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Abstract: hCDKLS5 refers to the human cyclin-dependent kinase that is primarily expressed in the brain where it exerts its function
in several neuron districts. Mutations in its coding sequence are often causative of hCDKL5 deficiency disorder. The large-scale
recombinant production of hCDKLS5 is desirable to boost the translation of current therapeutic approaches into the clinic. However,
this is hampered by the following features: i) almost two-thirds of hCDKL5 sequence are predicted to be intrinsically disordered,
making this region more susceptible to proteolytic attack; ii) the cytoplasmic accumulation of the enzyme in eukaryotic host cells is
associated to toxicity. The bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) is the only prokaryotic host in which
the full-length production of hCDKL5 has been demonstrated. To date, a system-level understanding of the metabolic burden
imposed by hCDKL5 production is missing, although it would be crucial for the upscaling of the production process. Here, we have
combined experimental data on protein production and nutrients assimilation with metabolic modelling to infer the global
consequences of hCDKL5 production in PhTAC125 and to identify potential overproduction targets. Our analyses showed a
remarkable accuracy of the model in simulating the recombinant strain phenotype and also identified priority targets for optimized
protein production.
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1. Introduction

The possibility to heterologously express and purify specific recombinant proteins in large amounts permits their
biochemical characterization, the development of commercial goods and their use in industrial processes. With the
development of recombinant insulin and its production in Escherichia coli in the 1980s [1] a multi-billion dollar market
was launched, leading to current large-scale applications that are nowadays capable of releasing products ranging
from protein biologics to industrial enzymes [2]. Ideally, the practical steps that lead to recombinant protein production
are pretty straightforward and include the identification of the gene of interest, its cloning into an expression vector, its
transformation into the host of choice, the induction of protein synthesis and its final purification and characterization
[3]. The intrinsic complexity of biological systems, however, usually poses problems down the pipeline of bacterial
heterologous protein production. Indeed, as a consequence of the induction of the production of the foreign protein,
the biochemistry and physiology of the host may result dramatically altered. The numerous physiological changes that
may occur often lowers the amount of the target foreign protein that is produced and eventually recovered from the
recombinant organism [4]. In bacteria, high levels recombinant protein production frequently lead to an impact on host
cell metabolism; this is usually detectable through growth retardation and is generally known as “metabolic burden”
[5]. This additional metabolic load on the microbial chassis has been defined as the portion of a host cell's resources
- either in the form of energy such as ATP or GTP, or raw materials such as amino acids - that is required to maintain
and express foreign DNA, as either RNA or protein, in the cell [4]. In E. coli, for example, the overexpression of an
unnecessary protein results in a linear decrease in the growth rate, with the zero-growth limit occurring when the
overexpressed protein occupies a mass fraction equal to 1 - ¢y;yeq, With ¢,y representing the growth-rate invariant
fraction of the proteome [6]. There are many factors contributing to the emergence of this burden on growing cells that,
at the same time, express a heterologous protein. These mainly include the transcription, the translation and the folding
of the foreign protein [5,7,8] and the processes associated with plasmid maintenance, expression and amplification
[8,9]. Also, the expression of recombinant proteins may induce a system-level stress response which downregulates
key metabolic pathway genes leading to a decline in cellular health and feedback inhibition of both growth and protein
expression [10]. Finally, from an energetic perspective, the expression of a foreign protein in a cell may utilize a
significant fraction of its metabolic resources and precursors, removing them away from its central metabolism and
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placing a metabolic drain on the host [4]. Thus, upon protein production induction, an overall cellular reprogramming
has to occur in order to ensure an adequate supply of energy and charged amino acids to the process of protein
synthesis [10] . The identification of these system-level adjustments following heterologous protein production requires
the use of computational representations of microbial metabolism that are able to consider the entire cellular metabolic
network. Also, these computational models may help identifying the most suitable approaches to get to target (protein)
overproduction. Indeed, it has been recently acknowledged that the most innovative approach currently available to
improve the yield of recombinant proteins while minimizing wet lab costs relies on the combination of in silico studies
to reduce the experimental search space [11]. Among all the available in silico approaches, genome-scale metabolic
models (GEMs) offers the possibility to predict a cellular phenotype from a genotype under certain environmental
conditions and, importantly, to identify possible metabolic targets to improve the production of valuable compounds,
while ensuring sufficiently high growth rates [12—14]. GEMs can also be used for descriptive purposes, including the
identification of specific metabolic rewiring strategies following external perturbations and/or nutrients switch [15,16].
Thus, not surprisingly, GEMs have been extensively exploited in the context of recombinant protein production, mostly
with the aim of optimizing either the cultivation conditions or the strain genetic background for improved recombinant
protein production [17-19].

Despite E. coli is arguably the bacterium of choice for the production of recombinant proteins, the emergence of novel
bacterial chassis is an important fact, especially considering the possible unique properties of their physiology and
metabolism, and the practical applications in which they are expected to outperform other microbial platforms [20].
Among them, Pseudoalteromonas haloplanktis TAC125 (PhTAC125), the first Antarctic bacterium in which an efficient
gene-expression technology was established [21], is particularly promising for a number of reasons. First, several
generations of cold-adapted gene-expression vectors allow the production of recombinant proteins either by
constitutive or inducible systems and to address the product toward any cell compartment or to the extracellular
medium. Secondly, the development of synthetic media and efficient fermentation schemes allows upscaling the
recombinant protein production in automatic bioreactors. Finally, the recently reported possibility to produce proteins
within a range of temperature from 15 to —2.5 °C enhances the chances to improve the conformational quality and
solubility of recombinant proteins. Up to now, PhTAC125 has been used for the production of several recombinant
proteins such as a psychrophilic -galactosidase, the S. cerevisiae a-glucosidase, human nerve growth factor and the
the lysosomal enzyme a-galactosidase A (hGLA) [22-24].

