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Abstract  24 

The idea of colour opponency maintains that colour vision arises through the comparison of two 25 

chromatic mechanisms, red versus green (RG) and yellow versus blue (YB). The four unique hues, 26 

red, green, blue, and yellow, are assumed to appear at the null points of these the two chromatic 27 

systems. However, whether unique hues have a distinct signature that can be reliably discerned in 28 

neural activity is still an open question. Here we hypothesise that, if unique hues represent a tractable 29 

cortical state, they should elicit more robust activity compared to non-unique hues. We use a 30 

spatiotemporal decoding approach to reconstruct an activation space for a set of unique and 31 

intermediate hues across a range of luminance values. We show that electroencephalographic (EEG) 32 

responses carry robust information about isoluminant unique hues within a 100-300 ms window from 33 

stimulus onset. Decoding is possible in both passive and active viewing tasks, but is compromised 34 

when concurrent high luminance contrast is added to the colour signals.  The efficiency of hue 35 

decoding is not entirely predicted by their mutual distance in a nominally uniform perceptual colour 36 

space. Instead, the encoding space shows pivotal non-uniformities which suggest that anisotropies in 37 

neurometric hue-spaces are likely to represent perceptual unique hues. Furthermore, the neural code 38 

for hue temporally coincides with the neural code for luminance contrast, thus explaining why 39 

potential neural correlates of unique hues have remained so elusive until now.   40 

 41 

Keywords: unique hues, electroencephalography, decoding, neural mechanisms, colour perception 42 
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Introduction 44 

The idea of colour opponency maintains that colour vision arises through the comparison of two 45 

chromatic mechanisms, red versus green (RG) and blue versus yellow (BY). The four unique hues,  46 

red, green, blue, and yellow, are assumed to appear at the null points of these the two chromatic 47 

systems (Hering, 1920; Jameson and Hurvich, 1964; De Valois and De Valois, 1993).  Colour vision 48 

starts in the retina, where light is absorbed in receptors (long-, medium, and short-wavelength 49 

sensitive cone receptors – L, M, S) and small bistratified ganglion cells that receive S-(M+L) cone 50 

input have been postulated to be the retinal origin of the BY channel, while midget ganglion cells that 51 

take the differences between the L and M cone output were believed to be the retinal origin of the RG 52 

channel (Lee et al., 2010). However, it has now been confirmed that the chromatic tuning of 53 

behaviourally characterised opponent channels differs from these early cone-opponent mechanisms, 54 

hence another transformation of chromatic signals must  take place between the Lateral Geniculate 55 

Nucleus (LGN) and the primary or extrastriate visual cortex (De Valois and De Valois, 1993; 56 

Wuerger et al., 2005).  57 

 58 

While some neuroimaging studies have attempted to identify a neural basis for unique hues, their 59 

results remain controversial. Stoughton and Conway (2008) reported neuronal clusters which were 60 

preferentially tuned to unique hues in the posterior inferior temporal (PIT) cortex of macaques. 61 

However, their findings have been challenged on the grounds that the study was not fully controlled 62 

for low-level differences in neuronal tuning, which could provide a more parsimonious explanation 63 

for their results (Conway and Stoughton, 2009; Mollon, 2009; Bohon et al., 2016). Similarly, Forder 64 

et al. (Forder et al., 2017a) reported that event-related potentials (ERPs) for unique hues show 65 

decreased latencies compared to non-unique hues. But the reported difference in peak latencies could, 66 

once again, have stemmed from differential activation of low-level, cone-opponent processes, to 67 

which ERPs are particularly sensitive (Rabin et al., 1994; Knoblauch et al., 1998). Thus, the neural 68 

basis of these cortical hue-opponent chromatic systems, and consequently, the unique hues, still 69 

remains an open problem. 70 
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 71 

One of the major reasons for the failure to address this issue has been the fact that neural activity is 72 

rich in coding possibilities which complicate our understanding of the relationship between external 73 

stimuli and the evoked response (Johnson, 2000; Jazayeri and Afraz, 2017). This is particularly true if 74 

potential low-level confounds can lead to a stronger, overlapping signal. This seems to be the case for 75 

unique hues, whose encoding is bound to overlap with, and be influenced by, the encoding of 76 

luminance contrast (see, e.g., Nunez et al., 2017). Ritchie et al. (2019) suggest that an ideal way to 77 

utilise neural decoding is to reconstruct an activation space from multivariate neural data and make 78 

psychological inferences by assessing whether such activation spaces correspond to psychological 79 

constructs. Recent studies have begun to apply this approach to challenges in colour neuroscience 80 

such as identifying the neural representations that underlie colour geometries (Rosenthal et al., 2021). 81 

 82 

We hypothesise that, if there is indeed a distinct and discernible neural signature for unique hues, it 83 

should be reflected in the structure of the neurometric hue-representational space described by EEG 84 

signals. We used a decoding paradigm to test this hypothesis in two stages. First, we demonstrate that 85 

under isoluminant conditions, hue information can indeed be extracted from EEG signals, and that 86 

crucially, the encoding for unique hues is more robust than non-unique hues. To establish that our 87 

predictions generalise beyond a single decoding context (stimulus or task-wise), we test our decoding 88 

prediction using both active and passive viewing tasks. Second, we show that the structure of the 89 

neurometric space which encodes hue is distorted in the local neighbourhood of unique hues – 90 

suggesting a correspondence between low neural variability and unique hue percepts. Taken together, 91 

our findings suggest that the neural basis of perceptual unique hues is likely to be a set of stable fixed-92 

points of a spatiotemporal population code for colour representations in the cortex. 93 

 94 

 95 
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 96 

Methods 97 

Participants  98 

In Experiment 1, twenty participants (16 females, 4 males) completed the study, ranging in age from 99 

18-38 y.o. a. (mean age 21 y.o.a). In Experiment 2, 16 participants (all female) completed the study, 100 

ranging in age 19 – 32 years old (mean age 22 years). All participants reported normal or corrected-101 

to-normal visual acuity, In Experiment 1, their colour vision was verified using the Trivector 102 

Cambridge Colour Test (Regan et al., 1994). In Experiment 2, we relied on the City University Colour 103 

Vision Test (Fletcher, 1975). Participants gave written informed consent and were reimbursed for 104 

their effort and time. The study was approved by the ethics committee of the School of Psychology, 105 

University of Aberdeen, and was in accordance with the Declaration of Helsinki. 106 

 107 

Stimuli and Procedure 108 

The experiments were programmed using the CRS Toolbox and Color Toolbox (CRS, UK) for 109 

MATLAB (Mathworks, USA). In Experiment 1, stimuli were rendered on a 21-inch Viewsonic 110 

P227F CRT Monitor which was placed 70 cm away from the participant. The monitor was controlled 111 

through a Visage system (CRS, UK) and calibrated using ColorCAL2 (CRS, UK). Colours were 112 

generated on the basis of measurements taken with a SpectroCAL (CRS, UK). Participants gave their 113 

responses using a Cedrus R530 response box (San Pedro, USA). In Experiment 2, colours were 114 

presented on a Display ++ (CRS, UK) device. Responses were recorded using a CT-6 button box 115 

(CRS, UK). 116 

Different sets of colours were used in the two experiments. In Experiment 1, stimulus colours were 117 

selected from a normative dataset (Wuerger and Xiao, 2015) (see Supplementary Figure S3A). The 118 

hue angles for unique red (UR) and unique green (UG) stimuli corresponded to mean values in the 119 

dataset – in the perceptually uniform CIE 1976 UCS space (Schanda, 2016), hue angles for the UR 120 
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and UG stimuli were 14.4º and 133.4º respectively. Orange and turquoise stimuli were chosen such 121 

that orange (hue angle 41.5º) was the intermediate hue between UR and unique yellow, and turquoise 122 

(hue angle 185.1º) was the intermediate between UG and unique blue. All four stimuli were equally 123 

saturated in the CIE 1976 UCS plane. Three stimulus luminance levels were used: nominal iso-124 

luminance (24 cd/m2), 45% Weber contrast (34.8 cd/m2) and 90% Weber contrast (45.6 cd/m2). In 125 

Experiement 2, stimuli consisted of participants’ subjective settings for two unique hues (yellow and 126 

green) and two intermediate hues (orange and turquoise), and hues situated 10° to the left and right of 127 

the subjective settings (in CIELCh colour space). Thus, for each observer, we effectively had four 128 

clusters of colours corresponding to the hues orange, yellow, green, and turquoise, with each cluster 129 

consisting of the observer setting for that hue, along with two flanking colours ±10° from the setting 130 

