Asthana, A. et al.

1	
2	
3	
4	
5	Specificity and Mechanism of Coronavirus, Rotavirus and Mammalian
6	Two-Histidine-Phosphoesterases That Antagonize Antiviral Innate Immunity
7	
8	Abhishek Asthana ¹ , Christina Gaughan ¹ , Susan R. Weiss ^{2,3} and Robert H. Silverman ^{1,*}
9	
10	¹ Department Cancer Biology, Cleveland Clinic Foundation, Lerner Research Institute,
11	Cleveland, OH, 44195, United States; ² Department of Microbiology, ³ Penn Center for
12	Research on Coronaviruses and Other Emerging Pathogens, Perlman School of
13	Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, United States
14	
15	
16	
17	
18	
19	
20	
21	
22	* To whom correspondence should be addressed: Tel: 1-216-445-9650; Fax 1-216-
23	445-6269; Email: silverr@ccf.org

Asthana, A. et al.

24 ABSTRACT

25

26	2',5'-oligoadenylate(2-5A)-dependent endoribonuclease, RNase L, is a principal
27	mediator of the interferon (IFN) antiviral response. Therefore, regulation of cellular
28	levels of 2-5A is a key point of control in antiviral innate immunity. Cellular 2-5A levels
29	are determined by IFN-inducible 2',5'-oligoadenylate synthetases (OASs) and by
30	enzymes that degrade 2-5A. Importantly, many coronaviruses and rotaviruses encode
31	2-5A degrading enzymes thereby antagonizing RNase L and its antiviral effects. A-
32	kinase anchoring protein 7 (AKAP7), a mammalian counterpart, could possibly limit
33	tissue damage from excessive or prolonged RNase L activation during viral infections or
34	from self double-stranded-RNAs that activate OAS. We show these enzymes,
35	members of the two-histidine-phosphoesterase (2H-PE) superfamily, constitute a sub-
36	family referred here as 2',5'-PEs. 2',5'-PEs from mouse coronavirus (CoV) MHV (NS2),
37	MERS-CoV (NS4b), group A rotavirus (VP3), and mouse (AKAP7) were investigated for
38	their evolutionary relationships and activities. While there was no activity against 3',5'-
39	oligoribonucleotides, all cleaved 2',5'-oligoadenylates efficiently, but with variable
40	activity against other 2',5'-oligonucleotides. The 2',5'-PEs are shown to be metal ion-
41	independent enzymes that cleave trimer 2-5A (2',5'- p_3A_3) producing mono- or di-
42	adenylates with 2',3'-cyclic phosphate termini. Our results suggest that elimination of 2-
43	5A might be the sole function of viral 2',5'-PEs, thereby promoting viral escape from
44	innate immunity by preventing or limiting the activation of RNase L.
45	

Asthana, A. et al.

46 **IMPORTANCE**

.,	
48	Viruses often encode accessory proteins that antagonize the host antiviral immune
49	response. Here we probed the evolutionary relationships and biochemical activities of
50	two-histidine-phosphoesterases (2H-PEs) that allow some coronaviruses and
51	rotaviruses to counteract antiviral innate immunity. In addition, we investigated the
52	mammalian enzyme, AKAP7, which has homology and shared activities with the viral
53	enzymes and might reduce self-injury. These viral and host enzymes, that we refer to
54	as 2',5'-PEs, specifically degrade 2',5'-oligoadenylate activators of the antiviral enzyme
55	RNase L. We show that the host and viral enzymes are metal ion independent and
56	exclusively cleave 2',5'- and not 3',5'-phosphodiester bonds, producing cleavage
57	products with cyclic 2',3'-phosphate termini. Our study defines 2',5'-PEs as enzymes
58	that share characteristic conserved features with the 2H-PE superfamily but which have
59	specific and distinct biochemical cleavage activities. These findings may eventually
60	lead to pharmacologic strategies for developing antiviral drugs against coronaviruses,
61	rotaviruses, and other viruses.
62	
63	
64	
65	
66	

Asthana, A. et al.

67 INTRODUCTION

68

69	How interferons (IFNs) inhibit viral infections, and how viruses antagonize the IFN
70	antiviral response, have been investigated for the past few decades, but with renewed
71	intensity as a result of the SARS-CoV-2 pandemic (1-4). Mammalian cells often detect
72	and respond to viruses after sensing viral double-stranded (ds)RNA, a common viral
73	pathogen associated molecular pattern (PAMP) that induces type I and type III IFNs (1,
74	2). These IFNs induce expression of hundreds of IFN stimulated genes (ISGs),
75	including numerous antiviral effector proteins (5). Included among the human antiviral
76	proteins encoded by ISGs are 2',5'-oligoadenylate (2-5A) synthetases 1-3 (OAS1-3)
77	consisting of one, two and three core OAS units, respectively (6-8). However, not all
78	mammalian species express a similar set of homologous OASs, and some, but not all,
79	related OASL proteins lack enzymatic activity (9, 10). Upon binding of, and activation
80	by, viral dsRNA OAS1-3 synthesize 2-5A [$p_3(A2^{\circ}p5^{\circ})_nA$, where n=2 to >3] from ATP (7).
81	The only known function of 2-5A is dimerization and activation of RNase L resulting in
82	degradation of host and viral RNA, cessation of protein synthesis, apoptosis and
83	inflammasome activation (11-15)(Fig. 1A). In addition to its antiviral effects, RNase L
84	resulted in cell death in response to mutation of ADAR1 (adenosine deaminase acting
85	on RNA-1) in a cell line or in cells treated with the DNA demethylating drug 5-aza-
86	cytidine, both of which induce synthesis of self-dsRNA from repetitive DNA elements in
87	the genome (16-18). Thus, regulation of 2-5A levels is critical for host cell viability as
88	well as for control of viral infections and pathogenesis. Yet there are gaps in our
89	knowledge of precisely how levels of 2-5A are established to restrict viral replication and

Asthana, A. et al.

spread by RNase L activation while at the same time minimizing tissue damage to thehost.

92

- 93 Regulation of 2-5A degradation is a key point of control in the OAS-RNase L pathway. 94 Previously, we identified several different members of the eukaryotic-viral LigT group of 95 the 2H-phosphoesterases (2H-PE) superfamily, named for two His- ϕ -Thr/Ser- ϕ motifs 96 (where ϕ is a hydrophobic residue) that degrade 2-5A and therefore function as potent 97 RNase L antagonists (19, 20) (Fig. 1B). Here we refer to 2H-PE members that degrade 98 2',5'-oligoadenylates as 2',5'-PEs. Other members of the 2H-PE superfamily have 99 different activities, including 2',3'-cyclic nucleotide phosphodiesterase and 3',5'-100 deadenylase activities (19, 21). 101
- 102 The prototype of the 2'.5'-PEs is the mouse coronavirus (CoV), mouse hepatitis virus 103 (MHV), accessory protein NS2 (22). However, predicted or confirmed 2',5'-PEs are 104 expressed by many betacoronaviruses (embecovirus lineage MHV, human coronavirus 105 (HCoV) OC43, human enteric coronavirus (HECoV), equine coronavirus (ECoV), 106 porcine hemagglutinating encephalomyelitis virus (PHEV) and merbeco lineage MERS-107 CoV and related bat CoVs), related toroviruses and group A and B rotaviruses (20, 23-108 26). However, the betacoronaviruses SARS-CoV and SARS-CoV-2 lack a 2',5'-PE. 109 Perhaps as a consequence, SARS-CoV-2 activates, and is inhibited by, the OAS and 110 RNase L pathway (4). In addition, there is also a mammalian 2',5'-PE, A-kinase 111 anchoring protein (AKAP7, aka AKAP15 or AKAP18), that degrades 2-5A (27). Here 112 we have expressed, purified and characterized the 2',5'-PEs from MHV (NS2), MERS-

Asthana, A. et al.

113	CoV (NS4b), rotavirus group A (RVA) (VP3-C-terminal domain, CTD), and mouse
114	AKAP7. We show that NS2 and NS4b are remarkably specific for cleaving 2',5'-linked
115	oligoadenylates, whereas AKAP7 and VP3-CTD will also cleave other 2',5'-
116	oligonucleotides. In contrast, all of the viral and mammalian 2',5-PEs tested lack the
117	ability to cleave 3',5'-oligoribonucleotides. We further show that these enzymes are
118	metal ion-independent and cleave trimer 2-5A (2',5'- p_3A_3) producing mono- and di-
119	adenylates with 2',3'-cyclic phosphoryl termini. Our findings suggest that the sole
120	function of the viral 2',5'-PEs may be to eliminate 2-5A allowing some coronaviruses
121	and rotaviruses to evade the antiviral activity of RNase L.
122	
123	RESULTS
124	
125	Phylogenetic relationship and alignment of viral and cellular 2',5'-PEs.
126	To probe the precise molecular mechanism by which 2',5'-PEs allow some viruses to
127	evade the antiviral effector RNase L, we further investigated MHV NS2, MERS-CoV
128	NS4b, rotavirus group A (RVA) VP3-C-terminal domain (CTD), and mouse (mu)AKAP7,
129	(Fig. 1B). A comparison of the domain organization of these 2',5'-PEs shows a related,
130	catalytic domain. Some of these enzymes have additional domains related to
131	intracellular localization, nucleic acid metabolism or protein binding functions indicative
132	of their cellular compartment-specific or accessory functions (Fig. 1B). For instance,
133	MERS-CoV NS4b and muAKAP7 contain N-terminal nuclear localization signal (NLS)
134	domains (24, 27, 28). VP3 is a multifunctional enzyme that contains N-terminal
135	guanylyltransferase (Gtase) and methyltransferase (Mtase) domains involved in capping

Asthana, A. et al.

136 of the 5' termini of viral mRNAs (25, 29). muAKAP7 also has a carboxy-terminal binding 137 domain for the regulatory subunit II (RII) of cyclic AMP (cAMP)-dependent protein 138 kinase A (PKA-RII- α -BD) (27). In addition, MHV NS2 protein has a C-terminal 139 extension of unknown identity or function (Fig. 1B). 140 141 To determine the phylogenetic relationships between the different 2',5'-PEs, we 142 constructed a tree for amino acid sequences containing the catalytic domains from 143 coronavirus, rotavirus and mammalian 2',5'-PEs (Fig. 2A). 2',5'-PEs were distributed 144 into two distinct branches on the phylogenetic tree. VP3 group of proteins clustered into 145 one branch while the other three groups containing NS2, NS4b and AKAP7 formed a 146 separate branch (Fig. 2A). Within the VP3 group, RVA and RVB resolved on distinct 147 sub-branches. Previously, full-length VP3 from RVA and RVB were also shown as 148 separate distinct branches analogous to two separate clades (clade A and clade B) (30, 149 31). Interestingly, the NS2 proteins were mostly closely related to the mammalian 150 AKAP7 catalytic domains, and then to the bat coronaviruses (HKU5 and SC2013) and 151 MERS-CoV. The rotavirus VP3 proteins were most distally related to the other 2',5'-152 PEs.

153

Based on the phylogenetic relationship and functional relatedness, we further analyzed the sequence conservation by amino acid alignment. 2H-PE superfamily members are characterized by the presence of two H- ϕ -S/T- ϕ motifs, separated by an average of 80 amino acids (where ϕ represents a hydrophobic amino acid) (19). The alignment shows that both motifs are highly conserved across all 2',5'-PE proteins (Fig. 2B, see boxes).

Asthana, A. et al.

159	These motifs form the catalytic core that bind to and cleave the 2-5A substrate.
160	Consistent with the phylogenetic analysis, sequence analysis revealed that 2',5'-PEs
161	clustered into four groups corresponding to NS2, NS4b, AKAP7 and VP3. The two
162	histidines within the conserved motifs were 100% conserved among all the sequences
163	(Fig. 2B, see asterisks). Several residues with intergroup consensus of >50% were
164	identified in the alignment. The amino acid alignment shows several regions of
165	conservation that exist beyond the two conserved catalytic motifs (H- ϕ -S/T- ϕ) (Fig. 2B,
166	shown above sequence alignment).
167	
168	Among the sequences in alignment, AKAP7 proteins of human, rat and mouse origin
169	shared the highest amino acid identity ranging between 85 to 97% (88 to 97% similarity)
170	(Table S1). NS2 proteins shared 48 to 92% identity (64 to 94% similarity), NS4b
171	proteins shared 35 to 49% identity (50 to 69% similarity), and VP3 proteins shared 16 to
172	78% identity (29 to 84% similarity) within their groups. Interestingly while RVA VP3
173	proteins shared a high 78% identity (84% similarity) between them, they share only 16%
174	identity (29% similarity) with the representative of RVB VP3 protein. The catalytic
175	domains of 2',5'-PEs have modest intragroup alignment and a relatively lower
176	intergroup alignment. Overall intergroup alignment for the catalytic domains of these
177	proteins shown 10 to 22% identity (19 to 36% similarity) (Table S1). NS2 proteins
178	shared 11 to 16% amino acid identity (24 to 29% similarity) with NS4b, 16 to 22%
179	identity (30-36% similarity) with AKAP7 and 16 to 22% identity (26 to 32% similarity)
180	with VP3 proteins. Similarly, NS4b group of proteins shared 12 to 18% identity (21 to
181	29% similarity) with AKAP7 and 10 to 19% identity (23 to 34% similarity) with VP3

Asthana, A. et al.

proteins. AKAP7 and VP3 shared 11 to 20% identity and 19 to 25% similarity betweenthe two groups.

