 542

(RSA; [30]) to compare models to neural responses, as well as to compare animals to 543

each other. Specifically, we compared (via Pearson correlation) only the upper-right 544

triangles of the representational dissimilarity matrices (RDMs), excluding the diagonals 545

to avoid illusory effects [69]. 546

For each visual area and a given model, we defined the predictivity of the model for 547

that area to be the maximum RSA score across model layers after the suitable noise 548

correction is applied, which is defined as follows. Let rℓ be the model responses at 549

model layer ℓ and let s be the trial-averaged pseudo-population response (i.e., responses 550

aggregated across specimens). The metric used here is a specific instance of Eq (10), 551

where the single source animal A is the trial-wise, deterministic model features (which 552

have a mapping consistency of 1 as a result) and a single target animal B, which is the 553

pseudo-population response: 554

max
ℓ∈L

〈
RSA

(
rℓ, s2

)√
R̃SA (s1, s2)

〉
,

R̃SA (s1, s2) :=
2RSA (s1, s2)

1 + RSA (s1, s2)
,

(1)

where L is the set of model layers, {si}2i=1 are the animal’s responses for two halves of 555

the trials (and averaged across the trials dimension), the average is computed over 100 556

bootstrapped split-half trials, and R̃SA (s1, s2) denotes Spearman-Brown correction 557

applied to the internal consistency quantity, RSA (s1, s2), defined in the 558

“Spearman-Brown Correction” section. 559

If the fits are performed separately for each animal, then B corresponds to each 560

animal among those for a given visual area (defined by the set A), and we compute the 561

median across animals B ∈ A: 562

max
ℓ∈L

median
B∈A

〈
RSA

(
rℓ, sB2

)√
R̃SA

(
sB1 , s

B
2

)
〉
. (2)

Similar to the above, Spearman-Brown correction is applied to the internal consistency 563

quantity, RSA
(
sB1 , s

B
2

)
. 564

Inter-Animal Consistency Derivation 565

Single Animal Pair 566

Suppose we have neural responses from two animals A and B. Let tpi be the vector of 567

true responses (either at a given time bin or averaged across a set of time bins) of 568
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animal p ∈ A = {A,B, . . . } on stimulus set i ∈ {train, test}. Of course, we only receive 569

noisy observations of tpi , so let spj,i be the jth set of n trials of tpi . Finally, let M(x; y)i 570

be the predictions of a mapping M (e.g., PLS) when trained on input x to match 571

output y and tested on stimulus set i. For example, M
(
tAtrain; t

B
train

)
test

is the prediction 572

of mapping M on the test set stimuli trained to match the true neural responses of 573

animal B given, as input, the true neural responses of animal A on the train set stimuli. 574

Similarly, M
(
sA1,train; s

B
1,train

)
test

is the prediction of mapping M on the test set stimuli 575

trained to match the trial-average of noisy sample 1 on the train set stimuli of animal B 576

given, as input, the trial-average of noisy sample 1 on the train set stimuli of animal A. 577

With these definitions in hand, the inter-animal mapping consistency from animal A 578

to animal B corresponds to the following true quantity to be estimated: 579

Corr
(
M
(
tAtrain; t

B
train

)
test

, tBtest
)
, (3)

where Corr(·, ·) is the Pearson correlation across a stimulus set. In what follows, we will 580

argue that Eq (3) can be approximated with the following ratio of measurable quantities, 581

where we split in half and average the noisy trial observations, indexed by 1 and by 2: 582

Corr
(
M
(
tAtrain; t

B
train

)
test

, tBtest
)

∼
Corr

(
M
(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
Corr

(
M
(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
× Corr

(
sB1,test, s

B
2,test

) . (4)

In words, the inter-animal consistency (i.e., the quantity on the left side of Eq (4)) 583

corresponds to the predictivity of the mapping on the test set stimuli from animal A to 584

animal B on two different (averaged) halves of noisy trials (i.e., the numerator on the 585

right side of Eq (4)), corrected by the square root of the mapping reliability on animal 586

A’s responses to the test set stimuli on two different halves of noisy trials multiplied by 587

the internal consistency of animal B. 588

We justify the approximation in Eq (4) by gradually replacing the true quantities (t) 589

by their measurable estimates (s), starting from the original quantity in Eq (3). First, 590

we make the approximation that: 591

Corr
(
M
(
tAtrain; t

B
train

)
test

, sB2,test
)
∼ Corr

(
M
(
tAtrain; t

B
train

)
test

, tBtest
)
× Corr

(
tBtest, s

B
2,test

)
,
(5)

by the transitivity of positive correlations (which is a reasonable assumption when the 592

number of stimuli is large). Next, by transitivity and normality assumptions in the 593

structure of the noisy estimates and since the number of trials (n) between the two sets 594

is the same, we have that: 595

Corr
(
sB1,test, s

B
2,test

)
∼ Corr

(
sB1,test, t

B
test

)
× Corr

(
tBtest, s

B
2,test

)
∼ Corr

(
tBtest, s

B
2,test

)2
. (6)

In words, Eq (6) states that the correlation between the average of two sets of noisy 596

observations of n trials each is approximately the square of the correlation between the 597

true value and average of one set of n noisy trials. Therefore, combining Eq (5) and 598

Eq (6), it follows that: 599

Corr
(
M
(
tAtrain; t

B
train

)
test

, tBtest
)
∼

Corr
(
M
(
tAtrain; t

B
train

)
test

, sB2,test
)√

Corr
(
sB1,test, s

B
2,test

) . (7)

From the right side of Eq (7), we can see that we have removed tBtest, but we still 600

need to remove the M
(
tAtrain; t

B
train

)
test

term, as this term still contains unmeasurable 601
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(i.e., true) quantities. We apply the same two steps, described above, by analogy, 602

though these approximations may not always be true (they are, however, true for 603