(e.g., unique yellow, a yellow 10° counter-clockwise and a yellow 10° clockwise). All colours were 131 

nominally isoluminant with the background (CIE 1931 xyY coordinates: 0.3127, 0.3290, 22.93 132 

𝑐𝑑/𝑚2).  133 

 134 

EEG data was recorded during a shape discrimination task. The purpose of the task was to engage 135 

participants’ attention in a stimulus dimension orthogonal to colour - i.e., shape. The stimuli consisted 136 

of uniformly coloured shapes shown against a grey background. Each trial began with the appearance 137 

of a fixation cross, followed by a 2-degree circular stimulus (passive viewing event) which changed 138 

shape (shape change event) into either a diamond or a square (Figure 1). The passive viewing event 139 

occurred 700±200 ms after the appearance of the fixation cross, and the shape change event occurred 140 

800-1500 ms after the passive viewing event. 141 
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 142 

Figure 1: Experimental design. Each trial started with the appearance of a fixation cross, which was followed 143 

by the presentation of a circular uniformly-coloured stimulus at a random offset of 700±200 ms. At a random 144 

time-point 800-1500 ms after stimulus onset, the shape of the stimulus changed from circular to either square or 145 

diamond. Participants were instructed to discriminate the final shape via a button press as quickly and as 146 

accurately as they could. Each trial ended 2 seconds after stimulus onset.  Two events were defined during each 147 

trial: a passive viewing event defined by the appearance of the stimulus, and a shape change event defined by 148 

the change in stimulus shape.  149 

 150 

Participants identified the final shape of the stimulus using the left or the right button on a button box. 151 

The assignment of button to the target shape was counterbalanced between participants. The 152 

conditions were randomly intermixed, with a different order for each participant. The entire 153 

experiment was conducted in a sound-attenuated, electrically shielded chamber, with the screen being 154 

the only source of light. In addition to EEG recordings (described below), two other task-related 155 

variables were measured – task accuracy and reaction time. For each colour and shape combination, 156 

we had 30 trials. As diamond and square shape-change trials were subsequently collapsed together, 157 

this resulted in 60 trials per colour and 720 trials in total, presented in random order and divided into 158 

10 blocks. This was the same for both experiments. In addition, Experiment 1 was preceded by a 159 

practice of 24 trials, while Experiment 2 was preceded by a practice of 16 trials. The EEG task took 160 

approximately 50 minutes to complete. 161 
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 162 

After the completion of the EEG experiment, participants rated each colour on a 9-point Likert scale 163 

for its representativeness of its category. This took approximately 5 minutes. Participants were asked 164 

to imagine the perfect representative for a colour category and rate how representative a sample was 165 

of that category, with 1 being the least representative and 9 being the most representative. All colours 166 

were displayed simultaneously on the screen during this procedure and remained on the screen until 167 

the participants completed the task. Colours were presented on the computer screen as a set of 4 rows 168 

of squares that showed the three luminance (Experiment 1) or hue (Experiement 2) values for that 169 

colour.  170 

There were also two additional measures, specific to each experiment. In Experiment 1, for each 171 

participant, heterochromatic flicker photometry (HCFP) at 20 Hz (Walsh, 1958) was used to establish 172 

the departure from isoluminance for all colours. The task required the participant to adjust the 173 

luminance of the colour until perceived flicker was minimised. Participants performed 8 trials per 174 

colour – the step size was 0.5 cd/m2 and the flicker started from a randomly determined point that 175 

could be five steps above or below nominal isoluminance. These measurements were conducted to 176 

evaluate any individual differences in the amount of luminance contrast effectively present in 177 

nominally isoluminant stimuli. Rabin et al. (1994) demonstrate that departures from isoluminance 178 

need to be substantial to influence chromatic visual evoked potentials. Collecting HCFP data enabled 179 

us to verify that small departures from effective luminance did not significantly influence the 180 

efficiency of colour decoding.  181 

Experiment 2 began with a hue adjustment task, in which participants made their individual hue 182 

settings for two unique hues (yellow and green) and two intermediate, non-unique hues (orange and 183 

turquoise). Participants performed one block of eight trials for each hue. The order of blocks (yellow, 184 

green, orange, turquoise) was randomized for each participant. Colours were defined in CIE LCh 185 

colour space to have the same chroma (C=25) and lightness (L=55). Initial hue angles were 186 

randomised to the following values: 90°+/- 12° for yellow, 180°+/- 12° for green, 45°+/- 12° for 187 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


orange and 225°+/- 12° for turquoise. A coloured 2° circle was shown in the middle of the computer 188 

screen. Participants used the right and left buttons to change the hue along the CIE LCh hue circle in 189 

steps of 2° clockwise and counter-clockwise, respectively. Once the participants were happy with 190 

their setting, they completed the adjustment by pressing the top button. The task took approximately 191 

10 minutes to complete. The first 6 participants performed the task without context. For the following 192 

13 participants, we also presented a colour palette consisting of 19 squares 1° in size that ranged +/- 193 

45° around the initial hue value, in steps of 5° of hue angle, positioned at 8.22° above the central 194 

stimulus. The colour palette provided context for the hue setting task. A between-subject ANOVA 195 

showed no difference in unique hue settings with and without context (F(1,14) = 0.23; p = .64, ηp2 = 196 

.02).  197 

In total, the experiments lasted between two and a half and three hours, including the time to set up 198 

and remove the EEG electrodes.  199 

 200 

EEG recording and pre-processing 201 

Continuous brain activity was recorded from 64 scalp locations using active Ag-AgCl electrodes and 202 

4 ocular channels (providing VEOG and HEOG) connected to a BioSemi Active-Two amplifier 203 

system (BioSemi, Amsterdam, The Netherlands) at a sampling rate of 256 Hz. Data processing was 204 

performed using EEGLAB (Delorme and Makeig, 2004) for Matlab (Mathworks, UK). Epochs lasting 205 

900 ms were extracted: 200 ms before the relevant event (stimulus onset or shape change) and 700 ms 206 

afterwards.  Data was low pass filtered at 40 Hz. All trials with incorrect answers were excluded prior 207 

to the analysis. Artifact removal was then performed by using the FASTER toolbox (Nolan et al., 208 

2010), the ADJUST toolbox (Mognon et al., 2011), and self-written procedures in 209 

MATLAB. FASTER is an automated procedure that detects contaminated trials and noisy channels 210 

that need interpolation (either in the entire EEG recording or on any single trials) by calculating 211 

statistical parameters of the data and using a Z score of ±3 as the metric that defined contaminated 212 

data. ADJUST is an automated procedure that operates on maps resulting from independent 213 
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component analysis of EEG data, using properties of these components to label them as eye blinks, 214 

vertical or horizontal eye movements, or channel discontinuities so that they can be subtracted from 215 

the recording. We first rejected trials with global artifacts using FASTER, then ran an independent 216 

component analysis and applied ADJUST to the obtained decompositions, and finally, conducted 217 

channel interpolation with FASTER. In addition, any trials with eye movements were rejected based 218 

on ±25μV deviations from the horizontal electrooculogram in the uncorrected data. Blinks were 219 

rejected using a thresholding procedure similar to FASTER (Junghöfer et al., 2000).  220 

Incorrect and rejected trials amounted to a very small proportion of the data – in Experiment 1, 221 

between 1% and 13% of total trials, and in Experiment 2, between 3% and 17% of total trials. 222 

 223 

EEG classification 224 

The classification of EEG signals was set up as a set of time-windowed error-correcting output codes 225 

models (tECOC) operating on 20ms snippets of the signals (other reasonable time-windows yielded 226 

similar results, see Supplementary Figure S1A) from the occipital electrodes (the entire set of 64 227 

electrodes yielded similar results, see Supplementary Figure S1B). Linear discriminant analysis 228 

(LDA) classifiers were employed as learning units due to their relative simplicity and computational 229 

efficiency. Denoting the EEG activity as a random multivariate variable 𝑿, and the stimulus label 230 

(colour and/or luminance) by the random variable 𝑌 (where realisations of 𝑌 are drawn from the set of 231 

all possible labels denoted 𝐿), the probability that the observed activity 𝒙 is elicited by the stimulus 232 

described by label 𝑦 is given by the Bayes rule: 233 

𝑃(𝑌 = 𝑦|𝑿 = 𝒙) =
𝑃(𝑿 = 𝒙|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

∑ 𝑃(𝑿 = 𝒙|𝑌 = 𝑙)𝑃(𝑌 = 𝑙)𝑙∈𝐿
 234 

In LDA, the likelihood term is estimated by a multivariate Gaussian density function: 235 

