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Abstract 
Aim. The global Red List (RL) from the International Union for the Conservation of Nature is 
the most comprehensive global quantification of extinction risk, and widely used in applied 
conservation as well as in biogeographic and ecological research. Yet, due to the time-
consuming assessment process, the RL is biased taxonomically and geographically, which 
limits its application on large scales, in particular for understudied areas such as the tropics, 
or understudied taxa, such as most plants and invertebrates. Here we present IUCNN, an R-
package implementing deep learning models to predict species RL status from publicly 
available geographic occurrence records (and other traits if available).  
 
Innovation. We implement a user-friendly workflow to train and validate neural network 
models, and subsequently use them to predict species RL status. IUCNN contains functions 
to address specific issues related to the RL framework, including a regression-based 
approach to account for the ordinal nature of RL categories and class imbalance in the 
training data, a Bayesian approach for improved uncertainty quantification, and a target 
accuracy threshold approach that limits predictions to only those species whose RL status 
can be predicted with high confidence. Most analyses can be run with few lines of code, 
without prior knowledge of neural network models. We demonstrate the use of IUCNN on an 
empirical dataset of ~14,000 orchid species, for which IUCNN models can predict extinction 
risk within minutes, while outperforming comparable methods.  
 
Main conclusions. IUCNN harnesses innovative methodology to estimate the RL status of 
large numbers of species. By providing estimates of the number and identity of threatened 
species in custom geographic or taxonomic datasets, IUCNN enables large-scale analyses 
on the extinction risk of species so far not well represented on the official RL. 
 

Keywords 
Automated assessment, Conservation assessment, IUCN, Machine learning, Red List, R-
package  
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Introduction 
In face of the global biodiversity crisis, the disciplines of biogeography and (macro)ecology 
can provide an urgently needed perspective for global conservation (Brooks et al., 2006). 
Particularly promising contributions include the prioritization of species and areas for 
conservation and a mechanistic understanding of species extinction risk (Pollock et al., 2020; 
Rapacciuolo, 2019). Indeed, macroecological studies increasingly explore these topics, yet 
often limited to well studied regions or taxa, because available information on species 
extinction risk is scarce and geographically and taxonomically biased (Bachman et al., 2019; 
Donaldson et al., 2016). 
 
The Red List of the International Union for the Conservation of Nature (RL, 
www.iucnredlist.org) is arguably the most influential scheme quantifying species extinction 
risk (Betts et al., 2020) and a prime example for the inclusion of biogeographic principles into 
conservation. The RL classifies species into five extinction risk categories: Least Concern 
(LC), Near Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered 
(CR). Professional assessors or specialist groups comprised of volunteer scientists classify 
species into these categories (“red-listing”) based on at least one of five standardized criteria 
related to the reduction of population size (Criterion A), limited or shrinking geographic range 
(B), small population size and decline (C and D) or following a quantitative extinction risk 
assessment (E, IUCN, 2012; IUCN Standards and Petitions Subcommittee, 2017). Species 
that cannot be classified into any of these categories, because too little information is 
available, are considered Data Deficient (DD); species never considered in a red-listing 
process are termed Not Evaluated (NE). 
 
Although the RL is designed for applied conservation, the standardized assessment across 
regions and taxa make it a valuable and widely-used resource for biogeographic and 
(macro)ecological research. For instance, RL extinction risk assessments have been used to 
relate traits, such as body mass, to species extinction risk (Boehm et al., 2016; 
Pincheira�Donoso et al., 2021; Richards et al., 2021; Rolland & Salamin, 2016), to quantify 
the effect of threats, such as agriculture, on species extinction risk (Polaina et al., 2018), to 
quantify links between species extinction risk and invasive species (Tingley et al., 2016; 
Walsh et al., 2012), to characterize the distribution of threatened species (Coll et al., 2015), 
to predict future biodiversity losses (Andermann et al., 2021; Monroe et al., 2019), and to 
understand the potential effects of extinction on large-scale diversity patterns (Oliveira et al., 
2020; Smiley et al., 2020).  
 