Gaussian noise): 604

Corr
(
M
(
sA1,train; s

B
1,train

)
test

, sB2,test

)
∼ Corr

(
sB2,test,M

(
tAtrain; t

B
train

)
test

)
× Corr

(
M
(
tAtrain; t

B
train

)
test

,M
(
sA1,train; s

B
1,train

)
test

)
605

Corr
(
M
(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
∼ Corr

(
M
(
sA1,train; s

B
1,train

)
test

,M
(
tAtrain; t

B
train

)
test

)2
,

which taken together implies the following: 606

Corr
(
M
(
tAtrain; t

B
train

)
test

, sB2,test
)
∼

Corr
(
M
(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
Corr

(
M
(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

) .
(8)

Eq (7) and Eq (8) together imply the final estimated quantity given in Eq (4). 607

Multiple Animals 608

For multiple animals, we consider the average of the true quantity for each target in B 609

in Eq (3) across source animals A in the ordered pair (A,B) of animals A and B: 610〈
Corr

(
M
(
tAtrain; t

B
train

)
test

, tBtest
)〉

A∈A:(A,B)∈A×A

∼

〈
Corr

(
M
(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
C̃orr

(
M
(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
× C̃orr

(
sB1,test, s

B
2,test

)
〉

A∈A:(A,B)∈A×A

.

We also bootstrap across trials, and have multiple train/test splits, in which case the 611

average on the right hand side of the equation includes averages across these as well. 612

Note that each neuron in our analysis will have this single average value associated 613

with it when it was a target animal (B), averaged over source animals/subsampled 614

source neurons, bootstrapped trials, and train/test splits. This yields a vector of these 615

average values, which we can take median and standard error of the mean (s.e.m.) over, 616

as we do with standard explained variance metrics. 617

RSA 618

We can extend the above derivations to other commonly used metrics for comparing 619

representations that involve correlation. Since RSA(x, y) := Corr(RDM(x),RDM(y)), 620

then the corresponding quantity in Eq (4) analogously (by transitivity of positive 621

correlations) becomes: 622〈
RSA

(
M
(
tAtrain; t

B
train

)
test

, tBtest
)〉

A∈A:(A,B)∈A×A

∼

〈
RSA

(
M
(
sA1,train; s

B
1,train

)
test

, sB2,test

)
√
R̃SA

(
M
(
sA1,train; s

B
1,train

)
test

,M
(
sA2,train; s

B
2,train

)
test

)
× R̃SA

(
sB1,test, s

B
2,test

)
〉

A∈A:(A,B)∈A×A

.

(9)
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Note that in this case, each animal (rather than neuron) in our analysis will have 623

this single average value associated with it when it was a target animal (B) (since RSA 624

is computed over images and neurons), where the average is over source 625

animals/subsampled source neurons, bootstrapped trials, and train/test splits. This 626

yields a vector of these average values, which we can take median and s.e.m. over, 627

across animals B ∈ A. 628

For RSA, we can use the identity mapping (since RSA is computed over neurons as 629

well, the number of neurons between source and target animal can be different to 630

compare them with the identity mapping). As parameters are not fit, we can choose 631

train = test, so that Eq (9) becomes: 632

〈
RSA

(
tA, tB

)〉
A∈A:(A,B)∈A×A ∼

〈
RSA

(
sA1 , s

B
2

)√
R̃SA

(
sA1 , s

A
2

)
× R̃SA

(
sB1 , s

B
2

)
〉

A∈A:(A,B)∈A×A

. (10)

Pooled Source Animal 633

Often times, we may not have enough neurons per animal to ensure that the estimated 634

inter-animal consistency in our data closely matches the “true” inter-animal consistency. 635

In order to address this issue, we holdout one animal at a time and compare it to the 636

pseudo-population aggregated across units from the remaining animals, as opposed to 637

computing the consistencies in a pairwise fashion. Thus, B is still the target heldout 638

animal as in the pairwise case, but now the average over A is over a sole “pooled” 639

source animal constructed from the pseudo-population of the remaining animals. 640

Spearman-Brown Correction 641

The Spearman-Brown correction can be applied to each of the terms in the denominator 642

individually, as they are each correlations of observations from half the trials of the 643

same underlying process to itself (unlike the numerator). Namely, 644

C̃orr (X,Y ) :=
2Corr (X,Y )

1 + Corr (X,Y )
.

Analogously, since RSA(X,Y ) := Corr(RDM(x),RDM(y)), then we define 645

R̃SA (X,Y ) := C̃orr(RDM(x),RDM(y))

=
2RSA (X,Y )

1 + RSA (X,Y )
.

StreamNet Architecture Variants 646

We developed shallower, multiple-streamed architectures for mouse visual cortex, shown 647

in Fig 2A. There are three main modules in our architecture: shallow, intermediate, and 648

deep. The shallow and deep modules each consist of one convolutional layer and the 649

intermediate module consists of a block of two convolutional layers. Thus, the longest 650

length of the computational graph, excluding the readout module, is four (i.e., 651

1 + 2 + 1). Depending on the number of parallel streams in the model, the intermediate 652

module would contain multiple branches (in parallel), each receiving input from the 653

shallow module. The outputs of the intermediate modules are then passed through one 654

convolutional operation (deep module). Finally, the outputs of each parallel branch 655

would be summed together, concatenated across the channels dimension, and used as 656

input for the readout module. 657
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The readout module consists of an (adaptive) average pooling operation that 658

upsamples the inputs to 6× 6 feature maps. These feature maps are then flattened, so 659

that each image only has a single feature vector. These feature vectors are then fed into 660

a linear layer (i.e., fully-connected layer) either for classification or for embedding them 661

into a lower-dimensional space for the contrastive losses. Table 2 describes the 662

parameters of three model variants, each containing one (N = 1), two (N = 2), or six 663

(N = 6) parallel branches. 664

Module
Name

Output
Size

Single (N = 1) Dual (N = 2) Six (N = 6)

Input 64× 64 N/A N/A N/A
Shallow 7× 7 (64, 11, 4, 2) (64, 11, 4, 2) (64, 11, 4, 2)

Intermediate 3× 3
[
(192, 5, 1, 2)
(384, 3, 1, 1)

] [
(192, 5, 1, 2)
(384, 3, 1, 1)

]
×

2

[
(192, 5, 1, 2)
(384, 3, 1, 1)

]
×

6

Deep 3× 3

If inputs are
from

intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

If inputs are
from

intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

If inputs are
from

intermediate:
(256, 3, 1, 1),
otherwise:
(256, 3, 2, 0)

Table 2. Neural network parameters and output sizes for the convolutional
layers of our StreamNet model variants containing one, two, and six parallel
branches in the intermediate module. One convolutional layer is denoted by a
tuple: (number of filters, filter size, stride, padding). Note that the first convolutional
layer has max pooling of stride 2, as in AlexNet. A block of convolutional layers is
denoted by a list of tuples, where each tuple in the list corresponds to a single
convolutional layer. When a list of tuples is followed by “×N”, this means that the
convolutional parameters for each of the N parallel branches are the same.

