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Abstract 12 

Humans can recognize other people’s actions in the social environment. This action recognition 13 

ability is rarely hindered by the movement of people in the environment. The neural basis of this 14 

tolerance to changes in the position of observed actions is not fully understood. Here, we aimed 15 

to identify brain regions capable of generalizing representations of actions across different 16 

positions and investigate the representational content of these regions. fMRI data were 17 

recorded from twenty-two subjects while they were watching video clips of ten different human 18 

actions in Point Light Display format. Each stimulus was presented in either the upper or the 19 

lower visual fields. Multivoxel pattern analysis and a searchlight technique were employed to 20 

identify brain regions that contain position-tolerant action representation: linear support vector 21 

machine classifiers were trained with fMRI patterns in response to stimuli presented in one 22 

position and tested with stimuli presented in another position. Results of this generalization test 23 

showed above-chance classification in the left and right lateral occipitotemporal cortex, right 24 

intraparietal sulcus, and right post-central gyrus. To explore the representational content of 25 

these regions, we constructed models based on the objective measures of movements and 26 

human subjective judgments about actions. We then evaluated the brain similarity matrix from 27 

the cross-position classification analysis based on these models. Results showed cross-position 28 

classifications in the lateral occipito-temporal ROIs were more strongly related to the subjective 29 

judgments, while those in the dorsal parietal ROIs were more strongly related to the objective 30 

movements. An ROI representational similarity analysis further confirmed the separation of the 31 

dorsal and lateral regions. These results provide evidence for two networks that contain abstract 32 

representations of human actions with distinct representational content.   33 

 34 

Keywords: action observation, position invariance, fMRI, multivariate pattern analysis. 35 
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Introduction 36 

Humans can rapidly and accurately recognize other people’s actions in the social 37 

environment. People’s movement in the environment introduces often dramatic changes in the 38 

viewpoint, size, and position of their image on the retina. This confounding variability renders 39 

the action recognition task computationally challenging. Yet, humans’ ability to recognize 40 

actions is rarely hindered by this variability. A brain region that subserves human action 41 

recognition ability is expected to: 1) contain information about various human actions and 2) 42 

contain action representations that are tolerant to the variability in the visual input. Here, using 43 

functional MRI and multi-voxel pattern analysis, we aim to identify such regions using changes 44 

in the position of the actor as the source of variability. After identifying these regions, we aim to 45 

explore their representational content and determine to what extent they relate to human 46 

subjective judgments about actions or objective measures of body movements. 47 

Previous studies that have explored tolerance of visual representations to variability in the input 48 

have mostly focused on static pictures of objects and human bodies. Regions in both 49 

occipitotemporal (Konen and Kastner, 2008; Cichy et al., 2011, 2013; Anzellotti et al., 2013; 50 

Ramírez et al., 2014) and parietal cortices (Konen and Kastner, 2008) have been identified that 51 

contain position, size, and viewpoint tolerant representation of static objects (Konen and 52 

Kastner, 2008; Mur et al., 2010; Cichy et al., 2011, 2013; Anzellotti et al., 2013; Ramírez et al., 53 

2014; Xu and Vaziri-Pashkam, 2020). This characteristic has been proposed as a defining 54 

feature of regions that contribute to human abstract object knowledge (Dicarlo and Cox, 2007). 55 

In the domain of observed actions, despite the large body of literature that identifies regions in 56 

the occipitotemporal and parietal cortices that respond to (Casper et al., 2010; Kalenine et al., 57 

2010; Grosbras et al., 2012; Watson et al., 2013; Urgesi et al., 2014) and contain information 58 

about (e.g., Wheaton et al., 2004; Jastorff et al., 2010; Abdollahi et al., 2013;  Lignau and 59 

Downing, 2015; Ferri et al., 2015; Hafri et al., 2017; Wurm et al., 2017b; Urgen et al., 2019; 60 

Tucciarelli et al., 2019; Tarhan and Konkle, 2020; Urgen and Orban, 2021) observed actions, 61 
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evidence for the tolerance of these representations to changes in the position of the actors is 62 

still scant.  63 

Previous studies have extensively investigated the tolerance of action representations to 64 

changes in viewpoint in both monkeys (Oram and Perrett, 1996; Vangeneugden et al., 2014; 65 

Caggiano et al., 2011; Maeda et al., 2015; Maranesi et al., 2015; Barz et al., 2017; Simone et 66 

al., 2017; Livi et al., 2019; Albertini et al., 2020; Lanzilotto et al., 2020) and humans (Grossman 67 

et al., 2010; Ogawa and Inui, 2011; Oosterhof et al., 2012; Tucciarelli et al., 2015; Isik et al., 68 

2016). Results of these human studies provide evidence for viewpoint tolerance in the lateral 69 

occipito-temporal (Grossman et al., 2010; Tucciarelli et al., 2015) and parietal cortices (Ogawa 70 

and Inui, 2011; Oosterhof et al., 2012). In contrast to viewpoint tolerance, position tolerance has 71 

not been extensively explored. Grossman et al. (2010) employed an fMRI adaptation approach 72 

to investigate position tolerance in the human brain.  They found that a region in human STS 73 

shows tolerance to variations in the position of observed actions. They did not systematically 74 

investigate the position sensitivity of parietal action selective regions. The fMRI adaptation 75 

technique used in this study may not have sufficient power in identifying the full scope of 76 

position tolerance in action selective regions compared to other techniques such as multi-voxel 77 

pattern analysis (MVPA, Haxby, 2012) that directly investigate the representational content of a 78 

region. Roth and Zohary (2015) employed MVPA (correlation and cross-decoding) to study 79 

position tolerance during observation of tool-grasping movements in humans. Their stimuli were 80 

presented in various locations, and position tolerance was examined for presentations in the left 81 

and right visual fields. They discovered that position information is gradually lost, and hand/tool 82 

identity information is enhanced along the posterior-anterior axis in the dorsal stream. However, 83 

their study was limited to grasping movements. It is not obvious if their results would generalize 84 

to full-body movements.  85 

Other studies that have employed MVPA have often used natural stimuli in which actions 86 

happen at different positions, but they have averaged the responses across stimuli instead of 87 
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systematically investigating the tolerance of representations across changes in position. 88 