184

185 2',5'-PEs are specific for 2',5'-linked phosphodiester bonds and preferably cleave

186 **2',5'-oligoadenylate.**

187 2',5'-PEs are members of the LigT family of the 2H-PE superfamily of enzymes, which 188 are involved in RNA processing that can act on diverse substrates (19). Also, members 189 such as MERS-CoV NS4b and muAKAP7 have a functional NLS peptide (24, 27). To 190 determine if there was a wider role for these enzymes beyond cleaving 2-5A, we tested 191 an expanded set of potential substrates. MERS-NS4b, MHV NS2, RVA VP3-CTD and 192 muAKAP7 proteins were expressed in bacteria and then purified. Also, for comparison, 193 human PDE12 (aka 2'-PDE), a member of the exonuclease-endonuclease-phosphatase 194 (EEP) family known to cleave 2-5A was purified (Fig. 1B) (32, 33). The catalytically inactive mutant proteins, MERS-NS4b^{H182R}, MHV NS2^{H126R}, RVA VP3-CTD^{H718A}, 195 muAKAP7^{H93A; H185R} and human PDE12^{E351A} served as the negative controls. Purity and 196 197 identity of trimer 2-5A (2',5'- p_3A_3) were confirmed by HPLC (Fig. 3A) and mass 198 spectrometry [described later for (Fig. 5J)]. Purified 2',5,-PE proteins were incubated 199 with 2-5A substrate at 30°C for 1 h and the 2-5A cleavage products analyzed by HPLC 200 using a C18 column. All five wild type proteins cleaved 2-5A as observed by loss of 201 intact 2-5A and appearance of peaks for the different cleavage products (Fig. 3B-F). 202 Interestingly, MERS-NS4b (Fig. 3B) and MHV NS2 (Fig. 3C) degraded 2-5A to give two 203 prominent products whereas RVA VP3-CTD (Fig. 3D) and muAKAP7 (Fig. 3E) gave 204 four products upon extended degradation of 2-5A suggesting a difference in either

Asthana, A. et al.

205	mechanism or rate of cleavage by these proteins. On the other hand, 2-5A cleavage by
206	human PDE12 (Fig. 3F) results in the formation of two products corresponding to the
207	elution time of the standard ATP and 5'-AMP, as previously described (32). As
208	expected, the 2',5'-PE catalytically inactive mutant proteins containing a His-to-Arg or
209	His-to-Ala mutations in the conserved histidines did not cleave 2-5A (Fig. 3G-J). Human
210	PDE12 with Glu-to-Ala mutation at 351 amino acid residue also did not degrade 2-5A,
211	as described previously (34) (Fig. 3K). Importantly, these findings show a different mode
212	of 2-5A cleavage between 2',5'-PEs, members of the 2H-PE superfamily, and PDE12, a
213	member of the EEP family of phosphodiesterases.
214	To investigate the expanded substrate specificity of 2',5'-PEs, we tested possible
215	cleavage of various 2'-5' and 3'-5' linked oligoribonucleotides by HPLC. Purified 2',5'-PE
216	proteins (1 μ M) were incubated with either 2'-5'- or 3'-5'-linked pentaribonucleotide
217	substrates (10 μ M) at 30 $^{\circ}$ C for 1 h. Wild type MERS-NS4b, specifically degraded 2'-5'
218	p5'(rA) ₅ by >99% while 2'-5' p5'(rU) ₅ , p5'(C) ₅ or p5'(G) ₅ were not degraded (\leq 4%)
219	(Table S2). Catalytically inactive mutant MERS-NS4b ^{H182R} did not degrade any of the
220	tested substrates under similar conditions. Wild type MHV NS2 also specifically
221	degraded 2'-5' p5'(rA) ₅ >99% while 2'-5' p5'(rU) ₅ , p5'(C) ₅ or p5'(G) ₅ were not degraded
222	(\leq 7%) (Table S2). Mutant MHV NS2 ^{H126R} did not degrade any of the tested substrates.
223	These results suggest MERS-NS4b and MHV NS2 are remarkably specific in degrading
224	2'-5' linked oligoadenylate compared to the other substrates. We further tested RVA
225	VP3-CTD which degraded 2'-5' p5'(rA) ₅ >95%, p5'(rU) ₅ ~ 40%, p5'(C) ₅ ~90%, and
226	p5'(G) ₅ ~6% while mutant RVA VP3-CTD ^{H718A} did not degrade any of the tested
227	substrates (Table S2). Wild type muAKAP7 degraded 2'-5' p5'(rA) $_5$ >99%, p5'(rU) $_5$

Asthana, A. et al.

228	>95%, p5'(C) ₅ >95%, and p5'(G) ₅ >90% while mutant muAKAP7 ^{H93A;H185R} did not
229	degrade any of the tested substrates with the exception of 2'-5' p5'(G) $_{5}$ ~40% (Table
230	S2). To ensure that exclusive cleavage of 2',5'-oligoadenylates by MERS-NS4b was
231	not due to limiting amounts of enzyme, 10 μ M of different 2',5'-linked penta-
232	ribonucleotides were incubated with three-fold higher concentrations (3 $\mu\text{M})$ of MERS-
233	NS4b at 30°C for 1h. Wild type MERS-NS4b specifically degraded 2'-5' p5'(rA) $_5$ >99%
234	while 2'-5' p5'(rU) $_5$, p5'(C) $_5$ or p5'(G) $_5$ were not degraded (<6%) suggesting MERS-
235	NS4b enzymatic activity is specific for degradation of 2',5'-oligoadenylates (Table S3).
236	Because MERS NS4b and MHV NS2 cleaved 2'-5' p5'(rA) $_{\rm 5}$ but not other 2'-5'-linked
237	substrates, we further determined if this was due to lack of binding to the other
238	substrates. To test this possibility, 10 μM of 2'-5' p5'(rA)_5 was incubated with 0.2 μM of
239	MHV NS2 in the absence or presence of increasing concentrations of 2'-5' p5'(rU) $_{5}$ at
240	30°C for 10 min. The amounts of 2'-5' p5'(rA) $_{5}$ degraded by MHV NS2 in the presence
241	of 0, 3.1, 10, 12.5, 25, 50 and 100 μM was determined by HPLC analysis (Fig. S1).
242	Degradation of 2'-5' p5'(rA) $_5$ by MHV NS2 decreased as the amount of 2'-5' p5'(rU) $_5$ in
243	the reaction increased beyond 10 μ M (i.e. ratio >1:1) (Fig. S1). Our results suggests
244	that 2'-5' p5'(rU) $_{5}$ was able to bind MHV NS2 and competitively interfere with MHV NS2
245	ability to cleave 2'-5' p5'(rA) ₅ .

We next tested degradation activity of 2',5'-PEs against 3'-5' linked p5'(rA)₅, p5'(rU)₅
and p5'(C)₅. One μM of enzyme was incubated with 10 μM of the substrate at 30°C for 1
h. Wild type MERS-NS4b and its mutant MERS-NS4b^{H182R}, wild type MHV NS2 and its
mutant NS2^{H126R}, RVA VP3-CTD and its mutant RVA VP3-CTD^{H718A}, and wild type
muAKAP7 and its mutant muAKAP7^{H93A; H185R} (Table S2) did not degrade the 3'-5'

Asthana, A. et al.

251	linked substrates 3'-5' p5'(A) ₅ , 3'-5' p5'(U) ₅ , and 3'-5' p5'(C) ₅ . [We were unable to
252	obtain 3'-5' $p5'(G)_5$ because of repeated failures of its chemical synthesis and/or
253	purification, therefore this oligonucleotide could not be tested]. Our results suggest that
254	all of the 2',5'-PEs examined are highly specific for cleaving 2',5' linked
255	oligoribonucleotides. Among 2',5' linked substrates MERS-NS4b and MHV NS2, are
256	specific for cleaving 2'-5' oligoadenylate, whereas RVA VP3-CTD cleaved in order: 2'-5'
257	pA5>pC5>pU5>>pG5 and muAKAP7 cleaved all of 2',5' linked pentanucleotides with
258	similar efficacy.
259	Based on the differential enzymatic activity of these 2',5'-PEs in degrading different
260	types of 2',5'-linked phosphodiester substrates, we tested if they could degrade 2',3'-
261	cyclic-GMP-AMP (cGAMP). cGAMP is a cyclic-dinucleotide secondary messenger with
262	mixed phosphodiester linkages between 2'-OH of GMP to 5'-phosphate of AMP and 3'-
263	OH of AMP to 5'-phosphate of GMP , synthesized by cyclic GMP-AMP-synthase
264	(cGAS) in response to cytoplasmic dsDNA (35). cGAMP was incubated either with or
265	without wild type and mutant 2',5'-PEs at 30°C for 1h and analyzed by HPLC. Wild type
266	MERS-NS4b, MHV NS2, RVA VP3-CTD, and muAKAP7 did not degrade 2',3'-cGAMP
267	whereas they did degrade 2',5'- p_3A_3 (served as a positive control) under similar
268	conditions (Table S4). Catalytic mutants of 2',5'-PEs tested did not degrade 2',3'-
269	cGAMP or 2',5'- p_3A_3 under similar conditions. The results suggest that 2',5'-PEs are
270	capable of cleaving 2',5'-phosphodiester bonds in linear homo-ribonucleotides but not in
271	the cyclic-mixed phosphodiester linked 2',3'-cGAMP.

272

Asthana, A. et al.

273 **2',5'-PEs exhibit metal ion-independent phosphodiesterase activity.**

274 Metal ion dependency was evaluated by performing assays in either the presence of 275 EDTA or magnesium. In the presence of EDTA, without added magnesium, 1 µM of 276 MERS-NS4b (Fig. 4A) or MHV NS2 (Fig. 4B) degraded >90% of 2-5A in ~20 min 277 whereas 0.05 µM of RVA VP3 CTD (Fig. 4C) and 1µM of muAKAP7 (Fig. 4D) degraded 278 >90% of the 2-5A within 5 min. Relative rates of 2-5A degradation by RVA VP3-CTD >> 279 muAKAP7 > MHV NS2 = MERS-NS4b were observed. Based on the specific activities, 280 the ratio of fold activity of RVA VP3-CTD: muAKAP7: MERS-NS4b: MHV NS2 was 38.9: 2.9: 1: 1. It is noteworthy that many mammalian cell types have a total cellular Mg²⁺ 281 282 concentration in between 17 to 20 mM, of which only 5-22% may be free depending on 283 the cellular compartment. (36). We determined the specific activities of the 2',5'-PEs for 284 degrading 2-5A in the absence and presence of 10 mM MgCl₂ at 5 min (Fig. 4E). The 285 addition of Mg²⁺ ions decreased the specific activity of MERS-NS4b to ~0.6 fold and that 286 of muAKAP7 to ~0.8 fold. The activity of MHV NS2 and RVA VP3-CTD showed a negligible decrease to 0.97 fold and 0.99 fold in the presence of Mg²⁺ ions, respectively. 287 Our results suggest that the 2',5'-PEs activity of these proteins is independent of Mg²⁺ 288 289 ions and its presence either slightly decreases or has no effect on the activity of these 290 enzymes.

291

292 2',5'-PEs cleave 2',5'-linked oligoadenylate leaving products with cyclic 2',3' 293 phosphoryl termini.

Differences in the 2-5A cleavage products as determined by HPLC (Fig. 3) suggested
that viral and mammalian 2',5'-PEs cleave 2-5A via a different mechanism than human

Asthana, A. et al.

296	PDE12, which degrades 2-5A to produce ATP and AMP (32). Among 2',5'-PEs, MERS-
297	NS4b and MHV NS2 degraded 2-5A to give two cleavage products whereas RVA VP3-
298	CTD and muAKAP7 gave four cleavage products. Therefore we decided to determine
299	the precise cleavage sites in 2-5A by 2',5'-PEs. 2-5A was partially digested with MERS-
300	NS4b (Fig. 5) or RVA VP3-CTD (Fig. 6) followed by the collection of individual peak
301	fractions of cleavage products. Cleavage products were subsequently identified and
302	confirmed by HPLC analysis (comparing elution time with known standards),
303	identification by m/z ratio (LC/MS/MS analysis of collected peaks) or biochemical
304	analysis (by 5'-dephosphorylation) (Figs. 5A & 6A).
305	
306	Partial digestion of 2-5A by MERS-NS4b was confirmed by HPLC analysis of the
307	samples using a C18 column (Fig. 5B) and comparing it with the chromatogram of intact
308	2-5A (Fig. 3A). The partially digested 2-5A by MERS-NS4b was run on a Dionex
309	DNAPac ^R PA-100 column in an ammonium bicarbonate volatile buffer system as
310	described in Methods. Individual peaks were collected and processed for mass
311	spectrometry analysis. Individually collected peaks were also rerun on a C18 column to
312	confirm the purity and matched elution times of the collected peaks before performing
313	LC/MS/MS (Figs. 5C, D). Mass spectrometric analysis of the peaks revealed an m/z
314	ratio of 597.25 (Fig. 5H) and 570.4 (Fig. 5I). The m/z ratios of 597.25 and 570.4 were
315	compared to the masses of potential 2-5A degradation/intermediate products (Fig. 5G)
316	and were found to correspond to ApA and $p_3A>p$ (where ">p" represents a 2',3' cyclic
317	phosphate), respectively. Intact 2-5A gave an m/z ratio of 584 for the double charged
318	ion (Fig. 5J). Moreover, the collected peak of $p_3A > p$ (shown in Fig. 5D) was subjected to

Asthana, A. et al.