Neural Network Training Objectives 665

In this section, we briefly describe the supervised and self-supervised objectives that 666

were used to train our models. 667

Supervised Training Objective 668

The loss function L used in supervised training is the cross-entropy loss, defined as 669

follows: 670

L(X;θ) = − 1

N

N∑
i=1

log

(
exp(Xi[ci])∑C−1
j=0 exp(Xi[j])

)
, (11)

where N is the batch size, C is the number of categories for the dataset, X ∈ RN×C are 671

the model outputs (i.e., logits) for the N images, Xi ∈ RC are the logits for the ith 672

image, ci ∈ [0, C − 1] is the category index of the ith image (zero-indexed), and θ are 673

the model parameters. Eq (11) was minimized using stochastic gradient descent (SGD) 674

with momentum [70]. 675

ImageNet [19] This dataset contains approximately 1.3 million images in the train 676

set and 50 000 images in the validation set. Each image was previously labeled into 677

C = 1000 distinct categories. 678
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CIFAR-10 [39] This dataset contains 50 000 images in the train set and 10 000 images 679

in the validation set. Each image was previously labeled into C = 10 distinct categories. 680

Depth Prediction [40] The goal of this objective is to predict the depth map of an 681

image. We used a synthetically generated dataset of images known as PBRNet [40]. It 682

contains approximately 500 000 images and their associated depth maps. Similar to the 683

loss function used in the sparse autoencoder objective, we used a mean-squared loss to 684

train the models. The output (i.e., depth map) was generated using a mirrored version 685

of each of our StreamNet variants. In order to generate the depth map, we appended 686

one final convolutional layer onto the output of the mirrored architecture in order to 687

downsample the three image channels to one image channel. During training, random 688

crops of size 224× 224 pixels were applied to the image and depth map (which were 689

both subsequently resized to 64× 64 pixels). In addition, both the image and depth 690

map were flipped horizontally with probability 0.5. Finally, prior to the application of 691

the loss function, each depth map was normalized such that the mean and standard 692

deviation across pixels were zero and one respectively. 693

Each of our single-, dual-, and six-stream variants were trained using a batch size of 694

256 for 50 epochs using SGD with momentum of 0.9, and weight decay of 0.0001. The 695

initial learning rate was set to 10−4 and was decayed by a factor of 10 at epochs 15, 30, 696

and 45. 697

Self-supervised Training Objectives 698

Sparse Autoencoder [42] The goal of this objective is to reconstruct an image from 699

a sparse image embedding. In order to generate an image reconstruction, we used a 700

mirrored version of each of our StreamNet variants. Concretely, the loss function was 701

defined as follows: 702

L(x;θ) = 1

2 · 642
∥f(x)− x∥22 +

λ

128
∥v∥1, (12)

where v ∈ R128 is the image embedding, f is the (mirrored) model, f(x) is the image 703

reconstruction, x is a 64× 64 pixels image, λ is the regularization coefficient, and θ are 704

the model parameters. 705

Our single-, dual-, and six-stream variants were trained using a batch size of 256 for 706

100 epochs using SGD with momentum of 0.9 and weight decay of 0.0005. The initial 707

learning rate was set to 0.01 for the single- and dual-stream variants and was set to 708

0.001 for the six-stream variant. The learning rate was decayed by a factor of 10 at 709

epochs 30, 60, and 90. For all the StreamNet variants, the embedding dimension was set 710

to 128 and the regularization coefficient was set to 0.0005. 711

RotNet [44] The goal of this objective is to predict the rotation of an image. Each 712

image of the ImageNet dataset was rotated four ways (0◦, 90◦, 180◦, 270◦) and the four 713

rotation angles were used as “pseudo-labels” or “categories”. The cross-entropy loss was 714

used with these pseudo-labels as the training objective (i.e., Eq (11) with C = 4). 715

Our single-, dual-, and six-stream variants were trained using a batch size of 192 716

(which is effectively a batch size of 192× 4 = 768 due to the four rotations for each 717

image) for 50 epochs using SGD with Nesterov momentum of 0.9, and weight decay of 718

0.0005. An initial learning rate of 0.01 was decayed by a factor of 10 at epochs 15, 30, 719

and 45. 720

Instance Recognition [45] The goal of this objective is to be able to differentiate 721

between embeddings of augmentations of one image from embeddings of augmentations 722
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of other images. Thus, this objective function is an instance of the class of contrastive 723

objective functions. 724

A random image augmentation is first performed on each image of the ImageNet 725

dataset (random resized cropping, random grayscale, color jitter, and random horizontal 726

flip). Let x be an image augmentation, and f(·) be the model backbone composed with 727

a one-layer linear multi-layer perceptron (MLP) of size 128. The image is then 728

embedded onto a 128-dimensional unit-sphere as follows: 729

z = f(x)/∥f(x)∥2, z ∈ R128.