While the above mentioned examples illustrate the potential of the RL for biogeographic and 
macroecological research, the taxonomic and geographic biases of the RL prevent further 
integration, and limit research to well studied taxa or regions. Red-listing is time consuming 
due to the standardized process and the data requirements (assessment of a single species 
may take at least one day) which is why only a fraction of the global biodiversity has been 
evaluated with varying coverage across taxa. For instance, most known vertebrate species 
(68%) have been evaluated at least once, but the proportion of plants (7%), invertebrates 
(2%) and fungi & protists (<1%) is considerably lower (Bachman et al., 2019; IUCN, 2018; 
Lughadha et al., 2020). Furthermore, the proportion of evaluated species is higher in regions 
with experts and funding available (Bachman et al., 2019), and many of the existing 
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assessments are, or will soon be, older than 10 years and thereby, outdated (Rondinini et al., 
2014).  
 
To speed up red-listing and to overcome said biases, a variety of methods have been 
developed to automate the red-listing process in recent years. These automation methods 
trade case-by-case evaluation for reproducibility, scope, and speed and they may process 
thousands of DD or NE species based on publicly available data within minutes (Zizka, 
Silvestro, et al., 2021). There are different flavors of automation methods, which differ in 
scope, underlying algorithms and data requirements. The most general approaches may 
infer indices required during the formal red-listing procedure, such as the Extent of 
Occurrence or the Area of Occupancy to support RL assessors (e.g., Bachman et al., 2011), 
provide preliminary RL assessments based on readily available data following IUCN criteria 
(e.g., Dauby et al., 2017), or predict species RL category based on species traits (e.g., 
González-del-Pliego et al., 2019; Pelletier et al., 2018).  
 
While all of these automation approaches have important limitations (Lughadha et al., 2019; 
Rivers et al., 2011; Walker et al., 2020), they constitute useful tools for filling gaps in large 
datasets containing fractions of DD and NE species. Predictive approaches are particularly 
promising, since they are able to integrate different data types. For instance, predictions may 
be based on species geographic distribution, morphology and physiology as well as human 
disturbance, human use, and molecular data (Pelletier et al., 2018; Zizka, Silvestro, et al., 
2021). Additionally, predictive approaches can benefit from the active development and ever-
improving performance of novel machine learning methods. Among them, neural networks 
are a highly flexible family of models used to perform classification tasks or parameter 
estimation (LeCun et al., 2015). Deep neural networks have been shown to be able to 
approximate virtually any function, thus providing one of the most general and powerful 
available frameworks for predictions (Goodfellow et al., 2016). While some of the automated 
assessment methods are implemented in accessible software, most are not. To our 
knowledge, no application to use neural networks for RL prediction exists. More generally, 
the few existing attempts to use machine learning for red-listing are documented in scripts 
from the supplementary material of research studies difficult to access for the broader 
community and to adapt to different taxonomic and geographic scopes.  
 
Starting from a deep learning method we recently applied to predict the RL status of orchid 
species globally (Zizka, Silvestro, et al., 2021), we here present IUCNN, an R-package 
implementing multiple neural network algorithms to predict species RL status in an 
accessible, user-friendly, and reproducible way.  

Methods 
A typical workflow in IUCNN contains three major steps: data preparation, model training and 
testing, and prediction and visualization, which can be run as a pipeline (Fig. 1) with few lines 
of code (Fig. 2). 
 
The IUCNN package implements different types of neural network models and a set of 
functions for a reproducible and accessible workflow. Specifically, IUCNN implements well 
documented functions to: 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.17.448832doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448832
http://creativecommons.org/licenses/by/4.0/


5 

1) calculate standardized geographic, climatic, and ecological features that can be used 
for RL extinction risk predictions from user-provided species geographic occurrence 
records 

2) train deep learning models 
3) predict species RL extinction risk category and quantify the uncertainty around the 

predictions 
4) evaluate the importance of the different input features in determining the predictions  

Label and feature preparation 
IUCNN models use features derived from species traits and are trained on species already 
assessed in the RL. Features may derive from any type of trait but in the simplest case 
publicly available species occurrence records suffice. Thus, the only input data needed are a 
set of species with existing RL assessments (the training labels), geo-referenced occurrence 
records for these species (from which the training features are extracted), and geo-
referenced occurrence records for the species whose RL status is to be predicted.  
 