Therefore it is hard to speculate about the extent of position tolerance in action selective regions 89 

from these studies (Hafri et al., 2017; Wurm et al., 2017b; Tarhan and Konkle, 2020). As such, a 90 

systematic investigation of position tolerance across dorsal and ventral action selective regions 91 

is still missing in the literature. In this study, we will use MVPA and cross-position decoding 92 

using a support vector machine classifier to search for position tolerant representations of 93 

actions in the human brain. Finding these regions, we will then investigate their representational 94 

content using a representational similarity analysis (Kriegeskorte et al., 2008).  95 

Several theories have been proposed to characterize the role of individual action 96 

selective regions in the processing of action stimuli. In the occipito-temporal cortex, a division of 97 

labor has been suggested between regions such as EBA that process the form of the body and 98 

regions such as STS that process the movement of the body (Giese & Poggio, 2003; Peelen et 99 

al., 2006; Grossman et al., 2010; Michels et al., 2005; Downing et al., 2006; Vangeneugden et 100 

al., 2016 refs from Vangeneugden; Jastorff and Orban, 2009). These studies do not elaborate 101 

on the representational content of these regions. A few studies have taken a step further to 102 

establish the principles of coding in action selective regions. Within the lateral occipital cortex, 103 

Wurm et al. (2017b) have suggested that the neural representation of hand actions is organized 104 

based on the extent of sociality and transitivity of these actions. Recently, in a study with a large 105 

set of natural images of actions, Tucciarelli et al. (2019) compared the similarity in neural 106 

representation with their semantic similarity obtained from behavioral ratings. They showed that 107 

the neural organization of observed actions in the lateral occipito-temporal cortex is correlated 108 

with the behavioral similarity judgments.   109 

Investigations to the representational content of parietal action selective regions are 110 

fewer in number, and their results are more subject to debate. Shmuelof and Zohary (2006, 111 

2008) have proposed an effector dependent representation of hand actions in the anterior 112 

intraparietal cortex, while others have argued actions are represented in an effector 113 
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independent manner in the inferior parietal lobe (Jastorff et al., 2010) as well as superior parietal 114 

lobe and intraparietal sulcus (Vingehoets et al., 2012). One study (Jastorff et al., 2010) 115 

suggested that action representations in the parietal cortex are related to the direction of the 116 

action relative to the body.   117 

Looking at the entire visual system, Tarhan and Konkle (2020) used an encoding model 118 

to predict responses to natural videos. The feature space of their model captured the body parts 119 

involved in an action and the action target. Based on the voxel tunning, they suggested that five 120 

large-scale networks exist in the human brain that represent actions based on their sociality and 121 

the spatial extent of their interaction envelope. All these studies have employed natural videos 122 

of actions in which often a whole scene and objects are present. Employing natural stimuli may 123 

lead to many confounding factors and difficulties in interpreting the results. Even though some 124 

of these studies have taken steps to make sure low-level features are not contributing to their 125 

results (Tucciarelli et al., 2019; Tarhan and Konkle, 2020), there is a possibility their results may 126 

be related to the presence of special types of objects, scene contexts and semantic relations 127 

between them (Kourtzi and Kanwisher, 2000; Senior et al., 2000; Johnson-Frey, 2004; 128 

Buxbaum et al., 2006; Wurm et al., 2012; Schubotz et al., 2014; el-sourani et al., 2017; Wurm 129 

and Schubotz, 2017; Wurm et al., 2017a; Leshinskaya et al., 2018).  130 

Here, employing fMRI multivoxel pattern analysis, we decoded the position invariant 131 

representation of human actions in point-light display (PLD) format. We used controlled stimuli 132 

in PLD format to restrict the visual information to the bodily movements and identify regions 133 

supporting abstract action representations. Using these controlled action stimuli, we localized 134 

regions where action decoding was robust to changes in position. Employing PLD stimuli also 135 

allowed us to determine the position and movements of individual limbs, to devise objective 136 

measures for constructing similarity between actions. Using these objective measures of 137 

similarity as well as subjective measures derived from behavioral experiments, we characterized 138 

the representational content of action selective regions.  139 
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 140 

Materials and Methods  141 

Participants 142 

Twenty-five subjects (14 females, 20-38 years of age) took part in the fMRI experiment 143 

and 15 subjects (13 females, 25-38 years of age) took part in the behavioral experiment. All 144 

subjects were healthy and right-handed with normal visual acuity. They gave written informed 145 

consent and received payment for their participation. The experiments were approved by the 146 

ethics committee on the use of human subjects at the Iran University of Medical Sciences. 147 

Three fMRI subjects were later excluded due to excessive motion (see data analysis for more 148 

details) and the final analyses included the remaining 22 subjects.  149 

 150 

Functional MRI experiment 151 

In this experiment, we used videos of 10 different human actions in Point Light Display 152 

(PLD) format: Crawl, Cycle, Jumping Jack (henceforth referred to as Jump), Peddle, Play 153 

tennis, Salute, Spade, Stir, Walk, and Wave (Figure 1). These actions were selected from a 154 

larger set of human action videos in PLD format provided by Vanrie and Verfaillie (2004).  155 

We used a block design paradigm. Each run included twenty blocks with two blocks for each 156 

human action video. In one of the blocks for each action, the video was presented in the upper 157 

visual hemifield, and in the other, it was presented in the lower visual hemifield. The 158 

presentation order of the stimuli was counterbalanced across runs. Each block lasted 8 159 

seconds. There was an 8-second blank period in the beginning, end, and between stimulus 160 

blocks of each run. Each run lasted 328 seconds. Each subject completed one session of 10 161 

runs. 162 

In each stimulus block, there were four repetitions of the same human action video. 163 

