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Abstract10

Although sensory input is continuous, we perceive and remember discrete events. Event segmentation11

has been studied extensively in adults, but little is known about how the youngest minds experience the12

world. The main impediment to studying event segmentation in infants has been a reliance on explicit13

parsing tasks that are not possible at this age. fMRI has recently proven successful at measuring adult14

event segmentation during task-free, naturalistic perception. Applied to infants, this could reveal the15

nature of their event segmentation, from low-level sensory transients to high-level cognitive boundaries.16

We collected fMRI data from 25 adults and 25 infants less than one year of age watching the same short17

movie. Neural events were defined by the stability of voxel activity patterns. In adults, we replicated a18

hierarchical gradient of event timescales, from shorter events in early visual regions to longer events in19

later visual and narrative regions. In infants, however, longer events were found throughout the brain,20

including in a second dataset. Infant event structure fit adult data and vice versa, but adult behavioral21

boundaries were differently expressed in adult and infant brains. These findings have implications for the22

nature of infant experience and cognition.23

24

Introduction25

From the moment we are born, our sensory systems are bombarded with information. We overcome this26

perceptual challenge as adults by segmenting continuous experience into discrete events (Zacks, 2020),27

both online (Kurby and Zacks, 2008; Zacks et al., 2010) and after the fact (Clewett et al., 2019). Experience28

can be carved up atmultiple timescales (Hard et al., 2006), allowing us to perceive the passage of long events29

(e.g., a talk from a visiting scientist) and to differentiate or integrate shorter events that comprise them (e.g.,30

an impressive results slide or funny anecdote). The multiple timescales of event perception can be flexibly31

modulated by attentional states (Bailey et al., 2017) or goals (Hard et al., 2006). In turn, event structure helps32

with forming and organizing episodic memories, making adaptive decisions, and predicting the future (Shin33

and DuBrow, 2021).34

The hierarchy of event processing found in adults may either be present at birth or built up over devel-35

opment. In adults, coarser event segmentation is associated with conceptual understanding (Hard et al.,36

2006), and may be important for the construction of abstract knowledge structures such as event schemas37

and narratives (Ghosh and Gilboa, 2014). The protracted development of narrative understanding (Nelson38

and Fivush, 2020) suggests that coarser event segmentationmay not be developed in early childhood. Thus,39

infants may segment experience at its most sensory level, in reaction to transient changes in low-level prop-40
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erties. At the same time, infants are sensitive to complex event types such as human action sequences41

(Baldwin et al., 2001; Saylor et al., 2007; Stahl et al., 2014) and cartoon narratives (e.g., of a crab playing with42

a beach ball; Sonne et al. 2016, 2017). In one set of studies, infants recognized the similarity between target43

action segments and longer sequences that contained them, showing greater sensitivity to discrete actions44

(e.g., an object occlusion event) than to transitions between actions (e.g., an object sliding along the ground)45

(Hespos et al., 2009, 2010). Thus, there is some reason to believe that infant experience is structured into46

longer events. This fits with other work showing that infants and toddlers have longer temporal processing47

windows for vision (Farzin et al., 2011; Freschl et al., 2021) and multisensory information (Lewkowicz, 1996;48

Lewkowicz and Flom, 2014).49

Behavioral measures such as looking time have expanded our understanding of infant event processing,50

yet can only provide indirect evidence and are overdetermined (Aslin, 2007). Thismakes it difficult to identify51

representations of events at multiple timescales. Neural measures provide a potential solution. Functional52

magnetic resonance imaging, for example, has proven excellent at capturing parallel representations rel-53

evant to event segmentation in adults (Stawarczyk et al., 2021). In one approach, behavioral boundaries54

from an overt parsing task are used as event markers to model fMRI activity during passive movie watch-55

ing. Regions such as the superior temporal sulcus and middle temporal area respond to events at different56

timescales (Zacks et al., 2001, 2006, 2010). An alternative approach discovers events in a data-driven man-57

ner (Baldassano et al., 2017; Geerligs et al., 2021). An unsupervised computational model learns stable58

neural event patterns in participants watching movies. This model can be fit to different regions across the59

brain to discover a range of event timescales. In adults, sensory regions process events on a short timescale,60

whereas higher-level regions process events on a longer timescale, mirroring the topography of temporal61

receptive windows (TRW; Hasson et al. 2008; Lerner et al. 2011; Himberger et al. 2018). Moreover, event62

boundaries in regions associated with narrative processing (such as the precuneus and posterior cingulate;63

Hasson et al. 2015) best match narrative changes in the movie (Baldassano et al., 2017).64

Although fMRI has enhanced our understanding of event segmentation in adults, it has traditionally not65

been used for this purpose in infants. EEG is often used instead. For example, it has shown that the in-66

fant brain is sensitive to pauses that disrupt familiar and novel goal-directed actions (Reid et al., 2007; Pace67

et al., 2013). The timing of event-related potentials (ERPs) to disrupted novel events indicated a hierarchy68

of event processing in adults that was similar but not the same as infants (Pace et al., 2013). Infants also69

show greater attention and different ERPs to pauses at the end of novel actions compared to pauses within70

an event (Pace et al., 2020). The strength of EEG is that it can precisely determine when during continu-71

ous experience infants segment events. However, its limited spatial resolution and sensitivity to signals72

near the scalp constrain the types of representations that can be probed. In particular, many of the key73

regions for event segmentation are away from the scalp, including subcortical structures such as the hip-74

pocampus (Ben-Yakov and Henson, 2018) andmidline regions such as the precuneus andmedial prefrontal75

cortex (Baldassano et al., 2017, 2018). fMRI produces rich, whole-brain data that, when applied to infants,76

could reveal aspects of event perception that may not otherwise be accessible (Yates et al., 2021). fMRI in77

awake infants is much rarer than in adults because of experimental and technical challenges, but is possible78

(Dehaene-Lambertz, 2002; Biagi et al., 2015; Deen et al., 2017; Ellis et al., 2020a,d).79

In this study, we collected movie-watching fMRI data from infants under one year old to investigate the80

early development of event perception during continuous, naturalistic experience. We collected fMRI data81

from adults who watched the same movie, as a comparison set, and from infants and adults in a second82

movie, to test for generalization. Our first question was whether the movie would be processed reliably83

across participants. As an initial check, we predicted that neural responses would be correlated across84

adults throughout the brain, including in sensory and narrative regions (Hasson et al., 2004). Infant eye85

movements are less consistent than adults during movie-watching (Kirkorian et al., 2012; Franchak et al.,86

2016), and thus we expected lower or perhaps even absent intersubject correlation across infants. Our87

second question was about the presence and timescale of event boundaries across participants. We sought88

to replicate previous adult work showing a hierarchical gradient of timescales in event processing across89

regions, though here with a shorter, infant-friendly animated video. With this comparison in hand, we90

could then test whether and where in the brain the same boundaries and timescales exist in infants. One91
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possibility is that infant event structure is similar to adults only in early visual regions. Indeed, we recently92

found that retinotopy — a hallmark of visual cortex organization — is nearly adult-like in infants (Ellis et al.,93

2020b). Another possibility is that infants have similar event structure to adults in higher-order regions94

associated with narratives, given their sensitivity to causal relations and goals (Baillargeon et al., 2016).95

Results96

Intersubject correlation reveals reliable neural responses in infants97

We scanned infants (N = 25; 3.6–12.7 months) and adults (N = 25; 18–32 years) while they watched a short,98

silent movie (“Aeronaut”) that had a complete narrative arc. To investigate the consistency of infants’ neural99

responses during movie-watching, we performed leave-one-out intersubject correlation (ISC), in which the100

voxel activity of each individual participant was correlated with the average voxel activity of all other partic-101

ipants (Hasson et al., 2004). This analysis was performed separately in adults and infants for every voxel in102

the brain and then averaged within eight regions of interest (ROIs), spanning from early visual cortex (EVC)103

to later visual regions (lateral occipital cortex, LOC), high-level amodal regions (angular gyrus, AG; poste-104

rior cingulate cortex, PCC; precuneus; medial prefrontal cortex, mPFC) and the hippocampus. Because the105

movie was silent, we used early auditory cortex (EAC) as a control region.106

Whole-brain ISC was highest in visual regions in adults (Figure 1A), similar to prior studies with movies107