IUCNN contains two functions to facilitate label and feature preparation. The prep_label 
function prepares standardized labels (i.e. the five IUCN categories, or a binary 
classification: Possibly threatened/Not threatened) in the format needed for model training. In 
the optimal case, models will be trained on existing RL assessments from evolutionarily 
related or ecologically similar species (e.g. all members of the orchid family worldwide, to 
predict extinction risk of orchid species) or related species in the same geographic region 
(e.g. vascular plants in South America, to predict the extinction risk of South American 
orchids). All existing RL assessments are publicly available online 
(https://www.iucnredlist.org/) and may be obtained in R using the rredlist package 
(Chamberlain, 2020). In general, the more species are in the training set, the better the 
model performance, and we recommend at least several hundred species for training, with a 
balanced representation of different RL categories as far as possible.  
 
While IUCNN models can be trained on any features that might be informative of species RL 
category, for many species only geographic occurrence data are readily available. Thus, we 
implemented a prep_features function to extract and prepare a set of default features 
from user-provided geo-referenced occurrence records of species. The function 
automatically downloads publicly available environmental data and matches these to the 
user-provided occurrences. These default features capture several geographic 
characteristics of each species range. Additionally, for terrestrial taxa, the default features 
include the intensity of human impact within the species range (Venter et al., 2016, obtained 
from https://wcshumanfootprint.org) the climatic conditions across a species range (Fick & 
Hijmans, 2017, obtained from https://www.worldclim.org via the raster package), and species 
occurrences in different biomes (Olson et al., 2001, obtained from 
http://assets.worldwildlife.org). We provide a detailed list of all features in Table S1 in 
Supplementary material S1. The download of environmental data, as well as the subsequent 
data extraction, summary, and standardization are handled by the prep_features 
function, but may be customized by the user. In case no custom dataset of geo-referenced 
species occurrences is available, these may be obtained from public databases, for instance 
the Global Biodiversity Information Facility (GBIF). Records from GBIF can be downloaded 
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from www.gbif.org or obtained via the rgbif package in R (Chamberlain & Boettiger, 2017). If 
data from an online database are used, taxonomic scrubbing (Cayuela et al., 2012; Freiberg 
et al., 2020), quantification of sampling bias (Zizka et al., 2021) and geographic cleaning 
(Zizka et al., 2019) are advisable (Maldonado et al., 2015; Zizka, Carvalho, et al., 2020).  
 
Users may also provide a dataset of custom features. Features may be continuous or 
discrete and may represent any trait considered relevant for approximating the conservation 
status in the region and taxon of interest, such as phenotypic data or population dynamics. 
Features should be rescaled so that their numeric values range in similar orders of 
magnitude to facilitate model convergence, and missing data should be coded with distinct 
values or imputed, for instance using the missForest R-package (Stekhoven & Bühlmann, 
2012). When using custom features it is important that the same features are provided in the 
training and prediction datasets, and that they are rescaled consistently. 

Model training and testing 
We implemented three models in IUCNN, all of which are based on fully connected neural 
networks (NNs), with user-defined architecture and hyper-parameters, which we term: nn-
class, bnn-class, and nn-reg. The nn-class model is a classifier built and optimized through 
the Tensorflow module (v2 or greater; Abadi et al., 2015), the bnn-class model is a Bayesian 
implementation of an NN classifier using the npBNN module (Silvestro & Andermann, 2020), 
and the nn-reg model predicts the conservation status of species as a regression task, also 
using Tensorflow. The model training, although based on different libraries, is packaged in a 
consistent and user-friendly framework within IUCNN, and the user is not required to know 
how to use such libraries running under the hood. 
 
In all models, the input layer consists of a set of quantitative and categorical features 
computed for each species (see above). The input features are mapped onto the output layer 
through one or more hidden layers; the number of hidden layers, the number of nodes per 
layer, and the activation functions can be adjusted by the user. The nn-class and bnn-class 
models are classifiers and use a SoftMax activation function in the output layer to obtain a 
vector of probabilities, with one value for each class, e.g. the five RL categories. The 
prediction under these models is determined by the class that received the largest probability 
value. In the nn-class model, the probabilities are then used to compute the cross-entropy 
loss, which is averaged across all training instances and minimized during the optimization. 
In the bnn-class model the output class probabilities are used as the parameters of a 
categorical probability mass function to compute the likelihood of the training data. The 
output layer of the nn-reg model consists of a single value, which may be taken as is, or 
transformed through a sigmoid or tanh activation function (depending on user-defined 
settings for the output activation function). The output value is then compared with the 
original or rescaled RL status during model optimization as mean squared error (MSE). 
IUCNN then transforms the predicted value into a categorical prediction by rounding the 
output to the closest class.  
 