Throughout model training, a memory bank containing embeddings for each image in 730

the train set is maintained (i.e., the size of the memory bank is the same as the size of 731

the train set). The embedding z will be “compared” to a subsample of these 732

embeddings. Concretely, the loss function L for one image x is defined as follows: 733

h(u) =
exp(u · z/τ)/Z

exp(u · z/τ)/Z + (m/N)
,

L(x;θ) = − log h(v)−
m∑
j=1

log (1− h(vj)) , (13)

where v ∈ R128 is the embedding for image x that is currently stored in the memory 734

bank, N is the size of the memory bank, m = 4096 is the number of “negative” samples 735

used, {vj}mj=1 are the negative embeddings sampled from the memory bank uniformly, 736

Z is some normalization constant, τ = 0.07 is a temperature hyperparameter, and θ are 737

the parameters of f . From Eq (13), we see that we want to maximize h(v), which 738

corresponds to maximizing the similarity between v and z (recall that z is the 739

embedding for x obtained using f). We can also see that we want to maximize 740

1− h(vj) (or minimize h(vj)). This would correspond to minimizing the similarity 741

between vj and z (recall that vj are the negative embeddings). 742

After each iteration of training, the embeddings for the current batch are used to 743

update the memory bank (at their corresponding positions in the memory bank) via a 744

momentum update. Concretely, for image x, its embedding in the memory bank v is 745

updated using its current embedding z as follows: 746

v ← λv + (1− λ)z,

v ← v/∥v∥2,

where λ = 0.5 is the momentum coefficient. The second operation on v is used to 747

project v back onto the 128-dimensional unit sphere. 748

Our single-, dual-, and six-stream variants were trained using a batch size of 256 for 749

200 epochs using SGD with momentum of 0.9, and weight decay of 0.0005. An initial 750

learning rate of 0.03 was decayed by a factor of 10 at epochs 120 and 160. 751

MoCov2 [47, 71] The goal of this objective is to be able to distinguish augmentations 752

of one image (i.e., by labeling them as “positive”) from augmentations of other images 753

(i.e., by labeling them as “negative”). Intuitively, embeddings of different augmentations 754

of the same image should be more “similar” to each other than to embeddings of 755

augmentations of other images. Thus, this algorithm is another instance of the class of 756

contrastive objective functions and is similar conceptually to instance recognition. 757

Two image augmentations are first generated for each image in the ImageNet 758

dataset by applying random resized cropping, color jitter, random grayscale, random 759

Gaussian blur, and random horizontal flips. Let x1 and x2 be the two augmentations 760

for one image. Let fq(·) be a query encoder, which is a model backbone composed with 761

September 21, 2023 24/44

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2023. ; https://doi.org/10.1101/2021.06.16.448730doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448730
http://creativecommons.org/licenses/by/4.0/


a two-layer non-linear MLP of dimensions 2048 and 128 respectively and let fk(·) be a 762

key encoder, which has the same architecture as fq. x1 is encoded by fq and x2 is 763

encoded by fk as follows: 764

v = fq(x1), k0 = fk(x2), v,k0 ∈ R128.

During each iteration of training, a dictionary of size K of image embeddings obtained 765

from previous iterations is maintained (i.e., the dimensions of the dictionary are 766

K × 128). The image embeddings in this dictionary are used as “negative” samples. 767

The loss function L for one image of a batch is defined as follows: 768

L(x1,x2;θq) = − log
exp(v · k0/τ)∑K
i=0 exp(v · ki/τ)

, (14)

where θq are the parameters of fq, τ = 0.2 is a temperature hyperparameter, 769

K = 65 536 is the number of “negative” samples, and {ki}Ki=1 are the embeddings of the 770

negative samples (i.e., the augmentations for other images which are encoded using fk, 771

and are stored in the dictionary). From Eq (14), we see that we want to maximize 772

v · k0, which corresponds to maximizing the similarity between the embeddings of the 773

two augmentations of an image. 774

After each iteration of training, the dictionary of negative samples is enqueued with 775

the embeddings from the most recent iteration, while embeddings that have been in the 776

dictionary for the longest are dequeued. Finally, the parameters θk of fk are updated 777

via a momentum update, as follows: 778

θk ← λθk + (1− λ)θq,

where λ = 0.999 is the momentum coefficient. Note that only θq are updated with 779

back-propagation. 780

Our single-, dual-, and six-stream variants were trained using a batch size of 512 for 781

200 epochs using SGD with momentum of 0.9, and weight decay of 0.0005. An initial 782

learning rate of 0.06 was used, and the learning rate was decayed to 0.0 using a cosine 783

schedule (with no warm-up). 784

SimCLR [46] The goal of this objective is conceptually similar to that of MoCov2, 785

where the embeddings of augmentations of one image should be distinguishable from the 786

embeddings of augmentations of other images. Thus, SimCLR is another instance of the 787

class of contrastive objective functions. 788

Similar to other contrastive objective functions, two image augmentations are first 789

generated for each image in the ImageNet dataset (by using random cropping, random 790

horizontal flips, random color jittering, random grayscaling and random Gaussian 791

blurring). Let f(·) be the model backbone composed with a two-layer non-linear MLP 792

of dimensions 2048 and 128 respectively. The two image augmentations are first 793

embedded into a 128-dimensional space and normalized: 794

z1 = f(x1)/∥f(x1)∥2, z2 = f(x2)/∥f(x2)∥2, z1, z2 ∈ R128.

The loss function L for a single pair of augmentations of an image is defined as follows: 795

L(x1,x2;θ) = − log
exp(z1 · z2/τ)∑2N

i=1 1[i ̸= 1] exp(z1 · zi/τ)
, (15)

where τ = 0.1 is a temperature hyperparameter, N is the batch size, 1[i ≠ 1] is equal to 796

1 if i ̸= 1 and 0 otherwise, and θ are the parameters of f . The loss defined in Eq (15) is 797
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computed for every pair of images in the batch (including their augmentations) and 798

subsequently averaged. 799

Our single-, dual-, and six-stream variants were trained using a batch size of 4096 for 800

200 epochs using layer-wise adaptive rate scaling (LARS; [72]) with momentum of 0.9, 801

and weight decay of 10−6. An initial learning rate of 4.8 was used and decayed to 0.0 802

using a cosine schedule. A linear warm-up of 10 epochs was used for the learning rate 803

with warm-up ratio of 0.0001. 804

SimSiam [48] The goal of this objective is to maximize the similarity between the 805

embeddings of two augmentations of the same image. Thus, SimSiam is another 806

instance of the class of contrastive objective functions. 807

Two random image augmentations (i.e., random resized crop, random horizontal flip, 808

color jitter, random grayscale, and random Gaussian blur) are first generated for each 809

image in the ImageNet dataset. Let x1 and x2 be the two augmentations of the same 810

image, f(·) be the model backbone, g(·) be a three-layer non-linear MLP, and h(·) be a 811

two-layer non-linear MLP. The three-layer MLP has hidden dimensions of 2048, 2048, 812

and 2048. The two-layer MLP has hidden dimensions of 512 and 2048 respectively. Let 813

