1	Metagenome-based comparisons of decay rates and host-specificity of fecal microbial
2	communities for improved microbial source tracking
3	
4	Brittany Suttner ¹ , Blake G. Lindner ¹ , Minjae Kim ^{1a} , Roth E. Conrad ² , Luis M. Rodriguez ^{1b} , Luis
5	H. Orellana ^{1c} , Eric R. Johnston ^{1a} , Janet K. Hatt ¹ , Kevin J. Zhu ¹ , Joe Brown ^{1d} , and Konstantinos
6	T. Konstantinidis ^{1*}
7	
8	¹ School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA
9	30332, USA
10	² Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
11	
12	Present address:
13	^a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA
14	^b Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, 6020
15	Innsbruck, Tyrol, Austria
16	° Max-Planck-Institut für Marine Mikrobiologie, Celsiusstrasse 1, D-28359 Bremen, Germany
17	^d Department of Environmental Sciences and Engineering, Gillings School of Global Public
18	Health, University of North Carolina at Chapel Hill, North, Carolina, NC 27599, United States
19	
20	* To whom correspondence should be addressed.
21	Konstantinos T. Konstantinidis,
22	School of Civil & Environmental Engineering,
23	Georgia Institute of Technology.

24 311 Ferst Drive, ES&T Building, Room 3321,

- 25 Atlanta, GA, 30332.
- 26 Telephone: 404-639-4292

27 Email: kostas@ce.gatech.edu

28

29 ABSTRACT

30 Fecal material in the environment is a primary source of pathogens that cause waterborne 31 diseases and affect over a billion people worldwide. Microbial source tracking (MST) assays 32 based on single genes (e.g., 16S rRNA) do not always provide the resolution needed to attribute 33 fecal contamination sources. In this work, we used dialysis bag mesocosms simulating a 34 freshwater habitat that were spiked separately with cow, pig, or human feces to monitor the decay of host-specific fecal signals over time with metagenomics, traditional qPCR, and culture-35 based methods. Sequencing of the host fecal communities used as inocula recovered 79 non-36 37 redundant metagenome-assembled genomes (MAGs) whose abundance patterns showed that the 38 majority of the fecal community signal was not detectable in the mesocosm metagenomes after 39 four days. Several MAGs showed high host specificity, and thus are promising candidates for 40 biomarkers for their respective host type. Traditional qPCR methods varied in their correlation 41 with MAG decay kinetics. Notably, the human-specific Bacteroides assay, HF183/BFDRev, 42 consistently under-estimated fecal pollution due to not being present in all hosts and/or primer 43 mismatches. This work provides new insights on the persistence and decay kinetics of host-44 specific gut microbes in the environment and identifies several MAGs as putative biomarkers for 45 improved MST.

47 **KEYWORDS:** bioinformatics, comparative metagenomics, microbial ecology, water quality,

48 public health, gut microbiome

49

50 SYNOPSIS: We track cow, pig, and human fecal pollution in lake water over time with
51 metagenomics and benchmark these novel protocols against standard culture-based and qPCR
52 tests for water quality monitoring.

53

54 INTRODUCTION

55 Fecal indicator bacteria (FIB) are commonly used to assess microbial water quality and 56 identify recent fecal pollution events. Because culture-based efforts to count FIB are ineffective 57 for timely water management decisions, recent efforts have focused on rapid culture-independent qPCR methods targeting traditional FIB or new biomarkers (1-3). Members of the genus 58 Bacteroides, or bacteriophages such as CrAssphage (4-7), are particularly suitable for microbial 59 60 source tracking (MST) because they tend to co-evolve with the host, are among the most 61 abundant genera in stool, have a narrow host range exclusive to warm-blooded mammals, and generally have poor survival rates outside their host (8). However, recent evidence also suggests 62 63 the potential for *Bacteroides* to persist, and even grow under some environmental conditions (9, 64 10), which brings the assumptions about their survival outside of the host into question. Further, 65 several studies report that these markers have some cross-reactivity with other (non-human) 66 hosts (11-13) and may be too abundant in sewage for monitoring highly polluted waters (12). Clearly, more research is needed on the ecology of *Bacteroides* and other biomarkers (e.g., 67 68 prevalence in human vs. animal hosts from different geographical regions), their persistence in 69 the environment, and how well they correlate to risk of infection with enteric pathogens.