319	SAP mediated 5' dephosphorylation which results in the peak corresponding to A>p
320	(Fig. 5E, F). This experiment suggested that MERS-NS4b degrades 2-5A to produce a
321	5'-product with 2',3' cyclic phosphate terminus in the form of $p_3A>p$ and a 3'-product of
322	ApA. To test if $p_3A>p$ and ApA are end products of the reaction, we subjected 2-5A to
323	extended degradation by MERS-NS4b and monitored the area under the peak
324	corresponding to ApA at 0 h, 1 h, 4 h and 24 h (Fig. S2 A-D, I). After the ApA peak
325	appears (at 1h) its amount remained unchanged up to 24 h. Also, 2'-5' linked 5'pApA
326	incubated with MERS-NS4b did not result in any degradation (Fig. S2 E-H, I). These
327	results suggest that MERS-NS4b does not cleave di-adenylates into smaller products
328	irrespective of 5' mono-phosphorylation status under the given experimental conditions.
329	
330	With a similar approach, we designed an experiment to elucidate the cleavage products
331	and intermediates formed upon 2-5A degradation by RVA VP3-CTD (Fig. 6A). Because
332	RVA VP3-CTD has high specific activity against 2-5A (Fig. 4), 2-5A was incubated with
333	decreased protein concentrations and times of incubation to capture any possible
334	intermediates and degradation products of 2-5A (Fig. 6B, C). 2-5A cleaved by VP3-CTD
335	forms products which based on the elution times of the known standards and
336	compounds were identified as $p_3A>p$, $A>p$, ApA , adenosine and an unknown
337	intermediate (shown in grey color) (Fig. 6C). Based on potential degradation
338	intermediates we speculated the unknown intermediate to be $p_3ApA>p$. To test this
339	possibility, a part of the sample reaction with 2-5A cleavage products (obtained from the
340	sample used in Fig. 6C) was subsequently treated with SAP to remove 5'-
341	phosphorylation from cleavage products (if any) which would result in the formation of

Asthana, A. et al.

342 A>p and ApA>p from $p_3A>p$ and $p_3ApA>p$, respectively (Fig. 6E). The dephosphorylated 343 sample was analyzed by running it on a C18 column. After SAP treatment, the amount 344 of adenosine and ApA remained constant when compared before (Fig. 6C) and after 345 (Fig. 6D) dephosphorylation, as calculated by integrating the area under the peaks of 346 the HPLC chromatograms. However, the total area under the peak corresponding to 347 A>p increased suggesting A>p was formed as a result of dephosphorylation of $p_3A>p$ 348 (Fig. 6C, D). Importantly, a new peak (possibly ApA>p) appears which is formed by 349 dephosphorylation of an unknown intermediate (Fig. 6D, shown in grey color). The dephosphorylated samples were run on a Dionex DNAPac^R PA-100 column in an 350 351 ammonium bicarbonate volatile buffer system as described in the Methods. Individual 352 peak fractions were collected and processed for mass spectrometry analysis. Collected 353 peaks were rerun on a C18 column to confirm the purity and match the elution time of 354 the collected peak with that of A>p and 'dephosphorylated intermediate' (Fig. 6D) before 355 performing LC/MS/MS. Mass spectrometric analysis of the peaks revealed m/z ratios of 356 330 corresponding to A>p (Fig. 6F) and 659.1 which corresponds to that of ApA>p (Fig. 357 6G). This experiment suggests that trimer 2-5A (2', 5' p_3A_3) degradation by RVA VP3-358 CTD proceeds via formation of $p_3ApA>p$ and ApA intermediates. RVA VP3-CTD 359 degrades $p_3ApA>p$ to form $p_3A>p$ (5'-product) and A>p (3'-product) whereas di-360 adenylate (ApA) is further degraded to yield A>p (5'-product) and adenosine (3'-361 product). Complete degradation of p_3A_3 by RVA VP3-CTD results in the formation of 362 $p_3A>p$, A>p and adenosine as end products (Fig. 3D). Further, the preferred site of p_3A_3 363 cleavage by RVA VP3-CTD was investigated in a time-course experiment. RVA VP3-364 CTD (0.05 μ M) was incubated with p₃A₃ (200 μ M) substrate at 30°C and samples were

Asthana, A. et al.

365	collected at different time points. The substrate or product peaks at each time point
366	were analyzed by calculating the percent of the area under the peaks of the HPLC
367	chromatograms (Fig. S3) and tabulated (Fig. S4A). The analysis revealed that the
368	majority of p_3A_3 is cleaved by RVA VP3-CTD to produce $p_3ApA>p$ (5'-product) and
369	adenosine (3'-product). The intermediate species ($p_3ApA>p$) is subsequently cleaved to
370	produce $p_3A > p$ (5'-product) and $A > p$ (3'-product). A minor fraction of p_3A_3 is cleaved by
371	RVA VP3-CTD to produce $p_3A>p$ (5'-product) and ApA (3'-product). The di-adenylate
372	intermediate (ApA) is subsequently cleaved into A>p (5'-product) and adenosine (3'-
373	product) (Fig. S4B), which is apparent from incubations at a higher concentration of
374	RVA VP3-CTD (Fig. 3D). Moreover, the degradation pattern of the two di-adenylate
375	intermediates reveals that tri-phosphorylated intermediate ($p_3ApA>p$) is readily cleaved
376	by RVA VP3-CTD whereas ApA cleavage is slow suggesting 5'-tri-phosphorylated
377	molecules are preferred over non-phosphorylated substrates (Figs. S3, S4). In a
378	separate experiment, 10 μM of 2'-5' linked 5'p(A)_2 was incubated with 1 μM of VP3-CTD
379	at 30°C for 1 h. The results confirmed the formation of cleavage products
380	corresponding pA>p (5'-product) and adenosine (3'-product) (Fig. S5). Moreover, in
381	another time-course experiment muAKAP7 cleaved p_3A_3 to produce $p_3A>p$ (5'-product)
382	and ApA (3'-product) (Fig. S6). The ApA intermediate was further cleaved to form A>p
383	and adenosine. Interestingly, unlike RVA VP3-CTD, muAKAP7 mediated cleavage of
384	p_3A_3 does not form $p_3ApA>p$ intermediate.

385 Overall mechanisms and differences in degradation of 2-5A by representative EEP 386 (PDE12) and 2',5'-PEs family members are summarized in figure 7. Human PDE12 387 degrades trimer 2-5A into ATP and 2 (5'-AMP)s in the presence of Mg²⁺ ions, as has

Asthana, A. et al.

388	been reported (32). On the other hand, mammalian and viral 2',5'-PEs, act in a metal-
389	ion independent way, degrading 2-5A to form 5' products with 2',3' cyclic phosphates.
390	All 2',5'-PEs quickly cleave active anti-viral 2-5A into inactive molecules that is, the
391	products are not capable of activating RNase L because of a requirement for at least
392	three adenylyl residues (37). MERS-NS4b and MHV NS2 degrade trimer 2-5A to form
393	$p_3A>p$ and ApA. RVA VP3-CTD and muAKAP7 further cleave ApA to form A>p and
394	adenosine as products. In addition to the above-mentioned degradation intermediates
395	and products of 2-5A, RVA VP3-CTD also produced $p_3ApA>p$ as an intermediate,
396	suggesting it to be a 2',5'-specific endoribonucleolytic phosphodiesterase (Figs. 6 & 7).
397	
398	DISCUSSION
.399	
399 400	Cleavage specificity and mechanism of 2'.5'-PEs
400	Cleavage specificity and mechanism of 2',5'-PEs
	Cleavage specificity and mechanism of 2',5'-PEs The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester
400 401	
400 401 402	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester
400 401 402 403	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2
400 401 402 403 404	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2 and NS4b and, to a lesser extent, by VP3-CTD, whereas AKAP7 had similar activities
400 401 402 403 404 405	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2 and NS4b and, to a lesser extent, by VP3-CTD, whereas AKAP7 had similar activities against the different 2',5'-linked pentamers of A, U, C and G. Therefore, although
400 401 402 403 404 405 406	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2 and NS4b and, to a lesser extent, by VP3-CTD, whereas AKAP7 had similar activities against the different 2',5'-linked pentamers of A, U, C and G. Therefore, although AKAP7 and VP3-CTD are not the mostly closely related 2',5'-PEs, they can both cleave
400 401 402 403 404 405 406 407	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2 and NS4b and, to a lesser extent, by VP3-CTD, whereas AKAP7 had similar activities against the different 2',5'-linked pentamers of A, U, C and G. Therefore, although AKAP7 and VP3-CTD are not the mostly closely related 2',5'-PEs, they can both cleave 2',5'-oligoribonucleotides other than 2-5A (Fig. 2A and Table S2). Interestingly, OASs
400 401 402 403 404 405 406 407 408	The 2',5'-PEs studied here exclusively cleaved 2',5'- and not 3',5'-phosphodiester bonds. There was also a strong preference for cleavage of 2',5'-oligoadenylates by NS2 and NS4b and, to a lesser extent, by VP3-CTD, whereas AKAP7 had similar activities against the different 2',5'-linked pentamers of A, U, C and G. Therefore, although AKAP7 and VP3-CTD are not the mostly closely related 2',5'-PEs, they can both cleave 2',5'-oligoribonucleotides other than 2-5A (Fig. 2A and Table S2). Interestingly, OASs are 2'-nucleotidyl transferases that not only use ATP as substrates but can produce

Asthana, A. et al.

411	OAS can add other 2'-terminal ribo- and deoxy-nucleotide monophosphates to 2-5A
412	(38-41). However, which, if any, of these alternative 2-5A-like molecules can be cleaved
413	by 2',5'-PEs remains to be determined. The cGAMP, a cyclic dinucleotide that activates
414	STING, has one 2',5'-linkage and one 3',5'-linkage, but it is not cleaved by the 2',5'-PEs
415	examined here (Table S4). VP3 was phylogenetically distal and has the most distinct
416	mechanism of 2-5A cleavage compared to all of the tested 2',5'-PEs. It is also
417	interesting to note that the two coronavirus 2',5'-PEs (NS4b and NS2) are less closely
418	related than NS2 is to the host enzyme, AKAP7 (Fig. 2A & Table S1). Our results
419	suggest that the main, and perhaps only, function of these activities is to degrade 2-5A
420	thus preventing RNase L activation and viral escape, or in the case of AKAP7 reducing
421	cell and tissue damage from RNase L activity. These 2',5'-PEs are also metal ion
422	independent enzymes, as is RNase L (42).
423	

The viral and mammalian 2',5'-PEs produce cleavage products from trimer 2-5A (2',5'p₃A₃) with cyclic 2',3'-phosphoryl groups, and not 2',3'-OH termini. These conclusions
are based on analysis of 2-5A cleavage products by two types of HPLC columns
(Dionex and C18) and, importantly, by mass spectrometry. In contrast, our prior studies
based on more limited analysis of the 2-5A cleavage products by one type of HPLC
column (Dionex) misidentified these cleavage products of NS2, VP3-CTD, and AKAP7
as AMP and ATP (22, 25, 27).

431

432 Interestingly, mammalian and viral 2',5'-PEs have activities highly similar to an

433 invertebrate 2H-PE present in the oyster, Crassostrea gigas (43). The oyster enzyme

Asthana, A. et al.

434	has sequence similarity to AKAP7, is metal ion independent, cleaves 2',5'- but not 3',5'-
435	linked oligonucleotides, and leaves cyclic 2',3'-phosphate and 5'-OH termini on its
436	products. It also degraded tri-phosphorylated 2-5A oligomers with multi-fold efficiency
437	compared to the corresponding non-phosphorylated core 2-5A oligomers. Similarly, we
438	observed RVA VP3-CTD degrades 5'-triphosphorylated-di-adenylate with 2',3' cyclic
439	phosphoryl termini (p3ApA>p) preferentially compared to the non-phosphorylated di-
440	adenylate (ApA) core molecule (Figs. S3 & S4). However, the function and role of 2-5A
441	cleaving enzymes in invertebrates is still unknown.
442	
443	It is also unknown if the 2',3'-cyclic phosphates on 2-5A breakdown products generated
444	by 2',5'-PEs have cell signaling functions. However, small self RNAs with 2',3'-cyclic
445	phosphate termini (generated by RNase L) induced IFN- β expression through RIG-I,
446	MDA5, and MAVS (44). Additionally, RNase L-cleaved RNA with 2',3'-cyclic phosphates
447	stimulated the NLRP3 inflammasome leading to IL-1 β secretion (15). Also, during
448	Staphylococcus aureus infections RNase T2 cleaves ssRNA producing purine-2',3'-
449	cyclic phosphate terminated oligonucleotides sensed by TLR8 (45). The mammalian
450	enzyme USB1, another 2H-PE, also produces 2',3'-phosphoryl temini during
451	deadenylation of U6 snRNA, but it clearly differs from the 2',5'-PEs because it cleaves
452	3',5'-phosphodiester bonds (21).
453	
454	2-5A catabolism during the IFN induced cellular responses to viral and host
455	dsRNA.
456	

Asthana, A. et al.