θ be the parameters for f , g, and h. The loss function L for one image x of a batch is 814

defined as follows (recall that x1 and x2 are two augmentations of one image): 815

p1 = h ◦ g ◦ f(x1), p2 = h ◦ g ◦ f(x2), z1 = g ◦ f(x1), z2 = g ◦ f(x2),

L(x1,x2;θ) = −
1

2

(
z1 · p2

∥z1∥2∥p2∥2
+

z2 · p1

∥z2∥2∥p1∥2

)
, (16)

where z1, z2,p1,p2 ∈ R2048. Note that z1 and z2 are treated as constants in this loss 816

function (i.e., the gradients are not back-propagated through z1 and z2). This 817

“stop-gradient” method was key to the success of this objective function. 818

Our single-, dual-, and six-stream variants were trained using a batch size of 512 for 819

100 epochs using SGD with momentum of 0.9, and weight decay of 0.0001. An initial 820

learning rate of 0.1 was used, and the learning rate was decayed to 0.0 using a cosine 821

schedule (with no warm-up). 822

Barlow Twins [49] This method is inspired by Horace Barlow’s theory that sensory 823

systems reduce redundancy in their inputs [73]. Let x1 and x2 be the two 824

augmentations (random crops and color distortions) of the same image, f(·) be the 825

model backbone, and let h(·) be a three-layer non-linear MLP (each of output 826

dimension 8192). Given z1, z2 ∈ R8192, where z1 = h ◦ f(x1) and z2 = h ◦ f(x2), this 827

method proposes an objective function which tries to make the cross-correlation matrix 828

computed from the twin embeddings z1 and z2 as close to the identity matrix as 829

possible: 830

z1 = h ◦ f(x1), z2 = h ◦ f(x2),

L(x1,x2;θ) =
∑
i

(1− C2ii) + λ
∑
i

∑
j ̸=i

C2ij , (17)

Cij :=
∑

b z1b,iz2b,j√
(
∑

b z1b,i)2
√
(
∑

b z2b,j)2
,

where b indexes batch examples and i, j index the embedding output dimension. 831

We trained AlexNet (with 64× 64 image inputs) with the recommended 832

hyperparameters of λ = 0.0051, weight decay of 10−6, and batch size of 2048 with the 833

LARS [72] optimizer employing learning rate warm-up of 10 epochs under a cosine 834
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schedule. We found that training stably completed after 58 epochs for this particular 835

model architecture. 836

VICReg [50] Let x1 and x2 be the two augmentations (random crops and color 837

distortions) of the same image, f(·) be the model backbone, and let h(·) be a 838

three-layer non-linear MLP (each of output dimension 8192). Given z1, z2 ∈ R8192, 839

where z1 = h ◦ f(x1) and z2 = h ◦ f(x2), this method proposes an objective function 840

that contains three terms: 841

1. Invariance: minimizes the mean square distance between the embedding vectors. 842

2. Variance: enforces the embedding vectors of samples within a batch to be 843

different via a hinge loss to keep the standard deviation of each embedding 844

variable to be above a given threshold (set to 1). 845

3. Covariance: prevents informational collapse through highly correlated variables 846

by attracting the covariances between every pair of embedding variables towards 847

zero. 848

We trained AlexNet (with 64× 64 image inputs) with the recommended 849

hyperparameters of weight decay of 10−6 and batch size of 2048 with the LARS [72] 850

optimizer employing learning rate warm-up of 10 epochs under a cosine schedule, for 851

1000 training epochs total. 852

Top-1 Validation Set Performance 853

Performance of primate models on 224× 224 pixels and 64× 64 pixels 854

ImageNet 855

Here we report the top-1 validation set accuracy of models trained in a supervised 856

manner on 64× 64 pixels and 224× 224 pixels ImageNet. 857

Architecture Image Size Objective Function Top-1 Accuracy

AlexNet
224× 224

Supervised (ImageNet)

56.52%
64× 64 36.22%

VGG16
224× 224 71.59%
64× 64 58.32%

ResNet-18
224× 224 69.76%
64× 64 53.31%

ResNet-34
224× 224 73.31%
64× 64 58.24%

ResNet-50
224× 224 76.13%
64× 64 63.57%

ResNet-101
224× 224 77.37%
64× 64 64.53%

ResNet-152
224× 224 78.31%
64× 64 65.21%

858

Performance of StreamNet Variants on 64× 64 pixels CIFAR-10 and 64× 64 859

pixels ImageNet 860

Here we report the top-1 validation set accuracy of our model variants trained in a 861

supervised manner on 64× 64 pixels CIFAR-10 and ImageNet. 862
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Architecture Dataset Objective Function Top-1 Accuracy

Single Stream
CIFAR-10

Supervised

76.52%
ImageNet 34.87%

Dual Stream
CIFAR-10 81.13%
ImageNet 38.68%

Six Stream
CIFAR-10 78.73%
ImageNet 34.15%

863

Transfer Performance of StreamNet Variants on 64× 64 pixels ImageNet 864

Under Linear Evaluation for Models Trained with Self-supervised Objectives 865

In this subsection, we report the top-1 ImageNet validation set performance under 866

linear evaluation for models trained with self-supervised objectives. After training each 867

model on a self-supervised objective, the model backbone weights are then held fixed 868

and a linear readout head is trained on top of the fixed model backbone. In the case 869

where the objective function is “untrained”, model parameters were randomly initialized 870

and held fixed while the linear readout head was trained. The image augmentations 871

used during transfer learning were random cropping and random horizontal flipping. 872