(Hasson et al., 2004; Chen et al., 2017). That said, all eight ROIs were statistically significant in adults (EVC:M108

= 0.492, CI = [0.444, 0.535], p < 0.001; LOC:M = 0.427, CI = [0.389, 0.464], p < 0.001; AG:M = 0.091, CI = [0.058,109

0.120], p < 0.001; PCC: M = 0.143, CI = [0.098, 0.184], p < 0.001; precuneus: M = 0.155, CI = [0.121, 0.189],110

p < 0.001; mPFC: M = 0.063, CI = [0.041, 0.087], p < 0.001; hippocampus: M = 0.042, CI = [0.028, 0.058], p <111

0.001; EAC:M = 0.087, CI = [0.054, 0.119], p < 0.001). These results are consistent with prior movie-watching112

studies, albeit with a much shorter movie here, for all ROIs except EAC. We speculate on why we found113

significant ISC in EAC during a silent movie in the Discussion.114

ISC was weaker overall in infants than adults, but again higher in visual regions compared to other re-115

gions. All ROIs except for EAC were statistically significant in infants, and hippocampus was marginally116

significant (EVC: M = 0.251, CI = [0.168, 0.332], p < 0.001; LOC: M = 0.181, CI = [0.116, 0.242], p < 0.001; AG:117

M = 0.085, CI = [0.032, 0.134], p = 0.002; PCC:M = 0.091, CI = [0.047, 0.142], p < 0.001; precuneus: M = 0.079,118

CI = [0.038, 0.120], p < 0.001; mPFC: M = 0.073, CI = [0.024, 0.116], p = 0.003; hippocampus: M = 0.046, CI =119

[0.000, 0.093], p = 0.054; EAC:M = 0.023, CI = [-0.014, 0.056], p = 0.189). Nonetheless, there were differences120

between the adult and infant groups. ISC was significantly higher in adults than infants in EVC (M = 0.241,121

permutation p < 0.001), LOC (M = 0.246, p < 0.001), precuneus (M = 0.076, p = 0.007), and EAC (M = 0.064,122

p = 0.011); all other regions did not exhibit different ISC between groups (AG: M = 0.006, p = 0.859; PCC:123

M = 0.052, p = 0.135; mPFC: M = -0.010, p = 0.697; hippocampus: M = -0.005, p = 0.864). In sum, there is124

strong evidence of a shared response across infants, not just in visual regions, but also in regions involved125

in narrative processing in adults.126
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Figure 1. Average leave-one-out intersubject correlation (ISC) in adults and infants. (A) Voxel-wise ISC values in the two
groups, thresholded arbitrarily at a mean correlation value of 0.10 to visualize the distribution across the whole brain.
(B) ISC values were significant in both adults and infants across ROIs (except EAC in infants). Dots represent individual
participants and error bars represent 95% CIs of the mean from bootstrap resampling. *** p < 0.001, ** p < 0.01, * p <
0.05, ~p < 0.1. ROIs: primary visual cortex (EVC), lateral occipital cortex (LOC), angular gyrus (AG), posterior cingulate
cortex (PCC), precuneus (Prec), medial prefrontal cortex (mPFC), hippocampus (Hipp), primary auditory cortex (EAC).128

Gradient of event processing is absent in the infant brain129

Given that infants process the movie in a similar way to one another, we next asked whether their neural130

activity contains evidence of event segmentation, as in adults. Our analysis tested whether infant brains131

transition through discrete event states characterized by stable voxel activity patterns, which then shift into132

new stable activity patterns at event boundaries. We used a computational model to characterize the stable133

neural event patterns of infant and adult brains (Baldassano et al., 2017). We analyzed the data from infant134

and adult groups separately. Within each group, we first split the data in half, with one set of participants135

forming a training set and the other forming a test set. In a searchlight analysis, we applied themodel to the136

training set using a range of event numbers from 2 to 21, and then applied the learned event segmentation137

to the test set. Model fit was assessed by the log probability of the test data according to the learned event138

segmentation (referred to as the log-likelihood). We iterated this splitting process 24 times, switching which139

participants were used in the training and test sets, and then assigned to each voxel the number of events140

that maximized the log-likelihood of the model across iterations. This same pipeline was performed at the141

ROI level using the pattern of voxel activity from all voxels that made up an ROI, rather than the voxels142

contained in a searchlight.143

In adults, despite themovie being substantially shorter, we replicated previous work showing a gradient144

of event granularity across cortex, with more events in early visual compared to narrative regions (Figure145

2A). In infants, we did not find strong evidence of a gradient. In fact, the model performed optimally with146

fewer, longer events across the brain, including in visual regions (Figure 2B).147

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448755
http://creativecommons.org/licenses/by-nc-nd/4.0/


Infants

Adults

2 22Optimal number of events 

A B Precuneus

EVC

10-1 -0.5 0.5

Correlation (r)

TR (2s)

z = -5x = 2y = -80

Thresholded at ISC > 0.10

L

L

R

R

Adults Infants
0

20

40

60

80

TR
 (2

s)

0

20

40

60

80

0 20 40 60 80 0 20 40 60 80longer events shorter events

EV
C

Pr
ec

un
eu

s

148

Figure 2. Event structure across the adult and infant brain. (A) The optimal number of events for a given voxel was
determined via a searchlight across the brain, which found the number of events that maximized the model
log-likelihood in held-out data. Voxels with an average ISC value greater than 0.10 are plotted for visualization purposes.
In adults, there was a clear difference in the number of events found in early visual regions vs. narrative regions, but
this was not present in infants. (B) Example timepoint-by-timepoint correlation matrices in EVC and precuneus in the
two groups. The model event boundaries found for each age group are outlined in red (EVC) and aqua (precuneus).149

Coarser but reliable event structure across brain regions in infants150

The above analysis provides a qualitative description of the timescale of event processing in the infant brain.151

However, comparing the relativemodel fits for different timescales does not allow us to assess whether the152

model fit at the optimal timescale is significantly above chance. To quantify whether these learned events153

truly demarcated state changes in neural activity patterns, we used nested cross-validation. For each ROI,154

we followed the steps above for finding the optimal number of events, but critically, held one participant155

out of the analysis completely (and iterated so each participant was held out once). On each leave-one-156

participant-out iteration, the number of optimal events in the remaining N-1 training participants could157

vary; the held-out participant had no impact on the learned event model. The model with the optimal event158

structure was then fit to the held-out participant’s data and to time-shifted permutations of their data. A159

z-score of the log-likelihood for the actual result versus the permuted (null) distribution was calculated160

to determine whether the learned event structure generalized to a new participant better than chance161

(Figure 3A). This analysis can tell us whether the smaller number of events observed in infants reflects true162

differences in processing granularity between adults and infants, or results from combining across infants163

who have idiosyncratic event structures1.164

Overall, themodels for different ROIs reliably fit independent data (Figure 3B). All ROIs except hippocam-165

pus were significant in adults (EVC: M = 4.79, CI = [4.48, 5.10], p < 0.001; LOC: M = 5.52, CI = [5.20, 5.81], p <166

0.001; AG: M = 4.97, CI = [4.39, 5.47], p < 0.001; PCC: M = 3.05, CI = [2.29, 3.75], p < 0.001; precuneus: M =167

4.64, CI = [4.22, 5.06], p < 0.001; mPFC: M = 3.03, CI = [2.09, 3.90], p < 0.001; hippocampus: M = 0.711, CI =168

1In simulated data, the model tended to over-estimate the optimal number of events when noise increased. (Appendix 1 Figure 1). This
suggests that the smaller number of events in infants was not because of increased noise per se.
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[-0.023, 1.41], p = 0.058; EAC: M = 3.79, CI = [3.31, 4.19], p < 0.001). This was also true for infants, except in169

PCC and hippocampus (EVC: M = 3.29, CI = [2.61, 3.95], p < 0.001; LOC: M = 4.76, CI = [4.07, 5.39], p < 0.001;170

AG:M = 2.35, CI = [1.73, 2.99], p < 0.001; PCC:M = 0.545, CI = [-0.110, 1.24], p = 0.106; precuneus: M = 3.27, CI171