70 Further, the qPCR-based assays have their own (known) limitations (14). Specifically, it has been challenging to reliably compare the performance of different assays across different studies 71 and environmental matrices because marker recovery efficiency and effect of PCR inhibitors can 72 73 vary significantly among environmental samples (15, 16). Furthermore, even the most commonly 74 used and studied human-associated markers (e.g., Bacteroides HF183) are not prevalent in all 75 human populations worldwide (17, 18), which suggests no single qPCR marker is likely to be 76 universally suitable for detecting human fecal contamination. Finally, fecal pollution of surface 77 waters is often the result of a complex mixture of multiple inputs further complicated by 78 environmental dispersion and deposition. The decay characteristics of different DNA markers is 79 apparently of high importance for MST investigations and evaluation of the associated public 80 health risk (19). Although an absolute gene count can be obtained via qPCR, estimates of the 81 relative contribution of various fecal sources in the natural environment cannot be quantitative 82 without this decay information. More comprehensive methods, such as metagenomics (20), can 83 help to improve biomarker discovery and overcome several of the limitations described above. 84 Most research efforts utilizing metagenomics and next-generation sequencing (NGS) technologies thus far have focused on 16S rRNA gene amplicon sequencing to develop new 85 86 biomarkers (21). However, the 16S rRNA gene is highly conserved across Bacteria and 87 Archaea; as such, cross-reactivity with non-target hosts is common for all assays targeting even 88 the most variable regions of the 16S rRNA gene (8, 22). Functional, protein-coding genes that 89 are specific to a host's unique gut physiology (e.g. host-microbe interactions) are likely more suitable targets for host-specific markers, but this represents a resolution level that 16S rRNA 90 91 gene amplicon data cannot offer. Clearly, more research is needed to establish the best meta-92 omics and bioinformatic techniques as tools for identifying host-specific taxa and their genes for

93 MST applications (23). Such studies will also establish whether or not metagenomic methods 94 should be combined with conventional MST methods to obtain more accurate measures of fecal pollution in watersheds since qPCR provides absolute (vs. relative for typical metagenomics 95 96 studies) abundances and generally has a lower limit of detection than metagenome shotgun 97 sequencing (24, 25). 98 In this study, we used dialysis bag mesocosms simulating a fecal pollution event in a 99 freshwater habitat and time-series metagenomics to track the decay of metagenome assembled 100 genomes (MAGs) from human, cow, and pig fecal inputs over time. Additionally, we used 101 traditional culture and qPCR-based MST markers and included a universal 16S rRNA gene 102 qPCR assay for translating metagenome-based relative abundances to absolute abundances in 103 order to directly compare against the traditional markers. Using the time-series abundance and 104 cross-reactivity information, we identified ~12 MAGs as candidate MST biomarkers and 105 compared their functional gene content to establish host-specific genomes and genes as potential 106 targets for improved water quality monitoring assays.

107

108 MATERIALS AND METHODS

109 Lake water and fecal sample collection: Lake water samples were collected from Lake Lanier 110 (Georgia, USA) in acid washed 10L carboys and transported immediately back to the lab and 111 stored in the dark at 4 °C until mesocosm set up the following day (within 24 hours). Human 112 fecal samples were collected from human volunteers who had not taken any antibiotics within 113 the past one month before sample collection. Since human gut microbiomes are known to vary 114 geographically, only samples from within the state of Georgia (USA) were used. All human 115 subjects in the study provided informed consent and the study was approved by the Georgia

Institute of Technology institutional review board (IRB) and carried out in accordance with the relevant guidelines and regulations. See supplementary methods for further details on sample processing.

119

120 Mesocosm set-up: Sterile glass bottles were filled with 1.6 L of lake water and inoculated with 121 feces to a final concentration of 2.5 g/L and shaken well to thoroughly mix the feces: lake water 122 mixture before dispensing into dialysis bags. The dialysis bag's pore size (6-8 kDa molecular 123 weight cutoff) allows passage of small molecules and ions but prevents the passage of bacterial 124 cells and viral particles. The dialysis bags were filled to a total volume of 110 mL (~21 cm 125 length of 32 mm diameter dialysis tubing) and closed on both ends using polypropylene 126 Spectra/Por clamps (Spectrum Laboratories). Enough dialysis bags were filled to sample each 127 biological replicate in triplicate at each time point, i.e., 36 dialysis bags per host type (three 128 technical replicates per three biological replicates at 4 sampling time points). Additionally, four 129 uninoculated lake water negative control and two sterile milliQ water dialysis control bags were 130 included for both of the two mesocosm experiment batches. The dialysis bags were suspended in 131 ten-gallon aquarium tanks filled with lake water and stored in environmentally controlled rooms 132 at 22 °C in the dark. A small water pump was included in each tank for aeration and nutrient 133 distribution. A small headspace of air was left in each bag when sealing with the clamps so that 134 they could float freely in the tanks.