Each repetition lasted 1.5 seconds (frame rate 30), followed by a 0.5 second blank period. In a 164 

randomly chosen repetition in each block, the size of the dots became 50% larger for one 165 
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second. The point-lights, subtending ~0.25 degrees of visual angle, were in white color against 166 

a black background. The center of the stimuli was presented ~4 degrees of visual angle 167 

above/below the fixation point. The size of the area that the dots occupied during movements 168 

was between 0.94 and 5.62 degrees in width and between 2.38 and 7.7 degrees in height.  169 

The fixation point was a red circle of size ~0.25 degrees of visual angle. Subjects were 170 

instructed to fixate on the fixation point at the center of the screen, watch the videos, detect the 171 

change in the size of the point lights, and report it by pressing a response key with their right 172 

index finger.  173 

 174 

Behavioral experiment 175 

To capture the similarity between our human action stimuli, we conducted a behavioral 176 

experiment based on an inverse multi-dimensional scaling (IMDS) method proposed by 177 

(Kriegeskorte & Mur, 2012). At the beginning of the experiment, one snapshot from each of the 178 

ten action videos was presented along with a number 1-10 in two vertical columns at the left 179 

border of the screen. On a separate screen, they were provided with numbered action videos, 180 

and they could watch them as many times as they needed. Participants were asked to 181 

rearrange the snapshots on the surface of a gray circle (drag and drop using the mouse) 182 

according to the perceived similarity of their corresponding videos. The arrangement was 183 

performed based on subjective judgments of overall similarity, and no other instructions were 184 

given regarding the specific aspects they needed to focus on for the arrangement. A behavioral 185 

dissimilarity matrix was obtained based on the final Euclidean distances on the circle for each 186 

participant.     187 

 188 

MRI methods 189 

MRI data were collected at two centers: the school of Cognitive Sciences, Institute for 190 

Research in Fundamental Sciences (Tehran, Iran) using a Siemens 3T Tim Trio MRI scanner 191 
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and a 32-channel head coil and the National Brain Mapping Lab (Tehran, Iran) using a Siemens 192 

3T Prisma MRI scanner and 20-channel or 64-channel head coil. We were forced to switch MRI 193 

equipment mid-experiment due to scanner/coil malfunction (data of 5 subjects were recorded at 194 

the school of Cognitive Sciences, and data of 20 subjects were recorded at National Brain 195 

Mapping Lab). We moved scanners to ensure that high-quality data was collected for all 196 

subjects. Similar protocols were used across scanners, and the data recorded with different 197 

equipment were comparable. 198 

Subjects viewed the visual stimuli through a back-projection screen, and the task was 199 

presented using MATLAB and Psychtoolbox-3 (Brainard, 1997). Functional images were 200 

obtained using a T2*-weighted single-shot gradient-echo EPI sequence with a repetition time 201 

(TR) of 2 s, echo time (TE) 26, 90° flip angle, 30 transverse slices, and a voxel size of 3 × 3 × 4 202 

mm3. A high-resolution T1-weighted structural scan was also acquired from each participant 203 

using an MPRAGE pulse sequence (TR = 1800 ms, TE = 3.44 ms, inversion time = 1100 ms, 7° 204 

flip angle, 176 sagittal slices, and 1 × 1 × 1 mm3 isotropic voxels).  205 

 206 

Data analysis 207 

 Freesurfer (https://surfer.nmr.mgh. harvard.edu) and FS-FAST (Dale et al., 1999) were 208 

employed for data preprocessing and general linear model (GLM) analysis. Preprocessing of 209 

fMRI data included motion correction, slice timing correction, linear and quadratic trend removal, 210 

and no spatial smoothing. Subjects with excessive head motion (more than 1.5 mm within a run 211 

and 4 mm across runs) were excluded (3 subjects). Functional data were then resampled to the 212 

cortical surface of individual subjects.  213 

A run-wise GLM analysis was performed to obtain the beta values and their 214 

corresponding t statistic for each human action and each presentation hemifield in each vertex 215 

(10 human actions in the upper visual field and 10 human actions in the lower visual field 216 
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leading to 20 regressors). Linear and quadratic polynomial nuisance regressors and external 217 

regressors from the estimated head movements were also included.  218 

Wang atlas of visual topography (Wang et al., 2014) was used to localize retinotopic 219 

areas for each subject: V1, V2, V3, hV4, VO1, VO2, MST, hMT, LO2, LO1, V3a, V3b, IPS0, 220 

IPS1, IPS2, IPS3, IPS4, IPS5, SPL1 (Figure 3). 221 

 222 

Multivariate pattern analysis (MVPA) 223 

 In-house MATLAB codes, LibSVM (Chang and Lin, 2011), and CoSMoMVPA (Oosterhof 224 

et al., 2016) toolboxes were employed for searchlight and ROI analyses. 225 

Searchlight analysis:  226 

We performed action classification using a surface-based searchlight procedure to 227 

obtain a map of classification accuracy (Oosterhof et al., 2011). In a leave-one-run-out cross-228 

validation procedure, samples (t-statistics of vertices) were partitioned to train and test sets. A 229 

linear Support Vector Machine (SVM) was employed to perform pairwise brain decoding 230 

classification for each presentation position (upper/lower visual hemifield) in individual brains 231 

with a searchlight circle of 100 vertices on the surface. The decoding accuracy of a searchlight 232 

was calculated as the average of all within position pairwise classification accuracies. The 233 

resulting maps were then resampled to a common surface for the group-level statistical 234 

analysis.  235 

To determine regions showing position tolerance, we performed cross-position decoding 236 

by training a classifier to discriminate pairs of actions presented in one position and testing its 237 

accuracy in classifying the same pair of actions in the other position. A cross-position decoding 238 

accuracy greater than the chance level would indicate position tolerance. 239 

To obtain group-level statistics, p-values of classification accuracies were computed 240 

using a binomial test, corrected for false discovery rate (Benjamini and Hochberg, 1995) at level 241 

q1. The second-level p-value for each vertex was then determined as 242 
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�� �����	�
���, � � �1/�� � 	�� � ��       243 