Recently, PhTAC125 was found to be a potential chassis for the production of human CDKL5 (hCDKL5). hCDKLS5 is
a cyclin-dependent like protein kinase abundantly expressed in the brain, and it exerts its function in different neuron
districts such as the nucleus the cytoplasm and the synaptome. Mutations in the X-linked cdk/5 gene often end up in
the enzyme absence or in the production of loss-of-function variants, and both conditions are causative of hCDKL5
deficiency disorder (CDD), a rare and severe neurodevelopmental disorder for which no cure is available [25].
Recently, a protein replacement therapy was suggested, consisting in the administration of TAT-CDKL5, protein
transduction domain (TAT) fused hCDKL5. When injected in cdkl/5 knockout mice, TAT-CDKL5 was able to rescue
many anatomical and behavior deficits [26] . The translation of this promising therapeutic approach to clinics needs
the large-scale recombinant production of TAT-CDKL5. However, full-length human CDKLS5 is a difficult-to-produce
enzyme for two main reasons: i) almost two-thirds of its sequence is predicted to be intrinsically disordered, and the
lack of a precise 3D structure makes this region more susceptible to proteolytic attack by host-encoded proteases; ii)
the cytoplasmic accumulation of the enzyme in eukaryotic cells is associated to considerable toxicity, and the only
permissive production strategy is its extracellular secretion, often accompanied with unwanted glycosylation.
PhTAC125 is the only prokaryotic cell factory in which the full-length hCDKL5 production has been demonstrated, and
the implementation of its efficient production process is the obligatory step towards any possible application
(Calvanese et al. 2021 in press).

In this work we have modelled the heterologous production of the hCDKLS5 protein in the bacterium PhTAC125. The
genome-scale model of the recombinant strain was based on its original formulation [27], and further refined/updated
and constrained with experimental data on hCDKL5 production and substrates consumption. Such recombinant model
was then used to study the global metabolic consequences of the induction of hCDKL5 production as well to identify
potential targets for its overproduction.

2. Results and Discussion

2.1. An updated metabolic reconstruction of PhTAC125

The latest version of iIMF721 metabolic model of P. haloplanktis TAC125 [27] was updated to be compatible with current Systems
Biology Markup Language Level 3 Version 2 Core specification [28] extended with Flux Balance Constraints version 2 package
specification [29]. The update was conducted with libsbml Python library. It covered appropriate objective function declaration,
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compartments redefinition, model definitions annotation with SBO terms, extension of species definitions with chemical formulas,
update of gene names with the newest version of P. haloplanktis genome and various minor syntax changes. The update increased
iIMF721 Memote Total Score from 30% to 78% (Memote reports are available at https://github.com/mdziurzynski/tac125-metabolic-
model ). Additionally, we used BOFdat [30] to revise the original definition of the biomass composition in iIMF721 using available
experimental data. More in detail, we used the revised genome sequence of P. haloplanktis [31] and a compendium of
transcriptomics data from previously published works [32] to improve the formulation of biomass assembly reaction originally
proposed [27]. After updating the model, we checked whether it could quantitatively reproduce growth phenotypes as done by the
original metabolic reconstruction. Growth simulations on defined media revealed an overall accuracy that matched the one of the
original IMF721 reconstruction (Supplementary Material S1). This updated version of the model will be referred to as iIMF721_v2 in
the following sections and is available at [https://github.com/mfondi/CDKL5_recombinant_production].

2.2. CDKL5 production in controlled growth conditions

Human CDKL5 was recombinantly expressed as an N-terminally His-tagged engineered construct to allow for easy Western blot
detection and quantification. Its gene was expressed under the control of an IPTG-regulatable promoter [33] cloned in a high-copy
number plasmid, named pB40_79C-CDKLS5 (average copy number equal to 100, manuscript in preparation) in a mutant version of
PhTAC125 - KrPI LacY+ - capable of a fast IPTG internalization [33]. hCDKLS5 synthesis was induced in late exponential phase with
5mM IPTG at 15 °C in bacteria grown in the GG medium [34] for 8 hours . Total production of the target protein was estimated to
be 5.2 mg/L of culture by Western blot using a commercial His-tagged calibrator with a similar MW as hCDKLS5.

2.3. Estimation of average hCDKL5 production flux and nutrients uptake rates.

Here, we computed the actual (average) production and growth rates from the experimental data. As for hCDKL5 (molecular weight
128082,77 mg mmol'), after 8 hours a total amount of 5.2 mg (for one liter of culture) was obtained. After the same amount of time,
the OD of the culture was measured to be 2.55 that, when multiplied by 0.74 (i.e. the factor for converting PhATAC125 OD to g of
biomass [34]) corresponds to 1.887 g of cell dry weight (CDW). Putting everything together, we can compute the average production
flux hCDKL5 as follows:

[(5.2 mg/ 8h)/128082.77 mg mmol'] / 1.887 gcow = 2.7 x 10® mmol/gcow h'

The average growth rate for the recombinant strain across the 8h period was computed using initial and final OD
values:

(IN2.55-In0.94)+8 = 0.125 h""

The same calculation led to an average growth rate of 0.169 h™ for the wt strain. According to these data, the
production of hCDKL5 imposes an overall burden on growing PhTAC125 cells that leads to a 26% reduction in biomass
production in the hCDKL5 strain (Figure 1A).