135

Mesocosm sampling: On the day of mesocosm set up, initial day zero (D0) reference community
lake water samples were collected by filtering five separate 250 mL aliquots of uninoculated lake
water onto 0.45 µm poly-carbonate (PC) membranes, three of which were stored at -80 °C in

139	PowerFecal (Qiagen) 2 mL screw-cap bead tubes until ready for DNA extraction (within 1-3
140	months); two others were stored at -80 °C in sterile 2 mL screw-cap tubes filled with acid-
141	washed 0.1 mm glass beads until ready for analysis following the EPA Method 1611 (26).
142	Further, 100 mL of the lake water was filtered and cultured (in triplicate) on mEI medium
143	following the EPA Method 1600 for culture-based enumeration of Enterococci (27). Finally, the
144	feces:lake water mixtures were sampled following the same protocol for the un-inoculated lake
145	water except using a 25 mL filter volume and 10-fold serial dilutions in 1X phosphate-buffered
146	saline (PBS) for culture-based enumeration of Enterococci (27). All dilutions yielding
147	measurements within the acceptable range of quantification were averaged to estimate
148	CFUs/100mL of each biological replicate. To test for extraneous DNA and potential
149	contamination from sample handling, 50 mL of sterile PBS was also filtered onto PC membranes
150	and following the same DNA extraction at every sampling time point as described in the EPA
151	method 1611 above to serve as a water sample filtration blank.
152	The qPCR markers used in this study are described in Table 1 and included the human-
153	specific Bacteroides HF183/BFDRev (hereafter HF183; (2)), a ruminant-specific Bacteroidetes
154	BacR (hereafter RumBac; (28)), human mitochondrial DNA (hereafter HUMmt; (29)),
155	Enterococcus faecalis 16S rRNA gene (hereafter EF16S; (30)), the standard EPA Method 1611
156	assay targeting total Enterococci (hereafter EPA1611) and a universal 16S rRNA gene qPCR
157	assay (hereafter GenBac16S; (31)) to normalize metagenome datasets for differences in
158	microbial load. See supplementary methods for details on DNA extraction from feces and filters,
159	conditions for qPCR assays and calculations for determining qPCR marker copy number and
160	detection limits.

162 Metagenomic relative abundance estimation: Supplementary methods provide details on 163 metagenome library creation and sequencing, detection of differentially abundant (DA) genes 164 between host inocula or mesocosm time series samples, MAG recovery and dereplication at 95% 165 average nucleotide level (ANI), and MAG annotation. To track relative abundance of MAGs or 166 FIB reference genomes (Table 1) in dialysis bag mesocosm metagenomes, Magic-BLAST v1.4.0 167 ((32); options: -no unaligned -splice F -outfmt tabular -parse deflines T) was used to map 168 metagenomic short reads to MAG contigs in order to express MAG abundance as average 169 sequencing depth (base pairs recruited/genome length). Matches were filtered for single best 170 alignments, using a minimum 90% query cover alignment length and 95% nucleotide identity of reads mapping against the reference genome (ANIr). In order to remove biases from highly 171 172 conserved regions and contig edges, the 80% central truncated average of sequencing depth of all 173 bases (TAD80) as described previously (33). MAG abundance in each metagenomic dataset (as 174 % of total community) was calculated as the quotient of the MAG's TAD80 value and the 175 genome equivalents (GE) from MicrobeCensus (34). 176 Approach for estimating metagenome limit of detection (LOD), absolute abundances, and decay 177 178 rates: Reads belonging to the 16S rRNA gene were extracted with SortMeRNA v2.1 ((35);

179 options: --log --fastx --blast 1 --num_alignments 1 -v -m 8336) and the SILVA 16S database

dereplicated at 90% identity included with the program. The average 16S rRNA gene sequencing