The three models are conceptually different, with individual advantages and limitations. The 
nn-class and bnn-class models do not explicitly incorporate the ordinal nature of the RL 
categories, treating them instead as categorical. The potential disadvantage of this approach 
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is that the error is not weighted by the degree of disagreement between the truth and the 
prediction. For instance, assessing a NT species as LC or CR will be considered as equally 
wrong, even though NT is much closer to LC than to CR. To overcome this limitation, the 
classes are handled differently in the nn-reg model, which optimizes the output as a 
regression, where the distance (error) between NT and LC is much smaller than between CR 
and LC. Thus, while the accuracies are expected to be similar among the three models, the 
magnitude of the error in erroneously classified instances is expected to be smaller in the nn-
reg model.  
 
The bnn-class model is a Bayesian implementation of the nn-class model, with the 
advantage of producing a posterior sample of predictions for each instance instead of a point 
estimate. From these samples we compute posterior probabilities associated with each 
class, thus providing a direct estimation of the uncertainty around the prediction. As 
demonstrated in the empirical example, the posterior probabilities can be used to determine 
a threshold above which instances are expected to be classified with an accuracy matching 
or exceeding a user-defined target. The advantage of the BNN implementation comes at the 
cost of a time consuming optimization. To also quantify the uncertainties of the predictions 
made by the nn-class and nn-reg models, we implemented the Monte Carlo dropout method 
(Gal & Ghahramani, 2016). While the resulting dropout probabilities are not posterior 
probabilities, they can be similarly applied and interpreted as a measure of prediction 
uncertainty and allow users to determine for which species a prediction can be made with a 
defined level of confidence. 
 
The nn-class and nn-reg models are optimized using the Adam gradient descent optimization 
(Kingma & Ba, 2017) as implemented in Tensorflow. The bnn-class model is trained through 
a Markov Chain Monte Carlo (MCMC) algorithm, sampling the weights from their posterior 
distribution. By default, standard normal priors are applied to the weight parameters. The 
user can define a number of parameters controlling the training process (e.g., the number of 
epochs, stopping criteria for nn-class/nn-reg, and the number of MCMC iterations and the 
sampling frequency for bnn-class) through the function train_iucnn.  
 
The performance of trained IUCNN models can be evaluated using the summary function, 
which calculates summary statistics for the model on unseen data including an overall 
prediction accuracy and a confusion matrix. Additionally the plot function can be used to 
plot the loss of the trained IUCNN model throughout the training epochs (nn-class and nn-
reg) or the posterior samples (bnn-class), which helps to evaluate whether or not the model 
has converged. To evaluate a range of different model settings we implemented the 
modeltest_iucnn function, which allows the user to choose among different NN 
architectures and hyperparameter configurations (e.g. number of layers, nodes per layer, 
activation functions) using a cross-validation approach. Finally, users can evaluate how 
much the chosen model relies on the different types of features, using the 
feature_importance function. The implemented process of permutation feature 
importance (Breiman, 2001), evaluates the loss of prediction accuracy when the signal in 
individual features is muted by randomly shuffling the feature values among instances. The 
resulting feature importance values for each feature or block of features can be plotted with 
the plot function. This can help users to decide which features are most important and 
should be included in a model to obtain the best prediction accuracy (Fig. 1, Table 1). We 
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provide a tutorial on how to train and test models in IUCNN as well as a vignette that comes 
with the R-package. 

Prediction and visualization 
Provided with the trained model and the features for the target species, the 
predict_iucnn function predicts RL categories for these  species. Labels may be returned 
as a vector of labels or optionally, in the case of an nn-reg analysis, as the raw regressed 
values. In case a target accuracy was set, all species for which the RL category cannot be 
predicted at the desired accuracy are labeled as NA. Using the plot function, users can plot 
a histogram of the numbers of predicted species per category. 