At this point, the only parameters that are missing to fully characterize the CDKL5 production dynamics are the uptake
rates for glutamate and gluconate when they represent the only C sources on a minimal medium. To calculate these,
we set up an ad hoc experiment (see and Material and Methods and Supplementary Material S1) that revealed an
uptake rate of 0.35 and 0.66 mmol/gcow*h™' for glutamate and gluconate, respectively.

2.4. Recombinant model construction to account for hCDKL5 production

We then extended the iMF721_v2 to include heterologous hCDKL5 production (leading to (resulting in the
iIMF721_v2_CDKL5 reconstruction, see Supplementary Material S1, Figure S3). The processes taken into account
are: (i) synthesis of the plasmid pB40 and (ii) synthesis of hCDKL5 mRNA and its translation into the corresponding
protein sequence. As hCDKLS5 is not secreted by PhTAC125, no energy-dependent hCDKL5 secretion reaction was
added to the model. A plasmid copy number (Pcn) of 100 was used for pB40 because the latter is a high copy-number
plasmid. The reaction included in the metabolic network of PhTAC125 representing the synthesis of pB40 is the
following:

21H20 + 21ATP + 57dATP + 43dGTP + 43dCTP + 57dTTP -> pB40 + 21ADP + 21Pi + 21H

The stoichiometric coefficients for dATP, dGTP, dCTP and dTTP were determined according to the GC composition
of the pB40 plasmid. The ATP requirement for the synthesis of the pB40 plasmid was estimated based on the amount
of ATP required for the synthesis of the chromosomal DNA as previously described [17,19]. The obtained value (0.21)
was multiplied by 100, the estimated copy number of pB40. Finally, pB40 was included in the biomass reaction of the
model to account for the burden of the plasmid on the overall physiology of the cell. The stoichiometric coefficient of
pB40 was again derived from the stoichiometric coefficient of chromosomal DNA in the biomass assembly reaction of
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iIMF721_v2. This was done using the following proportion: 3850272:0.001608 = 8166:100X, where the first, the
second, the third and the fourth terms represent the size (in bp) of the PhTAC125 genome, the stoichiometric
coefficient for DNA in the original formulation of the PhTAC125 biomass reaction and the length of the pB40 plasmid,
and the (unknown) actual stoichiometric coefficient for the 100 copies of the plasmid. This calculation led to a
stoichiometric coefficient for pB40 of 0.000341. Concerning the reaction for hCDKL5 synthesis, this was formalized as
follows:

59 Ala [c] + 6 Cys|c] + 63 Asp[c] + 76 Glu[c] + 32 Phe[c] + 72 Gly[c] + 49 His[c] + 39 lle[c] + 84 Lys[c] + 101 Leulc]
+ 20 Met[c] + 59 Asnlc] + 80 Projc] + 53 GIn[c] + 76 Arg[c] + 140 Ser[c] + 56 Thr[c] + 41 Val[c] + 6 Trp[c] + 32 Tyr[c]
+ 2288 atp[c] + 2286 gtp[c] -> cdkl5[c] + 2288 amp]c] + 2286 gdp[c] + 4574 Pi[c]'

Where the stoichiometric coefficients for the amino acids were based on the composition of protein sequence and the
amount of ATP was computed considering the requirement of four ATP molecules for each amino acid added to the
protein [35]. As said above, since hCDKLS5 is not exported from the cell in vivo, no active transport reaction was
included in the model.

At this point, we constrained this iIMF721_v2_CDKLS5 reconstruction with experimental data to build two further models,
i.e. a wt model and a recombinant model (hamed recomb for brevity). More specifically, we constructed

1. a wt model by constraining the iIMF721_v2_CDKL5 reconstruction with glutamate/gluconate uptake rates to the
values experimentally determined and setting the biomass assembly reaction as the BOF of the model.

2. a recomb model by constraining the iIMF721_v2_CDKLS5 reconstruction with glutamate/gluconate uptake and growth
rates to the values experimentally determined and setting the hCDKL5 production reaction as the BOF of the model.

These two models have been used for all the simulations described below. The schematic representation of the
computational steps leading to the two models is reported in Supplementary Material S1, Figure S3)

2.5. The PhTAC125 recomb model accurately simulates hCDKL5 production

To account for the predictive capability of the PhTAC125 reconstruction in the context of hCDKL5 production, we
computed growth and hCDKL5 production rates in the wt and recomb models. As said above, the wt model was
obtained by setting the lower bound of glutamate and gluconate uptake reactions to 0.35 and 0.66 mmol/gcow*h™
(respectively) and performing an FBA simulation using biomass production as the objective function. This wt model
predicted a growth rate of 0.119 h™' which closely resembles the one experimentally measured (Figure 1B, “WT”).
Afterwards, to generate the recomb model we maintained the same boundaries for the glutamate and gluconate
reactions and constrained the growth rate to 74% of the optimal one predicted by the model (74% of 0.119 h") and
optimized for hCDKLS5 production (Figure 1A). The simulations using this recomb model returned a hCDKL5 production
flux of 2.67*10°° mmol/g DCW h-' which accurately resembles the one measured experimentally (2.7 x 10°° mmol/g
DCW h') (Figure 1C). A production envelope analysis correctly revealed that hCDKL5 and biomass production
competes for a common pool of nutrients and allowed to sketch the current trade-off between these two cellular
objectives (Figure 1D). These data indicate that, when constrained with experimental data, the recomb model is
capable of providing a stoichiometrically reliable representation of hCDKL5 production in PhTAC125.
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Figure 1. (a) Growth curve of WT and hCDKLS5 strains as experimentally determined. (b) Comparison between the
model-predicted and measured growth rates in wild type. (c) Comparison between the measured hCDKL5
production rate in the recombinant strain and the one predicted by the model. (d) Production enveloper for hCDKL5.
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Table 1. Reactions showing an increased flux in the recomb vs wild model simulations