= [2.21, 4.18], p < 0.001; mPFC: M = 1.42, CI = [0.493, 2.29], p < 0.001; hippocampus: M = 0.172, CI = [-0.506,172

0.612], p = 0.306; EAC: M = 3.54, CI = [2.42, 4.61], p < 0.001). Given that some of these regions are involved173

in higher-order processing, at least in adults, these findings suggest that infant event segmentation is not174

entirely sensory-driven.175
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Figure 3. The nested cross-validation analysis of adult and infant age groups. (A) Schematic explaining the nested
cross-validation procedure for computing the reliability of event segmentation. (B) Results of ROI analyses for adults
and infants. There is reliable event structure, operationalized as better model fit in actual vs. permuted held-out data,
in both adults and infants across ROIs. The number of events that optimized model log-likelihood in the full sample of
participants is labeled below the x-axis. Dots represent individual participants and error bars represent 95% CIs of the
mean from bootstrap resampling. *** p < 0.001, ** p < 0.01, * p < 0.05, ~p < 0.1.177

Relationship between adult and infant event structure178

The optimal number of events for a given region differs across adults and infants, but this does not neces-179

sarily mean that the patterns of neural activity are unrelated. For instance, the coarser event structure in180

infants may still be present in the adult brain, with their additional events carving up these longer events181

at a finer scale. Conversely, the finer event structure found in adults may still be developing in the infant182

brain, such that it may be present but have less optimal fit. We thus investigated whether event structure183

from one group could explain the neural activity of individual participants in the other group (Figure 4). We184

compared this to the extent that other members of the same group could explain an individual’s neural185

activity. If event structure better explains neural data from the same age group compared to the other age186

group, then we can conclude that event structures differ between age groups.187

When event segmentation models fit to adults were applied to infant neural activity, all ROIs except188

hippocampus showed significant model fit over permutations (EVC: M = 3.79, CI = [3.36, 4.20], p < 0.001;189

LOC: M = 4.64, CI = [4.13, 5.12], p < 0.001; AG: M = 2.82, CI = [2.23, 3.33], p < 0.001; PCC: M = 1.55, CI =190

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448755
http://creativecommons.org/licenses/by-nc-nd/4.0/


[0.896, 2.23], p < 0.001; precuneus: M = 3.54, CI = [2.90, 4.19], p < 0.001; mPFC: M = 3.07, CI = [2.43, 3.75], p191

< 0.001; hippocampus: M = 0.185, CI = [-0.619, 0.967], p = 0.337; EAC: M = 2.66, CI = [1.69, 3.63], p < 0.001).192

This suggests that although infants and adults had a different optimal number of events in these regions,193

there was some overlap in their event representations. In most of these regions, models trained on adults194

showed significantly better fit to adults compared to infants, (EVC:M = 1.00, CI = [0.478, 1.55], p < 0.001; LOC:195

M = 0.873, CI = [0.325, 1.47], p < 0.001; AG: M = 2.16, CI = [1.38, 2.96], p < 0.001; PCC: M = 1.50, CI = [0.506,196

2.39], p = 0.002; precuneus: M = 1.10, CI = [0.385, 1.87], p < 0.001; EAC:M = 1.12, CI = [0.086, 2.18], p = 0.036),197

suggesting that adult-like event structure is still developing in these regions. Indeed, how well adult event198

structure fit an infant was related to their age, at least in LOC (r = 0.472, p = 0.018). No other ROIs showed199

a relationship with age, although our relatively small sample for evaluating individual differences and our200

truncated age range may have limited our ability to discover age effects.201
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Figure 4. Reliability of event structure for models fit with participants of the same vs. other age group. (A) Light bars
indicate fit of adult and infant event structures to adult data, and dark bars indicate fit of adult and infant event
structures to infant data. Note that the fit of event structures to data from the same group (adult events in adults,
infant events in infant) are replotted from Figure 3 without statistics. Overall, event structures learned from adults and
infants fit data from the other group (clearest in EVC, LOC, AG, PCC, Prec, mPFC, EAC). However, in several regions using
adult event structure, these fits were weaker than to data from the same group (clearest in EVC, LOC, AG, PCC). Error
bars represent 95% CIs of the mean from bootstrap resampling. *** p < 0.001, ** p < 0.01, * p < 0.05, ~p < 0.1.203

When event segmentation models fit to infants were applied to adult neural activity, all ROIs showed204

significant model fit over permutations (EVC: M = 2.73, CI = [2.03, 3.44], p < 0.001; LOC: M = 3.95, CI = [3.21,205

4.62], p < 0.001; AG:M = 2.06, CI = [1.15, 2.98], p < 0.001; PCC:M = 1.65, CI = [1.01, 2.34], p < 0.001; precuneus:206

M = 3.49, CI = [2.85, 4.11], p < 0.001; mPFC:M = 1.41, CI = [0.548, 2.19], p = 0.001; hippocampus: M = 2.41, CI207

= [1.57, 3.20], p < 0.001; EAC:M = 2.59, CI = [1.62, 3.55], p < 0.001). Infant event models did not explain infant208

data better than adult data in any of the regions. Interestingly, infant event models showed significantly209

better fit to adult vs. infant neural activity in PCC (M = -1.10, CI = [-2.11, -0.184], p = 0.020) and hippocampus210

(M = -2.24, CI = [-3.28, -1.25], p < 0.001), potentially due to higher across-subject reliability among the adults.211

That is, if infant data are noisier than adult data, but otherwise both groups have similar event structure, the212

model may fit better to a held-out adult. Altogether, the finding that events from one age group significantly213

fit data from the other age group shows that infant and adult event representations, though optimized to214

different event numbers, are not unrelated. Nonetheless, the better fit in some ROIs when applying events215

from one age group to neural activity from the same vs. other age group provides evidence that their event216

structures are at least partially distinct.217

Expression of behavioral event boundaries218

We took a data-driven approach to discovering event representations across different regions of the adult219

and infant brain, but how do these neural event representations relate to what we report behaviorally?220

In adults, event boundaries in regions such as the AG, precuneus, and PCC align best with annotations of221

high-level scene changes in a movie (Baldassano et al., 2017). Given that our previous analysis found that222

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.16.448755doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.16.448755
http://creativecommons.org/licenses/by-nc-nd/4.0/


adult event boundaries in these narrative regions significantly fit infant neural activity, we tested whether223

behavioral boundaries from adults were also reflected in the infant brain.224

We collected behavioral event segmentation data from 22 independent adult participants who watched225

the same movie (Ben-Yakov and Henson, 2018), identifying the most salient boundaries (Figure 5A). Par-226

ticipants were not instructed to annotate at any particular timescale, and were simply asked to indicate227

when it felt like a new event occurred. We quantified the fit of behavioral boundaries to neural activity by228

calculating the difference in pattern similarity between two timepoints within vs. across boundaries, equat-229

ing temporal distance. Results were weighted by the number of unique timepoint pairs that made up the230

smaller group of correlations (e.g., close to the boundary, there are fewer across event pairs than within231

event pairs). A more conservative approach that only considers timepoint pairs within vs. across event232

boundaries anchored to the same timepoint yields similar results (Appendix 2 Figure 1). To the extent that233

behavioral reports reflected the event boundaries in a region, we expected greater neural similarity for234

timepoints within events.235

We performed this analysis in both whole-brain searchlights and in the previous ROIs. In adults, the236

searchlight analysis revealed that occipital pole, superior occipital cortex, and right supramarginal gyrus237

exhibited significantly greater pattern similarity within vs. across behavioral event boundaries (Figure 5B).238

This generally fits with previous work showing that event representations in visual and semantic regions239

are similar to behavioral boundaries (Baldassano et al., 2017). For the ROIs, we found significantly greater240

pattern similarity within vs. across behavioral boundaries only in early visual cortex of adults (Figure 5C;241

EVC:M = 0.014, CI = [0.003, 0.024], p = 0.01; LOC:M = 0.008, CI = [-0.005, 0.023], p = 0.278; AG:M = -0.015, CI242

= [-0.036, 0.004], p = 0.122; PCC:M = -0.009, CI = [-0.031, 0.011], p = 0.394; precuneus: M = -0.012, CI = [-0.030,243