The linear readout for every self-supervised model was trained with the cross-entropy 873

loss function (i.e., Eq (11) with C = 1000) for 100 epochs, which was minimized using 874

SGD with momentum of 0.9, and weight decay of 10−9. The initial learning rate was set 875

to 0.1 and reduced by a factor of 10 at epochs 30, 60, and 90. 876

Reinforcement Learning Task 877

A set of state-action-reward-state tuples (i.e., (st,at, rt, st+1)) were generated in prior 878

work [53] and were used to train (in an offline fashion) the reinforcement learning (RL) 879

agent. We used an offline RL algorithm known as critic-regularized regression [56]. 880

Except for the visual encoder, the architecture of the RL agent was identical to that 881

used by Wang et al. [56] (cf. Fig 3 in Wang et al. [56]). Four different visual encoders 882

based on the AlexNet architecture were used: 883

• Contrastive ImageNet: AlexNet trained using ImageNet in a contrastive manner 884

(Instance Recognition). Up to the first four layers are implanted into the virtual 885

rodent as its visual system, as these were the layers that best matched mouse 886

visual areas. This visual encoder is the best model of mouse visual cortex (Fig 2). 887

Its weights were held fixed during training of the RL agent. 888

• Supervised ImageNet: AlexNet trained using ImageNet in a supervised manner. 889

Up to the first four layers are implanted into the virtual rodent as its visual 890

system, as these were the layers that best matched mouse visual areas. Its weights 891

were held fixed during training of the RL agent. 892

• Contrastive Maze: AlexNet trained using the egocentric maze inputs from the 893

virtual rodent reward-based navigation task. Up to the first four layers are 894

implanted into the virtual rodent as its visual system, as these were the layers 895

that best matched mouse visual areas. Its weights were then held fixed during 896

training of the RL agent. 897

• Supervised Maze: The first four convolutional layers of AlexNet (ShallowNet) 898

trained end-to-end on the virtual rodent reward-based navigation task. 899

After training the agent until policy loss convergence by 10 000 steps (once), the agent 900

was evaluated on 300 episodes. Each model was trained twice (i.e., two different random 901
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Architecture Objective Function
ImageNet Transfer Neural Predictivity
Top-1 Accuracy Neuropixels; Calcium Imaging

Single Stream

Untrained 9.28% 32.76%; 28.65%
Supervised 34.87% 36.21%; 29.73%
Autoencoder 10.37% 35.99%; 28.69%

Depth Prediction 18.04% 33.79%; 27.54%
RotNet 19.72% 35.63%; 29.27%

Instance Recognition 21.22% 38.01%; 30.88%
SimSiam 26.48% 39.19%; 30.48%
MoCov2 27.63% 39.17%; 30.30%
SimCLR 22.84% 39.45%; 29.50%

Dual Stream

Untrained 10.85% 33.58%; 29.24%
Supervised 38.68% 36.07%; 29.43%
Autoencoder 10.26% 34.97%; 28.74%

Depth Prediction 19.81% 32.81%; 27.20%
RotNet 23.29% 35.37%; 29.15%

Instance Recognition 22.55% 40.07%; 30.64%
SimSiam 29.21% 40.20%; 30.60%
MoCov2 31.00% 38.64%; 30.33%
SimCLR 26.25% 38.03%; 29.08%

Six Stream

Untrained 11.12% 33.74%; 29.26%
Supervised 34.15% 36.64%; 29.79%
Autoencoder 9.27% 37.34%; 31.12%

Depth Prediction 18.27% 33.12%; 27.63%
RotNet 22.78% 35.49%; 28.97%

Instance Recognition 26.49% 37.67%; 31.18%
SimSiam 30.52% 38.17%; 30.46%
MoCov2 32.70% 37.96%; 30.44%
SimCLR 28.42% 38.92%; 29.19%

AlexNet Supervised 36.22% 37.28%; 30.34%
AlexNet Instance Recognition 16.09% 41.33%; 31.60%
AlexNet VICReg 32.31% 39.20%; 30.56%
AlexNet Barlow Twins 12.38% 40.04%; 31.42%
AlexNet SimSiam 6.84% 39.68%; 30.95%
AlexNet MoCov2 15.67% 39.83%; 31.20%
AlexNet SimCLR 26.85% 39.39%; 30.27%

ResNet-18 Supervised 53.31% 35.82%; 28.93%
ResNet-18 Instance Recognition 30.75% 38.99%; 30.11%
ResNet-34 Supervised 58.24% 36.38%; 28.42%
ResNet-34 Instance Recognition 32.91% 39.26%; 30.93%
ResNet-50 Supervised 63.57% 37.72%; 30.70%
ResNet-50 Instance Recognition 38.49% 39.45%; 31.12%
ResNet-101 Supervised 64.53% 38.15%; 31.05%
ResNet-101 Instance Recognition 39.43% 39.94%; 31.60%
ResNet-152 Supervised 65.21% 37.74%; 30.67%
ResNet-152 Instance Recognition 40.08% 39.07%; 31.30%

VGG16 Supervised 58.32% 33.19%; 27.09%
VGG16 (224 px) Supervised 71.59% 26.03%; 20.40%

VGG16 Instance Recognition 25.33% 37.78%; 28.66%

MouseNet of
Supervised 37.14% 31.05%; 25.89%

[33]
MouseNet of

Instance Recognition 21.21% 35.96%; 30.06%
[33]

MouseNet
Supervised 39.37% 33.02%; 26.53%

Variant
MouseNet

Instance Recognition 26.85% 36.89%; 28.80%
Variant

CPC of [32]
Contrastive Predictive

N/A 36.28%; 29.67%
Coding

Table 3. ImageNet top-1 validation set accuracy via linear transfer or via
supervised training and neural predictivity for each model. We summarize here
the top-1 accuracy for each self-supervised and supervised model on ImageNet as well as
their noise-corrected neural predictivity obtained via the PLS map (aggregated across
all visual areas). These values are plotted in Fig 2C and S2 Fig. Unless otherwise
stated, each model is trained and validated on 64× 64 pixels images.
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seeds), so each model was evaluated on 300× 2 = 600 episodes in total and we report 902

the average reward across all 600 episodes. 903

Below, we report the average rewards (and s.e.m. across the 600 episodes) obtained 904

when each of the visual backbones are used by the RL agent to perform the task.