Implementation 
IUCNN is implemented as an R-package (R Core Team, 2021) with integrated Python code 
(using the Tensorflow and npBNN modules). All user-level functions are accessible via R, 
since this language is widely used in ecological and conservation research and no Python 
knowledge is required to use IUCNN. We developed IUCNN using the ‘usethis’ package 
(Wickham & Bryan, 2020) following Wickham and Bryan (2021). 
 
IUCNN depends on the R-packages dplyr (Wickham, François, et al., 2020), magrittr (Bache 
& Wickham, 2014), readr (Wickham & Hester, 2020), tidyr (Wickham, 2020), and tidyselect 
(Henry & Wickham, 2020) for data wrangling, raster (Hijmans, 2018), rCAT (Moat, 2017), sf 
(Pebesma, 2018), and stats for feature preparation, graphics and grDevices for visualization, 
and reticulate (Ushey et al., 2020) for integrating R and Python. Furthermore, IUCNN 
suggests checkmate (Lang, 2017), covr (Hester, 2020), spelling (Ooms & Hester, 2020), 
testthat (Wickham, 2011) to secure code functionality and knitr (Xie, 2020) and rmarkdown 
(Allaire et al., 2020) for documentation.  
 
All software needed to run IUCNN can be installed with a few lines of code. The current 
version of IUCNN can be installed from GitHub (https://github.com/azizka/IUCNN), from 
within R using the devtools (Wickham, Hester, et al., 2020) package. Since the neural 
networks are trained and used in Python, Python also needs to be installed, including the 
tensorflow module. This can be done from within R using the reticulate package (Ushey et 
al., 2020). See the readme file on IUCNN’s GitHub page or the vignette provided with the 
package (Supplementary material S2) for the necessary code for installation as well as an 
empirical data tutorial. 

Results 
We use an empirical dataset on the global distribution and extinction risk of orchid species 
(Orchidaceae) to demonstrate the use of IUCNN. The dataset contains 14,093 orchid 
species from across the globe, 886 of them with existing RL assessments (the training data). 
The specific dataset is described in detail in Zizka, Silvestro et al. (2021), and the occurrence 
records are originally obtained from GBIF (Global Biodiversity Information Facility 
(www.gbif.org), 2019). The dataset has already been processed with the ConR (Dauby et al., 
2017), rCAT (Moat, 2017), and SPGC (Schmidt et al., 2017) automation methods in Zizka, 
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Silvestro et al. (2021), which we use for comparison. These three methods are comparable 
to IUCNN in that they are also solely based on species geographic occurrence records and 
are implemented in accessible R-packages, but differ in that they do not predict extinction 
risk based on traits, but calculate RL indices (Extent of Occurrence and Area of Occupancy) 
relevant for red-listing under Criterion B, and may be interpreted as preliminary assessment.  
 
To illustrate the use and flexibility of IUCNN, we train and test nn-class, nn-reg, and bnn-
class models based on different sets of features, with different model structures and different 
levels of prediction detail (5 RL categories and Possibly threatened v. Not threatened 
species, respectively). We tested nn-class and nn-reg models based on geographic features, 
geographic plus human footprint features and all default features. We compared different nn-
class models with 1, 2, and 3 hidden layers and dropout rates set to 0, 0.1, and 0.3 (detailed 
settings are available in the accompanying vignette distributed with the package and 
Supplementary material S2). For nn_reg models we tested the same specifications, and 
included different output layer activation functions. We tested all combinations of these 
settings. Within each model type and output classification, we chose the best model based 
on the cross-validation accuracy. Due to the longer convergence time we ran the bnn-class 
models assuming a single configuration with one hidden layer with 20 nodes. 
 
The overall accuracy of models was similar across the tested subsets of input features. In 
general, models based solely on geographic features performed best (in 2 out of 4 cases, 
more often than any other feature combination, Fig. S1 in Supplementary material S1), and 
we therefore used these models for further analyses.  
 