0.004], p = 0.170; mPFC: M = -0.008, CI = [-0.018, 0.001], p = 0.092; hippocampus: M = -0.004, CI = [-0.012,244

0.002], p = 0.220; EAC:M = -0.004, CI = [-0.014, 0.006], p = 0.428). Given that most of the non-significant ROIs245

in this analysis showed reliable event segmentation overall (Figure 3B), indicating stable neural patterns246

within events, the behavioral event boundaries may have been misaligned. There are several potential247

sources of this misalignment, including that both age (Cohen and Baldassano, 2021) and anticipation (Lee248

et al., 2021) can shift the locations of event boundaries. Anticipation in particular seems possible for a249

child-friendly movie like this, with a slowly evolving and relatively simple plot.250

In infants, several regions showed greater pattern similarity within vs. across behavioral boundaries in251

the searchlight analysis, including visual regions, supramarginal gyrus, andmedial and lateral frontal cortex.252

This was mirrored in the ROIs, where there were significant results in early visual cortex and PCC (EVC: M =253

0.048, CI = [0.019, 0.078, p < 0.001; LOC:M = 0.014, CI = [-0.019, 0.052], p = 0.468); AG:M = 0.032, CI = [-0.009,254

0.083], p = 0.160); PCC: M = 0.035, CI = [0.003, 0.068], p = 0.032; precuneus: M = 0.010, CI = [-0.013, 0.038],255

p = 0.524; mPFC: M = 0.008, CI = [-0.019, 0.036], p = 0.580; hippocampus: M = 0.026, CI = [-0.005, 0.068],256

p = 0.136; EAC: M = 0.021, CI = [-0.008, 0.058], p = 0.162). Thus, infants can have neural representations257

related to how adults explicitly segment a movie, long before they can perform the behavior, understand258

task instructions, or even speak. The regions in which this occurred did not always overlap with those from259

adults, suggesting functional changes over development in the behavioral relevance of neural signals for260

event segmentation.261
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Figure 5. Relating behavioral boundaries to neural activity. (A) Percentage of behavioral participants who indicated an
event boundary was present at each TR in the movie. The 11 TRs with the highest percentage of agreement were used
as event boundaries (green dashed lines). (B) Whole-brain searchlight analysis for each age group comparing pattern
similarity between timepoints drawn from within vs. across behavioral event boundaries. Bootstrapped z-scores are
thresholded at p < 0.05, uncorrected. (C) ROI analysis of difference in pattern similarity within minus between
behavioral events. Dots represent individual participants and error bars represent 95% CIs of the mean from bootstrap
resampling. Infant participants with values beyond the y-axis range for AG, hipppocampus, and EAC are indicated with
Xs at the positive edge. *** p < 0.001, ** p < 0.01, * p < 0.05, ~p < 0.1.263

Replicating results in a more heterogeneous cohort264

We applied the same suite of analyses to a more heterogeneous convenience sample of infants watching a265

different, short cartoon movie (“Mickey”). In 15 adults, we found a similar topography of ISC as in the main266

cohort, with significant values in EVC, LOC, AG, PCC, precuneus, and EAC (Appendix 3 Figure 1). There was267

again a gradient of event timescales across the cortex, withmore events in sensory regions and fewer events268

in narrative regions (Appendix 3 Figure 2). In all but mPFC and hippocampus, event structure significantly269

explained held-out adult data. The 15 infants showed weaker ISC, though still significant in EVC and LOC.270

Weaker ISC may potentially be related to the broader age range of the infants (4–33 months) – almost271

two additional years – given the dramatic developmental changes that occur in this age range and the272

reliance of ISC on common signal across participants. Therewas again no evidence of a hierarchical gradient273

in the number/granularity of events in the infant brain (Appendix 3 Figure 2). The model again favored274

fewer/coarser events across regions, yet these events reliably fit neural activity fromaheld-out participant in275

EVC, LOC, precuneus, mPFC, and hippocampus (Appendix 3 Figure 2). In sum, we obtained results consistent276
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with those of the main cohort, despite the movie being shorter and the age of infants being much more277

variable.278

Discussion279

In this study, we investigated neural event segmentation using a data-driven, computational approach in280

adults and infants watching the same short movie. We found synchronous processing of themovie and reli-281

able event structure in both groups. In adults, we replicated a previously observed gradient of timescales in282

event processing across brain regions. However, this gradient was absent in infants, who instead had coarse283

neural event structure across regions. We replicated this pattern in a separate, more heterogeneous set284

of infants watching a different movie. Although event structure from one age group provided a reliable fit285

to the other age group, suggesting some similarity in their representations, adult event structure best fit286

adult data, suggesting developmental differences. Furthermore, whereas behavioral boundaries aligned287

with event structure in early visual regions in adults, they were more broadly aligned in infants, including in288

posterior cingulate cortex. Altogether, this study provides novel insights into how infants represent contin-289

uous experience, namely that they segment experience into discrete events, as in adults, but at a coarser290

granularity.291

Traditionally, findings of cognitive and neural development have focused on the earlier maturation of292

sensorimotor systems, followed by the later development of associative regions (Casey et al., 2005). If as-293

sociative regions are still developing, infant event segmentation may be sensory-driven. However, ISC and294

event structure in infants was not limited to visual regions, extending into regions linked to narrative pro-295

cessing in adults (Lee et al., 2020). Furthermore, infants structured events over a longer timescale, consis-296

tent with their ability to represent more extended, complex content. Indeed, the event structure in several297

infant regions including the posterior cingulate cortex resembled event boundaries that adults reported298

explicitly in behavior. We found general similarity between event representations in high-level regions of299

adults and infants, which can perhaps be understood in light of the sensitivity of infants to goal-directed ac-300

tions and events (Levine et al., 2019). Young infants both predict the outcomes of actions (Woodward, 1998)301

and are surprised by inefficient paths towards a goal (Liu et al., 2019) when a causal agent is involved. Unam-302

biguous agency also increases the ability of older infants to learn statistical structure (Monroy et al., 2017),303

suggesting that the infant mind may prioritize agency. Indeed, infants are better at imitating a sequence of304

actions that have hierarchical versus arbitrary structure (Bauer and Mandler, 1989; Bauer, 1992) and show305

better memory for events that have a clear agent (Howard and Woodward, 2019), perhaps because of a306

propensity to segment events according to goals during encoding. Together, these results provide reason307

to believe that infants can represent high-level event structure from early ages.308

In both of the infant movie-watching datasets, the optimal number of events in visual regions was lower309

in infants than adults. We interpret this result as reflecting the development of temporal receptive window310

lengths. Indeed, young children bind multi-sensory and uni-modal visual information over longer windows311

(Lewkowicz, 1996; Lewkowicz and Flom, 2014; Farzin et al., 2011; Freschl et al., 2021). Interestingly, dimin-312

ished temporal resolution may be advantageous to infants when gathering information about objects and313

events in their environment (Freschl et al., 2019). For instance, infants may better extract meaning from314

social interactions if they can bind together continuously unfolding visual, auditory, and emotional infor-315

mation; accordingly, toddlers with autism spectrum disorder have shorter than normal temporal receptive316

windows (Freschl et al., 2021). This behavioral literature has been agnostic to how or why temporal recep-317

tive windows are dilated in infancy, but perhaps the lack of neural gradient contributes to the binding of318

information over longer time scales. Future work combining behavioral and neural approaches to temporal319

processing could inform this relationship. One alternative explanation for the smaller number of events in320

visual regions could be model bias, for example if the model defaults to fewer events in heterogeneous321

participant groups. Although the Aeronaut dataset had a narrower age band (all participants were under322

12 months old), there are still dramatic cognitive and neural changes during the first year of life (Turesky323

et al., 2021). We found some evidence of developmental differences in how well adult event structure fit324

infant LOC, but no other regions showed age-dependent changes. Furthermore, we found overestimation325
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in the number of events when noise was increased in simulations. This is inconsistent with attributing the326

fewer and longer events observed in infants to their greater functional and anatomical variability.327

The nature of conducting fMRI research in awake infants means our study has several important limi-328

tations. First, there was more missing data in the infant age groups from eye closure and eye movements.329