Visual Backbone Reward

Contrastive ImageNet 297± 6
Supervised ImageNet 262± 6
Contrastive Maze 412± 5
Supervised Maze 462± 6

Table 4. Average reward and s.e.m. across 600 episodes obtained by the RL agent
using each of the visual backbones.

905

Evaluating Model Performance on Downstream Visual Tasks 906

To evaluate transfer performance on downstream visual tasks, we used the activations 907

from the outputs of the shallow, intermediate, and deep modules of our StreamNet 908

variants. We also included the average-pooling layer in all the variants (the model layer 909

prior to the fully-connected readout layer). The dimensionality of the activations was 910

then reduced to 1000 dimensions using principal components analysis (PCA), if the 911

number of features exceeded 1000. PCA was not used if the number of features was less 912

than or equal to 1000. A linear readout on these features was then used to perform five 913

transfer visual tasks. 914

For the first four object-centric visual tasks (object categorization, pose estimation, 915

position estimation, and size estimation), we used a stimulus set that was used 916

previously in the evaluation of neural network models of the primate visual 917

system [17,20,74]. The stimulus set consists of objects in various poses (object rotations 918

about the x, y, and z axes), positions (vertical and horizontal coordinates of the object), 919

and sizes, each from eight categories. We then performed five-fold cross-validation on 920

the training split of the medium and high variation image subsets (“Var3” and “Var6”, 921

defined by Majaj et al. [75]) consisting of 3840 images, and computed the performance 922

(metrics defined below) on the test split of the medium and high variation sets (“Var3” 923

and “Var6”) consisting of 1280 images. Ten different category-balanced train-test splits 924

were randomly selected, and the performance of the best model layer (averaged across 925

train-test splits) was reported for each model. All images were resized to 64× 64 pixels 926

prior to fitting, to account for the visual acuity adjustment. The final non-object-centric 927

task was texture recognition, using the Describable Textures Dataset [58]. 928

Object Categorization We fit a linear support vector classifier to each model layer 929

activations that were transformed via PCA. The regularization parameter, 930

C ∈ [10−8, 5× 10−8, 10−7, 5× 10−7, 10−6, 5× 10−6, 10−5, 5× 10−5,

10−4, 5× 10−4, 10−3, 5× 10−3, 10−2, 5× 10−2, 10−1, 5× 10−1,

1, 5, 102, 5× 102, 103, 5× 103, 104, 5× 104,

105, 5× 105, 106, 5× 106, 107, 5× 107, 108, 5× 108], (18)

was chosen by five-fold cross validation. The categories are Animals, Boats, Cars, 931

Chairs, Faces, Fruits, Planes, and Tables. We reported the classification accuracy 932

average across the ten train-test splits. 933
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Position Estimation We predicted both the vertical and the horizontal locations of 934

the object center in the image. We used Ridge regression where the regularization 935

parameter was selected from: 936

α = 1/C, (19)

where C was selected from the list defined in (18). For each network, we reported the 937

correlation averaged across both locations for the best model layer. 938

Pose Estimation This task was similar to the position prediction task except that 939

the prediction target were the z-axis (vertical axis) and the y-axis (horizontal axis) 940

rotations, both of which ranged between −90 degrees and 90 degrees. The (0, 0, 0) angle 941

was defined in a per-category basis and was chosen to make the (0, 0, 0) angle 942

“semantically” consistent across different categories. We refer the reader to Hong et 943

al. [55] for more details. We used Ridge regression with α chosen from the range in (19). 944

Size Estimation The prediction target was the three-dimensional object scale, which 945

was used to generate the image in the rendering process. This target varied between 946

0.625 to 1.6, which was a relative measure to a fixed canonical size of 1. When objects 947

were at the canonical size, they occluded around 40% of the image on the longest axis. 948

We used Ridge regression with α chosen from the range in (19). 949

Texture Classification We trained linear readouts of the model layers on texture 950

recognition using the Describable Textures Dataset [58], which consists of 5640 images 951

organized according to 47 categories, with 120 images per category. We used ten 952

category-balanced train-test splits, provided by their benchmark. Each split consisted of 953

3760 train-set images and 1880 test-set images. A linear support vector classifier was 954

then fit with C chosen in the range (18). We reported the classification accuracy 955

average across the ten train-test splits. 956
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Supporting information

S1 Fig. StreamNet architecture schematic. The first four convolutional layers of
AlexNet best corresponded to all the mouse visual areas) These convolutional layers
were used as the basis for our StreamNet architecture variants. The number of parallel
streams, N , was varied to be one (single-stream), two (dual-stream) or six (six-stream).

S2 Fig. Shallow architectures trained with contrastive objective functions
yield the best matches to the neural data (calcium imaging dataset). As in
Fig 2, but for the calcium imaging dataset. A. The median and s.e.m. neural
predictivity, using PLS regression, across neurons in all mouse visual areas except RL.
N = 16228 units in total (RL is excluded, as mentioned in the “Neural Response
Datasets” section). Actual neural predictivity performance can be found in Table 3.
The “Primate Model Baseline” denotes a supervised VGG16 trained on 224 px inputs,
used in prior work [14, 15, 36]. All models, except for the “Primate Model Baseline”, are
trained on 64 px inputs. B. Each model’s performance on ImageNet is plotted against
its median neural predictivity across all units from each visual area. Inset. Primate
ventral visual stream neural predictivity from BrainScore is correlated with ImageNet
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Fig S1. StreamNet architecture schematic.

categorization accuracy (adapted from Schrimpf et al. [17]). All ImageNet performance
numbers can be found in Table 3. Color scheme as in A and Fig 2A.
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Fig S2. Shallow architectures trained with contrastive objective functions
yield the best matches to the neural data (calcium imaging dataset).