The accuracy of any IUCNN model was higher than the accuracy of the available automation 
methods based on Criterion B (Fig. 3A). For all IUCNN models, the overall accuracy was 
higher at the Possibly threatened vs. Not threatened level (nn-class: 0.81, nn-reg: 0.80, bnn-
class: 0.80; Fig. 3A) than at the detailed level with all five RL categories (nn-class: 0.60, nn-
reg: 0.54, bnn-class: 0.60; Fig 3A). While the overall accuracy was slightly higher for the nn-
class and bnn-class model, the nn-reg model performed better in including intermediate 
categories, in particular NT and VU (Fig. 3B). Given that most species fall into the LC 
category, this advantage of the nn-reg model was not reflected in the overall prediction 
accuracy. When using target accuracy thresholds, the proportion of species evaluated 
decreased with increasing target accuracy for all model types and detail levels (Fig. 4). With 
increasing target accuracy, species of intermediate categories are subsequently removed 
and species that can be classified at higher accuracies mostly belong to the extreme LC and 
CR categories (Fig. S2 in Supplementary material S1). In the case of the best nn-class 
model, a target accuracy of 80% retains 3,310 species (out of 13,207), 3004 of them as LC, 
104 as EN and 202 as CR. 

Discussion 
We presented IUCNN, a user-friendly R-package to use neural networks for the prediction of 
species RL assessments. IUCNN is flexible with regard to input data and may be used solely 
based on publicly available information. Our empirical example using more than 13,000 
orchid species demonstrates that the models implemented in IUCNN can be run with few 
lines of code, and can outcompete other automated methods in terms of overall accuracy. 
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Predictive models, such as the neural networks implemented in IUCNN, provide 
approximations of species RL assessments, which can be used in biogeographic and 
(macro)ecological research. Specifically, these approximations are suitable to broaden the 
taxonomic and geographic scope of synthetic research into understanding the distribution 
and mechanisms of threat and extinction risk. When extinction risk is used, for instance, to 
understand the geographic distribution of threatened species or to quantify the impact of 
species traits on extinction risk, predictive approaches can overcome taxonomic and 
geographic biases, and enable such analyses for organisms that are poorly represented in 
the current RL. Furthermore, predictive approaches can support ecological, biogeographic 
and taxonomic case studies that can benefit from information on species extinction risk. For 
example, added information on the estimated number and identity of threatened species in a 
study taxon or region may increase the conservation relevance of research, help to set 
research priorities or even guide ethical decisions on sampling strategies (for instance by 
switching to less invasive sampling techniques for Possibly threatened species).  
 
Theoretically, predictive models as those implemented in IUCNN, may be one option to 
speed up the official red-listing process and overcome geographic and taxonomic biases by 
feeding into the RL directly. However, the uncertainty related to model predictions, common 
misapplication of official RL criteria in predictive methods, the conceptual inaccessibility of 
many predictive models for non-specialists, and their circumvention of the formal IUCN red-
listing documentation and criteria make an integration unlikely (e.g., Akçakaya et al., 2006; 
Walker et al., 2020). A specific case where predictive models may indeed support applied 
red-listing is the funneling of expert time to Possibly threatened species. For instance, 
predictive approaches may be used as a first step to identify species that are most likely to 
be considered LC by a formal RL assessment and remove them from further inspection, 
thereby reducing the pool of species requiring expert attention and focus RL expert time to 
species that are likely to be classified at high risk (Bachman et al., 2020).  
 
We designed IUCNN for user-friendly access. In addition, we included multiple features to 
facilitate the use cases of biogeographical and (macro)ecological research and to address 
common issues arising with the use of RL data prediction of extinction risk. Five specific 
strengths of IUCNN are: 
 
Easy model evaluation and model testing. Careful model evaluation and testing is crucial 
for all statistical models. IUCNN provides options for model evaluation, testing and 
customization. When predicting extinction risk and training on RL data, high accuracies are 
crucial (since errors may result in a misprioritization of conservation resources) and 
uncertainty must be clearly visible. The implementation of the bnn-class Bayesian neural 
network allows for a probabilistic quantification of uncertainty, and the implementation of a 
target accuracy allows limiting prediction to high levels of accuracy. To address the limited 
amount of training data, the implementation of cross-validation for model testing and the 
option to subsequently train a model on all available data ensures to use as much of the 
existing training data as possible.  
 