We partially addressed this issue by introducing a new variance parameter to the computational model, but330

acknowledge that it remains an unavoidable quirk in the datasets. Second, our analyses were conducted331

in a common adult standard space, requiring alignment across participants. Because of uncertainty in the332

localization and extent of these regions in infants, we defined our a priori ROIs liberally. This may explain333

the curious finding of reliable event structure in EAC for both adults and infants. Indeed, the EAC ROI en-334

compassed secondary auditory regions and superior temporal gyrus, which is important for social cognition335

(Jacoby et al., 2016) and motion and face processing (Hein and Knight, 2008). Future work could define ROIs336

based on a child atlas (Oishi et al., 2019), although thatwould complicate comparison to adults. Alternatively,337

ROIs could be defined in each individual using a functional localizer task, though collecting both movie and338

localizer data from a single infant session is difficult. Nonetheless, in other work, we have successfully used339

adult-defined ROIs to investigate infant visual processing (Ellis et al., 2020a) and attentional cuing (Ellis et al.,340

2020d).341

In conclusion, we found that infants segment continuous experience into discrete neural events, but342

do so in a coarser way than the corresponding brain regions in adults and without a resulting gradient in343

the timescale of event processing across these regions. By using a neural approach to access event repre-344

sentations during naturalistic movie-watching from neural activity, we supplement the limited repertoire of345

behavioral tasks andmeasures available in the first year of life, providing a new perspective on the assumed346

“blooming, buzzing confusion” (James, 1890) of infant visual experience.347

Methods and Materials348

Participants349

Data were collected from 25 infants under one year of age (3.60 – 12.70 months; M = 7.43, SD = 2.70; 13350

female) while they watched a silent cartoon (“Aeronaut”). Infants whomoved their head excessively (N = 11)351

or did not look the screen (N = 4) during more than half of the movie were excluded. We further excluded352

participants for whom we had to stop the scan less than halfway through the movie because of fussiness353

or movement (N = 9). For comparison, we also collected data from 25 adult participants (18 – 32 years; M =354

22.64, SD=3.62; 14 female) who watched the same movie. The study was approved by the Human Subjects355

Committee (HSC) at Yale University. All adults provided informed consent, and parents provided informed356

consent on behalf of their child.357

Materials358

Aeronaut is a 3-minute long segment of a short film entitled “Soar” created by Alyce Tzue (https://vimeo.com/359

148198462). The film was downloaded from YouTube in Fall 2017 and iMovie was used to trim the length.360

The audio was not played to participants in the scanner. The movie spanned 45.5 visual degrees in width361

and 22.5 visual degrees in height. In the video, a girl is looking at airplane blueprints when a miniature boy362

crashes his flying machine onto her workbench. The pilot appears frightened at first, but the girl helps him363

fix the machine. After a few failed attempts, a blueprint flies into the girl’s shoes, which they use to finally364

launch the flying machine into the air to join a flotilla of other ships drifting away. In the night sky, the pilot365

opens his suitcase, revealing a diamond star, and tosses it into the sky. The pilot then looks down at Earth366

and signals to the girl, who looks up as the night sky fills with stars.367

The code used to show the movies on the experimental display is available at https://github.com/ntblab/368

experiment_menu/tree/Movies/. The code used to perform the data analyses is available at https://github.com/369

ntblab/infant_neuropipe/tree/EventSeg/; this code builds on tools from the Brain Imaging Analysis Kit (Kumar370

et al. 2020; https://brainiak.org/docs/). Raw and preprocessed functional data and anatomical images will be371

released publicly.372
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Data acquisition373

Procedures and parameters for collecting MRI data from awake infants were developed and validated in374

a previous methods paper (Ellis et al., 2020a), with important details repeated below. Data were collected375

at the Brain Imaging Center in the Faculty of Arts and Sciences at Yale University. We used a Siemens376

Prisma (3T) MRI and the bottom half of the 20-channel head coil. Functional images were acquired with a377

whole-brain T2* gradient-echo EPI sequence (TR = 2s, TE = 30ms, flip angle = 71, matrix = 64x64, slices =378

34, resolution = 3mm iso, interleaved slice acquisition). Anatomical images were acquired with a T1 PETRA379

sequence for infants (TR1 = 3.32ms, TR2 = 2250ms, TE = 0.07ms, flip angle = 6, matrix = 320x320, slices =380

320, resolution = 0.94mm iso, radial slices = 30000) and a T1 MPRAGE sequence for adults (TR = 2300ms, TE381

= 2.96ms, TI = 900ms, flip angle = 9, iPAT = 2, slices = 176, matrix = 256x256, resolution = 1.0mm iso). The382

adult MPRAGE sequence included the top half of the 20-channel head coil.383

Procedure384

Before their first session, infant participants and their parents met with the researchers for a mock scan-385

ning session to familiarize them with the scanning environment. Scans were scheduled for a time when386

the infant was thought to be most comfortable and calm. Infants and their accompanying parents were387

extensively screened for metal. Three layers of hearing protection (silicon inner ear putty, over-ear adhe-388

sive covers, and ear muffs) were applied to the infant participant. They were then placed on the scanner389

bed on top of a vacuum pillow that comfortably reduced movement. Stimuli were projected directly on to390

the surface of the bore. A video camera (MRC high-resolution camera) was placed above the participant391

to record their face during scanning. Adult participants underwent the same procedure with the following392

exceptions: they did not attend a mock scanning session, hearing protection was only two layers (earplugs393

and optoacoustics noise-canceling headphones), and they were not given a vacuum pillow. Finally, infants394

may have participated in additional tasks during their scanning session, whereas adult sessions contained395

only the movie task (and an anatomical image).396

Gaze coding397

Gaze was coded offline by 2-3 coders for infants (M = 2.08, SD = 0.74) and by 1 coder for adults. Based on398

recordings from the in-bore camera, coders determined whether the participant’s eyes were on-screen, off-399

screen (i.e., blinking or looking away), or undetected (i.e., out of the camera’s field of view). In two infants,400

gaze data were not collected because of technical issues; in both cases, infants were monitored by visual401

inspection of a researcher and determined to be attentive enough to warrant inclusion. For all other infants,402

coders were highly reliable: They reported the same response code on an average of 93.2% (SD = 5.17%;403

range across participants = 77.7–99.6%) of frames. The modal response across coders from a moving win-404

dow of five frames was used to determine the final response for the frame centered in that window. In the405

case of ties, the response from the previous frame was used. Frames were pooled within TRs, and the aver-406

age proportion of TRs included was high for both adults (M = 98.8%, SD = 3.17%; range across participants407

= 84.4–100%) and infants (M = 88.4%, SD = 12.1%; range across participants = 56.0–100%).408

Preprocessing409

Data from both age groups were preprocessed using a modified FSL FEAT pipeline designed for infant fMRI410

(Ellis et al., 2020a). If infants participated in other tasks during the same functional run, the movie data was411

cleaved to create a pseudorun (N = 12). Three burn-in volumes were discarded from the beginning of each412

run/pseudorun. Motion correction was applied using the centroid volume as the reference – determined413

by calculating the Euclidean distance between all volumes and choosing the volume that minimized the414

distance to all other volumes. Slices in each volumewere realigned using slice-timing correction. Timepoints415

with greater than 3mm of translational motion were excluded and temporally interpolated so as not to416

bias linear detrending. The vast majority of infant timepoints were included after motion exclusion (M =417

92.8%, SD = 9.8; range across participants = 65.6–100%) and all adult timepoints were included (100% for all418

participants). These timepoints and timepoints during which eyes were closed for a majority of the volume419

were then excluded from subsequent analyses. The signal-to-fluctuating-noise ratio (SFNR) was calculated420
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(Friedman and Glover, 2006) and thresholded to form the mask of brain vs non-brain voxels. Data were421

spatially smoothed with a Gaussian kernel (5mm FWHM) and linearly detrended in time. AFNI’s despiking422

algorithm was used to attenuate aberrant timepoints within voxels. After removing excess burn-out TRs,423

functional data were z-scored within run.424

The centroid functional volumewas registered to the anatomical image. Initial alignment was performed425

using FLIRT with a normalized mutual information cost function. This automatic registration was manually426

inspected and then corrected if necessary using mrAlign from mrTools (Gardener lab). To compare across427

participants, functional data were further transformed into standard space. For infants, anatomical images428

were first aligned automatically (FLIRT) and thenmanually (Freeview) to an age-specific MNI infant template429