With C denoting the number of participants for which that vertex was significant, R denoting the 244 

sum of the counts of � across all vertices, n denoting the number of participants, and m 245 

denoting the number of vertices. Under the null hypothesis, � has a binomial distribution with 246 

size n and a probability that is approximately bounded by � � �1/�� � 	�. Finally, the derived 247 

second-level p-values were thresholded at the FDR level q2 to acquire the significant vertices at 248 

the group-level (McMahon et al., 2019). This approach is more appropriate than the t-test for 249 

comparing classification accuracies against chance level (See Allefeld et al., 2016 for a 250 

discussion of why the t-test is not suitable in such cases).  251 

From the searchlight group-level statistical analysis, we obtained clusters with significant 252 

cross-positions classification accuracy. Contiguous clusters that passed the threshold were 253 

selected as ROIs in which decoding of actions could be generalized across positions and used 254 

in the next analyses to explore their representational structure. To ascertain that the ROI 255 

selection and further analyses are statistically independent and prevent double-dipping, we 256 

used a leave-one-subject-out approach (Etzel et al., 2013). The group-level statistical analysis 257 

was applied to the searchlight results of all subjects except one, and the resulting ROI was 258 

projected on the left-out subject to select the ROI in that subject. The procedure was repeated 259 

for each subject. The same clusters were found consistently across all iterations.  260 

Comparing within and cross-position classification accuracies 261 

To directly compare within and cross-position classification accuracies, we performed 262 

SVM classifications within each ROI obtained from the leave-one-subject out analysis described 263 

above. The procedure for obtaining within- and cross-position classifications was the same as 264 

the searchlight analysis with the addition of feature selection. Different ROIs don’t include the 265 

same number of vertices. This variation in the number of vertices across ROIs could influence 266 

classification accuracies. To avoid this potential confounding factor, the pairwise classifications 267 

were performed using the 100 most informative vertices in each ROI. To select the most 268 
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informative vertices, a t-test was applied on the training set, and 100 vertices with the lowest p-269 

values for discriminating between the conditions of interest in the training set were chosen 270 

(Mitchell et al., 2004). It is noteworthy that the classification results didn’t qualitatively differ 271 

without feature selection.  272 

Exploring the representational content of the ROI 273 

To explore the representational content of the ROIs, we constructed models based on 274 

the body-part movements and behavioral ratings and examined the correlation between these 275 

models and the cross-position decoding accuracies for each ROI.  276 

To obtain the body-part movement model, we divideded the point lights into five groups: 277 

trunk (5 dots), left hand (2 dots), right hand (2 dots), left leg (2 dots), and right leg (2 dots). We 278 

obtained the sum of the displacements of point lights in each group for each action video. From 279 

the total displacements in each group, we obtained a five-element vector. Then, the Euclidean 280 

distance between these five-element vectors was used to obtain a dissimilarity matrix based on 281 

the body-part movement. This body-part movement model includes information on both the 282 

pattern of body-part movement and the average of their movement for each action. Hence, for 283 

further investigation, we examined two other models: body-movement-pattern and body-284 

movement-average. To obtain the body-movement-pattern model for each action, we 285 

demeaned the corresponding five-element vector of the body-part movement model and 286 

obtained the Euclidean distance between these new demeaned vectors to build a dissimilarity 287 

matrix. The difference between the average values of body-part movement vectors was also 288 

used to obtain the body-movement-pattern model. 289 

To obtain the behavioral dissimilarity model, the results from the behavioral experiment 290 

were used. In the behavioral experiment, the distance between stimuli indicates their 291 

(dis)similarity. The obtained dissimilarity matrix for each subject was normalized by dividing 292 

each value in the matrix by the maximum value. The pooled behavioral dissimilarity matrix was 293 

then computed as an average of individual normalized behavioral dissimilarity matrices.  294 
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To obtain the correlation between the models and the action representations in each 295 

ROI, the off-diagonal of the matrix obtained from the pairwise cross-position decoding 296 

accuracies was vectorized. The off-diagonal of the dissimilarity matrices from the models were 297 

also vectorized. The Kendall rank correlation between dissimilarity vectors and decoding 298 

accuracy vectors was then calculated, and the correlation values were compared to 299 

characterize the representational content of each ROI. 300 

ROI similarity analysis 301 

We also performed the cross-position decoding accuracies for Wang’s ROIs using a 302 

similar procedure as that used for the ROIs obtained from the searchlight analysis. Following a 303 

leave-one-run-out approach, a classifier was trained to decode pair of actions presented in one 304 

position and tested with the same pair of actions in another position. We applied a t-test on the 305 

training set to choose 100 vertices with the lowest p-values for discriminating between the 306 

actions of interest in each ROI. Then, to investigate the representational similarity between 307 

ROIs (Wang’s ROIs and ROIs obtained from searchlight analysis), correlations were computed 308 

between the vectorized matrices of pairwise cross-position decoding accuracy. One minus 309 

these correlation values were used to obtain the distance between the ROI pairs, and these 310 

distances were used to construct an ROI dissimilarity matrix. The ROI dissimilarity matrix was 311 

first computed for individual subjects and then averaged across subjects to acquire group level 312 