𝑃(𝑿 = 𝒙|𝑌 = 𝑦) =
1

√(2𝜋)𝑁𝑒 |Σ|
𝑒−

1
2

(𝒙−𝝁𝑦)
𝑇

Σ−1(𝒙−𝝁𝑦)
 236 
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Here, 𝑁𝑒 is the number of electrodes, 𝝁𝑦 is the mean EEG activity for the label 𝑦, and Σ is the 237 

covariance matrix of the activity. The log-posterior objective function 𝛿𝑦(𝒙) for the label 𝑦 can thus 238 

be written as: 239 

𝛿𝑦(𝒙) = log 𝑃(𝑌 = 𝑦) −
1

2
𝝁𝑦

𝑇Σ−1𝝁𝑦 + 𝒙𝑇Σ−1𝝁𝑦 240 

Data for each observer was modelled separately, and the whole process was repeated 10 times. In 241 

each repetition for any given observer, the data were split into 5 folds containing roughly equal 242 

number of samples for each label. Each of the five folds was then tested by training the model on the 243 

remaining 4 folds.  244 

 245 

tECOC analysis gave us a time-series of confusion matrices (CMs) which characterise the model 246 

performance over the duration of the trial (see Supplementary Video V1). At each time-point, while 247 

the diagonal of the CM gives a measure of model accuracy (true positive rate), the off-diagonal 248 

elements represent misclassifications, which are crucial towards understanding the topography and 249 

information content of the representational space (see Representational Similarity Analysis below). In 250 

addition, a permuted model was also trained using a shuffled set of labels to estimate empirical chance 251 

performance. The empirical chance performance was found to be close to theoretical chance level 252 

under the assumption of equilikelihood (see Supplementary Figure S1C). The statistics (both within-253 

observer and population) were calculated at each time-point by comparing model performance with 254 

empirical chance performance of the ‘permuted’ models using a two-tailed randomisation test with 255 

1000 permutations.  256 

 257 

Representational Similarity Analysis 258 

The time-series of confusion matrices estimated by tECOC models were used to calculate pairwise 259 

dissimilarities between stimulus classes. Given a confusion matrix 𝐶, where each element 𝑐𝑖𝑗 denotes 260 
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the probability of the stimulus type 𝑖 being labelled as 𝑗 by the model, first, a label-normalised matrix 261 

𝑆 was constructed such that 𝑠𝑖𝑗 = 𝑐𝑖𝑗/𝑐𝑖𝑖. This asymmetric measure was then used to calculate a 262 

symmetric dissimilarity tensor ΔtECOC given by 263 

ΔtECOC = 1 − max (0,1 − √𝑆𝑆𝑇) 264 

Here, the geometric mean across stimulus pairs is used to generalise distances in representational 265 

space (Shepard, 1958; Kaneshiro et al., 2015). A similar estimation was also made for the EEG data 266 

using a more traditional dissimilarity metric given by 267 

ΔEEG = 1 − |𝜌| 268 

Here, 𝜌 is the Pearson-correlation matrix for the EEG responses elicited by the stimuli. Finally, 269 

pairwise differences in CIELAB hue angles of the stimuli were used to estimate a perceptual 270 

dissimilarity matrix. The perceptual dissimilarity was compared to Δ𝑡𝐸𝐶𝑂𝐶  and Δ𝐸𝐸𝐺  using rank-271 

correlation estimates (Kendall’s coefficient).   272 

 273 

 274 

Results 275 

Experiment 1: Decoding unique and intermediate hues with and without luminance contrast  276 

We measured EEG signals in a cohort of 20 participants while they viewed coloured stimuli (coloured 277 

shapes on a grey background) consisting of two unique hues – unique green and unique red, and two 278 

non-unique hues – orange and turquoise. In each trial, a coloured disc changed shape to a diamond or 279 

a square at a random time-point 800-1500ms after stimulus onset (Figure 1). The participant’s task 280 

was to identify the target shape. The stimuli were either isoluminant with the background (0% 281 

luminance contrast), or presented at 45% or 90% luminance-contrast. This gave us a dataset of EEG 282 

signals labelled both in hue and luminance-contrast. 283 
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 284 

The task was easy, resulting in high overall accuracy (95% ± 1% SE, see Supplementary Figure S4A) 285 

and very fast responses (mean response time (RT) of 462 ± 15 ms, see Supplementary Figure S4B). 286 

Response-time data was analysed with  a 3x4 repeated measures ANOVA (3 levels of luminance 287 

contrast vs. 4 hues), which yielded a significant main effect of luminance contrast (𝐹(1.49, 28.28) =288 

67.56, 𝑝 < 0.001, 𝜇𝑝2 = 0.78) and interaction with hue (𝐹(6, 114) = 3.56, 𝑝 = 0.003, 𝜇𝑝2 = 0.16) 289 

– hue itself did not have an effect (𝐹(1.88, 35.79) = 2.93, 𝑝 = 0.07). We deconstructed the 290 

interaction by performing separate repeated measures ANOVAs at each luminance contrast: while at 291 

isoluminance there was a significant effect (𝐹(3, 57) = 6.19, 𝑝 = 0.001, 𝜇𝑝2 = 0.25) driven by 292 

slower RTs for green (vs. red 𝑃 = 0.019; vs orange 𝑃 = 0.008, vs. turquoise 𝑃 = 0.003), there were 293 

no differences at 45% luminance contrast (𝑝 = 0.16) or at 90% luminance contrast (𝑝 = 0.11). 294 

 295 

After the completion of the EEG experiment, participants rated each colour on a 9-point Likert scale 296 

for its representativeness of its category (red, orange, green or turquoise). The average ratings and 297 

their SEs were as follows (see Supplementary Figure S4C): isoluminant red 4.35 ± 0.48; red at 45% 298 

luminance 2.85 ± 0.32; red at 90% luminance 1.90 ± 0.23; isoluminant green 7.70 ± 0.23; green at 299 

45% luminance 6.10 ± 0.35; green at 90% luminance 5.55 ± 0.43; isoluminant orange 3.75 ± 0.48; 300 

orange at 45% luminance 4.15 ± 0.43; orange at 90% luminance 3.60 ± 0.32; isoluminant turquoise 301 

6.00 ± 0.47; turquoise at 45% luminance 6.75 ± 0.38; turquoise at 90% luminance 6.40 ± 0.5.  302 

 303 

Unique hues can be robustly decoded from EEG signals 304 

First, we asked whether the measured EEG waveforms contain consistent, discernible information 305 

about the hue of the stimulus. To do this, we trained tECOC models for each observer using only EEG 306 

responses to isoluminant stimuli, as this ensured minimal interference from luminance-contrast 307 

signals. In the first instance, we performed this analysis for epochs defined by the passive viewing 308 
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event. We found that within a 100-300 ms window after stimulus onset, both unique hues could be 309 

decoded with above-chance accuracy (Figure 2A). The non-unique hues, on the other hand, showed a 310 

much lower score (Figure 2B). This pattern is stable over a range of tECOC time-windows 311 

(Supplementary Figure S1A) and also holds when the entire set of 64 electrodes is used 312 

(Supplementary Figure S1B). The presence of signal on all electrodes is not surprising – unlike 313 

functional magnetic resonance imaging (fMRI), EEG does not detect localised physiological activity 314 

in a volume, but instead picks up a linear superposition of signals from a range of physiological 315 

sources. Thus, the signal is present in some degree at all sensors, with its amplitude (and thus also its 316 

signal to noise ratio) dependent on the position of the sensor relative to the source(s) (see, e.g., Maris, 317 

2012 for a discussion of the so-called common pick-up problem).  318 

 319 

Figure 2: Decoding isoluminant Unique and Non-unique hues from EEG responses. A tECOC classification 320 

model was trained on EEG responses recorded in 𝑁 = 20 participants as they viewed isoluminant stimuli 321 

(Unique Hues: red and green; Non-unique hues: orange and turquoise). A. Model accuracy for Unique hues. 322 

This corresponds to presenting the trained model with EEG responses to Unique Hue stimuli and estimating the 323 

probability with which the model is able to determine the correct stimulus hue (diagonal of the confusion 324 

matrix). The two solid lines show the mean accuracy of the model at each time-point. The hues are colour-325 

coded, with the red and green lines representing model accuracy for unique red and unique green stimuli 326 

respectively. The shaded regions around the lines show ±1 standard-error of the mean over the 20 observers. A 327 
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dashed line indicates the theoretical chance performance of the model (the empirical chance performance 328 

closely followed the theoretical chance level, and is shown in Supplementary Figure S1C). The two inlays show 329 

the classification accuracy (top-left: unique red, top-right: unique green) of models trained for each of the 20 330 

observers. Only 100-300 ms after stimulus onset are shown in the inlays. The solid lines show the period when 331 

the classification performance was significantly above chance (𝑝 < 0.05 in a permutation test comparing 332 

observer-model performance to the performance of a model trained on randomly shuffled labels). Under the x-333 

axis of the inlays, a solid line shows when the mean accuracy calculated across all observers was above chance 334 