181 depth was estimated by summing the alignment length column from the SortMeRNA blast-like

tabular output file and dividing by the average 16S rRNA gene length (1540bp). The average

sequencing depth was then divided by the average genome sequencing depth from

184 MicrobeCensus (34) to estimate the average 16S rRNA gene copy number per genome in the

185	metagenome. The 16S rRNA gene copy number value was used to convert the GenBac16S
186	qPCR count estimates to total cell density (number of prokaryotic cells per mL or mg) by
187	dividing the qPCR count estimates by 16S rRNA gene copy number. With this information, it
188	was then possible to estimate the theoretical LODs for a Bacteroides genome in each
189	metagenomic dataset (in cells/mL) assuming at least 10% of a genome must be covered to
190	reliably detect it in a metagenome (36) and that the average <i>Bacteroides</i> genome is 6.5 Mbp (34).
191	The absolute abundance (cells/mL) of fecal MAGs and reference genomes (Table 1) in
192	the mesocosm metagenomes was estimated by multiplying its relative abundance (i.e. TAD80
193	>95% ANIr divided by GE) by the corresponding total cell density in each mesocosm
194	metagenome. The same protocol was followed for the human mitochondrial reference genome
195	for the HUMmt qPCR assay (Table 1), except sequencing depth was normalized using only the
196	metagenome dataset size (in Gbp). Since there is no known reference genome for the RumBac
197	assay, a 317bp contig from a cow fecal metagenome with a perfect match to the assay oligos
198	(cow5_scaffold246842) was used as a proxy to estimate the absolute abundance as described
199	above for genomes except no truncation was used when estimating sequencing depth (i.e.
200	TAD100) and a 99% identity threshold for read mapping was used instead of 95% due to the
201	high sequence conservation of the 16S rRNA gene relative to the rest of the genome (37, 38).
202	The resulting sequencing depth value was divided by the 16S rRNA gene copy number for
203	<i>Bacteroides</i> $(n = 7)$ and genome equivalents (or GE) from MicrobeCensus (34) and subsequently
204	multiplied by total cell density to estimate total number of Bacteroides cells per mL. The
205	absolute abundances were used to calculate decay rates based on a first-order decay model, $N_{t}\!/N_{0}$
206	= 10 ^{-kt} (39). The time needed to produce a 2-log reduction in abundance (t ₉₉) was calculated
207	using the decay constant (k) in the following equation, $t_{99} = -2/k$.

209	Data Availability: Host fecal MAG assemblies and short reads for host fecal and mesocosm
210	metagenomes have been deposited to NCBI databases under BioProject ID PRJNA691978,
211	except the cow fecal metagenome short reads, which were deposited previously to the SRA
212	database (BioProject ID PRJNA545149).
213	
214	RESULTS AND DISCUSSION
215	Performance and decay of traditional culture-based and qPCR markers:
216	Dialysis bag mesocosms simulating a natural freshwater environment were spiked with
217	cow, pig, or human feces to represent a pollution event and monitored over time. Three
218	biological replicate fecal samples were used per host and are referred to hereafter as hum1,
219	hum2, hum3, cow7, cow8, cow9, pig7, pig8, and pig9 to indicate the specific individual host
220	fecal sample that was used for DNA extraction and inoculation into the lake water mesocosms.
221	H1, H2, H3, C7, C8, C9, P7, P8, and P9 hereafter refer to the feces:lake water mesocosm sample
222	for each individual host (e.g. H1 refers to the lake water mesocosm spiked with feces from
223	hum1). Mesocosm sampling occurred in triplicate on days 0, 1, 4, 7, and 14 (hereafter, D0, D1,
224	D4, D7, and D14), which included qPCR analysis using the markers described in Table 1 and
225	metagenome sequencing.
226	The qPCR markers were first tested against the host fecal DNA samples used as inocula
227	to assess their sensitivity and specificity. The fecal DNAs were diluted 10-fold with water prior
228	to running qPCR to reduce the effect of PCR inhibitors (see Supplementary Materials and
229	Methods). All of the MST markers were not detected (ND) in any non-target hosts and none
230	were quantifiable in the uninoculated lake water negative controls (Table S6). However, the