ROI dissimilarity matrix (Figure 7A).  313 

Split-half reliability of ROI dissimilarity matrix was also evaluated; we randomly divided 314 

subjects into two equal groups and correlated corresponding group-level ROI dissimilarity 315 

matrices as a measure of reliability. This measure was calculated for 10000 random split-half 316 

divisions and averaged to produce the final reliability measure. To examine the significance of 317 

this reliability measure, we obtained the bootstrapped null distribution of reliability by random 318 

shuffling of the labels in the correlation matrix separately for the two split-half groups and 319 

calculating the reliability for 10000 random samples.  320 
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An MDS analysis was then performed on this ROI-dissimilarity matrix, and the first two 321 

dimensions that captured most of the variance were used to produce an MDS diagram in which 322 

the distance between each pair of ROIs represents the similarity between them (Vaziri-Pashkam 323 

& Xu, 2018). The squared correlation (r2) between two-dimensional distances in the MDS plots 324 

and the original distances in the multi-dimensional space was used to quantify the variance 325 

explained by the first two dimensions. We then fit two regression lines employing the total least 326 

square method, with one line passing through the positions of the occipito-temporal regions and 327 

the other passing through the positions of parietal regions.  The variance explained by the fitted 328 

lines was also measured; two-dimensional distances between regions based on the predicted 329 

positions on the lines were obtained, and the r2 between these distances and the original 330 

distances based on the input matrix to the MDS analysis was calculated. Similarly, we 331 

computed the r2 between distances based on the MDS plots and line predictions to determine 332 

the variance explained by the two lines on the MDS plot.  333 

 334 

Results 335 

In the present study, we aimed to identify regions containing position tolerant 336 

representations of actions and investigate the representational content of these regions using 337 

fMRI multi-voxel pattern analysis. A stimulus set of ten different human action videos in PLD 338 

format (Figure 1) was presented at two different positions in the visual display (upper and lower 339 

visual hemifields), and t-values were extracted in each voxel of the brain for each of the actions 340 

and each position. Employing a support vector machine classifier, within- and cross-position 341 

decoding was then applied following a searchlight approach across the whole brain.   342 

 343 
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 344 

Figure 1. Representative frames of the 10 human action videos in PLD format used in the 345 

experiment. 346 

 347 

Action decoding across the whole brain 348 

To identify regions that showed selectivity for our action stimuli within each presentation 349 

position (upper/lower visual fields), classifiers were trained and tested with fMRI responses for 350 

stimuli presented within the same position. To identify regions showing position tolerance, we 351 

performed a cross-position classification. Classifiers were trained with fMRI responses to stimuli 352 

presented at the upper visual field and tested with fMRI responses to stimuli presented at the 353 

lower visual field and vice versa. Both within- and cross-position classification were applied 354 

using a surface-based searchlight method. 355 

Figure 2A and B depict the result of the group analysis (q1 = 0.05 and q2 = 0.01) for 356 

within- and cross-position classification accuracy, respectively. Comparison of these maps 357 

reveals that a subset of the regions that show above chance within-position classification also 358 

demonstrate generalization across positions. The group analysis showed significantly above 359 

chance cross-position classification accuracy in the left and right lateral occipito-temporal 360 

cortex, right intraparietal sulcus, and right post-central gyrus (Figure 2B). 361 
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362 

Figure 2. Results of searchlight classification accuracy A, Significance maps of group analysis 363 

for searchlight within-position classification accuracy (thresholded at q1 = 0.05 and q2 = 0.01) 364 

B, Significance maps of group analysis for searchlight cross-position classification accuracy 365 

(group thresholded at q1 = 0.05 and q2 = 0.01) C, five Clusters with significant cross-position 366 

classification accuracy used as ROIs (note that the exact ROIs differ slightly across iterations of 367 

the leave-one-subject-out procedure). 368 

 369 

Action decoding in ROIs 370 

To investigate the extent to which changes in position affect the representations in 371 

individual regions, we used a leave-one subject out procedure (see methods) to extract ROIs 372 

with above chance cross-decoding accuracy. Five clusters (Figure 2C) were selected based on 373 

a searchlight analysis on all but one subject, and the selected clusters were used as ROIs for 374 

the left-out subject.  375 

 376 
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377 

Figure 3. Inflated brain surface from a representative participant showing the ROIs examined in 378 

lateral and ventral views with white outlines for Wang’s ROIs and colorful outlines for functional 379 

ROIs obtained from searchlight analysis. 380 

 381 

A linear SVM was employed for within- and cross-position classification within each ROI, 382 

using the 100 most informative vertices in each ROI (Mitchell et al., 2004). Figure 4A illustrates 383 

the results of within- and cross-position decoding accuracy for each of the ROIs. All ROIs had a 384 

significant decoding accuracy for cross- and within-position (group analysis with (q1 = 0.01, q2= 385 

0.01). In the left and right lateral occipito-temporal and parietal ROIs, cross-position decoding 386 

accuracy was significantly lower than within-position decoding accuracy (paired t-test, p < 387 

0.0075, FDR corrected q = 0.01), while this difference was not significant in bSTS and Post-388 

Central regions (paired t-test, p > 0.13, FDR corrected q = 0.01). These results suggest a 389 

reduction in position sensitivity from posterior to anterior regions in both occipito-temporal and 390 

parietal cortices. To visualize this finding on the whole brain, we divided the cross-position by 391 

within-position classification accuracy in all vertices with above chance within-position accuracy. 392 
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The resulting map averaged across subjects is depicted in figure 4B. In line with the ROI 393 

analysis, this map demonstrates an increase in position tolerance from posterior to anterior 394 

regions in both occipito-temporal and parietal cortices.   395 

 396 

397 

Figure 4. A, Within and cross-position decoding accuracy for the ROIs obtained from 398 

searchlight analysis. Error bars indicate standard errors of the means (** paired t-test, p < 0.01, 399 

FDR corrected). The vertical dashed line separates occipito-temporal ROIs from parietal ROIs 400 

B, Maps of cross-position divided by within-position classification accuracy obtained from 401 

searchlight analysis in vertices with significant within-position classification accuracy. 402 

 403 

Revealing the Representational content of the ROIs 404 

To uncover the principles that govern the organization of action representations in each 405 