Reaction model code Subsystem Reaction name

rxn00789 Histidine metabolism ;;1(05;';':83gggﬁ;{;ﬁf’;g'rggp:py“’phosr’hate
rxn00863 Histidine metabolism L-Histidinal:NAD+ oxidoreductase

rxn02159 Histidine metabolism L-Histidinol:NAD+ oxidoreductase

rxn02160 Histidine metabolism L-Histidinol-phosphate phosphohydrolase

5-Amino-2-oxopentanoate:2-oxoglutarate

rxn02320 Histidine metabolism aminotransferase

~Xxn02473 Histidine metabolism D-erythro-1-(Imidazol-4-yl)glycerol ~ 3-phosphate
hydro-lyase

rxn02834 Histidine metabolism Phosphoribosyl-ATP pyrophosphohydrolase

rxn02835 Histidine metabolism 1-(5-phospho-D-ribosyl)-AMP 1,6-hydrolase

rxn03135 Histidine metabolism Imidazole-glycerol-3-phosphate synthase

rxn03175 Histidine metabolism N-(5'-Phospho-D-ribosylformimino)-5-amino-1-

rxn05466 Ammonia transport Ammonia transport via diffusion

2.6. PhTAC125 metabolic rewiring following hCDKL5 induction

To explore the extent of PhTAC125 metabolic network rewiring upon the induction of hCDKL5 synthesis, we then
analyzed the differences in flux distributions between wt and recomb models. As expected, running an FBA simulations
on the two models we found a different number of flux-carrying reactions, with the recomb model showing a higher
number of core reactions (491 vs 484). However, since an FBA solution may not be unique (i.e. alternative flux
distributions may still lead to an equally optimal solution), we used Flux Variability Analysis (FVA) to assess the set of
core reactions in each of the simulations (see Material and Methods). A set of 84 core reactions was shared by the wt
and the recomb models. This set of reactions represents 74% and 97% of the core reactions of the two models (i.e.
the set of reactions remaining after removing the set of reactions showing a large variability range). Within this set, we
identified 12 reactions (11 of them were gene-encoded) shared by both models but that showed an increased flux in
the recomb vs the wt model (Table 1). The 11 gene-encoded reactions included the reactions involved in histidine
biosynthesis and an ammonia transporter. The histidine biosynthetic reactions covered the entire pathway, i.e. from
PRPP (5-Phosphoribosyl 1-pyrophosphate) to histidine. The higher flux predicted in the histidine biosynthetic pathway
of the recomb model vs. the wt model can be explained by the different amino acid composition of recombinant protein
with respect to the native PhTAC125 proteome (Figure 2). Indeed, as the abundance of this amino acid is double in
hCDKL5 in respect to the PhTAC125 proteome, precursors used to produce histidine in the recomb model will be
drained faster than in the wt model and fluxes around those precursors are expected to be significantly altered [36].
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Figure 2. Difference in amino acid composition between PhTAC125 proteome and CDKLS5.

2.7. Finding the optimal growth medium

We then sought to identify potential carbon sources whose inclusion in the original, optimized medium, could boost the
production of hCDKL5. To this purpose, we selected all the transport reactions present in the iIMF721_v2 metabolic
reconstruction and created a list including the transported compounds. We considered PhTAC125 as capable of taking
up these compounds inside the cell because its genome encodes the corresponding transporters. We then performed
one simulation for each of these compounds adding it to the defined medium used during the previous simulations
(Schatz salts plus glutamate and gluconate, see Material and Methods), constraining the growth rate to the
experimentally determined value and using hCDKL5 production as the objective function. In these simulations the uptake
rate of the extra carbon source was arbitrarily set to 0.5 mmol/gcow*h™. We then estimated the effect of the amended
carbon source by computing the ratio between the hCDKL5 production flux in the new carbon source and the original
one (i.e. with no amendments) and selected the first 30 compounds in the list (Figure 3).
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Figure 3. The effect of putative nutrients to be added to the GG medium on CDKL5 production flux. Y-axis indicates
the log Fold Change of CDKLS5 production flux in repsect to the recomb model grown on GG medium.

The three most promising compounds identified with our analysis are amylotriose, maltose and mannitol. The first
catabolic steps of these three compounds leads to the formation of D-glucose (amylotriose and maltose) or D-fructose
in PhTAC125, thus suggesting that the strengthening of sugar metabolism might the primary effect of adding these
compounds to the growth medium of the recombinant strain and one of the possible ways to increase hCDKL5
production. In order to better address this point, we further investigated which part of the PhTAC125 metabolic network
is specifically affected by the amendment of the best performing nutrients to the growth medium. We thus checked
which reactions increased their flux in the recombinant model growing in GG medium plus amylotriose compared to
the same model grown in simple GG medium (Table 2). This list of reactions was filtered by removing those (non-core)
reactions showing more than 30% variation between their minimum and maximum fluxes during a FVA as described
in Material and Methods. Overall, we found 15 gene-encoded reactions displaying an increased flux in this condition:
the majority of them (11) were involved in histidine biosynthesis, three in phenylalanine, tyrosine and tryptophan
biosynthesis and one in riboflavin metabolism. We found a similar scenario (i.e. the same involved pathways) for the
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other top four nutrients (maltose, mannitol, thymidine and galactose), with a majority of histidine and phenylalanine
metabolism related enzymes displaying an increased flux in the amended medium. Additional pathways that might be
affected by these nutrients include nicotinate and nicotinamide metabolism (found when simulating the amendment of
thymidine) and galactose metabolism (found when simulating the amendment of galactose).