231	human-specific HF183 marker was not detected in the hum2 fecal metagenome. The EPA
232	Method 1600 culture-based test for Enterococci (EPA1600) showed that the dialysis bag
233	mesocosms exceeded the EPA's recreational water quality criteria (RWQC) of 36 CFU/100 mL
234	throughout the entire duration of the cow and pig experiment and in all of the human timepoints
235	except on D14 (Figure 1A). Furthermore, the EPA Method 1611 qPCR-based test for
236	Enterococci (EPA1611) showed that all time-series samples that could be quantified exceeded
237	the EPA RWQC of 10 ³ calibrator cell equivalents (CCE) per 100 mL (Figure 1B). However, this
238	assay was not detectable in the cow and pig samples by D14 and was only quantifiable in two of
239	the three human samples on D1. Overall, the concentration of <i>Enterococcus</i> spp. was similar
240	based on culture-based (EPA1600) and qPCR (EPA1611) assays and the first order decay rate
241	constant was -0.20 d ⁻¹ for both methods (Table S5). Additionally, method blanks (sterile PBS
242	filter controls) were included at each sampling point and analyzed according to the EPA1611
243	method and yielded no detectable amplification (data not shown), indicating no significant
244	contamination during mesocosm sample handling.
245	When tested in the time-series dialysis bag mesocosm samples, the qPCR gene copy
246	estimates for all of the host-specific MST assays decreased with time and returned to very near
247	or below the lowest concentration in the standard curves by D14 (~2.1 gene copies/ μ L DNA;
248	Figure 1C). Consistent with the hum2 fecal DNA results, the HF183 marker was ND in any of
249	the H2 mesocosm samples. The abundance of the HF183 marker in H3 mesocosms was two to
250	four orders of magnitude larger than the abundances observed in H1 mesocosms (Figure 1C).
251	Accordingly, only the H3 samples on D0 and D1 exceeded the quantitative microbial risk
252	assessment (QMRA)-based water quality threshold of 41 copies/mL for HF183 as simulated for
253	raw sewage in (40). Furthermore, the decay rates for the HF183 assay were 10-fold different in

254	H1 and H3 (0.02 and -0.29 d ⁻¹ , respectively; Table S5). The concentration of HF183 in H1
255	mesocosms was near the assay LOD (\sim 5 cells/mL) at all time points, and thus there was no
256	discernable decay for this marker resulting in the near-zero decay rate. The average gene
257	copies/mL were consistent across the three biological replicates and were detectable until D14
258	for both the HUMmt and RumBac assays in human and cow mesocosms, respectively (Figure
259	1C).
260	The total cell density in the mesocosms based on the universal 16S qPCR assay
261	(GenBac16S; Table 1) was ~ 10^8 cells/mL at the start of all mesocosm incubations and tended to
262	decrease with time, reaching $\sim 1.5 \times 10^7$ cells/mL by D7. The opposite trend was observed in the
263	negative control bags, which started at $\sim 10^6$ cells/mL and increased by nearly an order of
264	magnitude by D7 (Figure 1D). These results indicated potential bottle effects during our
265	incubations, which were assessed more fully by population genome binning of the D7
266	metagenomes as described in the Supplementary Results and Discussion. Notably, the bottle
267	effect was consistent across all mesocosms and did thus, not affect the main results reported
268	below.
269	
270	Taxonomic and phenotypic description of host-specific fecal MAGs:
271	Host fecal reads were assembled into contigs with total length and N50 values ranging
272	from 2.5x10 ⁷ to 1.3x10 ⁸ and 1,913 to 19,034 base pairs, respectively (Table S3; See also
273	Supplemental Results for additional details on the metagenome datasets and community
274	coverage). Contig binning from the inocula fecal datasets (not the mesocosm datasets) resulted in
275	an initial set of 30 cow, 13 human, and 82 pig high quality MAGs. The MAGs were first

276 dereplicated at 95% average nucleotide identity (ANI) within each host resulting in a new set of