457 The ability of viruses to evade or antagonize the IFN response contributes to viral 458 tropism and disease pathogenesis. Accordingly, viruses have evolved or acquired 459 diverse strategies to overcome inhibition by type I and type III IFNs, both of which 460 induce transcription of OAS genes (1, 2, 46). However, the precise cellular and 461 molecular mechanisms by which viruses impede tissue specific host defenses leading 462 to virus-induced pathology continue to be investigated. With regard to the OAS-RNase L 463 pathway, it is the balance between 2-5A anabolic (OAS) and catabolic (e.g. 2',5'-PEs 464 and PDE12) (20) activities that determine whether virus replication is blocked by RNase 465 L. For instance, RNase L fails to inhibit coronaviruses MHV and MERS-CoV, or 466 rotaviruses, unless there is an inactivating mutation of their 2-5A degrading enzymes 467 (NS2, NS4b, and VP3, respectively) (22, 24-26). In contrast, SARS-CoV-2, which lacks 468 a gene for a similar protein, is inhibited by RNase L (4). In this context, enzymes that 469 degrade 2-5A, such as PDE12, are drug targets in the hunt for broad spectrum antiviral 470 agents (32, 47).

471

The viral enzymes NS2, NS4b and VP3-CTD are antagonists of innate immunity that support virus replication by eliminating 2-5A and preventing, or reducing, activation of RNase L by 2-5A (20, 22, 24-26). In contrast, mammalian AKAP7 is a nuclear 2',5'-PE that does not affect viral replication, unless its nuclear localization signal peptide is deleted leading to cytoplasmic accumulation (27). A mutant AKAP7 deleted for its Nterminal nuclear localization signal peptide accumulates in the cytoplasm was able to rescue an NS2 mutant of MHV (22). While the function of the 2',5'-oligonucleotide

Asthana, A. et al.

479	cleaving activity of AKAP7 is still unresolved, the phylogenetic tree suggests that the
480	NS2 coronavirus proteins may have evolved from the AKAP7 catalytic domain (Fig. 2A).
481	

482 Enzymes that degrade 2-5A have significance beyond antiviral innate immunity	Self-
--	-------

483 dsRNA activates the OAS-RNase L pathway leading in some circumstances to

484 apoptosis (12,13). In one example, mutation or inhibition of the dsRNA editing enzyme,

485 ADAR1, leads to accumulation of self dsRNA activating OAS-RNase L leading to cell

486 death, and PKR, inhibiting protein synthesis initiation (16, 48). In another instance,

487 DNA methyltransferase inhibitors, e.g. 5-aza-cytidine, cause self-dsRNA accumulation

488 from repetitive DNA elements leading to OAS-RNase L activation and apoptosis (17,

489 49). Thus, 2-5A is a secondary messenger for cytotoxic and antiviral activities of either

490 non-self (viral) or self-dsRNA (host) whose levels must be tightly controlled to limit

491 cytotoxicity while restricting viral spread. Our findings provide a mechanistic

492 understanding of how 2',5'-PEs regulate 2-5A levels among coronaviruses MHV,

493 MERS-CoV, and group A rotaviruses and in mammalian cells through the activity of

494 AKAP7 (22, 24, 25, 27), with implication for both control of virus replication and cellular

responses to self-dsRNA. Furthermore, our study defines 2',5'-PEs as a new sub-group

496 within the 2H-PE superfamily that shares characteristic conserved sequence features of

the superfamily but with specific and distinct biochemical cleavage activities.

498 Knowledge derived from the study of these 2-5A degrading enzymes could lead to

499 future avenues of antiviral drug development.

500

...

501 MATERIAL AND METHODS

Asthana, A. et al.

502

503 **cDNA cloning and plasmids.**

- 504 Human PDE12 cDNA was PCR amplified (using DNASU cDNA clone HsCD00296464
- in vector pDONR221, GenBank: NM_177966.5) with forward primer 5'-
- 506 TTCAAgaattcATGTGGAGGCTCCCAGGCGC-3' (with an EcoRI restriction site) and the
- 507 reverse primer 5'-
- 508 TTCAAgtcgacTCATTTCCATTTTAAATCACATACAAGTGCTATGTGATC-3' (with a Sall
- 509 restriction site). PDE12^{E351A} pGEX 6P-1 mutant (34) plasmid was constructed by
- 510 MegaPrimer method (50) using mutagenic reverse primer 5'-
- 511 GCGCGGTCAACCgCCTGCAAACAG-3'. The amplified wild type and mutant PDE12
- 512 cDNAs were cloned into plasmid pGEX-6P-1 (GE Healthcare, USA) at the EcoRI and
- 513 Sall restriction site, sequenced and expressed in E. coli as glutathione S-transferase
- 514 (GST) fusion proteins. To subclone the VP3 C-terminal domain (CTD) cDNA of rotavirus
- 515 A strain RVA/Simian-tc/USA/RRV/1975/G3P (GenBank: EU636926.1) and its H718A
- 516 mutant, we used codon-optimized constructs for expression in Sf9 insect cells
- 517 (GenBank: KJ869109.1) (30) (gifts from Kristin Ogden, Vanderbilt University). The
- 518 cDNAs were PCR amplified and cloned into plasmid pMAL-C5X at the XmnI (blunt
- 519 cloned) and Ncol (sticky end) restriction site. Blunt end forward primer 5'-
- 520 TACGCTGACGACCCCAACTACTTCATCG-3' and reverse primer 5'-
- 521 TTCAAccatggTTATTACTCGGACATGTCGAACACGGTGTCG-3' with Ncol restriction
- 522 site were used for VP3-CTD. The wild type and H718A RVA VP3-CTD proteins were
- 523 expressed fused to maltose binding protein (MBP). Additional protein expression
- 524 plasmid constructs were previously described with sequences originating from MERS-

Asthana, A. et al.

525 CoV (MBP-NS4b and its mutant MBP-NS4b^{H182R}) (24); from MHV (MBP-MHV NS2 and 526 its mutant MBP-NS2^{H126R}) (22), and mouse AKAP7 and its mutant AKAP7^{H93A; H185R} (27). 527

528 **Protein expression and purification**

529 Proteins were expressed from pGEX-6P-1 or pMAL constructs in E. coli strain

530 BL21(DE3)/pLysS (Life Technologies, USA). Wild type and catalytically inactive

531 mutants of AKAP7 and PDE12 were expressed as GST-fusion proteins and purification

532 was performed by modification of a previous protocol (51). Single colonies were used to

533 inoculate primary cultures which were subsequently used to seed secondary cultures

grown to 0.6 OD (600 nm) in a shaking incubator at 37°C and 250 rpm. Cells were

535 induced with 0.2 mM IPTG, for 16 h at 22°C. Induced cell pellets were re-suspended in

536 buffer A [20 mM HEPES pH 7.5, 1 M KCl, 1 mM EDTA, 10% glycerol v/v, 5 mM DTT

and EDTA-free Pierce[™] protease inhibitor (Thermo Scientific, USA)]. Pelleted cells were

538 lysed by addition of 200 µg/ml lysozyme followed by sonication. Supernatants were

539 collected after centrifugation at 12,000x g, 40 min, 4°C in a Beckman JA-17 rotor.

540 Supernatants were added to Pierce[™] Glutathione Agarose (Thermo scientific, USA)

and incubated for 2 h at 4°C followed by washes with buffer A. Digestions to release the

542 GST tag were performed with PreScission Protease (Cytiva, USA) in 50 mM Tris-HCL

543 pH 7.5, 150 mM NaCl, 1 mM EDTA, and 1 mM DTT for 16 h at 4°C. Supernatants

544 containing untagged protein were concentrated using Centriprep centrifugal filter

545 devices (Millipore; molecular weight cutoff, 10 kDa) and loaded on superdex 75 column

546 on an AKTA pure 25L protein purification system (GE Healthcare, USA) in 20 mM

547 HEPES pH 7.5 150 mM NaCl, and 1 mM DTT. Wild type and mutant RVA VP3-CTD

Asthana, A. et al.

548 expressing bacterial culture growth and IPTG induction conditions were same as 549 described above, except that growth media additionally included 2% glucose. Harvested 550 bacterial cell pellets were suspended in Buffer B [20 mM Tris-HCl pH 7.4 with 200 mM 551 NaCl, 1mM EDTA, 10 mM β-mercaptoethanol, EDTA free protease inhibitor (Pierce™ 552 Protease inhibitor, Thermo Scientific, USA) and 10% glycerol] and lysed with lysozyme 553 followed by sonication. Supernatants were incubated with Amylose resin (NEB, USA), 554 washed three times with buffer followed by elution with 100 mM maltose. Proteins were 555 concentrated using Centriprep centrifugal filter devices (Millipore: molecular weight 556 cutoff, 10 kDa) and further purified using size exclusion chromatography (SEC) on an 557 AKTA pure 25L protein purification system (GE Healthcare, USA) in buffer C (20 mM 558 HEPES pH 7.5, 100 mM NaCl and 1 mM DTT). Wild type and catalytic mutants of 559 NS4b, and MHV NS2 were purified as described previously (22, 24). In addition to 560 inactive mutants, purified MBP protein was used as control in experiments with MBP 561 fusion proteins. Protein concentrations were determined using Bio-Rad protein assay 562 reagent (Bio-Rad, USA). All proteins were stored in Buffer C supplemented with 10% 563 glycerol in -80°C.

564

565 Synthesis and purification of 2-5A oligomers and other oligoribonucleotide

566 substrates

567 2-5A or $p_35'A(2'p5'A)_2$ (2',5'- p_3A_3) was synthesized from ATP by using histidine-tagged 568 porcine-OAS1 (52). The OAS was immobilized and activated with poly(I):poly(C)-

agarose (53). Briefly, poly(I):poly(C)-agarose beads were washed with buffer D [10 mM

570 HEPES pH 7.5, 1.5 mM Mg(CH₃COO)₂.4H₂O, 50 mM KCl, 20% glycerol, and 7 mM β -

Asthana, A. et al.

571	mercaptoethanol]. Ten ml of beads were incubated with 10 mg of purified OAS protein
572	for 2 h at 25°C with intermittent vortexing. Beads were washed three times with buffer D
573	by centrifugation at 3000 g at 4°C for 30 min. Beads were suspended in the reaction
574	mixtures containing 20 mM HEPES pH 7.5, 20 mM Mg(CH ₃ COO) ₂ .4H ₂ O, 20 mM KCl, 1
575	mM EDTA and 10 mM ATP. The reaction mixtures were incubated in a shaking
576	incubator set at 37°C, 120 rpm for 18 h. The supernatant was collected by centrifugation
577	at 3000 g at 4°C for 30 min. The supernatant was heated at 95°C for 5 min and again
578	centrifuged at 18,000 g for 15 min at 4°C to remove the precipitate. To isolate individual
579	2-5A oligomers, the supernatant containing crude, unfrationated 2-5A oligomers were
580	run on an HPLC (1260 Infinity II Agilent technologies) equipped with a preparative
581	Dionex column (BioLC ^R DNAPac ^R PA-100, 22 x 250 mm, Dionex, USA). Samples were
582	injected and elution performed at a flow rate of 3 ml/min in a stepwise gradient of 10-
583	400 mM (0-120 min), 400-800 mM (121-125 min) and 10 mM (126-160 min) of
584	NH_4HCO_3 buffer (pH 7.8). Fractions were collected, lyophilized and suspended in
585	nuclease-free water.

586

587 RNA oligoribonucleotides (other than 2',5'-p₃A₃) with 2'-5' or 3'-5' phosphodiester

588 linkages were commercially purchased. Oligonucleotide substrates 5'-

589 pA2'p5'A2'p5'A2'p5'A2'p5'A -3', 5'-pU2'p5'U2'p5'U2'p5'U2'p5'U -3', 5'-

590 pG2'p5'G2'p5'G2'p5'G2'p5'G -3', 5'-pA3'p5'A3'p5'A3'p5'A3'p5'A -3', 5'-

591 pU3'p5'U3'p5'U3'p5'U3'p5'U -3' were purchased from Integrated DNA Technologies

592 (IDT, USA) while 5'-pC2'p5'C2'p5'C2'p5'C2'p5'C -3', 5'-pC3'p5'C3'p5'C3'p5'C3'p5'C -3'

593 and 5'-pA2'p5'A -3' were purchased from ChemGenes Corporation (Wilmington, USA).

Asthana, A. et al.