ROI, we used a representational similarity analysis (RSA, Kriegeskorte et al., 2008). We 406 

constructed models based on the body-part movements and behavioral similarity ratings 407 

performed on the videos by human observers (see methods). We then used correlation analysis408 

to investigate the similarity of action representations between models and ROIs according to 409 

their cross-position pairwise decoding accuracies. The reliability of the behavioral dissimilarity 410 

 

 

is 
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matrices was high (Cronbach Alpha = 0.7654). Models of stimuli (distance matrices obtained 411 

from models) were also compared with each other; the Kendall correlation was calculated, and 412 

its significance was examined applying permutation tests. The behavioral and body-part models 413 

were not significantly correlated (Kendall correlation = 0.0394, p-value = 0.2562). 414 

Figure 5 shows the Kendall correlations between the models and cross-position pairwise 415 

decoding accuracies across participants for body-part movement and behavioral rating models.  416 

 417 

 418 

Figure 5. Kendall correlation body-part movement (dark gray) and behavioral rating models 419 

(light gray) and cross-position pairwise decoding accuracies for the individual ROIs. Error bars 420 

indicate standard errors of the mean (permutation test or paired t-test, *p < 0.05, **p < 0.01, 421 

FDR corrected). The vertical dashed line separates occipito-temporal ROIs from parietal ROIs. 422 

 423 

Significant correlations were found with the body-part model in all ROIs except for L-424 

LOTC (permutation test, p < 0.05 for R-LOTC and p < 0.01 for bSTS, IPS, Post-Central) and 425 

with the behavioral rating model in all ROIs except for IPS and Post-Central (permutation test, p 426 

< 0.01).  427 
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A two-way repeated-measures ANOVA with model (body-part movement and behavioral 428 

rating) and ROI as independent factors and correlation coefficient as the dependent variable 429 

was performed. The effect of ROI (F(4,84) = 0.9303, p = 0.4504),  and the effect of model 430 

(F(1,84) = 0.7636, p = 0.3921) were not significant while the interaction between the two 431 

(F(4,84) = 36.8, p < 0.0001) was significant. Individual comparisons within ROIs showed that 432 

correlation coefficients were greater for the behavioral rating model in L-LOTC and R-LOTC and 433 

for the body-part movement model in IPS and post-central (all t(21) > 3.7117, all p < 0.0016, 434 

FDR-corrected).   435 

 436 

Figure 6. Kendall correlation between body-movement-average (light gray) and body-437 

movement-pattern (dark gray) models and cross-position pairwise decoding accuracies for 438 

individual ROIs. Error bars indicate standard errors of the mean (permutation test, *p < 0.05, **p 439 

< 0.01, FDR corrected). The vertical dashed line separates occipito-temporal ROIs from parietal 440 

ROIs. 441 

 442 

We also constructed models based on the average of movement across all body-parts 443 

(body-movement-average) and based on the pattern of movements in body parts (body-444 
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movement-pattern ) separately (see methods). Figure 6 shows the average Kendall correlation 445 

between the models and cross-position pairwise decoding accuracies across participants for 446 

body-movement-pattern and body-movement-average models. As figure 6 shows, all ROIs 447 

showed correlations with the body-movement-pattern model (permutation test, p < 0.05 for L-448 

LOTC and R-LOTC, p < 0.01 for bSTS, IPS and Post-Central, FDR corrected, 5 comparisons), 449 

but body-movement-average models only showed correlations with the dorsal ROIs 450 

(permutation test, p < 0.01, FDR corrected) and showed no significant correlation with the 451 

lateral ROIs (permutation test, p > 0.05, FDR corrected). 452 

A two-way repeated measure ANOVA with model and ROI as independent factors and 453 

correlation coefficient as the dependent variable showed no significant effect of model (F(1,84) 454 

= 0.0117, p = 0.9148) while the effect of ROI (F(4,84) = 22.5280, p < 0.0001),  and the 455 

interaction between the two (F(4,84) = 11.5105, p < 0.0001) were significant. The significant 456 

effect of ROI points to greater correlation coefficients in dorsal ROIs. Individual comparisons 457 

within ROIs showed that correlation coefficients were greater for the pattern model in L-LOTC 458 

(t(21) = 2.6553, p = 0.0370, FDR-corrected) and for the average model in IPS (t(21) = 4.9394, p 459 

= 3.4583e-04, FDR-corrected). 460 

We also compared the behavioral rating model with the average and pattern models 461 

applying two separate two-way repeated measure ANOVAs with model and ROI as independent 462 

variables and correlation coefficient as the dependent variable.  463 

Its result for the body-part-average and behavioral rating models showed no significant 464 

effect of ROI (F(4,84) = 1.1066, p = 0.3589),  and model (F(1,84) = 0.3031, p = 0.5878) while 465 

the interaction between the two was significant (F(4,84) = 36..4416, p < 0.0001). Individual 466 

comparisons within ROIs showed that correlation coefficients were greater for the behavioral 467 

rating model in L-LOTC and R-LOTC and for the body-movement-average model in IPS and 468 

Post-Central (all t(21) > 3.5686, all p < 0.0018, FDR-corrected).   469 
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For the body-part-pattern and behavioral rating models results showed no significant 470 

effect of model (F(1,84) = 0.4335, p = 0.5174) while the effect of ROI (F(4,84) = 8.8253, p = 471 

0.0001),  and interaction between the two (F(4,84) = 37.6654, p < 0.0001) were significant. 472 

Individual comparisons within ROIs showed that correlation coefficients were greater for the 473 

behavioral rating model in L-LOTC and R-LOTC and for the body-movement-pattern model in 474 