High accessibility. IUCNN is implemented in R, a widely-used programming language in 
ecology, and an individual analysis may be run with few lines of code in a straightforward 
workflow (Fig. 1, Fig. 2). Although a Python installation is required, the installation process 
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can be navigated from within R. IUCNN contains convenient functions to prepare 
standardized features in the required input format suggesting a set of default features that 
have proven relevant in empirical analyses (prep_features) and easy options to 
customize them via separate functions (ft_biom, ft_clim, ft_foot, ft_geo). Model 
testing and evaluation are concentrated in just three functions (modeltest_iucnn, 
bestmodel_iucnn, and feature_importance) and the results can easily be 
summarized and visualized via the standard plot and summary methods. All functions are 
documented at the standards of the Comprehensive R Archive Network and the IUCNN 
workflow as well as the different options for customization are detailed in the accompanying 
vignette distributed with the package. Furthermore, the majority of IUCNN analyses 
(including several thousands species and hundreds of features) can be run on a standard 
laptop.  
 
High flexibility. IUCNN may predict species extinction risk based on any trait deemed 
relevant by the users, as long as they can be summarized at the species level. While we 
provide custom features that can be derived from data publicly available for many taxa, users 
can easily provide data describing for instance the physiology, taxonomy, morphology, 
ecology of species. This flexibility can avoid circularities when for example using IUCNN 
predictions to relate extinction risk to specific traits. Furthermore, IUCNN may use any user-
desired output labels. These may be the default five IUCN categories (LC, NT, VU, EN, CR) 
but may also be any user-defined classes, such as the binary classification demonstrated in 
the empirical example, or for instance classification schemes of regional Red Lists, which 
often are different.  
 
Improved accuracy and future prospects. Neural networks can outcompete comparable 
methods to identify possibly threatened species and to classify species into RL categories, 
as demonstrated by the empirical analysis (Fig. 3A). Neural networks and deep learning are 
an active field of development, with multiple lines of development on the horizon. Together 
with the growing amount of RL data that can be used for training and the increase of remote 
sensing technologies for feature preparation, we anticipate an increase in application cases 
and accuracy of IUCNN models.  
 
While we are confident that these specific adaptations of IUCNN make it a useful tool for 
research, we emphasize that trait-based predictions of species extinction risk are only 
approximations and need to be interpreted with caution (Walker et al., 2020). As for any 
statistical model, the quality of IUCNN predictions will depend on the quality of the input data 
and model fit. In the specific RL framework, the structure of the RL likely limits the maximum 
accuracy that can be achieved in predicting species extinction risk based on traits. The RL is 
a collaborative effort of many different specialist groups and professional assessors 
generating the assessments for individual taxonomic groups. Although assessments are 
based on a standardized framework, different assessors may interpret criteria and categories 
differently, especially the less clearly defined NT and VU categories. This effect is 
exacerbated by the differences in data availability among taxa and the resulting varying 
reliability of individual assessments. Furthermore, species may be listed on the RL based on 
different criteria, for instance either geographic range (Criterion B) or population trends 
(Criterion A), or both and assessors include expert knowledge and evaluation into the 
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assessment. Hence, any set of input features may only incompletely capture the red-listing 
process and therefore misclassify species.  
 
A specific caveat of predicting RL categories is their imbalanced distribution. In our empirical 
example, the models accurately identified species in the extreme categories (LC and CR), 
but performed less well with intermediate categories—the majority of misclassifications were 
related to NT and VU categories (Fig. 3B). This is likely related to these categories being 
relatively rare on the RL and thus underrepresented in the training data, which may bias 
predictions to reproduce category frequencies observed in the input data. Indeed, the models 
used for the empirical data were biased towards class label frequencies in the training data, 
especially if the frequencies were very different between training and test sets (Fig. S3 in 
Supplementary material S1). The implications of class imbalance for model application will 
depend on the expected similarity in class frequencies among species already evaluated on 
the RL (the training data) and DD and NE species (the target species). Conceptually, the 
expected difference in category frequencies remains unclear, because different factors affect 
the class frequencies of RL categories in a given set of species. On the one hand, by design, 
most species in any dataset will be LC, often also among the DD and NE species (Butchart & 
Bird, 2010). On the other hand, compared to species on the RL, datasets of DD and NE 
species are likely to comprise a higher proportion of rare species, which may be more 
threatened (Parsons, 2016). Yet, DD and NE species will more often occur in regions difficult 
to access for IUCN assessors (Bland et al., 2017) and might also be subject to reduced 
human pressure in general, and therefore have a reduced extinction risk. We acknowledge 
these conceptual and practical limitations for RL status predictions in general and have 
therefore included a battery of options to address these issues in IUCNN. These include the 
nn-reg models to account for the ordinal nature of the RL categories, the flexible detail levels 
in the prediction and the target accuracy threshold to reduce uncertainty.  
 