Taken together, these results suggest that the main effect of adding extra-nutrients to the medium would be an
increased availability of histidine molecules inside the cell that, in turn, would result in an improved production rate of
hCDKL5. Again, this can be explained by the different histidine content of the overall PhATAC125 proteome and of
hCDKL5 sequence (Figure 2). The enzymes involved in phenylalanine, tyrosine and tryptophan biosynthesis that
appear to increase their flux in the tested conditions include those responsible for the generation of PRPP (5-Phospho-
alpha-D-ribose 1-diphosphate) that is a key pentose phosphate pathway (PPP) intermediates for purine, pyrimidine
and histidine biosynthesis. Its connection to an increased hCDKL5 production might thus be double: on one side it
could fuel histidine biosynthesis for the reasons described above, on the other it could facilitate the synthesis of purines
and pyrimidines required by plasmid replication and transcription during heterologous protein expression.

Table 2. Reactions showing an increased flux in the recomb model growing in GG medium amended with amylotriose

Reaction model code Subsystem Reaction name

rxn05466 Ammonium transporter Ammonia transport via diffusion

rxn02160 Histidine metabolism L-Histidinol-phosphate phosphohydrolase

rxn00863 Histidine metabolism L-Histidinal:NAD+ oxidoreductase

rxn02159 Histidine metabolism L-Histidinol:NAD+ oxidoreductase

rxn02834 Histidine metabolism Phosphoribosyl-ATP
pyrophosphohydrolase

rxn03175 Histidine metabolism glnfﬁ] ;)'f:‘_oSpho‘D'“bOSV'form'm'”0)'5'

rxn02473 Histidine metabolism D-erythro-1-(Imidazol-4-yl)glycerol  3-

phosphate hydro-lyase
N-(5-Phospho-beta-D-ribosyl)anthranilate
ketol-isomerase
5-Amino-2-oxopentanoate:2-oxoglutarate
aminotransferase
1-(2-Carboxyphenylamino)-1-deoxy-D-

Phenylalanine, tyrosine and

rxn02508 tryptophan biosynthesis

rxn02320 Histidine metabolism
Phenylalanine, tyrosine and

rxn02507 tryptophan biosynthesis ribulose-5-phosphate
1-(5-Phospho-D-ribosyl)-

rxn00789 Histidine metabolism ATP:pyrophosphate phosphoribosyl-
transferase

rxn03135 Histidine metabolism Imidazole-glycerol-3-phosphate synthase

00791 Phenylalanine, tyrosine and N-(5-Phospho-D-

tryptophan biosynthesis ribosyl)anthranilate:pyrophosphate
s . 1-(5-phospho-D-ribosyl)-AMP 1,6-
rxn02835 Histidine metabolism hydrolase
rxn00392 Riboflavin metabolism ATP:riboflavin 5'-phosphotransferase

2.8. Finding hypothetical targets for h\CDKL5 overproduction

We then used the model to predict possible targets to improve the production of hCDKL5 in P. haloplanktis TAC125.
We focused our attention on the use of the well-established algorithm FSEOF [37]. Briefly, FSEOF scans all the fluxes
in the reconstruction and identifies the increasing ones when the flux toward product formation is set (enforced) as
further constraint during FBA. The reactions identified by FSEOF are primary over-expression targets that may lead
to an improved synthesis of the desired target (hNCDKLS5 in our case). By applying FSEOF as described in Material and
Methods, we identified 70 target gene-encoded reactions, whose over-expression may lead to an improved target
production. The complete list of these reactions is available as Supplementary Material S1. The top ten target reactions
identified by FSEOF are shown in Table 3. The first reaction in the list is represented by rxn05937, catalyzing the
formation of NADPH from NADP and reduced ferredoxin. Forcing the flux through this reaction would allow increasing
the overall NADPH pool of the cell and this has been widely recognized as an important factor in the process of
heterologous protein production in microorganisms [38]. Reduced ferredoxin necessary for the production of NAPH
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might be provided by L-Glutamateferredoxin oxidoreductase (Table 3), catalyzing the conversion of L-glutamate to L-
glutamine with the reduction of ferredoxin. Reactions belonging to the Entner-Doudoroff (ED) branch of the PPP, are
also high-ranking overexpression targets according to FSEOF (Table 3, Figure 4A). These include the three enzymes
catalyzing the conversion to D-Glucono-1,5-lactone 6-phosphate to pyruvate and D-Glyceraldehyde 3-phosphate
(encoded by agal, edd and eda). Overall, the degradation of one molecule of glucose through this pathway, as opposed
to classical PPP leading to ribose-5P, leads to lower amounts of reducing equivalents (1 NADPH produced instead of
2) but ensure a greater and balanced production of precursors (namely pyruvate and glyceraldehyde-3P (G3P)) that
can be used both to fuel the TCA cycle and for amino acid biosynthesis [39]. Indeed, it is known that the ED pathway,
as a variant glycolysis pathway, produces equal amounts of G3P and pyruvate and this superior stoichiometric feature
makes the ED pathway a preferable route for precursor supply [40]. Importantly, targets within these metabolic
pathways (i.e. ED and PPP in general) have been identified in other works aimed at identified optimization production
strategies [18,19,39,41]. Most of the other reactions identified by the FSEOF algorithm are involved in the metabolism
of amino acids. In particular, our simulations suggest that the production of hCDKL5 might be improved by redirecting
the catabolism of glutamate towards the production of aspartate (through the action of L-Aspartate2-oxoglutarate
aminotransferase) and its subsequent conversion to 4-Phospho-L-aspartate and L-Aspartate-4-semialdehyde (Figure
4B), catalyzed by ATPL-aspartate 4-phosphotransferase and L-Aspartate-4-semialdehydeNADP+ oxidoreductase,
respectively. L-Aspartate-4-semialdehyde, in particular, serves as substrate for the biosynthesis of many amino acids,
including lysine, threonine and glycine (Figure 4B). Finally, our FSEOF simulation identified the enzyme serine O-
acetyltransferase (catalyzing the formation of serine from CoA and O-Acetyl-L-serine) as a likely hCDKL5
overproduction target. Looking at the unbalanced distribution of S residues in the sequence of hCDKL5 in respect to
the one of the PhTAC125 genome (Figure 2) it can be hypothesized that the meaning of this latter finding resides in
the necessity to increase the production of serine to cope with the higher request of this amino acid following the
induction of CDKL5 production.