594	Penta-ribonucleotides substrates are shown as $p5'(rN)_5$, where N represents A, U, G, or
595	C nucleotide. A2'p5'A standard was prepared by incubating 5'pA2'p5'A with shrimp
596	alkaline phosphatase (ThermoFisher, USA) as per manufacturer's protocol. 2',3'-cyclic-
597	GMP-AMP (cGAMP), ATP, AMP and adenosine were obtained from Sigma Aldrich,
598	USA.
599	
600	Phosphodiesterase activity assays
601	Ten μ M of the substrates (with either 2'-5' or 3'-5' phosphodiester linkage) were

602 incubated with 1 µM of enzyme. Final reactions were performed in 20 mM HEPES 603 buffer pH 7.4, 1 mM DTT and 10 mM MgCl₂ by incubating at 30°C for 1 h (or for the 604 time indicated in the text). Where indicated, reactions were performed in the absence of 605 MgCl₂ with 2 mM EDTA added. Reactions were stopped by heating at 95°C for 5 min. 606 Samples were centrifuged at 18,000 g for 15 min at 4 °C. Supernatants were collected 607 and analyzed by HPLC. 2',3'-cGAMP degradation assays were performed and analyzed 608 using the same conditions as described above. In all experiments, substrates incubated 609 under similar conditions in the absence of enzyme served as control.

610

611 HPLC analysis and identification of products

612 The substrates and cleavage products were analyzed on a 1260 Infinity II Agilent

613 technologies HPLC equipped with an Infinitylab Poroshell 120 C18 analytical column

614 (Agilent technologies, 4.6 x 150 mm, 4µm). Eluent A was 50 mM ammonium phosphate

buffer pH 6.8 and eluent B was 50% methanol in water. Five µl of processed samples

616 were injected on the C18 column, at a flow rate of 1 ml/min and eluted with a linear

Asthana, A. et al.

gradient (0-40%) of eluent B over a period of 20 min, then 3 min 40% Eluent B, followed
by equilibration to initial condition (100% Eluent A). The HPLC column was maintained
at 40°C. Spectra were recorded at 256 nm. The products were identified either by
comparing the elution time of known standards or by mass-spectrometry analysis.
Alternatively, to test expanded substrate specificity, 10 μ I of processed samples were
injected on a Dionex DNAPac ^R PA-100 analytical column at a flow rate of 1 ml/min and
eluted with a linear gradient of 10-800 mM of NH_4HCO_3 buffer (pH 7.8) over a period of
90 min, followed by 30 min equilibration to initial condition. Open Lab CDS software was
used to analyze and calculate area under the peaks in HPLC spectra.
Shrimp Alkaline phosphatase (SAP) mediated phosphorylation analysis
Purified substrates and cleavage product mixtures were dephosphorylated by
incubating with SAP (ThermoFisher, USA) at 37°C for 1 h according to the
manufacturer's protocol. Samples were prepared for subsequent analysis as described
above.
Sample preparation for mass spectrometry
Desired peak fractions (including cleavage products of $2',5'-p_3A_3$) were collected by
running samples on a Dionex DNAPac ^R PA-100 analytical column as described above.
Collected peaks were subjected to acetone precipitation, supernatants containing
cleavage products (from HPLC peak) were collected and lyophilized. Lyophilized
samples were suspended in 1 mM NH_4HCO_3 buffer (pH 7.8) and used for mass
spectrometry analysis.

Asthana, A. et al.

640

641 Mass spectrometry analysis of cleavage products

642 Prepared samples were subjected to mass spectrometry analysis. The LC/MS/MS 643 analysis was carried out using a triple quadrupole tandem mass spectrometer (TSQ-644 Quantiva, Thermo Scientific, USA) equipped with an electrospray ionization (ESI) 645 interface. The mass spectrometer was coupled to the outlet of HPLC system that 646 consisted of an UHPLC system (Vanquish, Thermos Fisher Scientific, USA), including 647 an auto sampler with refrigerated sample compartment and inline vacuum degasser. 648 The Xcalibur software was used for data processing. The ESI mass spectrometric 649 detection was performed in both the negative and positive ionizations, with ions spray 650 voltage at 2.5kV, sheath gas at 35 Arb and Aux gas at 20 Arb. The ion transfer tube 651 and vaporizer temperatures were set at 350°C and 250°C, respectively. The qualitative 652 analysis was performed using full scan at the range from 200 to 1250 (m/z). Five µl 653 extracted samples were injected on the C18 column (Gemini, 3 µm, 2 x 150 mm, 654 Phenomenex, CA) with the flow rate of 0.3 ml/min at 45°C. Mobile phases were A 655 (water containing 10 mM ammonium acetate and 20 mM ammonium hydroxide) and B 656 (methanol containing 10 mM ammonium acetate and 20 mM ammonium hydroxide). 657 Mobile phase B at 0% was used at 0-2 min, a linear gradient was used starting from 0% 658 B to 100% B at 2-12 min, kept at 100% at 12-26 min, then from 100% B to 0% B at 26-659 27 min and kept at 0% B for 8 min. The peaks shown in full scans were processed to 660 locate and identify the cleavage products of the 2',5'-p₃A₃ substrate using the Xcalibur 661 software v4.1. Standard adenosine, AMP, ATP and adenosine-2',3'-cyclic 662 monophosphate sodium salt were run for reference.

Asthana, A. et al.

663

664 Bioinformatic Analysis

665 The PDE domain sequences from different 2'.5'-PEs were used for creating a multiple 666 sequence alignment using MAFFT version 7 (54) employing iterative refinement method 667 E-INS-I (https://mafft.cbrc.jp/alignment/server/). The MAFFT sequence alignment result 668 was downloaded in clustal format and visualized using Jalview 2.11.1.3 software. The 669 sequence alignment was further processed on MAFFT server to calculate the 670 phylogenetic tree using neighbor joining method and JTT substitution model and then 671 visualized tree using Archaeopteryx is software. The resultant fasta format output of 672 MAFFT multiple sequence alignment was used to calculate the percentage of amino 673 acid identity and similarity by Sequence Identity and Similarity (SIAS) tool with default 674 parameters (http://imed.med.ucm.es/Tools/sias.html).The name, accession number and amino acid (aa) region of the aligned sequences are MHV NS2 (UniProtKB/Swiss-675 676 Prot: P19738.1, aa 41-135), Human coronavirus (HCoV) OC43 NS2 (GenBank: 677 AAT84352.1, aa 43-138), Human enteric coronavirus (HECoV) NS2 (GenBank: 678 ACJ35484.1, aa 39-140), Equine coronavirus (ECoV) NS2 (GenBank: ABP87988.1, aa 679 42-140), Middle East respiratory syndrome coronavirus (MERS-CoV) NS4b (GenBank: 680 AFS88939.1, aa 87-191), Rat AKAP7 δ/γ (NCBI RefSeq: NP 001001801.1, aa 121-681 233), Mouse AKAP7 isoform-1 (NCBI RefSeq: NP_061217.3, aa 82-194), Human 682 AKAP7 y (NCBI RefSeq: NP 057461.2, aa 100-233), Human rotavirus group A (RVA) 683 WA-VP3 (GenBank: AFR77808.1, aa 707-806), Simian rotavirus group A (RVA) SA11-684 N5 (GenBank: AFK09591.1, aa 707-808), Human rotavirus group B (RVB) Bang117 685 (GenBank: ADF57896.1, aa 655-750), Bat coronavirus (BtCoV) SC2013 NS4b

Asthana, A. et al.

- 686 (GenBank: AHY61340.1, aa 96-195) and Bat coronavirus (BtCoV) HKU5 NS4b (NCBI
- 687 RefSeq: YP_001039965.1, aa 91-192).
- 688

689 AVAILABILITY

- 690 Multiple sequence alignment software is available
- 691 (https://mafft.cbrc.jp/alignment/server/). Alignment and phylogenetic tree construction
- tool is downloadable (<u>https://www.jalview.org/</u>). Sequence Identity and Similarity (SIAS)
- 693 tool with default parameters is available (<u>http://imed.med.ucm.es/Tools/sias.html</u>).
- 694

695 ACCESSION NUMBERS

- 696 The name and accession number of the aligned sequences are MHV NS2
- 697 (UniProtKB/Swiss-Prot: P19738.1), HCoV OC43 NS2 (GenBank: AAT84352.1), HECoV
- 698 NS2 (GenBank: ACJ35484.1), ECoV NS2 (GenBank: ABP87988.1), MERS-CoV NS4b
- 699 (GenBank: AFS88939.1), Rat AKAP7 δ/γ (NCBI RefSeq: NP_001001801.1), Mouse
- 700 AKAP7 isoform-1 (NCBI RefSeq: NP_061217.3), Human AKAP7 γ (NCBI RefSeq:
- 701 NP_057461.2), Human RVA WA VP3 (GenBank: AFR77808.1), Simian RVA SA11 N5
- 702 (GenBank: AFK09591.1), Human RVB Bang117 (GenBank: ADF57896.1), BtCoV
- 703 SC2013 NS4b (GenBank: AHY61340.1) and BtCoV HKU5 NS4b (NCBI RefSeq:
- 704 YP_001039965.1).

705

706 ACKNOWLEDGEMENTS

- 707 We thank Dr. Renliang Zhang of Mass Spectrometry Core, Lerner Research Institute,
- 708 Cleveland Clinic for performing LC/MS/MS and to Kristin Ogden (Vanderbilt University)

Asthana, A. et al.

709	for the rotavirus VP3-CTD cDNAs, and we thank Babal Kant Jha	(Cleveland Clinic),

- 710 Harpreet Kaur (Cleveland Clinic), Nikhil Bharambe (Case Western Reserve University)
- and Stephen A. Goldstein (University of Utah) for discussions.
- 712

713 FUNDING

- 714 We wish to acknowledge support by the National Institute of Allergy and Infectious
- 715 Diseases of the National Institutes of Health under Awards [R01Al104887 to S.R.W.
- 716 and R.H.S., AI140442 to S.R.W., and R01AI135922 to R.H.S.]
- 717

718 CONFLICT OF INTEREST

719 R.H.S. is a consultant to Inception Therapeutics, Inc., S.R.W. is on the scientific

advisory board of Immunome, Inc and Ocugen, Inc.

721

722 FIGURE LEGENDS

- 723
- Figure 1. Interplay between cellular responses to viral and host dsRNA, the OAS-

725 **RNase L pathway, and antagonism by 2-5A degrading enzymes.** (A) OASs(1-3) are

- 726 IFN induced dsRNA sensors, once activated they synthesize the antiviral substance
- 727 2',5'-oligoadenylates (2-5A) from ATP. 2-5A binds inactive monomeric RNase L
- inducing active RNase L dimers, which in turn degrade viral and host single-stranded
- 729 RNAs. The balance between 2-5A accumulation by OAS enzymes and its degradation
- by host and viral enzymes determines cell and virus fate and inflammatory responses.
- (B) Domain structure of viral and cellular 2',5'-PEs and human PDE12 (an
- r32 endonuclease/exonuclease/phosphatase (EEP) family member). Features of full length

Asthana, A. et al.

733	MERS-CoV NS4b, MHV NS2, RVA SA11 VP3 and <i>M. musculus</i> AKAP7 proteins
734	including a nuclear localization sequence (NLS) and catalytic 2',5'-PE domains are
735	compared, modified from ref. (24). Position of conserved histidines within the catalytic
736	domain of 2',5'-PEs are shown. PKA-RII- α -BD, a binding domain for regulatory subunit
737	(RII) of cAMP-dependent protein kinase A (27), guanylyltransferase (Gtase), and
738	methyltransferase (Mtase) domains are also shown (25, 29). The mitochondrial-matrix
739	targeting peptide (MTP) and the catalytic EEP domain of PDE12 is shown (55).
740	Domains shown are not drawn to scale.
741	
742	Figure 2. Phylogenetic relationship and sequence alignment of 2',5'-PEs. (A)
743	Phylogenetic tree based on amino acids from catalytic domains of 2',5'-PEs is
744	shown. The numbers represents branch length. (B) Sequence alignment of amino acids
745	spanning the catalytic domain of 2',5'-PEs using MAFFT multiple sequence alignment
746	program is shown. Catalytic motifs [H- Φ -(S/T)- Φ] are indicated above the boxes, where
747	Φ represents a hydrophobic residue. Numbers represent the start and end of the amino
748	acid sequences used for sequence alignment. Aligned residues are color-coded for
749	conservation according to the CLUSTAL X scheme. Hydrophobic, blue; positive charge,
750	red; negative charge, magenta; polar, green; glycine, orange; proline, yellow; aromatic,
751	cyan; unconserved, white. Hu, human; Mu, mouse; HE, human enteric; E, equine; Bt,
752	bat; CoV, coronavirus; RVA, rotavirus group A; RVB, rotavirus group B.
753	
754	Figure 3. Specific cleavage of trimer 2-5A (2',5'- p_3A_3) by viral and cellular 2',5'-
755	PEs. HPLC analysis of (A) intact 2',5'- p_3A_3 , followed by its cleavage with either viral

Asthana, A. et al.