(Fonov et al., 2009). This infant template was then aligned to adult MNI standard (MNI152). Adult anatomical430

images were directly aligned to the adult MNI standard. For all analyses, we only considered voxels included431

in the intersection of all infant and adult brain masks.432

In an additional exploratory analysis, we re-aligned participants’ anatomical data to the adult standard433

using ANTs (Avants et al., 2011), a non-linear alignment algorithm. For infants, an initial linear alignment434

with 12 DOF was used to align anatomical data to the age-specific infant template, followed by non-linear435

warping using diffeomorphic symmetric normalization. Then, as before, we used a predefined transforma-436

tion (12 DOF) to linearly align between the infant template and adult standard. For adults, we used the437

same alignment procedure, except participants were directly aligned to adult standard. Results using this438

non-linear procedure were nearly identical to the original analyses (Appendix 4 Figure 1).439

Regions of interest440

We performed analyses over the whole brain and in regions of interest (ROIs). We defined the ROIs using441

the Harvard-Oxford probabilistic atlas (0% probability threshold; Jenkinson et al. 2012) in early visual cor-442

tex (EVC), lateral occipital cortex (LOC), angular gyrus (AG), precuneus, early auditory cortex (EAC), and the443

hippocampus. We used functionally defined parcellations obtained in resting state (Shirer et al., 2012) to444

define two additional ROIs: medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). We in-445

cluded these regions because of their involvement in narrative perception, event processing, and longer446

time-scales of integration (Hasson et al., 2015).447

Intersubject correlation448

We assessed whether participants were processing the movie in a similar way using intersubject correla-449

tion (ISC; Hasson et al. 2004; Nastase et al. 2019). For each voxel, we correlated the timecourse of activ-450

ity between a single held-out participant and the average timecourse of all other participants in a given451

age group. We iterated through each participant and then created the average ISC map by first Fisher-452

transforming the Pearson correlations, averaging these transformed values, and then performing an in-453

verse Fisher-transformation on the average. We visualize the whole-brain map of the intersubject correla-454

tions for adults and infants separately, thresholded at a correlation of 0.10.455

For the ROI analysis, the voxel ISCs within a region were averaged separately for each held-out par-456

ticipant using the Fisher-transform method described above. Statistical significance was determined by457

bootstrap resampling. We randomly sampled participants with replacement 1,000 times, on each iteration458

forming a new sample of the same size as the original group, then averaged their ISC values to form a459

sampling distribution. The p-value was calculated as the proportion of resampling iterations on which the460

group average had the opposite sign as the original effect, doubled to make it two-tailed. For comparing461

ISC across infant and adult groups, we permuted the age group labels 1,000 times, each time recalculating462

ISC values for these shuffled groups and then finding the difference of group means. This created a null463

distribution for the difference between age groups.464

Event segmentation model465

To determine the characteristic patterns of event states and their structure, we applied a Hidden Markov466

Model (HMM) variant (Baldassano et al., 2017) available in BrainIAK (Kumar et al., 2020) to the average fMRI467

activity of participants from the same age group. This model uses an algorithm that alternates between468
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estimating two related components of stable neural events: (1) multivariate event patterns and (2) their469

event structure (i.e., placement of boundaries between events). The constraints of the model are that each470

event state is only visited once, and that staying versus transitioning into a new event state have the same471

prior probability. Model fitting stopped when the log probability that the data were generated from the472

learned event structure (i.e., log-likelihood; Etz 2018) began to decrease.473

To deal with missing data in the input (a reality of infant fMRI data), we modified the BrainIAK implemen-474

tation of the HMM. First, in calculating the probability that each observed timepoint was generated from475

each possible event model, timepoint variance was scaled by the proportion of participants with data at476

that timepoint. In other words, if some infants had missing data at a timepoint because of head motion477

or gaze, the variance at that timepoint was adjusted by the square-root of the maximum number of par-478

ticipants divided by the square-root of the number of participants with data at that point. This meant that479

even though the model was fit on averaged data that obscured missing timepoints, it had an estimate of480

the “trustworthiness” of each timepoint. Second, for the case in which missing timepoints persisted after481

averaging across participants, the log-probability for the missing timepoint was linearly interpolated based482

on nearby values.483

The HMM requires a hyperparameter indicating the number of event states. By testing a range of event484

numbers and assessing model fit, we can determine the optimal number of events for a given voxel or485

region. We used a cubical searchlight (7x7x7 voxels) to look at the timescales of event segmentation across486

the whole brain. In a given searchlight, the HMM was fit to the average timecourse of activity for a random487

split half of participants using a range of event counts between 2 and 21. We capped themaximum number488

of possible events at 21 to ensure that at least some events would be several TRs long. The learned event489

patterns and structure for each event count were then applied to the average time course of activity for490

held-out data, and model fit was assessed using the log-likelihood. We iterated through this procedure,491

each time splitting the data in half differently. The center voxel of the searchlight was assigned the number492

of events that maximized the average log-likelihood across 24 iterations (chosen to be approximately the493

same number of iterations as a leave-one-participant-out analysis). This analysis was performed in each494

searchlight, separately for adults and infants, to obtain a topography of event timescales. We also used this495

method to determine the optimal number of events for each of our ROIs. In these analyses, the timecourse496

of activity for every voxel in the ROI was used to learn the event structure.497

To test whether a given ROI had statistically significant event structure, we used a nested cross-validation498

approach. The inner loop of this analysis was identical to what is described above, except that a single partic-499

ipant was completely held out from the analysis. After finding the optimal number of events for all but that500

held-out participant, the event patterns and structure were fit to that participant’s data. The log-likelihood501

for those data was compared to a permuted distribution, where the participant’s data was time-shifted for502

every possible shift value between one and the length of the movie. We calculated a z-statistic as the differ-503

ence between the actual log-likelihood and the average log-likelihood of the permuted distribution, divided504

by the standard deviation of the permuted distribution. We then iterated through all participants and used505

bootstrap resampling of the z-statistics to determine significance. We randomly sampled participants with506

replacement 1,000 times, on each iteration forming a new sample of the same size as the original group,507

then averaged their z-statistics to forma sampling distribution. The p-valuewas calculated as the proportion508

of resampling iterations with values less than zero, doubled to make it two-tailed.509

Behavioral segmentation510

Behavioral segmentation was collected from 22 naive undergraduate students attending Yale University511

(18 – 22 years; M = 18.86, SD=0.97; 14 female) All participants provided informed consent and received for512

course credit. Participants were instructed to attend to the Aeronautmovie and press a key on the keyboard513

to indicate whenever a new, meaningful event occurred. Participants watched a version of the movie with514

its accompanying audio – amusical track without language. While the visual input remained the same as the515

fMRI data collection, these auditory cues may have influenced event segmentation (Cutting, 2019). During516

data collection, participants also evaluated nine othermovies, not describedhere, and verbally recalled each517

movie after segmenting. We elected to have participants use their own judgement for what constituted an518
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event change. Participants had a 1-minute practice movie to orient them to the task, and the Aeronaut519

movie appeared in a random order among the list of other movies. To capture “true” event boundaries and520

avoid contamination by accidental or delayed key presses, we followed a previously published procedure521

(Ben-Yakov and Henson, 2018). That is, we set a threshold for the number of participants who indicated522

the same event boundary, such that the number of event boundaries agreed upon by at least that many523

participants was equal or close to the average number of key presses across participants. We found 11524

event boundaries (12 events) that were agreed upon by 32% of participants (for reference, ~31% was used525

in Ben-Yakov and Henson 2018).526

To evaluate whether these behavioral boundaries predicted neural data, we tested whether voxel activ-527

ity patterns for timepoints within a boundary were more correlated than timepoints spanning a boundary.528