IPS and Post-Central (all t(21) > 4.8254, all p < 0.0001, FDR-corrected).   475 

In sum, these results reveal dissociations between the classification accuracies in the 476 

lateral and dorsal ROIs. In lateral ROIs, the cross-position decoding accuracies are more 477 

correlated with behavioral ratings than any of the body-part movement models, while those in 478 

dorsal ROIs are more correlated with the objective movement models. 479 

 480 

ROI similarity analysis 481 

In addition to the 5 clusters obtained from the searchlight analysis, we obtained the 482 

cross-position decoding accuracy of retinotopic regions of interest across occipito-temporal and 483 

parietal cortex (see methods). We calculated cross-position classification accuracies for these 484 

ROIs following a similar procedure as that used for the ROIs obtained from searchlight analysis. 485 

Then, to examine the representational similarity across all ROIs (including retinotopic ROIs and 486 

ROIs obtained from searchlight analysis), we computed the one minus the correlation between 487 

their cross-position decoding accuracy (Figure 7A). The resulting ROI dissimilarity matrix had 488 

high split-half reliability of 0.8346, significantly higher than chance (bootstrapped null distribution 489 

95% CI [−0.0011,0.0012]). To visualize region-wise distances, we then applied an MDS analysis 490 

on this matrix. Figure 7B depicts the first two dimensions that captured most of the variance (r2 = 491 

0.5522). These results are consistent with the representational similarity analysis and further 492 

suggest the presence of two separate networks for processing actions. One starting from the 493 

early visual cortex going to the lateral surface of the brain, and another splitting from this 494 

pathway towards the parietal cortex with the bSTS region landing right between the two 495 
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pathways. This observation was quantified through fitting two total least square lines to the 496 

points on the MDS plot: one line was passed through occipito-temporal regions (V1, V2, V3, 497 

hV4, VO1, VO2, MST, hMT, LO2, LO1, V3b, and V3a from the wang atlas, and L-LOTC, R-498 

LOTC, and bSTS from our ROI analysis) and the other line was passed through parietal regions 499 

(IPS0, IPS1, IPS2, IPS3, IPS4, IPS5, and SPL1 from wang atlas and IPS and Post-Central from 500 

our ROI analysis). These lines could explain 0.7950 percent of the variance of the positions of 501 

the regions on the MDS plot and 0.4798 percent of the variance of the full multi-dimensional 502 

space. 503 

 504 

505 

Figure 7. A, ROI dissimilarity matrix based on the correlation distance between their cross-506 

position decoding accuracy for Wang’s ROI and ROIs obtained from searchlight analysis. 507 

Lighter colors show higher correlations B, MDS plot of Wang’s ROIs (light gray) and ROIs 508 

obtained from searchlight analysis (dark gray) and a total least square regression line through 509 

the occipito-temporal regions (the light gray line) and another through the parietal regions (the 510 

dark gray line). The MDS plot and the lines could capture 0.5522 and 0.4798 percent of the 511 

variance of the ROI dissimilarity matrix. 512 

 513 
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Discussion 514 

In this article, we used point-light displays of human actions presented in either the 515 

upper or the lower visual fields and examined the extent of position tolerance as well as the 516 

representational content of action selective regions in the human brain. Using cross-position 517 

decoding analysis, we found that regions in the Left and right lateral occipitotemporal cortex, 518 

right intraparietal sulcus, and right post-central gyrus contain position tolerant representations of 519 

action stimuli. Additionally, we investigated the representational content of these regions and 520 

found that representations in parietal regions were related to the movements of the body-parts 521 

while those in occipitotemporal regions were more related to human subjective judgments about 522 

actions.  523 

Our results, for the first time, provide a comprehensive understanding of position-tolerant 524 

action representations in the human visual cortex. Our findings in the lateral occipital cortex are 525 

consistent with those of Grossman et al. (2010) that applied fMRI adaptation and showed 526 

position tolerant representation of actions in STS. However, they failed to find other position 527 

invariant regions found in our study, especially the regions in the parietal cortex. This 528 

discrepancy may be related to differences in design. Our block design paradigm and the use of 529 

SVM classifiers may have provided us with a higher power and sensitivity to detect regions that 530 

contain position-tolerant action representation (Coutanche et al., 2016). Roth and Zohary (2015) 531 

investigated position invariance during observation of natural tool-grasping clips using MVPA 532 

(correlation and cross-decoding classifier). They observed a gradual loss of position information 533 

accompanied by enhancement of hand/tool identity along the posterior-anterior axis in the 534 

dorsal stream. This result is consistent with our finding for the parietal cortex, but they didn’t 535 

observe such a gradient in the lateral stream. Their focus on grasping actions may have 536 

lowered their chance of observing the full extent of position tolerance in the lateral occipito-537 

temporal cortex.   538 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.06.17.448825doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448825


    

 

25 

 

 Most regions that contained position tolerant representations of actions in our study were 539 

located in the right hemisphere. This laterality toward the right hemisphere is in line with the 540 

results of previous studies. Beauchamp et al. (2003) investigated human motion versus tool 541 

motion (natural and PLD video clips). They found that category-related responses were 542 

lateralized with a significantly greater number of tool-preferring voxels in the left hemisphere and 543 

a significantly greater number of human-preferring voxels in the right hemisphere. Grosbras et 544 

al. (2012) performed a meta-analysis on three categories of human motion including the 545 

movement of the whole body, hands and face. The conjunction of the three meta-analysis maps 546 

showed convergence in the right posterior superior temporal sulcus and the bilateral junction 547 

between middle temporal and lateral occipital gyri. Right laterality in parietal regions has also 548 

been previously reported for observed limb movements (Grosbras et al., 2012; Pelphrey et al., 549 