(𝑝 < 0.05 in a permutation test comparing average performance over all observers to the average performance 335 

of models trained on random labels). B. Model accuracy for non-unique hues. The accuracy of the model for 336 

non-unique hues is shown in a manner analogous to A, with the orange and blue colours representing the orange 337 

and turquoise stimuli respectively. C. Misclassification probabilities. Given the EEG response (at a given time-338 

point) to one of the four hues, the model can either make an accurate prediction of the label (panels A and B), or 339 

misclassify the input. Each of the four subpanels here shows the prediction probabilities for one particular input 340 

label (shown on the top-left, above each subpanel), thus corresponding to one row of the confusion matrix. For 341 

instance, the first subpanel shows the probabilities (at each time-point) that the model classifies EEG responses 342 

to unique green stimuli as being elicited by unique green (accuracy), unique red, orange or turquoise stimuli. 343 

The colour coding for the four stimulus hues in each subpanel is the same as panels A and B. Also see 344 

Supplementary Video V1, which shows how the confusion matrix changes as a function of time elapsed from 345 

stimulus onset. 346 

 347 

For each participant, we also measured subjective isoluminance for each stimulus colour (see Methods 348 

for details). While one participant did not understand the task, the means, SEs and ranges of the 349 

settings from the remaining 19 participants were as follows: red 0.14 ± 0.57 𝑐𝑑/𝑚2  (-6 to 5.25 350 

𝑐𝑑/𝑚2); green -1.09 ± 0.49 𝑐𝑑/𝑚2 (-6.58 to 1 𝑐𝑑/𝑚2); orange 0.08 ± 0.56 (-4.34 to 6.50 𝑐𝑑/𝑚2); 351 

turquoise (-0.05 ± 0.65 𝑐𝑑/𝑚2 (-7.08 to 7.83 𝑐𝑑/𝑚2).   352 

 353 

Model accuracy quantifies the ability of the model to correctly identify the hue of a stimulus when 354 

presented with the corresponding EEG response. Theoretically, it is the sum of hit rates (true positive 355 

rates) for all labels, and corresponds to the diagonal of the confusion matrix. However, a deeper 356 

insight into model performance can be obtained when, in addition to the detection accuracy for a 357 

given input class, one also considers the probability of misclassification of inputs from this class. To 358 

investigate this, we estimated the off-diagonal elements of the confusion matrix. This allowed us to 359 
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infer which classes are most likely to be confused by the model – thus providing a means of 360 

understanding how similar the information contained in EEG signals corresponding to different hues 361 

is. The subpanels of Figure 2C (see also Supplementary Video V1) show the probability (over time) 362 

with which the model assigns each of the four hue labels to EEG responses elicited by a given input 363 

hue (the input hue is labelled above each subpanel). Thus, each subpanel in Figure 2C shows one row 364 

of the confusion matrix. Within a 100-300 ms window, each input hue is only confused with its 365 

proximal pair (red and orange, and green and turquoise), while the prediction probabilities for non-366 

proximal hues are below chance. This is also reflected in the checkerboard-like pattern observed in 367 

Supplementary Video V1. Furthermore, the model is likely to label EEG responses to non-unique 368 

hues (orange and turquoise) as being elicited by their proximal unique hues (red and green 369 

respectively) with almost equal probability, but not vice-versa. Once again, this suggests that EEG 370 

signals between 100-300 ms carry more robust representations of unique hues compared to non-371 

unique hues. 372 

 373 

The passive viewing at trial outset was followed by a change in the shape of the stimulus from a circle 374 

to either a square or a diamond at a random time-point 800-1500 ms from stimulus onset (see Figure 375 

1). The colour of the stimulus was task-irrelevant, and the hypothesis here was that since the observer 376 

will be attending to the stimulus shape, the EEG signal would be qualitatively different between the 377 

passive and shape-change segments. This would, in-turn, allow us to test if this difference is reflected 378 

in the ability of the model to classify hue information in the signal. It has been argued that colour-379 

related activations should still be observed as long as the hue remains unattended and task-irrelevant 380 

(Forder et al., 2017b). To test this hypothesis, we trained tECOC models on the epochs defined by the 381 

shape-change event. As expected, the two segments were found to elicit activity which differed 382 

significantly both in the sequence of ERP peaks as well as topography (Figure 3A). However, despite 383 

this difference, we were able to perform hue detection during the shape-change segment with an 384 

accuracy very similar to the passive viewing segment – both in terms of peak decoding score and its 385 

time-course (Figure 3B). This suggests that the temporal structure of the hue-related information in 386 
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EEG signals is indeed robust to changes in the task (as long as the hue itself remains task-irrelevant), 387 

and can be extracted even when the observer is engaged in a concurrent shape discrimination task. 388 

 389 

Figure 3: Decoding performance for active and passive tasks is very similar, despite large differences in 390 

stimulus-evoked activity. A. Global field power (GFP). The left side of the panel shows the topographies and 391 

the GFPs for stimulus onset. The hues are colour-coded (unique green is shown in green, red in red, etc.), and 392 

each panel shows the GFP for one luminance-contrast condition. The stimulus onset is marked by a dashed line 393 

at 0 abscissa. The right side of the panel shows the same for the shape-change event. B. Robustness to task. 394 

Separate models were trained using passive viewing and shape-change segments. Each subpanel shows the 395 

accuracy of the two models for one particular input hue (e.g., the leftmost panel shows the model accuracy when 396 

EEG responses to red stimuli were used as inputs). The performance of the passive-segment model is shown 397 

using the same colours and symbols as Figure 2A, while the shape-change model is shown using a dashed line 398 

for observer mean and darker shading for ±1 standard-error of the mean. 399 

 400 

  401 

Luminance signals interfere with chromatic information in occipital ERPs 402 

Next, we investigated whether hue identity could still be decoded when both chromatic and luminance 403 

information was present in the EEG signal. A chromatic-driven ERP is characterised by a robust 404 

negative deflection at about 120-220 ms after stimulus onset (Murray et al., 1987; Berninger et al., 405 

1989; Tobimatsu et al., 1996), but this response is significantly altered by the addition of luminance 406 

contrast (Rabin et al., 1994). According to normative work by Rabin et al. (1994), while observer 407 
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isoluminance drives ERPs in a manner closely resembling nominal isoluminance, any substantial 408 

changes in luminance contrast have been found to result in highly dissimilar waveforms.  To assess if 409 

this would also impact classifier performance, we constructed a model that evaluated how decoding 410 

performance was affected when the model was trained on inputs which differ not only in hue but also 411 

luminance-contrast. We trained tECOC classifiers for each observer using 12 labels, corresponding to 412 

three different luminance-contrast levels for each of the four hues. In Figure 4, we present the 413 

performance of our model in a manner similar to Figure 2C. Each panel is one row of the confusion 414 

matrix, i.e., given the EEG signals for an input stimulus, it shows the prediction probabilities for all 415 

12 labels. The hue of the input is denoted by the row (labelled in the right margin) and its luminance-416 

contrast by the column (labelled on top). The same colours as Figure 2C are used to denote the four 417 

hues. In addition, for each hue, we also use two additional brightness levels to represent the two 418 

luminance contrast ratios (thus, for a given hue, isoluminant stimulus is the least bright, 45% 419 

luminance contrast is brighter, and 90% luminance contrast is the brightest). We find that while 420 

isoluminant signals can indeed be classified 100-300 ms after stimulus onset (left column), addition of 421 

luminance information disrupts the model performance for all hues (middle and right columns). 422 

Furthermore, we find that the classifier does not confuse isoluminant and non-isoluminant stimuli. 423 

This suggests that in contrast to a change in stimulus-shape where the temporal structure of hue-424 

related information was preserved, addition of luminance-contrast to the stimulus disrupts the 425 

temporal patterns which encode hue-information.  426 

 427 
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 428 

Figure 4: Luminance information disrupts hue decoding. EEG responses to unique (green and red) and non-429 

unique (orange and turquoise) hues at three luminance-contrasts (isoluminant, 45% and 90%) were used to train 430 

a tECOC model. Each of the 12 subpanels in this figure represents one row of the confusion matrix (similar to 431 