Table 3. Top ten reaction targets predicted by the FSEOF algorithm

Reaction  model Subsystem Reaction name Formula
code
FerredoxinNADP+ NADP + H+ + Reducedferredoxin =>
rxn05937 NA oxidoreductase NADPH + Oxidizedferredoxin
Glyoxylate
and L-Glutamateferredoxin 2 L-Glutamate + 2 Oxidizedferredoxin
rxn12822 dicarboxylat oxidoreductase => 2-Oxoglutarate + L-Glutamine + 2
e (transaminating) H+ + 2 Reducedferredoxin
metabolism
01477 PPP 6-Phospho-D-gluconate hydro-  6-Phospho-D-gluconate => H20 + 2-
lyase (edd) Keto-3-deoxy-6-phosphogluconate
2-dehydro-3-deoxy-D- 2-Keto-3-deoxy-6-phosphogluconate
PPP gluconate-6-phosphate D- _
rxn03884 => Pyruvate + Glyceraldehyde3-
glyceraldehyde-3-phosphate-
phosphate
lyase (eda)
PPP 6-Phospho-D-glucono-1,5- H20 + 6-phospho-D-glucono-1-5-
rxn01476 lactone lactonohydrolase lactone => H+ + 6-Phospho-D-
(Agal) gluconate
Alanine,
aspartate
and L-Aspartate2-oxoglutarate 2-Oxoglutarate + L-Aspartate <= L-
rxn00260 .
glutamate aminotransferase Glutamate + Oxaloacetate
metabolism
Glycine,
serine  and  \7p| -aspartate 4 ATP + L-Aspartate => ADP + 4-
rxn00337 threonine
phosphotransferase Phospho-L-aspartate

metabolism
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Glycine,

serine  and

g]rz?er::eeanc; Is_t_apr:izla:jr::ec-itNADP+ NADP + Phosphate + L-Aspartate4-
rxn01643 ySieine ! y semialdehyde <= NADPH + 4-

methionine —  oxidoreductase Phospho-L-aspartate

Lysine (phosphorylating) P P

Metabolism
xn00285 (c_:lltéaAti (;lyec)le SuccinateCoA ligase (ADP-  ATP + CoA + Succinate => ADP +

y forming) Phosphate + Succinyl-CoA
Cysteine and
i i - + L- i <= + -

rxn00423 methlon!ne serine O-acetyltransferase Acetyl-CoA . L-Serine CoA + 0

metabolism Acetyl-L-serine

Further, in order to provide a general view of the reactions identified as potential overexpression targets by FSEOF,
we grouped them according to their corresponding metabolic pathway (Figure 4C). In line with the results illustrated
above, six pathways (out of ten with more than two reactions included) were representatives of amino acids
metabolism, with four of them appearing in the top-five pathways (i.e. Val/Leu/lle, Phe/Tyr/Trp and Lys biosynthesis
and His metabolism). Beside amino acid metabolism, the other pathways represented were Urea and amino groups

metabolism, glycolysis, PPP and purine metabolism.

Pyruvate

D-Gluconate-6P

agal edd eda
o

D-Glucose 6-phosphate
L

D-Glucono-1,5-lactone
6-phosphate

° Glyceraldehyde
3-phosphate

2-Dehydro-3-deoxy-
6-phospho-D-gluconate

Aspartate

® L L
Glutamate 4-Phospho-L-aspartate

@ L-Aspartate 4-semialdehyde

Valine, leucine and isoleucine biosynthesis
Phenylalanine, tyrosine and tryptophan biosynthesis
Histidine metabolism

Urea cycle and metabolism of amino groups

Lysine biosynthesis

Glycolysis - Entner-Doudoroff

Purine metabolism

Pentose phosphate pathway

Glycine, serine and threonine metabolism

Cysteine metabolism

12345678910

N. of reactions

Figure 4. Pathways including the reactions identified as potential over-expression targets by the FSEOF algorithm
for (a) Entner-Doudoroff pathway and (b) glutamate catabolism. Only pathways including 2 or more reactions are
shown in (c).
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3. Materials and Methods

3.1. Bacterial Strains and conjugation experiments

Plasmid pB40_79C-CDKL5 was mobilized from E. coli S17-1(Apir) to KrPL LacY+ [33] through standard conjugation
techniques [42]. E. coli S17-1(Apir) - a strain possessing mob and fra genes for plasmid mobilization [43] - was routinely
grown in LB (10 g/L bacto-tryptone, 5 g/L yeast extract, 10 g/L NaCl) at 37 °C with the supplementation of 34 ug/mL
chloramphenicol if needed for plasmid selection. KrPL LacY+ - a P. haloplanktis TAC125 strain engineered for
improved IPTG uptake [33] - was grown at 15 °C in TYP (16 g/L bacto-tryptone, 16 g/L yeast extract, 10 g/L NaCl) for
conjugational experiments and initial preinocula. Recombinant KrPL LacY+ was selected with 25 pg/mL and 12.5
pg/mL chloramphenicol in liquid and solid media, respectively. Solid LB and TYP broths were prepared by the addition
of 15 g/L agar.