2005).   550 

After identifying the position-tolerant regions, we investigated their representational 551 

content. In occipito-temporal cortex, we found that a model based on the behavioral ratings of 552 

similarity was the best predictor of the cross-position pattern classification accuracies. These 553 

results are consistent with a study by Tucciarelli et al. (2019) that used natural images of 554 

different actions and showed that responses in the LOTC were correlated with the behavioral 555 

ratings of semantic similarity between actions. Similar to our results, they also showed a lower 556 

correlation in LOTC with a model based on body movements. On the other hand, they failed to 557 

find a significant correlation with a body part model in the parietal cortex. This could be because 558 

they used human ratings of body part movements as opposed to the objective measures we 559 

used based on actual measures of body position. Humans may fail to consider the movement of 560 

all body parts and only focus on just the main effector of action for their ratings. In addition, they 561 

also employed an event-related design that has less power than our block design paradigm. 562 

Thus, our results extend their findings and further elucidate the differences between parietal and 563 

occipito-temporal action representations.  564 
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In a study with a large set of human action videos, Tarhan and Konkle (2020) used 565 

behavioral rating to construct an encoding model to investigate action representations in the 566 

human brain. Their behavioral ratings included questions related to body parts involved in the 567 

action as well as the action target. Using a clustering analysis, they divided voxels into four 568 

network, suggesting that one is driven by the social aspects of actions and four are driven by 569 

the scale of the interaction envelope.   Consistent with our study, their clusters spanned both 570 

occipitotemporal and parietal regions, with notable differences in response profile between the 571 

two networks. However, it is difficult to be more specific in comparing their results to our findings 572 

due to methodological differences. They used natural videos of everyday scenes containing 573 

actions as stimuli. Other than human bodies or body parts performing the action, their stimuli 574 

also contained objects and other scene elements. The use of natural stimuli makes it difficult to 575 

determine if the clusters reflect responses to actions or the scene elements correlated with the 576 

actions. Also, since we used a block design paradigm and aimed at determining the extent of 577 

position invariance in action selective regions, we could only collect data from a small set of 578 

actions. Future studies with a larger set of controlled PLD stimuli could test the extent to which 579 

sociality and interaction envelope determine the responses in position invariant action selective 580 

regions in the brain.  581 

Investigating the representations of actions in the dorsal stream, Buccino et al. (2001) 582 

suggested that dorsal regions represent actions based on action effectors. Jastorff et al. (2010), 583 

Abdollahi et al. (2013), and Vannuscorps et al. (2018), on the other hand, provided evidence 584 

that action representations in dorsal regions are organized based on the category of actions 585 

independent of the effectors. Here, we show that a model based on body-part movement shows 586 

high correlations with the pattern of classification accuracies in the dorsal stream regions. Our 587 

body-part movement model was constructed based on the movement of all body parts, including 588 

the trunk and the limbs. This model included more information than just the action effector. High 589 

correlations of this model with the classification accuracies in the dorsal regions suggests that 590 
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dorsal regions may contain a more holistic representation of body parts during action 591 

observation.  592 

Even though lateral regions show higher correlations with the subjective model than the 593 

body part model, their correlation with the body part movement was still above zero. Therefore 594 

lateral regions show signatures of both objective and subjective measures. Nevertheless, more 595 

detailed analysis of the body part model separating the patterns of movement from average 596 

movements revealed further differences between the dorsal and lateral regions. While the 597 

dorsal regions showed sensitivity to both pattern and average of movements, the lateral regions 598 

showed only a correlation with a model based on patterns of movement. With the limited 599 

number of stimuli in our set, we cannot perform a more nuanced analysis of the differences in 600 

the sensitivity to various body parts between dorsal and lateral regions. Future experiments with 601 

an expanded set of PLD stimuli could reveal potential differences between the two networks in 602 

their body part representations.  603 

 In the domain of object representations, recent studies have revealed that both dorsal 604 

and ventral stream regions contain object information independent of the position of objects 605 

(Vaziri-Pashkam and Xu, 2019; Almeida et al., 2018), but data-driven analysis of object 606 

representation still reveals the separation of these dorsal and ventral regions in their 607 

representational (Vaziri-Pashkam and Xu, 2019). Here, focusing on action observation, we 608 

showed that action representations become progressively less position-dependent from 609 

posterior to anterior along both dorsal and lateral pathways. Moreover, employing either data-610 

driven (looking at ROI similarities) or model-based approaches, we observed a clear distinction 611 

between representational content in two pathways. Looking more closely at the arrangement of 612 

ROIs in the MDS plot, we can see that ROIs along the lateral surface follow a continuous 613 

trajectory from early visual areas while dorsal ROIs are separated away from both early visual 614 

and lateral ROIs. These results provide evidence for distinct representational content along the 615 

two pathways.    616 
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Embodied cognition theories argue that recognition of observed actions relies on 617 

sensory-motor simulation and taps into motor representation necessary for executing those 618 

actions (Rizzolatti & Craighero, 2004; Pulvermüller, 2013). Motor, premotor, and parietal regions 619 

that contain mirror neurons in Macaque monkeys have been proposed as potential regions 620 

contributing to action recognition through motor simulation (Rizzolatti & Craighero, 2004). In our 621 

study we failed to find position tolerant represenations in prefrontal and premotor regions, and 622 

the representations in our parietal regions did not show correlation with the model based on 623 

subjective judgments on actions. These results suggest that the motor, premotor and parietal 624 

regions are unlikely to contribute to the subjective understanding of actions (Caramazza et al., 625 

2014). Nevertheless, it is still possible that parietal regions would contribute to action 626 

observation during coupled motor interactions as well as motor imitations (Caspers et al., 2010) 627 

through analysis of body part movements. Our results suggest distinct roles for dorsal and 628 

lateral regions in action observation. 629 

In summary, we found regions capable of representing highly abstract forms of observed 630 

human actions, namely the point light display video clips of actions across changes in position. 631 

These regions located in lateral occipito-temporal and parietal cortices contained distinct 632 

representational content. The lateral regions reflected more strongly the human subjective 633 

knowledge about objects, while the dorsal regions reflected only the objective bodily 634 

movements. These results suggest the existence of two distinct networks that contain abstract 635 

representations of human actions likely serving different purposes in the visual processing of 636 

actions. 637 

  638 
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