Figure 2C). This corresponds to presenting the trained model with EEG responses to a given stimulus class, and 432 

observing the classification probabilities for all classes, including the input class. The hue and luminance 433 

contrast of the input labels are denoted by the row and column respectively. For each predicted label, the hue is 434 

represented by the corresponding colour (green, red, orange and turquoise), and the luminance-contrast by the 435 

brightness (isoluminant: lowest brightness, 45% contrast: intermediate brightness, 90% contrast: highest 436 

brightness). 437 

 438 

To characterise the effect of luminance, we trained a model using only the luminance labels of EEG 439 

signals (i.e., we used three labels corresponding to the three contrast levels). We found that all 440 
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luminance conditions (Figure 5A) can be decoded to above-chance levels. An examination of the 441 

misclassification patterns of the model (Figure 5B) further revealed that while isoluminant stimuli are 442 

robustly classified, the non-isoluminant conditions are more likely to be confounded with one another. 443 

 444 

Figure 5: Luminance decoding from EEG signals. A. Mean classification accuracy. This panel shows the 445 

performance of the model in correctly identifying the luminance contrast of the stimuli (model accuracy). Each 446 

line shows the accuracy for one condition, with dark grey coding for the isoluminant condition, medium grey 447 

coding for 45% luminance contrast, and light grey coding for 90% luminance contrast (coding of luminance 448 

contrast using lightness is used throughout the article). The shaded area around the lines shows ±1 standard 449 

error of the mean. Chance performance is shown by the dashed line. B. Misclassification probabilities. Each 450 

subpanel shows one row of the confusion matrix analogous to Figure 2C. The left panel shows classification 451 

probabilities for the three luminance conditions when isoluminant stimulus is presented to the classifier. 452 

Similarly, the middle and right panels show prediction probabilities when 45% and 90% luminance contrast 453 

inputs are presented to the classifier. 454 
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Stimuli with 45% luminance contrast have an above-chance probability of being misclassified as 90% 455 

luminance contrast (and vice-versa). However, this effect is not strictly symmetric, with 90% 456 

luminance contrast being easier to detect compared to the 45% contrast. Thus, under non-isoluminant 457 

conditions, not only are the hue-driven patterns difficult to detect, but they seem to be progressively 458 

overridden by luminance-contrast-driven patterns. To ensure that this effect was driven by luminance, 459 

and not by the chromatic content of the stimuli, we set up separate models for each hue, and were able 460 

to confirm that the effect was indeed independent of the chromatic content of the stimulus. For each 461 

hue, the isoluminant stimuli were robustly classified (Supplementary Figure S2, leftmost column), 462 

while the non-isoluminant conditions produced similar but asymmetric prediction scores 463 

(Supplementary Figure S2, middle and right columns).  464 

 465 

Interim Discussion 466 

Our findings are in line with Sutterer et al (2021) who recently reported that both colour and 467 

luminance content can be successfully decoded from EEG signals. Hermann et al (2021) investigated 468 

decoding of hue or luminance polarity from MEG signals and found that generalising luminance 469 

polarity across hue works better than generalising hue across polarity. This is consistent with our own 470 

findings that decoding of hue is strongly affected by the addition of luminance contrast. Unlike these 471 

studies, where only stimuli that combine colour and luminance contrast were used, we also included 472 

stimuli that were isoluminant with the background. We found that decoding of hue from such 473 

nominally isoluminant stimuli is much more efficient. While it appears that decoding was superior for 474 

unique compared to intermediate hues, Hermann et al (2021) also report higher decoding efficiency 475 

for red and green compared to orange and blue, although such an asymmetry is not present in the 476 

decoding study by Hajonides et al. (2021). Hermann and colleagues suggest that poorer decoding for 477 

orange and blue may be due to their alignment with the daylight locus, causing a less consistent signal 478 

in the presence of luminance. To disambiguate if unique or intermediate hue status drives a more 479 

robust neural signal irrespective of daylight locus alignment, it would be necessary to use a unique 480 
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hue that is also more aligned with the daylight locus, such as yellow or blue. Thus, in our next 481 

experiment, we decided to replace red with yellow, which would allow us to maintain the same 482 

proximity structure (red/orange, green/turquoise) but eliminate the potential daylight locus confound. 483 

Finally, the stimulus set in Experiment 1 was designed to investigate whether unique hues have more 484 

robust EEG representations. To achieve this, we chose unique and non-unique hues that were 485 

maximally distant in a perceptual space – red and green, orange and turquoise (see details of the 486 

stimulus set in Methods). As already reported by Rosenthal et al (2021) and Hermann et al (2021), 487 

inter-hue differences in decoding efficiency manifest even between such evenly spaced colours. To 488 

better understand the non-uniformity of this neurometric colour space, in our next experiment we 489 

aimed to investigate the structure of the decoding manifold by introducing proximal neighbours, 490 

clockwise and counterclockwise to each hue. Decoding colours in such small and large 491 

neighbourhoods allows us to understand how perceptual notions of hue-difference map to the EEG-492 

derived neurometric space. 493 

 494 

Experiment 2: Decoding over small and large perceptual hue differences  495 

In Experiment 1 we showed superior decoding performance for unique hues compared to intermediate 496 

hues, suggesting a robust neural representation for the former. In Experiment 2, this hypothesis was 497 

further critically tested by using small and large hue differences. Our aim was to re-examine decoding 498 

of nominally isoluminant unique and intermediate hues with a slightly modified hue set (see Interim 499 

Discussion above) and to extend it by decoding local clusters of stimuli around each of these hues. 500 

First, we measured individual settings for unique (yellow and green) and non-unique (orange and 501 

turquoise) hues for each observer. Next, we made EEG measurements in a task analogous to 502 

Experiment 1 using, for each observer, a stimulus set consisting of their subjective settings for the 503 

four hues (denoted as the = configuration), and two sets of stimuli generated by rotating the subjective 504 

settings by ±10° in CIELAB colour space (denoted as the + and – configurations respectively) – 505 

leading to a total of 12 stimuli (4 hue-clusters and 3 rotational-configurations, see Supplementary 506 
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Figure S5D). The individual hue settings were as follows (means and SEs): yellow 101° ± 2°, orange 507 

61° ± 3°, green 153° ± 3° and turquoise 198° ± 3°.  508 

In the shape discrimination task, grand mean accuracy was 96% ± 1 % SE (see Supplementary Figure 509 

S5A) and reaction times were 706 ± 61 ms (See Supplementary Figure S5B). Response-time data was 510 

analysed with a 4x3 repeated measures ANOVA (4 hues vs. 3 rotational configurations, i.e., -, + and = 511 

sets), which yielded a significant main effect of hue (F (1.77, 26.5) = 5.25, p=.01, ηp2 = 0.26) and an 512 

interaction with the rotational configuration (F (2.16, 32.49) = 5.08, p =.01, ηp2 = 0.25) while the 513 

effect of the rotation itself was not significant (F (1.79, 26.99) = 0.72, p = 0.48, ηp2 = 0.05). The 514 

interaction was deconstructed by separate repeated measures ANOVAs at each hue: for yellow, there 515 

was a significant effect of rotation (F(1.36,20.48) = 6.23, p =.01, ηp2 = 0.29) driven by slower RTs 516 

for the individual hue setting vs. 10° clockwise setting (p = 0.006). For green, there was also a 517 

significant effect (F(1.58,23.74) = 6.76, p =.007, ηp2 = 0.31) driven by faster RTs for the individual 518 

hue setting vs. 10° clockwise setting (p = .04) as well as vs. 10° counterclockwise  setting (p = .005); 519 

no differences were found for orange (p=.22) and for turquoise (p=.11). Taken together, we can see 520 

that only for unique hues (yellow and green) the responses to individual hue settings (= configuration) 521 

seem to be different from responses to ±10° rotated hues (i.e., – and + configurations). However, the 522 

direction of the effect was opposite for the two hues – while participant responded slower to their 523 

individual yellow setting, they responded faster to their individual green setting.  524 

For the Categorical Rating task, the average ratings and their SEs were as follows: individual yellow 525 

5.62 ± 0.6; -15° yellow 5.75 ± 0.57; +15° yellow 2.56 ± 0.35; individual green 6.93 ± 0.26; -15° green 526 

7.93 ± 0.17; +15° green 3.87 ± 0.35; individual orange 6.37 ± 0.36; -15° orange 3.93 ± 0.48; +15° 527 

orange 7.25 ± 0.48; individual turquoise 5.68 ± 0.53; -15° turquoise 7.43 ± 0.53; +15° turquoise 3.18 528 

± 0.5 (See Supplementary Figure S5C). 529 

 530 
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Decoding over large hue differences is predicted by hue angles 531 

For each observer, we trained tECOC models over all stimuli: the four hue settings (= group), and the 532 

eight stimuli generated by ±10° rotations of each of these settings (+ and - groups respectively). 533 