756	2',5'-PEs (B) MERS-NS4b, (C) MHV NS2, (D) RVA VP3-CTD or a host 2',5'-PE (E)
757	muAKAP7 or (F) human PDE12. Purified 2',5'- p_3A_3 (200 μ M) was incubated with 1 μ M of
758	indicated proteins at 30°C for 1 h. HPLC analysis of catalytically inactive mutants of
759	these enzymes incubated with 2',5'- p_3A_3 under similar conditions is shown for (G)
760	MERS-NS4b ^{H182R} (H) MHV NS2 ^{H126R} (I) RVA VP3-CTD ^{H718A} (J) muAKAP7 ^{H93A; H185R} and
761	(K) human PDE12 ^{E351A} . Experiments performed at least three times produced a similar
762	2',5'- p_3A_3 degradation pattern for each 2',5'-PEs. Arrows indicate elution times of the
763	standards ATP, AMP, and adenosine (Ado). Peaks shown in grey were determined from
764	experiments done in figures 5 and 6.
765	
766	Figure 4. Influence of Mg ²⁺ ions on degradation of 2',5'-p ₃ A ₃ by 2',5'-PEs. Purified
767	2',5'- p_3A_3 was incubated with indicated 2',5'-PEs in time-course experiments. Data was
768	obtained by incubating 2',5'-p $_3A_3$ (200 μM) with (A) MERS-NS4b (1 μM), (B) MHV NS2 (1
769	$\mu M),$ (C) RVA VP3-CTD (0.05 $\mu M)$ and (D) muAKAP7 (1 $\mu M)$ at 30°C. Samples were
770	collected at 1, 2, 5, 10, 20 and 30 min and reactions were stopped. The percent of
771	uncleaved 2',5'- p_3A_3 remaining at indicated times were determined by calculating the
772	area under the peaks on the HPLC chromatograms. (E) The table shows the specific
773	activity of 2',5'-PEs in the absence and presence of 10 mM $MgCl_2$. Activity is expressed
774	as the amount of products released from the substrate in nMol per min per mg of the
775	protein at 30° C during 5 min reaction time. Experiments were performed in triplicate (n =
776	3) and the standard error of mean was calculated.
777	

777

Asthana, A. et al.

Figure 5. MERS-NS4b cleaves 2',5'-p₃A₃ and catalyzes the formation of 2',3' cyclic

phosphate products. (A) Schematic illustration of the strategy to identify the cleavage

mechanism and degradation products of 2° , 5° - p_3A_3 by MERS-NS4b. (B) Chromatogram

of partially degraded 2',5'- p_3A_3 and cleavage products formed by MERS-NS4b. 200 μ M

- of 2',5'- p_3A_3 was incubated with 1 μ M of MERS-NS4b at 30°C for 10 min. (C) HPLC
- chromatogram of the collected peak (corresponds to ApA). (D) HPLC chromatogram of

the collected peak (corresponds to $p_3A>p$). (E) HPLC analysis of the dephosphorylated

product (A>p) of peak collected in figure 5D (p₃A>p). (F) Schematic illustration showing

shrimp alkaline phosphatase (SAP) mediated $p_3A>p$ dephosphorylation at 5' end forms

787 A>p. (G) Expected masses of potential $2^{\circ}, 5^{\circ}-p_{3}A_{3}$ degradation products containing $3^{\circ}OH$,

788 2'p or 2',3'>p groups. Box shows masses of actual cleavage products identified by mass

789 spectrometry. Mass spectrometry analysis showing m/z of (H) ApA \rightarrow peak fraction

collected in C, (I) $p_3A > p \rightarrow peak$ collected in D and (J) intact 2',5'- p_3A_3 . m/z is the mass-

charge ratio. Peaks shown in grey were identified in the subsequent experiments.

792

Figure 6. 2',5'-p₃A₃ cleavage by RVA VP3-CTD proceeds via formation of p₃ApA>p

and ApA intermediates. (A) Schematic illustration of the strategy to identify the

reavage mechanism, intermediates and end products of 2',5'-p₃A₃ cleavage by RVA

796 VP3-CTD. (B) Chromatogram of intact p_3A_3 . (C) HPLC chromatogram of cleavage

797 products formed by degradation of 200 μM 2',5'-p₃A₃ incubated with 0.05 μM of RVA

798 VP3-CTD for 20 min at 30°C. Peaks identified based on elution times of known

standards are marked. (D) HPLC analysis of the dephosphorylated products from the

800 reaction in figure 6C. Shrimp alkaline phosphatase (SAP) treatment dephosphorylate 5'-

Asthana, A. et al.

801	phosphates. The peaks indicated were collected and identified by LC/MS/MS analysis.
802	(E) Schematic illustration showing dephosphorylation of potential intermediates at 5'
803	end using SAP. Mass spectrometry analysis showing m/z of (F) A>p and (G) ApA>p.
804	m/z is the mass-charge ratio. Peaks shown in grey were identified in the subsequent
805	experiments.
806	
807	Figure 7. Mechanism of 2'-5'- p_3A_3 degradation by 2',5'-PEs (a subfamily of 2H-PEs
808	superfamily) and EEP (endonuclease/exonuclease/phosphatase) family. MERS-
809	CoV NS4b, MHV-CoV NS2, RVA VP3, and mammalian mouse AKAP7 from the 2',5'-PE
810	subfamily cleave 2',5'- p_3A_3 and leaves 2',3' >p groups on the 5'-products. While human
811	PDE12, an EEP family member degrades 2',5'- p_3A_3 to yield ATP and AMP.
812	
813	SUPPLEMENTARY FIGURES AND TABLES
813 814	SUPPLEMENTARY FIGURES AND TABLES Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'-
814	Figure S1. 2',5'-p(A) $_5$ degradation by MHV NS2 decreases in the presence of 2',5'-
814 815	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- $p(U)_5$. Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in
814 815 816	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min.
814 815 816 817	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min. Samples were processed and analyzed by HPLC. 2',5'-p(A) ₅ incubated under similar
814 815 816 817 818	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min. Samples were processed and analyzed by HPLC. 2',5'-p(A) ₅ incubated under similar conditions in the absence of MHV-NS2 and 2',5'-p(U) ₅ served as non-degraded control.
814 815 816 817 818 819	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min. Samples were processed and analyzed by HPLC. 2',5'-p(A) ₅ incubated under similar conditions in the absence of MHV-NS2 and 2',5'-p(U) ₅ served as non-degraded control. Experiments were performed three times (n=3) and bars represent the standard error of
814 815 816 817 818 819 820	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min. Samples were processed and analyzed by HPLC. 2',5'-p(A) ₅ incubated under similar conditions in the absence of MHV-NS2 and 2',5'-p(U) ₅ served as non-degraded control. Experiments were performed three times (n=3) and bars represent the standard error of mean. Statistical significance was calculated using unpaired t test (n=3; *, P value <
814 815 816 817 818 819 820 821	Figure S1. 2',5'-p(A) ₅ degradation by MHV NS2 decreases in the presence of 2',5'- p(U) ₅ . Substrate 2',5'-p(A) ₅ was incubated with 0.2 mM of MHV-NS2 wild type protein in the absence or presence of indicated concentration of 2',5'-p(U) ₅ at 30°C for 10 min. Samples were processed and analyzed by HPLC. 2',5'-p(A) ₅ incubated under similar conditions in the absence of MHV-NS2 and 2',5'-p(U) ₅ served as non-degraded control. Experiments were performed three times (n=3) and bars represent the standard error of mean. Statistical significance was calculated using unpaired t test (n=3; *, P value < 0.05; **, P < 0.005;***, P < 0.001; ns, not significant) in GraphPad Prism (9.0.0)

Asthana, A. et al.

Figure S2. MERS-NS4b degrades $2',5'-p_3A_3$ but not 2',5' linked ApA or pApA.

Substrate 2',5'- p_3A_3 (A) was degraded in the presence of NS4b into $p_3A>p$ and ApA (B).

826 Panels B, C, and D showed no appreciable decrease in amounts of ApA (area under

the peak) after incubation for 1, 4 and 24 h, respectively. Panels E, F, G and H shows

828 HPLC chromatograms of substrate pApA in the presence for NS4b at 0, 1, 4 and 24 h.

829 (I) The table shows the amount of ApA or pApA degraded by NS4b as a function of

830 time.

831

Figure S3. Time-course of 2',5'- p_3A_3 cleavage by RVA VP3-CTD. Purified 2',5'- p_3A_3 (200 µM) was incubated with RVA VP3-CTD (0.05 µM) at 30°C. Samples were collected at (A) 0 min, (B) 2 min, (C) 5 min, (D) 10 min, and (E) 30 min and analyzed by HPLC. The percent of substrate or products at indicated times were determined by calculating the area under the peaks on the HPLC chromatograms. Right hand side shows major and minor reactions proceeding at the indicated time points deduced from HPLC chromatogram analysis.

839

Figure S4. Mechanism of 2',5'-p₃A₃ cleavage by RVA VP3-CTD. (A) The percentage
of the substrate or the products at indicated times were determined by calculating the
area under the peaks on the HPLC chromatograms obtained in experiment from figure
S3. (B) Summary of major and minor reactions involved in cleavage of 2',5'-p₃A₃ by
VP3-CTD. The minor reaction cleavage of ApA to A>p and Ado is inferred from

Asthana, A. et al.

845 incubations performed at a 20-fold higher concentration of RVA VP3-CTD, 1 mM (Fig.846 3D).

847

- 848 Figure S5. RVA VP3-CTD degrades 2',5' linked di-adenylate. (A) Substrate 2',5'-
- pApA (A) was incubated with 1 mM of either (B) wild type RVA VP3-CTD or its mutant
- 850 (C) RVA VP3 CTDH^{718A} at 30°C for 1 h. Samples were processed and analyzed by
- 851 HPLC. Baseline buffer signal was subtracted from the samples.

852

Figure S6. Time-course of 2',5'-p₃A₃ cleavage by muAKAP7. Purified 2',5'-p₃A₃ (200

 μ M) was incubated with muAKAP7 (1 μ M) at 30°C. Samples were collected at (A) 0

min, (B) 2 min, (C) 10 min, (D) 30 min and (E) 60 min and analyzed by HPLC. The

856 peaks were identified by comparing the elution time of known standards. The percent of

- substrate or products at indicated times were determined by calculating the area under
- 858 the peaks on the HPLC chromatograms. (F) Schematics showing cleavage of 2',5'-p₃A₃

by muAKAP7. Reaction intermediate is shown in grey color.

860

861 Table S1. Catalytic domain sequence identity and similarity analysis of viral and

862 cellular 2',5'-PEs. Percent amino acid identity and similarity matrix is based on

alignment in figure 2B. 2',5'-PEs from mammals or mammalian viruses were used for

- alignment. Values are calculated using Sequence Identity and Similarity (SIAS) tool.
- 865 Matrix values show percent identity (above diagonal) and similarity (below diagonal)

Asthana, A. et al.

866	between the corresponding pair of the proteins. Intragroup identity and similarity values
867	are shaded in grey.

868

869 Table S2. MERS-NS4b, MHV NS2, RVA VP3-CTD and muAKAP7 mediated

870 degradation of 5'-phosphorylated, 2'-5' or 3'-5' linked penta-ribonucleotide

871 substrates. Ten μM of the indicated substrate was incubated with 1 μM of wild type or

872 mutant 2',5'-PE for 1 h at 30°C. Percent substrate degradation was calculated by

873 measuring the area under the peaks in the HPLC chromatograms. Results were

874 reproduced in at least two independent experiments.

875

Table S3. MERS-NS4b mediated degradation of 5'-phosphorylated 2'-5' or 3'-5'

877 **linked penta-ribonucleotide substrates.** Ten µM of the indicated substrate was

incubated with 3 µM of wild type or mutant MERS-NS4b for 1 h at 30°C. Percent

substrate degradation was calculated by measuring the area under the peaks in the

880 HPLC chromatograms. Results were reproduced in two independent experiments.

881

Table S4. 2',5'-PEs mediated degradation of 2',3'-cGAMP and 2',5'- p_3A_3 . Ten μ M of the indicated substrate was incubated with 1 μ M of wild type or mutant 2',5'-PEs for 1 h at 30°C. Substrate without enzyme incubated under similar condition were used as undegraded control. Percent substrate degradation was calculated by measuring the area under the peaks in the HPLC chromatograms. Results were reproduced in two independent experiments.

Asthana, A. et al.