This within-vs-across boundary comparison has been used previously as a metric of event structure (Bal-529

dassano et al., 2017). For our analysis, we considered all possible pairs of timepoints within and across530

boundaries. For each temporal distance from the boundary, we subtracted the average correlation value531

for pairs of timepoints that were across events from the average correlation value for pairs of timepoints532

within the same event. At different temporal distances, there are either more or less within-event pairs533

compared to across-event pairs. To equate the number of within and across event pairs, we subsampled534

values and recomputed the within vs. across difference score 1,000 times. To combine across distances535

that had different numbers of possible pairs, we weighted the average difference score for each distance536

by the number of unique timepoint pairs that made up the smaller group of timepoint pairs (i.e., across-537

event pairs when temporal distance was low, within-event pairs when temporal distance was high). This538

was repeated for all participants, resulting in a single weighted within vs. across difference score for each539

participant. For the ROIs, we used bootstrap resampling of these participant difference scores to determine540

statistical significance. The p-value was the proportion of difference values that were less than zero after541

1,000 resamples, doubled to make it two-tailed. For the whole-brain searchlight results, we also used 1,000542

bootstrap resamples to determine statistical significance for within-vs-across difference scores for each543

voxel. We then calculated a z-score for each voxel as the the distance between the bootstrap distribution544

and zero, and thresholded the bootstrapped z-score map at p < 0.05, uncorrected.545
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Appendix 1752

Log-likelihood simulations753

To assess whether the log-likelihood metric would be biased to higher or lower numbers of events,
we tested howwell we could recover event structure in simulated data. We first generated event pat-
terns (voxels by number of events) with values drawn from a standard normal distribution. Because
each voxel was treated as an independent source, we used fewer voxels (5) than our actual analyses
to better simulate the correlated patterns present in real fMRI data. Event labels were assigned to
each of 90 timepoints. We generated 25 “participants” by applying the simulated event patterns to
each timepoint with an additional noise component (cov: the covariancematrix of amultivariate nor-
mal distribution). The resulting voxel by timepoint matrices were convolved with a double-gamma
hemodynamic response function (HRF) using an fMRI simulation package (Ellis et al., 2020c) available
in BrainIAK (Kumar et al., 2020). We followed the same analysis approach described in the Methods
and Materials section to estimate the optimal number of events while simulating across a range of
actual numbers. We calculated model error as the difference between the actual simulated number
and the estimated optimal number.

754

755

756

757

758

759

760

761

762

763

764

765

766

With low noise (cov = 0.1), the timepoint by timepoint similaritymatrices showed clear block struc-
ture along the diagonal. Average error between model estimates and the correct number of events
was negative (M = -1.10, p < 0.001), meaning that the model under-estimated the number of events
(Appendix 1 Figure 1). When noise increased to a moderate level (cov = 2), model error did not signif-
icantly differ from zero (M = 0.042, p = 0.900), that is, it did not under- or over-estimate the number
of events. With high noise (cov = 20), model error was positive (M = 1.95, p < 0.001), indicating that
the model over-estimated the number of events.
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Appendix 1 Figure 1. Simulations of log-likelihood metric under different noise regimes. Dots represent
differences between the K values that maximized the model log-likelihood and the actual simulated K values for
different iterations. One example error value for each noise regime is circled, and its corresponding
timepoint-by-timepoint correlation matrix is inset. Boundaries demarcating the model’s best estimated K value
are shown in red. In general, K values were underestimated when noise was low, guessed correctly when noise
was moderate, and overestimated when noise was high.
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Appendix 2782

Alternative behavioral boundary approach783

We testedwhether voxel activity patterns for timepointswithin a behavioral boundaryweremore cor-
related than timepoints spanning a boundary by considering all possible pairs of timepoints within
and across boundaries up to the temporal distance of the largest event. This approach has the
advantage of using as many timepoint pairs as possible for calculating within vs. across boundary
correlations, but may be vulnerable to increased noise due to comparing timepoints from different
parts of the movie. Here we report a more conservative approach for testing how behavioral bound-
aries predict neural data by only considering timepoint pairs that are equated in temporal distance
and also “anchored” to the same timepoint. Namely, for each TR we measured the correlation be-
tween the spatial activity pattern at that timepoint and timepoints forward and backward in time at
a matched temporal distance. If one timepoint pair was within an event and the other was across
an event, we calculated the within minus across boundary correlation. However, if both timepoint
pairs were either within an event or across an event, or if one of the timepoint pairs was already
included in a different calculation, the within vs. across boundary correlation was not included. We
performed this for each temporal distance up to the length of the largest event and calculated the
average within vs. across boundary correlation for each subject. For statistical analysis, we used the
same bootstrap resampling techniques described in the Methods.

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

In adults, the searchlight analysis again showed that occipital pole, superior occipital cortex, and
right supramarginal gyrus exhibited significantly greater pattern similarity within vs. across behav-
ioral event boundaries (Figure 1A). In fact, the voxelwise map of the average within vs. across bound-
ary correlation was highly correlated with the map using our main approach (r = 0.865). We also
found several regions showing greater pattern similarity within vs. across behavioral boundaries in
infants, where again the voxelwise map was the highly correlated with our main results (r = 0.854).
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For the ROIs, the within vs. across behavioral boundaries were nowmarginal in early visual cortex
and otherwise non-significant in adults (Figure 5C; EVC:M = 0.015, CI = [-0.001, 0.031], p = 0.086; LOC:
M = 0.006, CI = [-0.011, 0.021], p = 0.412; AG:M = -0.020, CI = [-0.051, 0.009], p = 0.174; PCC:M = -0.014,
CI = [-0.039, 0.010], p = 0.292; precuneus: M = -0.016, CI = [-0.043, 0.010], p = 0.274; mPFC:M = -0.009,
CI = [-0.022, 0.005], p = 0.206); hippocampus: M = -0.006, CI = [-0.017, 0.003], p = 0.222; EAC:M = 0.000,
CI = [-0.010, 0.012], p = 0.928). In infants, there were again significant results in early visual cortex
and PCC, with marginally significant results in the hippocampus and EAC (EVC:M = 0.057, CI = [0.018,
0.099, p = 0.002; LOC: M = 0.022, CI = [-0.016, 0.061], p = 0.286); AG: M = 0.035, CI = [-0.012, 0.091], p
= 0.174); PCC: M = 0.046, CI = [0.007, 0.089], p = 0.022; precuneus: M = 0.025, CI = [-0.005, 0.063], p =
0.152; mPFC: M = 0.003, CI = [-0.030, 0.036], p = 0.862; hippocampus: M = 0.035, CI = [-0.001, 0.079],
p = 0.060; EAC: M = 0.033, CI = [-0.002, 0.074], p = 0.074). Thus, the findings were largely consistent
across the two approaches.
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Appendix 2 Figure 1. Alternative approach relating behavioral boundaries to neural activity. (A) Whole-brain
searchlight analysis for each age group comparing pattern similarity between timepoints drawn from within vs.
across behavioral event boundaries when pairs of correlations are anchored to the same timepoint.
Bootstrapped z-scores are thresholded at p < 0.05, uncorrected. (C) ROI analysis of difference in pattern
similarity within minus between behavioral events. Dots represent individual participants and error bars
represent 95% CIs of the mean from bootstrap resampling. Adult participants with values beyond the y-axis
range for AG, PCC, and precuneus are indicated with Xs at the negative edge. Infant participants with values
beyond the y-axis range for EVC, AG, PCC, precuneus, hippocampus, and EAC are indicated with Xs at the
positive edge. *** p < 0.001, ** p < 0.01, * p < 0.05, ~p < 0.1.
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Appendix 3829