Using the classification results, we generated a time-series of dissimilarity matrices (see Methods for 534 

details) and found that the stimulus representations were highly dissimilar in a 100-400 ms window 535 

after stimulus onset (Figure 6A). Similarly, we also calculated a perceptual dissimilarity measure by 536 

using differences in hue angles of the stimuli in CIELAB space. As expected, perceptual dissimilarity 537 

increases as one moves away from a given reference stimulus (Figure 6B).  Using rank-correlation 538 

analysis, we found a significant (𝑝 < 0.001) increase in Kendall’s tau statistic in a 100-400 ms range 539 

post-stimulus (Figure 6D), suggesting that perceptual distances are indeed correlated with decoding 540 

output. This was also reflected in stable mean and peak dissimilarities during the period of significant 541 

correlation (Figure 6C).  542 

 543 

Figure 6: Isomorphism between representational and perceptual spaces for large distances. A. Dissimilarity in 544 

classifier outputs. tECOC models were trained to classify twelve colours from their EEG responses. The colours 545 

sampled four clusters along the hue circle corresponding to orange (O), yellow (Y), green (G), and turquoise 546 

(T), with each cluster consisting of settings made by the observer in a psychophysical experiment (=), and 547 

colours sampled 10° clockwise (-) and anti-clockwise (+) with respect to each setting. Each panel shows a 548 

dissimilarity matrix derived from classifier output. The panels show the dissimilarity 50, 100, 350, and 500 ms 549 

after stimulus onset. B. Dissimilarity in perceptual space. Hue angles of the 12 stimuli (same as panel A) were 550 
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used to estimate dissimilarity in the perceptual CIELAB space. C. Peak and Mean Dissimilarity. The left panel 551 

(labelled Peak) shows the dissimilarity is classifier output at the time-point where rank-correlation (panel D) 552 

with perceptual dissimilarity peaks, and the right panel (labelled Mean) shows the average dissimilarity over the 553 

period where the correlation is statistically significant. D. Representational similarity. Rank-correlation (left 554 

panel) between perceptual and classification dissimilarities using Kendall’s tau statistic. Grey background 555 

indicates statistical significance (𝑝 < 0.001), and the statistic peaks at 𝑡 = 145 ms. 556 

 557 

Local distortions in hue decoding 558 

Next, we posed the question: is the perceptual robustness of unique hues reflected in the structure of 559 

the decoding space around their respective representations? To answer this question, we trained 4 560 

tECOC models – one in the neighbourhood of each of the four individually measured hues. Each 561 

model was trained to classify EEG signals into one of three labels: subjective setting (=), stimuli 10° 562 

clockwise (+) to the subjective settings, and stimuli 10° counter-clockwise (-) from the subjective 563 

settings. In Figure 7A we show the results for the four models, one model per row. Each subpanel is a 564 

row in the corresponding confusion matrix, with the test stimulus indicated on top – for instance, the 565 

first panel shows the predictions of the model trained in the yellow neighbourhood, when stimuli 10° 566 

counter-clockwise from subjective yellow settings are presented to it. 567 
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 568 

Figure 7: Local distortions in representational space. A. Decoding within colour clusters. tECOC models were 569 

trained on clusters around the subjective settings for unique (yellow: Y, green: G) and non-unique (Orange: O, 570 

Turquoise: T) hues. Each cluster consisted of three groups: subjective observer settings (=), and two groups 571 

derived from 10° clockwise (+) and counter-clockwise (-) rotations of the subjective settings in CIELAB space. 572 

Each row shows a model trained on a different hue (top row: yellow, second row: green, etc.), with subpanels 573 

showing rows of the corresponding confusion matrices. The input stimulus for each row of the confusion matrix 574 

is labelled on top. B. Effect of variability in the internal neural representation 𝐫  on decoding. The panel on the 575 

left shows a configuration of the distributions for the three groups (-, = and +) which can lead to poor decoding 576 

scores such as those observed for non-unique hues. The distributions overlap, and the distance between the 577 
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distributions is too low to allow for proper discrimination using a linear boundary. The panel on the right shows 578 

how a relative decrease in the variability of one group (subjective settings for unique hues, =) can lead to better 579 

decoding for the other two (- and +).  580 

 581 

We found that the three groups (subjective settings, and the ±10° rotations) cannot be decoded in 582 

non-unique hues (Figure 7A, first and fourth rows). However, for unique hues (Figure 7A, second 583 

and third row), the rotated groups (first and third columns) can be decoded, while the subjective 584 

settings (second column) cannot. This result suggests that EEG representations of unique hues may 585 

have lower variability compared to non-unique hues. Such fluctuations in local variability in the 586 

representational space can create distortions in the decoding measure, allowing for better decoding of 587 

the flanking distributions (one such scenario is illustrated in Figure 7B). Note that in the perceptually 588 

uniform CIELAB space the three groups, by design, had equivalent relative distributions (- and + 589 

were simply mean-shifted copies of =).  590 

 591 

Discussion 592 

Our first finding is that - under isoluminant conditions - EEG responses to unique hues show more 593 

distinct patterns compared to non-unique hues, and that these patterns are stable during both passive 594 

viewing (Figure 2) and active task-engagement (Figure 3). We can also reach certain conclusions 595 

about the underlying neural processes from the time-course of decoding performance. A 100-300 ms 596 

decoding window is consistent with the idea that the performance of the model could be driven by 597 

both perceptual and post-perceptual contributions (Forder et al., 2017b). This is supported by the fact 598 

that the decoding performance steadily rises before peaking between 150-200 ms after stimulus onset, 599 

a time-window where EEG signals begin reflecting post-visual evaluative processing (VanRullen and 600 

Thorpe, 2001), including colour categorisation (Fonteneau and Davidoff, 2007). The chromatic visual 601 

evoked potential (cVEP), which reflects the activation of colour sensitive neurons in early visual 602 

cortices, also remains maximal in the same time window (Nunez et al., 2018).   However, a high-level 603 

interpretation of the decoding on the basis of the categorical status of the stimulus colours is unlikely. 604 
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Categorical representativeness ratings do not follow the pattern observed in the classifier performance 605 

(see Supplementary Figure S4C), and seem to rather reflect the relation between the colour sample 606 

and the focal colour. The most parsimonious explanation for the pivots in colour space that drive 607 

asymmetries in decoding around unique hue locations would be that they correspond to hue locations 608 

that are associated with a more robust neural representation, thus making it more easily decodable 609 

from less robustly represented hues. 610 

 611 

Secondly, classification performance for the decoding of hues is diminished when luminance contrast 612 

was added (Figure 4). This was not entirely unexpected since luminance contrast is known to have a 613 

strong effect on EEG responses, once luminance contrast is sufficiently strong (Rabin et al., 1994). At 614 

the same time, we found that all luminance conditions Figure 5 can be decoded to above-chance 615 

levels within the same 100-300 ms window. Thus, under non-isoluminant conditions, not only are the 616 

hue-driven patterns more difficult to detect, but they may also be at least partly overridden or replaced 617 

by luminance-contrast or joint-colour-and-luminance-contrast-driven activity. Our findings are 618 

consistent with the idea that hue is most likely to be encoded by neural populations which also encode 619 

luminance. The fact that purely chromatic-tuned cells in the visual cortex are known to be in a 620 

minority compared to luminance-tuned or luminance-chromaticity tuned cells (Lennie et al., 1990; 621 

Johnson et al., 2001) may partly explain why luminance signals tend to override chromatic 622 

information in EEG recordings. In V1-V3, the neurons are tuned to many intermediate directions, 623 

both in terms of hue and luminance contrast (for a review, see Gegenfurtner and Kiper, 2003). In 624 

higher-level areas of the extra-striate cortex, colour representations become organised in ways that 625 

resemble perceptual colour spaces (Brouwer and Heeger, 2009, 2013). Thus, the decoding in our 626 

study is likely to reflect cumulative effects that build up across these areas. Even though we find more 627 

robust responses for the two unique hues (red and green) compared to the two non-unique hues 628 

(orange and turquoise), decoding is still possible for non-unique hues, implying that there are indeed 629 

multiple hue representations that are being encoded by the brain (see, e.g., Brouwer and Heeger, 630 

2009; Parkes et al., 2009; Zaidi and Conway, 2019).  631 
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 632 

Thirdly, we show in Experiment 2, that the geometric structure of this representational space can be 633 

explored by carefully designed experiments. Our results demonstrate that while large distances in the 634 

neural representational space are indeed correlated with perceptual hue differences (Figure 6), there 635 

are local anisotropies associated with unique hues (Figure 7) which are likely to represent local 636 

changes in signal variability. Such tunings could reflect properties of our environment such as the 637 

statistical regularities in the reflectance spectra of naturally occurring surfaces (Philipona and 638 