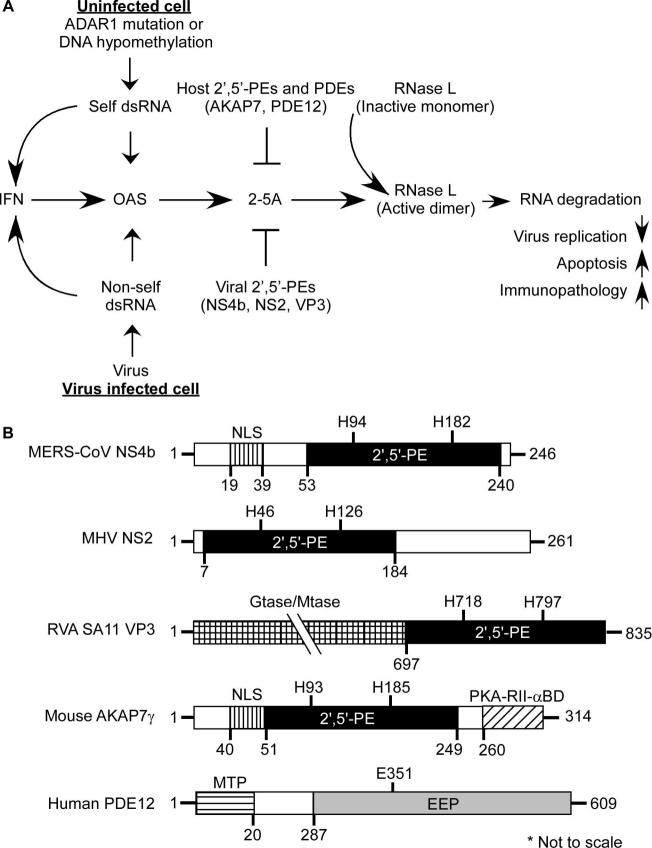
888

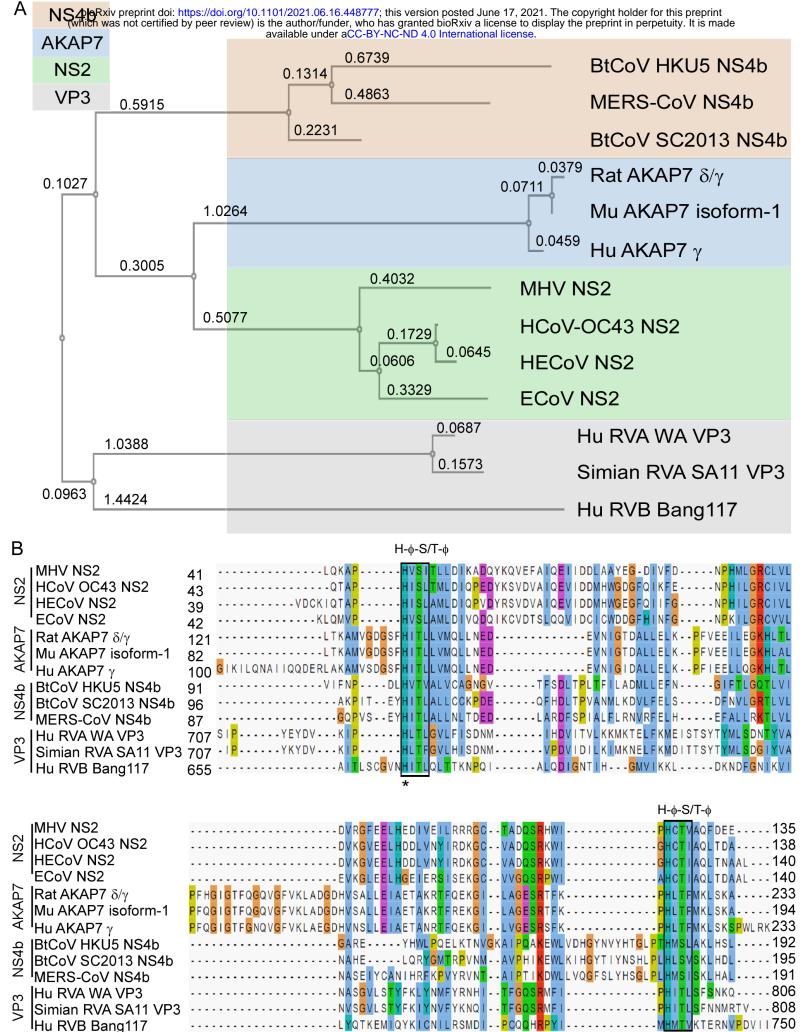
Asthana, A. et al.

890 **REFERENCES**

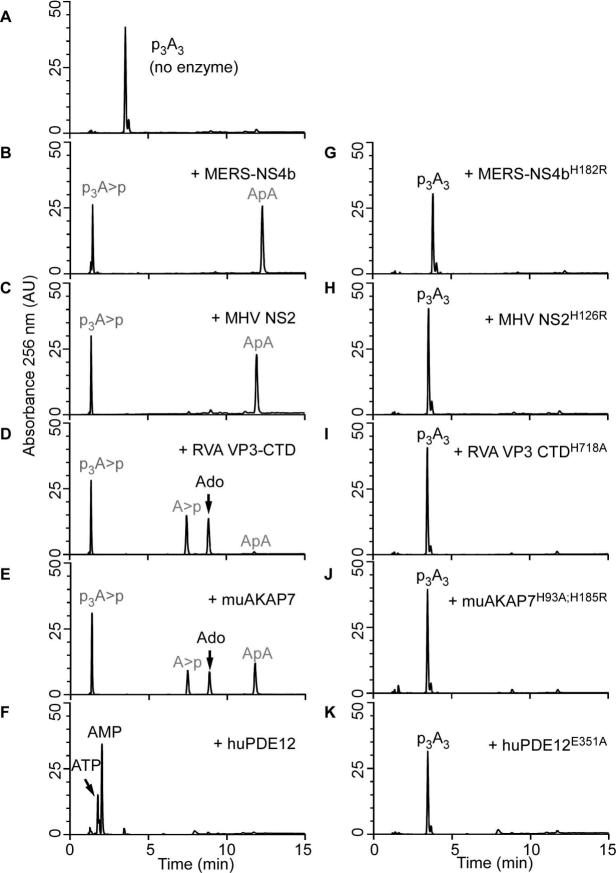
- Borden EC, Sen GC, Uze G, Silverman RH, Ransohoff RM, Foster GR, Stark
 GR. 2007. Interferons at age 50: past, current and future impact on biomedicine.
 Nat Rev Drug Discov 6:975-90.
- 895 2. Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev 14:778-809,
 896 table of contents.
- 3. Weiss SR. 2020. Forty years with coronaviruses. J Exp Med 217.
- Li Y, Renner DM, Comar CE, Whelan JN, Reyes HM, Cardenas-Diaz FL, Truitt
 R, Tan LH, Dong B, Alysandratos KD, Huang J, Palmer JN, Adappa ND,
 Kohanski MA, Kotton DN, Silverman RH, Yang W, Morrisey E, Cohen NA, Weiss
 SR. 2020. SARS-CoV-2 induces double-stranded RNA-mediated innate immune
 responses in respiratory epithelial derived cells and cardiomyocytes. Proc Natl
 Acad Sci U S A (in press) DOI: 10.1073/pnas.2022643118.
- 904 5. Der SD, Zhou A, Williams BR, Silverman RH. 1998. Identification of genes
 905 differentially regulated by interferon alpha, beta, or gamma using oligonucleotide
 906 arrays. Proc Natl Acad Sci U S A 95:15623-8.
- 907 6. Hovanessian AG, Brown RE, Kerr IM. 1977. Synthesis of low molecular weight
 908 inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature
 909 268:537-40.
- 910 7. Kerr IM, Brown RE. 1978. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis
 911 synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad
 912 Sci U S A 75:256-60.
- 8. Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R. 2011. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res 31:41-7.
- 916 9. Kakuta S, Shibata S, Iwakura Y. 2002. Genomic structure of the mouse 2',5'-917 oligoadenylate synthetase gene family. J Interferon Cytokine Res 22:981-93.
- 10. Li Y, Dong B, Wei Z, Silverman RH, Weiss SR. 2019. Activation of RNase L in
 Egyptian Rousette Bat-Derived RoNi/7 Cells Is Dependent Primarily on OAS3
 and Independent of MAVS Signaling. mBio 10.
- 921 11. Clemens MJ, Williams BR. 1978. Inhibition of cell-free protein synthesis by
 922 pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell
 923 extracts. Cell 13:565-72.
- 12. Zhou A, Hassel BA, Silverman RH. 1993. Expression cloning of 2-5A-dependent
 RNAase: a uniquely regulated mediator of interferon action. Cell 72:753-65.
- 926 13. Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF,
 927 Youle RJ. 1997. A study of the interferon antiviral mechanism: apoptosis
 928 activation by the 2-5A system. J Exp Med 186:967-72.
- 14. Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B,
 Fairchild R, Colmenares C, Silverman RH. 1997. Interferon action and apoptosis
 are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J
 16:6355-63.

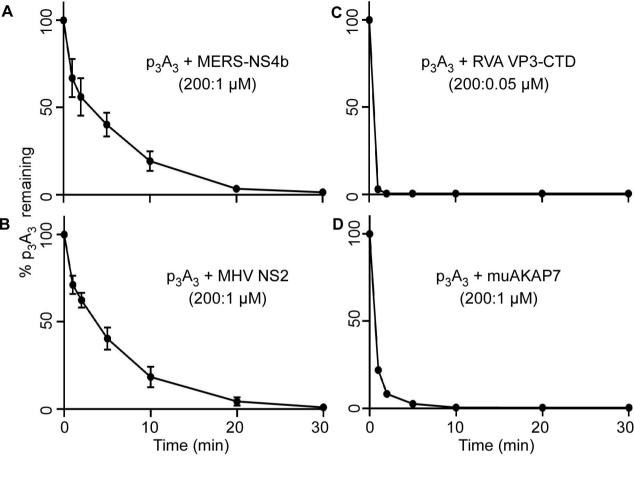
Asthana, A. et al.

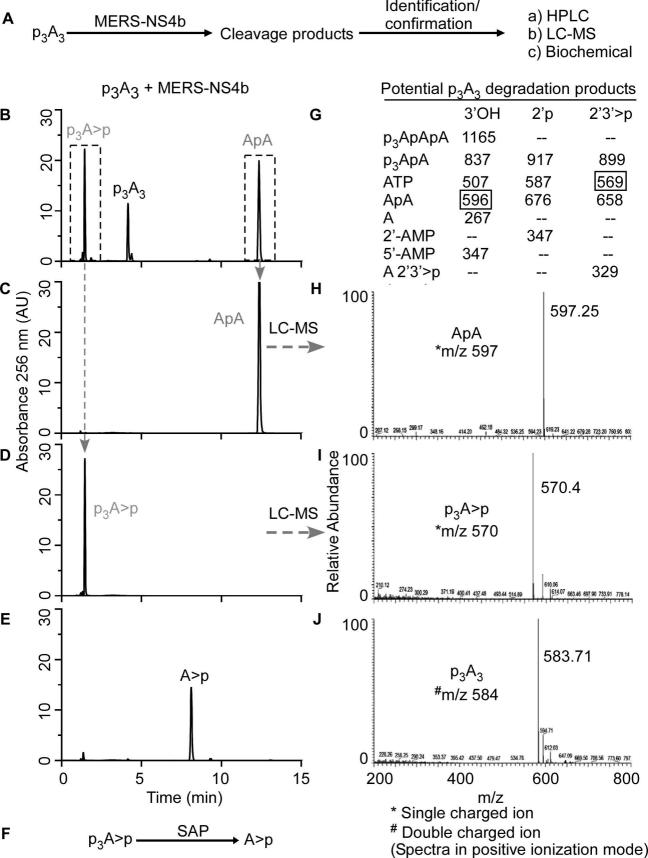

- 933 15. Chakrabarti A, Banerjee S, Franchi L, Loo YM, Gale M, Jr., Nunez G, Silverman
 934 RH. 2015. RNase L activates the NLRP3 inflammasome during viral infections.
 935 Cell Host Microbe 17:466-77.
- 16. Li Y, Banerjee S, Goldstein SA, Dong B, Gaughan C, Rath S, Donovan J,
 Korennykh A, Silverman RH, Weiss SR. 2017. Ribonuclease L mediates the celllethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a
 human cell line. Elife 6.
- Banerjee S, Gusho E, Gaughan C, Dong B, Gu X, Holvey-Bates E, Talukdar M,
 Li Y, Weiss SR, Sicheri F, Saunthararajah Y, Stark GR, Silverman RH. 2019.
 OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNAdemethylating drug. Proc Natl Acad Sci U S A 116:5071-5076.
- Mehdipour P, Marhon SA, Ettayebi I, Chakravarthy A, Hosseini A, Wang Y, de
 Castro FA, Loo Yau H, Ishak C, Abelson S, O'Brien CA, De Carvalho DD. 2020.
 Epigenetic therapy induces transcription of inverted SINEs and ADAR1
 dependency. Nature 588:169-173.
- 948 19. Mazumder R, Iyer LM, Vasudevan S, Aravind L. 2002. Detection of novel
 949 members, structure-function analysis and evolutionary classification of the 2H
 950 phosphoesterase superfamily. Nucleic Acids Res 30:5229-43.
- 951 20. Silverman RH, Weiss SR. 2014. Viral phosphodiesterases that antagonize
 952 double-stranded RNA signaling to RNase L by degrading 2-5A. J Interferon
 953 Cytokine Res 34:455-63.
- 954 21. Nomura Y, Roston D, Montemayor EJ, Cui Q, Butcher SE. 2018. Structural and
 955 mechanistic basis for preferential deadenylation of U6 snRNA by Usb1. Nucleic
 956 Acids Res 46:11488-11501.
- 22. Zhao L, Jha BK, Wu A, Elliott R, Ziebuhr J, Gorbalenya AE, Silverman RH, Weiss
 SR. 2012. Antagonism of the interferon-induced OAS-RNase L pathway by
 murine coronavirus ns2 protein is required for virus replication and liver
 pathology. Cell Host Microbe 11:607-16.
- 961 23. Goldstein SA, Thornbrough JM, Zhang R, Jha BK, Li Y, Elliott R, Quiroz-Figueroa
 962 K, Chen AI, Silverman RH, Weiss SR. 2017. Lineage A Betacoronavirus NS2
 963 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain
 964 Are Phosphodiesterases That Antagonize Activation of RNase L. J Virol 91.
- 965 24. Thornbrough JM, Jha BK, Yount B, Goldstein SA, Li Y, Elliott R, Sims AC, Baric
 966 RS, Silverman RH, Weiss SR. 2016. Middle East Respiratory Syndrome
 967 Coronavirus NS4b Protein Inhibits Host RNase L Activation. mBio 7:e00258.
- 25. Zhang R, Jha BK, Ogden KM, Dong B, Zhao L, Elliott R, Patton JT, Silverman
 26. RH, Weiss SR. 2013. Homologous 2',5'-phosphodiesterases from disparate RNA
 27. viruses antagonize antiviral innate immunity. Proc Natl Acad Sci U S A
 27. 110:13114-9.
- 972 26. Song Y, Feng N, Sanchez-Tacuba L, Yasukawa LL, Ren L, Silverman RH, Ding
 973 S, Greenberg HB. 2020. Reverse Genetics Reveals a Role of Rotavirus VP3
 974 Phosphodiesterase Activity in Inhibiting RNase L Signaling and Contributing to
 975 Intestinal Viral Replication In Vivo. J Virol 94.
- 976 27. Gusho E, Zhang R, Jha BK, Thornbrough JM, Dong B, Gaughan C, Elliott R,
 977 Weiss SR, Silverman RH. 2014. Murine AKAP7 has a 2',5'-phosphodiesterase