S3 Fig. Shallow architectures trained with contrastive objective functions
yield the best matches to the neural data (RSA). A. The median and s.e.m.
noise-corrected neural predictivity, using RSA, across N = 39 and N = 90 animals for
the Neuropixels and calcium imaging dataset respectively (across all visual areas, with
RL excluded for the calcium imaging dataset, as mentioned in the “Neural Response
Datasets” section). The “Primate Model Baseline” denotes a supervised VGG16 trained
on 224 px inputs, used in prior work [14,15,36]). All models, except for the “Primate
Model Baseline”, are trained on 64 px inputs. B. We plot each model’s performance on
ImageNet against its median neural predictivity, using RSA, across visual areas. All
ImageNet performance numbers can be found in Table 3. Color scheme as in A and
Fig 2A.

S4 Fig. Structural and functional factors leading to improved neural
response predictivity (calcium imaging dataset). A. As in Fig 3, our dual stream
variant (red) and Contrastive AlexNet (brown) were trained using lower resolution
ImageNet images and in a contrastive manner. Each image was downsampled from
224× 224 pixels, the image size typically used to train primate ventral stream models,
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Fig S3. Shallow architectures trained with contrastive objective functions
yield the best matches to the neural data (RSA).

to various image sizes. Training models on resolutions lower than 224× 224 pixels
generally led to improved neural predictivity. The median and s.e.m. across neurons in
each visual area is reported. As mentioned in the “Neural Response Datasets” section,
visual area RL was removed from the calcium imaging neural predictivity results. Refer
to Table 1 for N units per visual area. B. As in Fig 2B, AlexNet was either untrained,
trained in a supervised manner (ImageNet) or trained in an self-supervised manner
(instance recognition). We observe that the first four convolutional layers provide the
best fits to the neural responses for all the visual areas while the latter three layers are
not very predictive for any visual area. As mentioned in the “Neural Response Datasets”
section, visual area RL was removed from the calcium imaging neural predictivity
results.

S5 Fig. Inter-animal consistency as a function of the number of units in
the datasets for different mapping transforms. Inter-animal consistency was
extrapolated across the number of units in each dataset using a log-linear function
(f(n) = a log10(n) + b, where a and b are fit as parameters via least squares, and n is
the sample size factor). This analysis reveals that inter-animal consistency of the
Neuropixels dataset approaches 1.0 more rapidly than it does for the calcium imaging
dataset. Inter-animal consistency evaluated at a sample size factor of one indicates the
consistency when all the existing units in the datasets are used (i.e., inter-animal
consistency values reported in Fig 1A).

S6 Fig. Inter-animal consistency can increase with more stimuli. A.
Inter-animal consistency under PLS regression evaluated on the train set (left bars for
each visual area) and test set (right bars for each visual area), for both Neuropixels and
calcium imaging datasets. The horizontal lines are the internal consistency (split-half
reliability). B. Inter-animal consistency under PLS regression on the train set (dotted
lines) and test set (straight lines), aggregated across visual areas. Each dot corresponds
to the inter-animal consistency evaluated across 10 train-test splits, where each split is a
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Fig S4. Structural and functional factors leading to improved neural
response predictivity (calcium imaging dataset).
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sample of the natural scene image set corresponding to the percentage (x-axis). Note
that RL is excluded for calcium imaging, as explained in the text (the “Neural Response
Datasets” section). The median and s.e.m. across neurons is reported for both panels.
Refer to Table 1 for N units per visual area.

A

B

Neuropixels Calcium Imaging

Neuropixels Calcium Imaging

% of Image Set

In
te

r-a
ni

m
al

 C
on

si
st

en
cy

V1 PMRLLM AL AM V1 LM AL PM AM

Train

Test

In
te

r-a
ni

m
al

 C
on

si
st

en
cy

Tr
ai

n
Te

st

Tr
ai

n
Te

st
Train

Test

Fig S6. Inter-animal consistency can increase with more stimuli.

S7 Fig. Data augmentations alone do not lead to improved neural
predictivity. Here we compare the neural predictivity of AlexNet trained in three
different ways. Contrastive ImageNet is an AlexNet trained using instance recognition
on ImageNet with augmentations that are part of the contrastive algorithm (random
crop, random color jitter, random grayscale, random horizontal flip). Supervised
ImageNet is an AlexNet trained on ImageNet in a supervised manner with a smaller set
of augmentations (random crop and random horizontal flip). Supervised ImageNet
(contrastive augmentations) is an AlexNet trained on ImageNet in a supervised manner
with the augmentations used in the instance recognition algorithm. This control model
allows us to ascertain whether the improved neural predictivity of the Contrastive
ImageNet model (red) is due to the contrastive loss function itself or due to the larger
set of image augmentations used during model training. In both neural response
datasets, we can conclude that data augmentations alone do not contribute to improved
correspondence with the mouse visual areas.

S8 Fig. Out-of-distribution task performance across model layers. For the
models trained on images from the maze environment, we plot their transfer
performance on a set of out-of-distribution tasks (described in lower right panel of
Fig 6C) across model layers. We find that intermediate model areas are better able to
perform the transfer tasks and that the model layers that attain peak performance on
the tasks correspond to those that best predict neural responses in the
intermediate/higher mouse visual areas (see Fig 2B).
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Fig S7. Data augmentations alone do not lead to improved neural
predictivity.
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S9 Fig. Neural predictivity on the Neuropixels dataset while fixing
architecture (left) and objective function (right). The data in the left panel
shows how neural predictivity varies when the architecture is fixed to be AlexNet, but
the objective function is varied between supervised (object categorization) and
self-supervised, contrastive objectives. The data in the right panel shows how neural
predictivity varies when the objective function is fixed to be instance recognition, but
the architecture is varied, including StreamNets, MouseNets, VGG16, ResNets, and
AlexNet.
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Fig S9. Neural predictivity on the Neuropixels dataset while fixing
architecture (left) and objective function (right).

S10 Fig. Brain hierarchy score. The brain hierarchy score metric of Nonaka et
al. [51] was computed for a set of feedforward CNNs. Self-supervised, contrastive
models (and shallower models) have a higher brain hierarchy score, computed using the
mapping from model features to electrophysiological responses.
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Fig S10. Brain hierarchy score.
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