O’Regan, 2006). Perhaps this is the reason why the neural reality of perceptual red-green and blue-639 

yellow hue-opponent mechanisms has proven to be so elusive – it is not a fundamental mechanism 640 

hard-wired into the neural circuitry, but a statistical peak in the tuning of neural populations which 641 

multiplex both colour and luminance information. Its identification is therefore complicated by the 642 

fact that neural populations jointly coding for chromaticity and luminance are likely to show higher 643 

responsiveness to the presence of luminance contrast (Johnson et al., 2001), making hue-specific 644 

signals much harder to detect.  645 

 646 

A growing number of studies investigating population activity analyse EEG and MEG topographical 647 

data by interrogating trajectories in activation manifolds. Our results suggest that the structure of such 648 

manifolds can be highly anisotropic, and that these anisotropies can reflect perceptual measurables. In 649 

the case of hue perception, it is likely that the local structure of this space is reflected in quasi-650 

invariants such as the so-called unique hue percepts. Now that neurometric mapping of hue spaces has 651 

been established by numerous studies (Hajonides et al., 2021; Hermann et al., 2021; Rosenthal et al., 652 

2021), this study marks a first hypothesis-based exploration of these maps and shows that unique hues 653 

represent local anisotropies in cortical hue-representations.  654 

 655 

 656 
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Open practices 657 

The decoding scripts have been packaged as the tECOC toolbox, which has been made available as a 658 

public git repository here. The EEG and behavioural data from both experiments will be shared on the 659 

Open Science Framework website. 660 

  661 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://gitlab.com/public-repositories/ecoc-time-series
https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


Bibliography 662 

Berninger TA, Arden GB, Hogg CR, Frumkes T (1989) Separable evoked retinal and cortical 663 

potentials from each major visual pathway: preliminary results. Br J Ophthalmol 73:502–511. 664 

Bohon KS, Hermann KL, Hansen T, Conway BR (2016) Representation of Perceptual Color Space in 665 

Macaque Posterior Inferior Temporal Cortex (the V4 Complex). eNeuro 3 Available at: 666 

https://www.eneuro.org/content/3/4/ENEURO.0039-16.2016 [Accessed September 17, 2019]. 667 

Brouwer GJ, Heeger DJ (2009) Decoding and Reconstructing Color from Responses in Human Visual 668 

Cortex. J Neurosci 29:13992 LP – 14003. 669 

Brouwer GJ, Heeger DJ (2013) Categorical Clustering of the Neural Representation of Color. J 670 

Neurosci 33:15454–15465. 671 

Conway B, Stoughton C (2009) Response: Towards a neural representation for unique hues. Curr Biol 672 

19:R442–R443. 673 

De Valois R, De Valois K (1993) A multi-stage color model. Vision Res 33:1053–1065. 674 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG 675 

dynamics including independent component analysis. J Neurosci Methods 134:9–21. 676 

Fonteneau E, Davidoff J (2007) Neural correlates of colour categories. NeuroReport 18:1323. 677 

Forder L, Bosten J, He X, Franklin A (2017a) A neural signature of the unique hues. Sci Rep 7:42364. 678 

Forder L, He X, Franklin A (2017b) Colour categories are reflected in sensory stages of colour 679 

perception when stimulus issues are resolved. PLOS ONE 12:e0178097. 680 

Gegenfurtner KR, Kiper DC (2003) Color Vision. Annu Rev Neurosci 26:181–206. 681 

Hajonides JE, Nobre AC, van Ede F, Stokes MG (2021) Decoding visual colour from scalp 682 

electroencephalography measurements. NeuroImage:118030. 683 

Hering E (1920) Outlines of a Theory of the Light Sense. Translated from German by L. Hurvich & 684 

D. Jameson 1964. Cambridge: Harvard Univ. Press. 685 

Hermann KL, Singh SR, Rosenthal IA, Pantazis D, Conway BR (2021) Temporal dynamics of the 686 

neural representation of hue and luminance contrast. bioRxiv:2020.06.17.155713. 687 

Jameson D, Hurvich L (1964) Theory of brightness and color contrast in human vision. Vision Res 688 

4:135–154. 689 

Jazayeri M, Afraz A (2017) Navigating the Neural Space in Search of the Neural Code. Neuron 690 

93:1003–1014. 691 

Johnson E, Hawken M, Shapley R (2001) The spatial transformation of color in the primary visual 692 

cortex of the macaque monkey. Nat Neurosci 4:409–416. 693 

Johnson K (2000) Neural Coding. Neuron 26:563–566. 694 

Junghöfer M, Elbert T, Tucker DM, Rockstroh B (2000) Statistical control of artifacts in dense array 695 

EEG/MEG studies. Psychophysiology 37:523–532. 696 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


Kaneshiro B, Guimaraes MP, Kim H-S, Norcia AM, Suppes P (2015) A Representational Similarity 697 
Analysis of the Dynamics of Object Processing Using Single-Trial EEG Classification. PLOS 698 

ONE 10:e0135697. 699 

Knoblauch K, Bieber ML, Werner JS (1998) M- and L-cones in early infancy: I. VEP responses to 700 

receptor-isolating stimuli at 4- and 8-weeks of age. Vision Res 38:1753–1764. 701 

Lee BB, Martin PR, Grünert U (2010) Retinal connectivity and primate vision. Prog Retin Eye Res 702 

29:622–639. 703 

Lennie P, Krauskopf J, Sclar G (1990) Chromatic mechanisms in striate cortex of macaque. J 704 

Neurosci 10:649–669. 705 

Maris E (2012) Statistical testing in electrophysiological studies. Psychophysiology 49:549–565. 706 

Mognon A, Jovicich J, Bruzzone L, Buiatti M (2011) ADJUST: An automatic EEG artifact detector 707 

based on the joint use of spatial and temporal features. Psychophysiology 48:229–240. 708 

Mollon J (2009) A neural basis for unique hues? Curr Biol 19:R441-2; author reply R442-3. 709 

Murray I, Parry N, Carden D, Kulikowski J (1987) Human visual evoked potentials to chromatic and 710 

achromatic gratings. Clin Vis Sci 1:231–244. 711 

Nolan H, Whelan R, Reilly RB (2010) FASTER: Fully Automated Statistical Thresholding for EEG 712 

artifact Rejection. J Neurosci Methods 192:152–162. 713 

Nunez V, Shapley RM, Gordon J (2017) Nonlinear dynamics of cortical responses to color in the 714 

human cVEP. J Vis 17:9. 715 

Nunez V, Shapley RM, Gordon J (2018) Cortical Double-Opponent Cells in Color Perception: 716 

Perceptual Scaling and Chromatic Visual Evoked Potentials. -Percept 9:2041669517752715. 717 

Parkes LM, Marsman J-BC, Oxley DC, Goulermas JY, Wuerger SM (2009) Multivoxel fMRI 718 

analysis of color tuning in human primary visual cortex. J Vis 9:1–1. 719 

Philipona D, O’Regan K (2006) Color naming, unique hues, and hue cancellation predicted from 720 

singularities in reflection properties. Vis Neurosci 23:331–339. 721 

Rabin J, Switkes E, Crognale M, Schneck ME, Adams AJ (1994) Visual evoked potentials in three-722 

dimensional color space: Correlates of spatio-chromatic processing. Vision Res 34:2657–723 

2671. 724 

Regan B, Reffin J, Mollon J (1994) Luminance Noise and the Rapid-Determination of Discrimination 725 

Ellipses in Color Deficiency. Vision Res 34:1279–1299. 726 

Ritchie JB, Kaplan DM, Klein C (2019) Decoding the Brain: Neural Representation and the Limits of 727 

Multivariate Pattern Analysis in Cognitive Neuroscience. Br J Philos Sci 70:581–607. 728 

Rosenthal IA, Singh SR, Hermann KL, Pantazis D, Conway BR (2021) Color Space Geometry 729 

Uncovered with Magnetoencephalography. Curr Biol 31:515-526.e5. 730 

Schanda J (2016) CIE u’, v’ Uniform Chromaticity Scale Diagram and CIELUV Color Space. In: 731 
Encyclopedia of Color Science and Technology, 1st ed. New York, New York, USA: 732 

Springer-Verlag. 733 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


Shepard RN (1958) Stimulus and response generalization: Deduction of the generalization gradient 734 

from a trace model. Psychol Rev 65:242–256. 735 

Stoughton C, Conway B (2008) Neural basis for unique hues. Curr Biol 18:R698-9. 736 

Sutterer DW, Coia AJ, Sun V, Shevell SK, Awh E (2021) Decoding chromaticity and luminance from 737 

patterns of EEG activity. Psychophysiology 58:e13779. 738 

Tobimatsu S, Tomoda H, Kato M (1996) Human VEPs to isoluminant chromatic and achromatic 739 

sinusoidal gratings: Separation of parvocellular components. Brain Topogr 8:241–243. 740 