Mickey dataset830

We applied our analyses to a second, previously collected dataset of infant movie-watching. This
provides a test of generalization, as the data came from a different group of infants, who spanned
a wider age range, and watched a different movie. fMRI data were collected in 15 sessions (4.00
– 32.60 mo; M = 13.92, SD = 8.87; 9 female) while infants watched a silent cartoon lasting 142 s
(“Mickey”). This movie was shown on a smaller display than the Aeronaut movie, spanning 22.75
visual degrees in width and 12.75 visual degrees in height. In this video, a surprise party is thrown
where characters dance and play the piano while one character makes an exploding cake in the
kitchen. Two infants participated twice after a delay (6.3 months and 2.3 months difference) and
were treated as independent sessions. As before, additional infants with head motion above 3 mm
(N = 5) or eyes off-screen (N = 2) for more than half of the movie were excluded. For comparison, we
also collected data from 15 adults (19 – 27 years; M = 21.47, SD = 2.90; N = 10 female) who watched
the same movie. All adults and 9 infants watched the movie twice in a row. For these participants,
data were averaged across the two viewings. This helped with robustness to excision of individual
timepoints with excessive motion or eye closure, as the corresponding timepoint from the other
viewing could be retained. Infants were collected at the Scully Center for the Neuroscience of Mind
and Behavior at Princeton University (N = 7) and the Magnetic Resonance Research Center (MRRC)
at Yale University (N = 8). Adult participants were collected at the Brain Imaging Center (BIC) at Yale
University. This study was approved by the Institutional Review Board at Princeton University and
the Human Investigation Committee (MRRC) and Human Subjects Committee (BIC) at Yale University.
Adults provided informed consented for themselves or their child.
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Data acquisition, preprocessing, and analyses were identical to the Aeronaut dataset with two
minor variations: First, infant data were acquired at Princeton using a Siemens Skyra (3T) MRI. Sec-
ond, functional images for infants were collected under a slightly different functional EPI sequence
(TR = 2s, TE = 28ms, flip angle = 71, matrix = 64x64, slices = 36, resolution = 3mm iso, interleaved slice
acquisition). Adults were collected with the same functional sequence as Aeronaut (same as above
except with TE = 30, slices = 34). Gaze coding was highly reliable: coders reported the same response
on an average of 91.4% of frames (SD = 5.0%; range across participants = 79.7–98.4%). The average
proportion of TRs retained after exclusion for looking off screen was high in adults (M = 99.3%, SD =
1.6%; range across participants = 93.9–100%) and infants (M = 89.1%, SD = 13.0%; range across par-
ticipants = 58.1–100%). Eye-tracking data were not collected for one infant because of experimenter
error. Timepoints with less than 3mm of translational motion were included (infants: M = 91.2%, SD
=10.7%, range across participants = 64.9%–100%; adults: 100% for all participants).
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In the whole-brain analysis, ISC was again strongest in visual regions for both adults and infants
(Appendix 2 Figure 1). In the ROI analysis, adult ISC was significant in EVC (M = 0.468, CI = [0.420,
0.516], p < 0.001), LOC (M = 0.383, CI = [0.330, 0.438], p < 0.001), AG (M = 0.151, CI = [0.121, 0.186], p
< 0.001), PCC (M = 0.187, CI = [0.114, 0.264], p < 0.001), precuneus (M = 0.227, CI = [0.177, 0.281], p <
0.001) and EAC (M = 0.045, CI = [0.006, 0.084], p = 0.026); marginal in mPFC (M = 0.031, CI = [-0.004,
0.066], p = 0.088); and not significant in hippocampus (M = 0.011, CI = [-0.010, 0.030], p = 0.290). Infant
ISC was significant in EVC (M = 0.076, CI = [0.032, 0.123], p < 0.001), LOC (M = 0.039, CI = [0.009, 0.073],
p = 0.019); significant or marginal in a negative direction (likely noise) in AG (M = -0.039, CI = [-0.085,
0.002], p = 0.084), PCC (M = -0.066, CI = [-0.127, -0.007], p = 0.037), and EAC (M = -0.049, CI = [-0.082,
-0.016], p = 0.002); and not significant in precuneus (M = -0.014, CI = [-0.060, 0.032], p = 0.575), mPFC
(M = 0.000, CI = [-0.035, 0.036], p = 0.994), or hippocampus (M = 0.050, CI = [-0.014, 0.114], p = 0.129).
ISC was significantly greater in adults than infants in EVC (M = 0.393, permutation p < 0.001), LOC (M
= 0.344, p < 0.001), AG (M = 0.190, p < 0.001), PCC (M = 0.252, p < 0.001), precuneus (M = 0.240, p <
0.001), and EAC (M = 0.094, p = 0.003); and not significantly different in mPFC (M = 0.031, p = 0.238)
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and hippocampus (M = -0.039, p = 0.298).
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Appendix 3 Figure 1. Average leave-one-out intersubject correlation (ISC) in adults and infants watching the
Mickey movie. (A) Whole-brain voxel-wise ISC values in the two groups, thresholded for visualization purposes
at voxels with correlation values greater than 0.10. (B) ISC values in the ROIs, with the mean at the column
height. Dots represent individual participants and error bars represent 95% CIs of the mean from bootstrap
resampling. *** p < 0.001, ** p < 0.01, ~p < 0.1.
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In the searchlight analysis, we applied an HMM to one half of adult or infant participants using a
range of event numbers from 2 to 18 and then tested on the second half. This maximum number of
events ensured that at least some events were several TRs long, but was less than Aeronaut because
theMickeymovie was shorter. Log-likelihood was again used to assessmodel fit. Similar to ourmain
analyses, sensory regions of the adult brain had more events than higher level regions, although
there were fewer events overall (Appendix 2 Figure 2). We replicated the lack of a gradient of event
processing in infants, with the optimal number of events generally low across the brain.
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In the nested analysis for reliability of event structure, most ROIs were significant in adults, in-
cluding EVC (M = 3.98, CI = [3.66, 4.31], p < 0.001), LOC (M = 4.35, CI = [3.87, 4.77], p < 0.001), AG (M =
1.72, CI = [0.515, 2.96], p = 0.010), PCC (M = 3.59, CI = [2.62, 4.45], p < 0.001), precuneus (M = 4.42, CI
= [3.97, 4.88], p < 0.001), and EAC (M = 2.69, CI = [1.56, 3.80], p < 0.001); but not mPFC (M = 0.157, CI =
[-1.21, 1.42], p = 0.840) or hippocampus (M = 0.273, CI = [-0.822, 1.37], p = 0.724). In infants, reliable
event structure was found in EVC (M = 2.04, CI = [0.972, 2.97], p < 0.001), LOC (M = 2.85, CI = [1.83,
3.77], p < 0.001), precuneus (M = 3.42, CI = [2.23, 4.30], p < 0.001), mPFC (M = 2.56, CI = [1.38, 3.63],
p < 0.001), and hippocampus (M = 1.31, CI = [0.366, 2.13], p = 0.002); marginal in EAC (M = 0.846, CI =
[-0.047, 1.74], p < 0.035); and not in AG (M = 0.735, CI = [-0.097, 1.65], p = 0.100) or PCC (M = 0.399, CI
= [-0.364, 1.22], p = 0.306). By generalizing to a different movie with distinct samples across a wider
infant age range, these results provide further evidence for coarser event representations in infancy.
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Appendix 3 Figure 2. Event structure and reliability for the Mickey movie. (A) The optimal number of events
plotted across the brains of adults and infants. Voxels with an average ISC value greater than 0.10 are plotted
for visualization purposes. (B) Results of the nested cross-validation procedure for computing the reliability of
event segmentation in ROIs for adults and infants, calculated as the z-statistic comparing actual and permuted
participant data. The number of events that optimized model log-likelihood in the full sample of participants is
labeled below the x-axis. Dots represent individual participants and error bars represent 95% CIs of the mean
from bootstrap resampling. *** p < 0.001, ** p < 0.01, * p < 0.05.
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Appendix 4912

Nonlinear alignment913

In our main analyses, we used a linear alignment procedure for infant anatomical images (with man-
ual adjustments). However, dramatic developmental differences within and across ages raise the
possibility that a nonlinear approach may be more appropriate. We thus used ANTS (Avants et al.,
2011) to re-align infant and adult brain data from the Aeronaut dataset to adult anatomical data. We
then repeated the whole-brain ISC analyses and the searchlight analyses of optimal event number.
For both adults and infants, the results were unchanged: ISC was highest in visual regions in both
adults and infants (Appendix 3 Figure 1A) and there was a gradient in the number of events that max-
imized themodel log-likelihood in adults but not infants (Appendix 3 Figure 1B). Thus, our results are
robust to these procedures for aligning between infant and adult brains.
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Appendix 4 Figure 1. Results from nonlinear anatomical alignment. (A) Whole-brain voxel-wise ISC values in the
two groups. (B) The optimal number of events for a given voxel was determined via a searchlight analysis across
the brain, which found the number of events that maximized the model log-likelihood in held-out data. In both
panels, voxels with an average ISC value greater than 0.10 are plotted for visualization purposes.
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