3.2. hCDKL5 production

pB40_79C-CDKLS5 plasmid allows the IPTG-inducible expression of a PhTAC125 codon optimized gene coding for an
engineered variant of human CDKLS5 isoform 1. The translated protein possesses tandem His-Sumo [44] and Tatk
[26,45] N-terminal tags, and a C-terminal 3xflag. The whole 1144 aa sequence was expressed as a cytosolic protein
from the pB40 plasmid which is characterized by an average 100 copy number (manuscript in preparation). For
recombinant gene expression, KrPL LacY+ was cultivated at 15 °C in a 100 mL Erlenmeyer flask containing 20 mL
GG medium [34]: 10 g/L L-glutamic acid monosodium salt monohydrate, 10 g/L gluconic acid sodium salt, 10 g/L NaCl,
1 g/L NH4NO3, 1 g/L KH2PO4, 0.2 g/L MgS04*7H20, 5 mg/L FeS04*7H20, 5 mg/L CaCI2*2H20, pH 7.8. After the
inoculum at 0.10 OD600, the bacterial growth was followed for 13 h and the recombinant gene expression triggered
at 1.00 OD600 with 5 mM IPTG. 8 h after the induction, the bacterial cells were harvested by centrifugation (4 °C,
4,000 xg, 20 min) when they reached 2.55 OD600. To check and estimate hCDKLS5 intracellular production at the end
of the culture, bacterial pellets equivalent to 1.00 OD600 were resuspended in 60 L Laemmli Buffer 4X and denatured
at 90 °C for 20 min. Denatured cellular extracts equivalent to 1/120 OD600 were loaded onto a 7.5% precast Mini-
Protean TGX (BioRad) and resolved by SDS-PAGE. Known amounts of His-Neuropilin (110 kDa, Immunological
Sciences) were loaded onto adjacent lanes to develop a calibration curve. Then, separated proteins were transferred
to a PVDF membrane using a semi-dry system and His-tagged proteins (hCDKL5 and His-Neuropilin) were detected
with a HRP-conjugated anti-His antibody (1:2,000, Sigma) using the Enhanced Chemiluminescence kit (ECL, BioRad)
and a ChemiDoc MP Imaging System (BioRad). Quantitative analyses of blotted hCDKL5 and His-Neuropinilin were
carried out with Image Lab software (BioRad) and the volumetric yield was derived considering the final biomass
concentration (OD600: 2.55).

3.3. Glutamate and gluconate consumption experiment

PhTAC125 bacterial culture was grown in GG medium modified so to contain 5 g/L of L-glutamic acid monosodium
salt monohydrate and 5 g/L D-gluconic acid sodium salt in a Stirred Tank Reactor 3 L fermenter (Applikon) with a
working volume of 1.5 L. The bioreactor was equipped with the standard pH-, pO2-, level- and temperature sensors
for the bioprocess monitoring. The culture was carried out at 15 °C for 30 h in aerobic conditions (45 % dissolved
oxygen). 1 mL samples for the metabolomic analysis were collected during the growth and centrifuged at 1300 rpm
for 20 min at 4 °C. After the centrifugation, supernatants were recovered, filtered through membranes with a pore
diameter of 0.22 ym, and stored at -80 °C.

3.4. Metabolomic data

Metabolomic data on cell growth media were obtained by 1H Nuclear Magnetic Resonance Spectroscopy (NMR). The
supernatant samples were thawed at room temperature. 540 uL of each sample were added with 60 uL of a potassium
phosphate buffer (1.5 M K2HPO4, 100% (v/v) 2H20, 10 mM sodium trimethylsilyl [2,2,3,3-2H4] propionate (TMSP),
pH 7.4). The mixture was then transferred into 5.00 mm NMR tubes for the subsequent analysis.
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Spectral acquisition and processing were performed according to standard procedures [46,47]. One-dimensional (1D)
1H NMR spectra were recorded using a Bruker 600 MHz spectrometer (Bruker BioSpin) operating at 600.13 MHz
proton Larmor frequency and equipped with a 5 mm PATXI 1H-13C-15N and 2H-decoupling probe including a z axis
gradient coil, an automatic tuning and matching and an automatic and refrigerate sample changer (SampledJet). ABTO
2000 thermocouple served for temperature stabilization at the level of ~0.1 K at the sample. Before measurement,
samples were kept for 5 min inside the NMR probe head, for temperature equilibration at 300 K. NMR spectra were
acquired with water peak suppression using the 1D standard NOESY pulse sequence (128 scans, 65,536 data points,
spectral width of 12,019 Hz, acquisition time of 2.7 s, relaxation delay of 4 s and mixing time of 0.01 s). The raw data
were multiplied by a 0.3 Hz exponential line broadening before applying Fourier transformation. Transformed spectra
were automatically corrected for phase and baseline distortions. All the spectra were then calibrated to the reference
signal of TMSP at & 0.00 ppm using TopSpin 3.5 (Bruker BioSpin srl). The signals deriving from glutamate and
gluconate were assigned using an internal NMR spectral library of pure organic compounds; matching between the
present NMR spectra and the NMR spectral library was performed using AssureNMR software (Bruker BioSpin srl).
Their concentrations were calculated by integrating the corresponding signals in defined spectral range, using a home-
made R 3.0.2 script.