VanRullen R, Thorpe S (2001) The Time Course of Visual Processing: From Early Perception to 741 

Decision-Making. J Cogn Neurosci 13:454–461. 742 

Walsh JWT (1958) Photometry. Dover Publications. 743 

Wuerger S, Atkinson P, Cropper S (2005) The cone inputs to the unique-hue mechanisms. Vision Res 744 

45:3210–3223. 745 

Wuerger S, Xiao K (2015) Color vision, opponent theory. In: Encyclopedia of color science and 746 

technology, pp 1–6. Springer. 747 

Zaidi Q, Conway B (2019) Steps towards neural decoding of colors. Curr Opin Behav Sci 30:169–748 

177. 749 

  750 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


Supplementary Material 751 

  752 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448044doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448044
http://creativecommons.org/licenses/by/4.0/


S1: Model robustness 753 

 754 

Figure S1. Model robustness. A. Effect of time-window on model performance. Isoluminant stimuli were used 755 

to train models using time-window lengths (see Methods for details) of 4ms, 10ms, 20ms and 50ms. Each 756 

subpanel shows the performance for one such model (columns, labelled on top) in correctly identifying the label 757 

corresponding to the input EEG signal (rows, labelled to the right). The mean accuracy is shown as a solid line, 758 

while the shaded envelope indicates standard error of the mean. A dashed line is used to show the theoretical 759 

chance level. B. Decoding using all electrodes. The classification of isoluminant stimuli was performed using all 760 

64 electrodes in a 20ms window. The results (dotted lines with darker envelopes) are shown along with those 761 

obtained by using only the occipital electrodes (solid lines with lighter envelopes). The lines indicate mean 762 

performance while the shaded envelopes indicate standard error of the mean. The theoretical chance level is 763 
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indicated by dashed horizontal lines. C. Comparison of theoretical and empirical chance performance. To 764 

calculate the empirical chance performance, we repeated the experiment shown in Figure 2 using shuffled 765 

labels for training the model. This ‘permuted’ model was then tested using the same sequence of stimuli used for 766 

testing the unshuffled trained model. Each subpanel in the figure shows the prediction probabilities for one 767 

particular input hue (same analysis as Figure 2C). 768 

 769 

Here we demonstrate that our findings are robust to key parameters. First, we show that the time-770 

window is not a critical parameter for our analysis (panel A). The classifier performance does not 771 

change qualitatively with an increase/decrease of the time window length.  However, we do observe 772 

increasing noise in the model performance as the window-length approaches the sampling frequency. 773 

Second, we show the classification accuracy for a model which was trained on isoluminant stimuli 774 

using all 64 channels of the EEG signal (panel B). As expected, the results show similar trends to 775 

those found in Figure 2. The decrease in performance could be due to the added noise in the hue-776 

related signal from non-occipital sites. Finally, we show the results from a permutation analysis (the 777 

model is trained using a shuffled set of labels and tested with correctly labelled data) showing that 778 

empirical chance-performance is very close to the assumption that all labels are equally likely. 779 

  780 
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S2. Robustness of luminance decoding across hues 781 

In Figure 5 we show the results of a simulation where EEG signals were used to decode the 782 

luminance of the stimulus. Here, we show results from additional simulations which demonstrate that 783 

this was not driven by any particular hue. Four models were trained to classify the luminance, one for 784 

each of the four hues (rows). For each of the four models, the isoluminant stimuli (left column) were 785 

robustly identified, while the non-isoluminant conditions (middle and right columns) were most likely 786 

to be confused with one another. We also observe the asymmetry between the 90% and 45% 787 

luminance-contrast conditions where the former is easier to detect than the latter. 788 

Figure S2. Luminance classification is robust across hues. ERP responses to individual hues were 789 

used to train hue-specific models for luminance contrast classification. Each row shows the results for 790 
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one of the four models. In each model (row), the input luminance contrast is denoted by the column 791 

(left: isoluminant, middle: 45%, and right: 90%), and lines in each panel denote the probability of the 792 

predicted label (coded by the lightness of the colour – lowest lightness: isoluminant, medium 793 

lightness: 45%, and high lightness: 90%). The shaded area around the mean represents standard error 794 

of the mean. Dashed lines show the theoretical chance performance for the models. 795 

  796 
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S3: Stimulus coordinates 797 

Here, we show the coordinates of the stimuli for both experiments. Experiment 1 used nominal unique 798 

hues based on a large dataset (𝑁 = 185) of settings, and non-unique hues which were equidistant 799 

from their respective closest unique hues. Experiment 2 used subjective settings for both unique and 800 

non-unique hues, measured in separate sessions before the EEG recordings. See Methods for details. 801 

 802 

Figure S3. Stimulus coordinates. A. Experiment 1. Mean observer settings from a large dataset (𝑁 =803 

 185) of uniuqe hues were used to select the unique red (UR) and green (UG) stimuli. The non-unique 804 

hue stimuli were chosen such that orange was equidistant (in terms of hue angle) from UR and unique 805 

yellow (UY), and turqoise was mid-way between UG and unique blue (UB). All stimuli had the same 806 

saturation level (set equal to the maximum possible saturation for UG within the monitor gamut). The 807 

axes are the u’ and v’ coordinates in the perceptually uniform CIE 1976 UCS space. The mean hue 808 

angles for each unique hue from the dataset are shown as solid lines. The length of these lines 809 

indicates the limits of the monitor gamut. The stimuli (unique: U, non-unique: NU) are shown as 810 

coloured dots, while the background is shown as a grey square. B. Experiment 2. Polar plot showing 811 

participants’ individual settings for unique (yellow and green) and intermediate hues (orange and 812 

turquoise) in CIE LCh colour space. Circles represent participants’ individual settings and diamonds 813 

represent the mean of those settings  814 
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S4: Behavioural measurements in Experiment 1  815 

During the experiment we also measured accuracy and reaction times on the shape change task, while 816 

at the end of the experiment we captured a category representativeness rating for each colour (see 817 

Methods and Results for details). Here we show that these measures do not distinguish between 818 

unique and non-unique hues.  Furthermore, representativeness ratings provided by the participants 819 

indicate that across all conditions, the turquoise and green stimuli were judged to be the most 820 

representative of their colour name (panel C). Taken together, we see that behavioural measurements 821 

do not correlate with whether a given stimulus was unique or non-unique. 822 

 823 

Figure S4. Behavioural results do not reflect unique/non-unique hue status. A. Task accurarcy. 824 

During the shape-change segment, the participants were asked to report whether a circular stimulus 825 

changed to a square or a diamond (see Methods). The participant accuracy is reported for reach 826 

condition. B. Reaction time. During this task, the reaction times were also recorded. C. 827 
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Representativeness ratings. The participants also provided representativeness ratings for the stimuli. 828 

E.g., if a red stimulus was being presented, we asked the participant to rate how this stimulus 829 

represented the category ‘red’. Ratings were reported on a Lickert scale going from 1 to 9.  In all 830 

panels, the height of the bar represents the mean, the error bars represent bootstrapped 95% 831 

confidence intervals (1000 samples were drawn), and circles show the raw data (20 participants). 832 

  833 
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S5: Behavioural measurements in Experiment 2 834 

 835 

Figure S5. Behavioural results from Experiment 2. A. Task accurarcy in the shape discrimination 836 

task. B. Reaction time recorded during this task. C. Categorical representativeness ratings (16 837 

participants). The panels use the same conventions as Figure S4A, B and C respectively.  838 
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V1: Time-course of the confusion matrix 839 

Here, we show how the confusion matrix for isoluminant stimuli changes over time. Between 100-840 

300ms, unique red and green show increased prediction probabilities, while the non-unique hues do 841 

not. Furthermore, for any presented stimulus, positive deviations from chance are only seen for the 842 

correct label and the proximal hue but not for non-proximal hues (e.g. for a red stimulus, the model 843 

predicts the labels red or orange, but never green or turquoise). 844 

 845 

Link: https://www.dropbox.com/s/b6fzc731fbmksu5/Classification_UH_Isoluminant.avi?dl=0 846 

 847 

Video V1: The label of the presented stimulus is shown on the x-axis, while the y-axis shows the 848 

label predicted by the model (thus, correct predictions lie on the diagonal going from bottom-left to 849 

top-right). The colour of a given square at time 𝑡 represents the predicted label at this instant, and the 850 

intensity of the colour shows the deviation of the prediction probability from the theoretical chance-851 

level. For clarity of presentation, any negative deviations from chance have been clipped to zero. The 852 

time elapsed from stimulus onset is shown on top.   853 

 854 

 855 
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