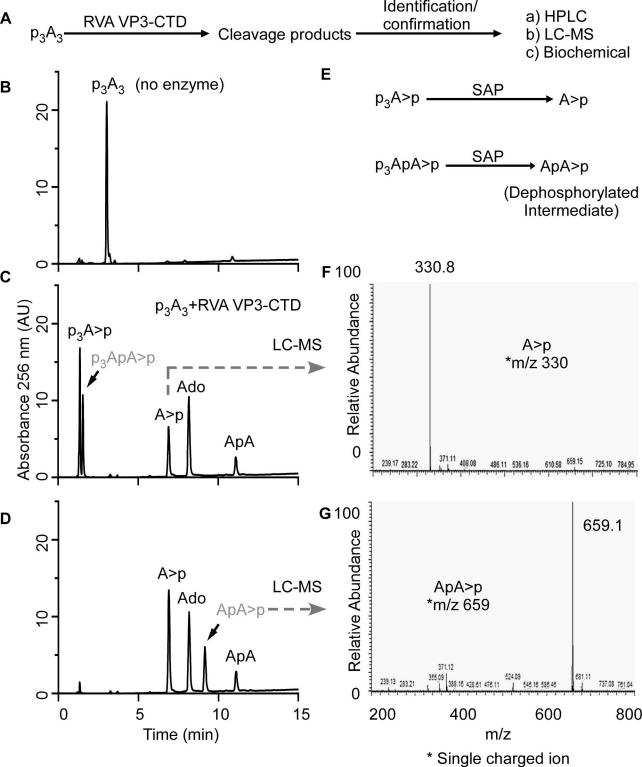

Asthana, A. et al.

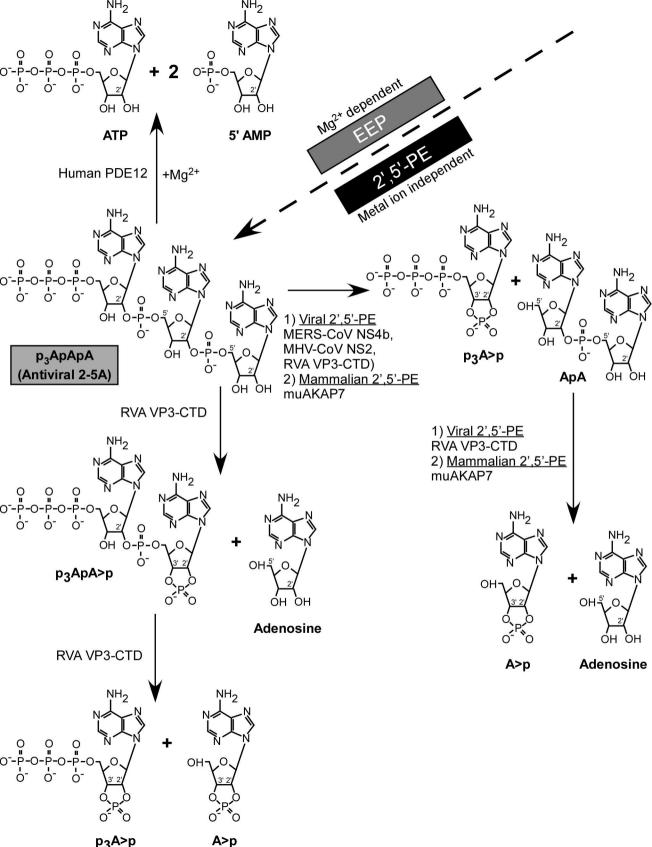
978		domain that can complement an inactive murine coronavirus ns2 gene. mBio
979		5:e01312-14.
980	28.	Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-
981		Aparicio MT, Garcia-Sastre A, Perlman S, Enjuanes L, Sola I. 2018. MERS-CoV
982		4b protein interferes with the NF-kappaB-dependent innate immune response
983		during infection. PLoS Pathog 14:e1006838.
984	29.	Chen D, Luongo CL, Nibert ML, Patton JT. 1999. Rotavirus open cores catalyze
985		5'-capping and methylation of exogenous RNA: evidence that VP3 is a
986		methyltransferase. Virology 265:120-30.
987	30.	Ogden KM, Snyder MJ, Dennis AF, Patton JT. 2014. Predicted structure and
988		domain organization of rotavirus capping enzyme and innate immune antagonist
989		VP3. J Virol 88:9072-85.
990	31.	Kindler E, Trojnar E, Heckel G, Otto PH, Johne R. 2013. Analysis of rotavirus
991		species diversity and evolution including the newly determined full-length
992		genome sequences of rotavirus F and G. Infect Genet Evol 14:58-67.
993	32.	Kubota K, Nakahara K, Ohtsuka T, Yoshida S, Kawaguchi J, Fujita Y, Ozeki Y,
994	•	Hara A, Yoshimura C, Furukawa H, Haruyama H, Ichikawa K, Yamashita M,
995		Matsuoka T, Iijima Y. 2004. Identification of 2'-phosphodiesterase, which plays a
996		role in the 2-5A system regulated by interferon. J Biol Chem 279:37832-41.
997	33.	Poulsen JB, Andersen KR, Kjaer KH, Vestergaard AL, Justesen J, Martensen
998		PM. 2012. Characterization of human phosphodiesterase 12 and identification of
999		a novel 2'-5' oligoadenylate nuclease - The ectonucleotide
1000		pyrophosphatase/phosphodiesterase 1. Biochimie 94:1098-107.
1001	34.	Rorbach J, Nicholls TJ, Minczuk M. 2011. PDE12 removes mitochondrial RNA
1002	•	poly(A) tails and controls translation in human mitochondria. Nucleic Acids Res
1003		39:7750-63.
1004	35.	Hopfner KP, Hornung V. 2020. Molecular mechanisms and cellular functions of
1005		cGAS-STING signalling. Nat Rev Mol Cell Biol 21:501-521.
1006	36.	Romani AM. 2011. Cellular magnesium homeostasis. Arch Biochem Biophys
1007		512:1-23.
1008	37.	Dong B, Xu L, Zhou A, Hassel BA, Lee X, Torrence PF, Silverman RH. 1994.
1009		Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J
1010		Biol Chem 269:14153-8.
1011	38.	Kondratova AA, Cheon H, Dong B, Holvey-Bates EG, Hasipek M, Taran I,
1012		Gaughan C, Jha BK, Silverman RH, Stark GR. 2020. Suppressing PARylation by
1013		2',5'-oligoadenylate synthetase 1 inhibits DNA damage-induced cell death.
1014		EMBO J 39:e101573.
1015	39.	Ferbus D, Justesen J, Besancon F, Thang MN. 1981. The 2'5' oligoadenylate
1016		synthetase has a multifunctional 2'5' nucleotidyl-transferase activity. Biochem
1017		Biophys Res Commun 100:847-56.
1018	40.	Justesen J, Hartmann R, Kjeldgaard NO. 2000. Gene structure and function of
1019		the 2'-5'-oligoadenylate synthetase family. Cell Mol Life Sci 57:1593-612.
1020	41.	Cayley PJ, Kerr IM. 1982. Synthesis, characterisation and biological significance
1021		of (2'-5')oligoadenylate derivatives of NAD+, ADP-ribose and
1022		adenosine(5')tetraphospho(5')adenosine. Eur J Biochem 122:601-8.


Asthana, A. et al.


1023	42.	Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ. 2014.
1024		Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in
1025		host and viral RNAs. Nucleic Acids Res 42:5202-16.
1026	43.	Lopp A, Reintamm T, Kuusksalu A, Olspert A, Kelve M. 2019. Identification of a
1027		novel member of 2H phosphoesterases, 2',5'-oligoadenylate degrading
1028		ribonuclease from the oyster Crassostrea gigas. Biochimie 156:181-195.
1029	44.	Malathi K, Dong B, Gale M, Jr., Silverman RH. 2007. Small self-RNA generated
1030		by RNase L amplifies antiviral innate immunity. Nature 448:816-9.
1031	45.	Greulich W, Wagner M, Gaidt MM, Stafford C, Cheng Y, Linder A, Carell T,
1032		Hornung V. 2019. TLR8 Is a Sensor of RNase T2 Degradation Products. Cell
1033		179:1264-1275 e13.
1034	46.	Garcia-Sastre A. 2017. Ten Strategies of Interferon Evasion by Viruses. Cell
1035		Host Microbe 22:176-184.
1036	47.	Wood ER, Bledsoe R, Chai J, Daka P, Deng H, Ding Y, Harris-Gurley S, Kryn
1037		LH, Nartey E, Nichols J, Nolte RT, Prabhu N, Rise C, Sheahan T, Shotwell JB,
1038		Smith D, Tai V, Taylor JD, Tomberlin G, Wang L, Wisely B, You S, Xia B,
1039		Dickson H. 2015. The Role of Phosphodiesterase 12 (PDE12) as a Negative
1040		Regulator of the Innate Immune Response and the Discovery of Antiviral
1041		Inhibitors. J Biol Chem 290:19681-96.
1042	48.	Chung H, Calis JJA, Wu X, Sun T, Yu Y, Sarbanes SL, Dao Thi VL, Shilvock AR,
1043	-	Hoffmann HH, Rosenberg BR, Rice CM. 2018. Human ADAR1 Prevents
1044		Endogenous RNA from Triggering Translational Shutdown. Cell 172:811-824
1045		e14.
1046	49.	Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA, Sen
1047		GC, Komarova EA, Gudkov AV. 2013. p53 cooperates with DNA methylation and
1048		a suicidal interferon response to maintain epigenetic silencing of repeats and
1049		noncoding RNAs. Proc Natl Acad Sci U S A 110:E89-98.
1050	50.	Tyagi R, Lai R, Duggleby RG. 2004. A new approach to 'megaprimer'
1051		polymerase chain reaction mutagenesis without an intermediate gel purification
1052		step. BMC Biotechnol 4:2.
1053	51.	Estrella MA, Du J, Korennykh A. 2018. Crystal Structure of Human Nocturnin
1054	• • •	Catalytic Domain. Sci Rep 8:16294.
1055	52.	Hartmann R, Justesen J, Sarkar SN, Sen GC, Yee VC. 2003. Crystal structure of
1056	-	the 2'-specific and double-stranded RNA-activated interferon-induced antiviral
1057		protein 2'-5'-oligoadenylate synthetase. Mol Cell 12:1173-85.
1058	53.	Rusch L, Dong B, Silverman RH. 2001. Monitoring activation of ribonuclease L
1059		by 2',5'-oligoadenylates using purified recombinant enzyme and intact malignant
1060		glioma cells. Methods Enzymol 342:10-20.
1061	54.	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software
1062		version 7: improvements in performance and usability. Mol Biol Evol 30:772-80.
1063	55.	Poulsen JB, Andersen KR, Kjaer KH, Durand F, Faou P, Vestergaard AL, Talbo
1064	50.	GH, Hoogenraad N, Brodersen DE, Justesen J, Martensen PM. 2011. Human 2'-
1065		phosphodiesterase localizes to the mitochondrial matrix with a putative function
1066		in mitochondrial RNA turnover. Nucleic Acids Res 39:3754-70.
1067		


..




-		

Specific activity (nMol-min ⁻¹ -mg ⁻¹)							
Protein	-	+ Mg ²⁺	Specific activity ratio -/+ Mg ²⁺				
MERS-NS4b	1707 ±112	1027 ±123	1.66 ±0.226				
MHV NS2	1702 ±105	1666 ±123	1.02 ±0.098				
RVA VP3-CTD	66339 ±10	65694 ±318	1.00 ±0.004				
muAKAP7	4869 ±18	3919 ±11	1.24 ±0.005				

(Spectra in positive ionization mode)

p₃A>p