3.5. PhTAC125 genome-scale metabolic reconstruction and constraint-based simulations

The original P. haloplanktis TAC125 genome-scale metabolic reconstruction [27] was used as the starting point of the
modelling procedures. This metabolic reconstruction was then updated and quality-checked as described above using
BOFdat [30] (for the biomass reaction) and Memote [48] (model consistency evaluation). The recently published
genome sequence of P. haloplanktis TAC125 [31] was fed into BOFdat DNA.py script in order to generate the updated
stoichiometric coefficients for As, Ts, Cs, and Gs. Similarly, a compendium of expression (RNAseq) data from
previously published [32] datasets was fed into BOFdat RNA.py code in order to generate revised and experimentally-
based stoichiometric coefficients for RNA building blocks.Constraint-based simulation (e.g. FBA) were performed
using COBRA Toolbox v3.0 [49] in MATLAB 2020b and using Gurobi as solver. Overexpression targets were identified
using the latest FSEOF version implemented in Raven [50] and selecting 100 iterations and a ratio coefficient of
optimal target reaction flux of 0.9. The codes used to run all the simulations are available at
https://github.com/mfondi/CDKL5_recombinant_production.

3.6. Identification of core reactions

Flux Variability Analysis (FVA) was used to assess the relevance of each reaction when simulating growth and
hCDKL5 production. The function fluxVariability of the COBRA toolbox was used for this purpose. The following
procedure was applied (separately) to both the wt and the recomb models. First, an FBA optimization was run on the
model to predict the flux across each reaction. Afterwards, an FVA simulation with exactly the same constraints of the
previous FBA simulation was performed and the flux range for each reaction stored. Then, for each of the two models,
only those reactions satisfying the following criterion were labelled as core reactions:

with soly¢/recomp > 0

fmin,FVA > 0.7 * SOlwt/recomb AND fmax,FVA <13+« SOlwt/recomb

with soly/recomp < 0

fmax,FVA < 0.7 * SOlwt/recomb AND fmax,FVA > 1.3« SOlwt/re(:omb
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with sol,; , frunrva @Nd frarvarepresenting the FBA solution, the lower FVA solution value and the upper FVA
solution value, respectively. According to this strategy, in each simulation, only those (core) reactions displaying a flux
value different from zero and with a narrow range of admissible flux (30%) during a FVA simulation were maintained,
whereas those not satisfying this condition were considered unreliable and filtered away.

4. Conclusions

In this work, we have combined experimental and computational approaches to characterize the production of
recombinant hCDKLS5 in the Antarctic marine bacterium P. haloplanktis TAC125. By constraining an updated genome-
scale metabolic model of this bacterium with experimentally determined nutrients absorption rates, we were able to
predict hCDKL5 production rates that matched those determined experimentally and to correctly estimate the burden
(in terms of reduction in biomass yield, about 25% compared to the wt strain) of protein production in this bacterium.
Next, we used the model to describe the metabolic rewiring occurring in this bacterium upon the induction of hCDKL5
production and to identify possible overproduction strategies (both in terms of amendments to the original growth
medium and in terms of overexpression targets). Despite the fact that each of these analyses highlighted specific
pathways and/or targets that appear to be strongly connected to hCDKL5 production, common trends could be
identified. In particular, our analyses suggested that the drainage of amino acids and nucleotides towards the synthesis
of recombinant hCDKL5 imposes severe alterations in the metabolism of host cell and, as a consequence, the
pathways leading to the production of these compounds emerge as priority targets for optimized protein production.
In this context, it has been suggested that, when the amino acids composition of the recombinant protein differs from
the average composition of the host cell proteome, this might induce an augmented metabolic imbalance in the host
cells and an overall bottleneck in the production rate of the recombinant protein [36,51]. In agreement with these
observations, we found that i) the metabolism of the recomb model is shifted towards histidine biosynthetic fluxes and
ii) histidine biosynthetic genes are those that are affected the most by the inclusion of extra nutrients (e.g. amylotriose
and maltose) to the medium. Indeed, histidine is one of the residues showing the highest imbalance between the
PhTAC125’s proteome and hCDKL5 sequence. Similarly, serine (and other amino acids) biosynthetic steps emerge
as priority targets among the reactions identified by FSEOF. Genes and reactions belonging to the PPP are other
recurrent hotspots/targets identified by our hCDKL5 production simulations. Studies have previously shown that the
overexpression of genes belonging to the PPP have a positive influence on recombinant production in other hosts
[39,52] and this has been generally associated to the increased production of both reducing power and intermediates
for nucleotides biosynthesis. In our simulations, ED pathway genes (namely agal, edd and eda) also emerged as
promising targets to increase the rate of hCDKL5 production, probably due to the increased pool of precursors
(pyruvate and G3P) available following this route.
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behalf of Loulou Foundation to MLT (Pilot Award Number: CDKL5-20-101-08), and by the Italian parents' association "La fabbrica
dei sogni 2- New developments for Rett Syndrome” (to A.C., M.C., C.L., E.P. and M.L.T.).
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