In conclusion, IUCNN is a user-friendly implementation of deep learning methods to 
approximate RL extinction risk assessments for species that are so far Data Deficient or Not 
Evaluated on the RL. IUCNN provides new tools to estimate species extinction risk and 
makes these innovative methods available to a larger community and facilitates further 
integration of biogeography, (macro)ecology and conservation research.  
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Data availability statment 
A stable version of IUCNN will be available as a release from 
https://github.com/azizka/IUCNN under a LGPL-2.1 license (v1.0.0), the developmental 
version and development history are freely available from GitHub under the same license. 
Example data and a detailed tutorial are available with the package.  
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Tables 
Table 1. The main functions of the IUCNN package. An example pipeline on how to use 
these functions is shown in Figure 1 and the options to customize analyses are detailed in 
the vignette distributed with the package. 
 

Name Function 

prep_features Extracts default features for the training of and prediction with NN models from a 
dataset of species geographic occurrence coordinates. Default features include 
per species summaries of the geographic range, climatic niche, biome preferences 
and human impact within the species range (See Table S1 in Supplementary 
material S1 for details). Alternatively, individual feature types may be extracted or 
users may provide any custom set of features. 

prep_labels Converts IUCN RL labels into the format required by IUCNN. Provides options as 
to which labels are accepted (e.g. excluding EW or EX), and to generate a broader 
Possibly threatened/Not-threatened classification. 

train_iucnn Trains a neural network to predict species RL extinction risk, based on a user-
provided dataset of training features and labels. Depending on the algorithm either 
uses tensorflow or npBNN to train the network. The function contains numerous 
options to modify the model. 

predict_iucnn Uses the model trained with train_iucnn together with a set of features to 
predict the RL conservation status of so far Not Evaluated or Data Deficient 
species. Users can provide a target accuracy; any species that cannot be 
classified with this overall accuracy will be predicted as NA.  

modeltest_iucnn Initializes a batch run of model training to test different model configurations. 

feature_importance Evaluates the importance of individual features or feature blocks for model 
performance. Can be used to identify which features or types of features are 
particularly informative to predict RL extinction risk categories in a specific group or 
region.  

summary Summarizes results of model training and returns summary statistics, including 
model type, size and composition of the training data, overall accuracy and 
confusion matrix. 

plot Plots either model training and validation loss v. epoch, the results of model 
predictions with the number of species per class, or the results of the feature 
importance test..  
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Figures 

 
Figure 1. Schematic diagram of an IUCNN workflow. The relevant IUCNN functions are 
shown in the grey boxes.   
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Figure 2. Example code on how to train and test a neural network using IUCNN and use it to 
predict the RL status of 13,207 orchid species, including model testing and selection (“Option 
2” in Figure 1). The example data used in the displayed code are available in Supplementary 
material S3 and reduced example datasets are provided as part of the package. 
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Figure 3. The performance of different IUCNN models in predicting the extinction risk of 
13,207 orchid species trained on 886 species with existing RL assessments at 
www.iucnredlist.org. A) The overall accuracy of different automated methods to estimate the 
extinction risk of species on the level of RL categories or the broader Possibly 
threatened/Not threatened level. ConR, rCat and SPGC are other automation methods for 
comparison. B) Confusion matrices of the three IUCNN models at the detailed RL category 
and the broad Possibly threatened/Not threatened level.  
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Figure 4. The effect of different user-defined targets for overall model accuracy on the 
number of species assessed. Based on the example dataset of 13,207 orchid species with 
no official assessment available. The number of assessed species decreases with increasing 
accuracy, but in this example the nn-class model can classify more than 3,000 species at 
80% accuracy.  
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Supporting Information 
Supplementary material S1 - Supplementary Figures and Tables 
 
Supplementary material S2 - The vignette 
“Approximate_IUCN_Red_List_assessments_with_IUCNN” for IUCNN v1.0.0 
 
Supplementary material S3 - Supplementary data to run the example code in Figure 2 
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