277	18 cow, 13 human, and 50 pig MAGs. These MAGs were subsequently further de-replicated
278	against the high quality MAGs from all three hosts and a collection of 477 Lake Lanier (LL)
279	MAGs (33) to identify any MAGs that are non-host specific and/or found in the natural
280	environment. This resulted in a final set of 17 cow, 13 human, and 49 pig high quality MAGs
281	whose IDs are provided in Supplementary Data S1. MAGs were named according to the
282	individual fecal sample from which they were originally assembled followed by the closest
283	relative of the MAG and the lowest taxonomic rank the two share according to the MiGA
284	TypeMat/NCBI database (p<0.1 threshold), i.e., C:class, O:order, F:family. G:Genus, S:Species.
285	For instance, "cow4_20_Treponema_F" means MAG #20 assembled from cow4 fecal
286	metagenome that had a Treponema sp. as the closest relative and was classified (at the lowest
287	level with statistical confidence) to the family Spirochaetaceae (or, in other words, the MAG
288	represents a novel genus and species of this family). Overall, the MAGs were highly host
289	specific at the species level (ANI >95%) and there were only two instances
290	(cow4_20_Prevotella_F and pig7_9_Tolumonas_C) in which a cow and pig MAG had ANI
291	>95% with each other and were dereplicated into a single genomospecies (i.e., a cluster of
292	genomes that is roughly equivalent to most named bacterial or archaeal species) and thus, were
293	not used further as potential biomarkers. There was more overlap among hosts when evaluating
294	the average amino acid identity values (%AAI; Figure S4) of their corresponding MAGs,
295	revealing that these MAGs likely represent distinct but closely related species found in different
296	hosts.
297	In all three host types, the majority of MAGs were classified at the class level as
298	Bacteroidia (41%, 46%, and 33% for cows, humans, and pigs, respectively) followed by
299	Clostridia (24%, 23%, and 31% for cow, humans, and pigs, respectively). In humans, the

300	Bacteroidia MAGs were primarily assigned to the family Bacteroidaceae, whereas the cow
301	MAGs were primarily from the Prevotellaceae. The majority of the pig MAGs could not be
302	classified well below class level; i.e., they represented novel families (Supplementary Data S1).
303	Consistent with their class level taxonomy, none of the host fecal MAGs (except
304	pig6_25_Oscillibacter_O) were phenotyped as aerobes using Traitar (41) and the majority of
305	MAGs were predicted to be anaerobes (100% human , 96% pigs, 82% cow; Figure S5). The
306	oxidative stress enzyme catalase was not found in any of the cow or pig MAGs but was detected
307	in two of the human MAGs (hum1_013_Akkermansia_G and hum2_003_Rubritalea_C).
308	Glucose fermentation was the most common energy-yielding pathway in MAGs from all three
309	host types (59% of cow, 71% of pig, and 100% of human MAGs). In addition to glucose
310	fermentation, 44, 15, and 15 unique sugar substrates for growth were identified in the pig, cow,
311	and human MAGs, respectively, with lactose being the most common in the pig and human
312	MAGs (76% and 85% of total MAGs, respectively) and maltose being most common in the cow
313	MAGs (82%). These results were also consistent with the DESeq2 analysis at the individual gene
314	level (see Supplementary Results and Discussion).

315

316 Decay kinetics of host fecal MAGs in the mesocosms:

MAG abundance dynamics over the incubation time revealed that all 13 dereplicated human MAGs were detected in at least one human mesocosm, while only 13 out of 17 total cow and 41 out of 49 total pig MAGs were detected in all cow and pig mesocosms, respectively. For the conditions tested here, the majority of fecal MAGs from all three hosts were not detectable in the mesocosm metagenomes after D4 (Figures S7 & S8). Accordingly, it was only possible to estimate decay rates for 8 human, 3 cow, and 17 pig MAGs, respectively (Table S5) because at

323 least three abundance data points (i.e., D0, D1, and D4) were required. For the MAGs with 324 sufficient data points, the average log-2 reduction time (t99) was similar for cow and pig MAGs 325 (4.5 and 5.6 days, respectively) but was higher for the human MAGs (average t₂₉ of 14.3 days; 326 Table S5). This result was largely consistent with a previous quantitative microbial risk 327 assessment (QMRA) analysis that predicted that the gastrointestinal infection risk from sewage 328 contamination in surface waters is not significant (<3% chance of infection) after 3.3 days (40) in 329 accordance with the EPA risk threshold for bathing water (42). Specifically, Boehm et al, 330 reported t₉₉ of 1.4 d for protozoan, 2.5d for viral, and 4.7 d for *E. coli* O157:H7 and 11.8 d for 331 Salmonella. Thus, the emerging 3-4 day rule of thumb for acceptable risk-levels seems to apply 332 to many (but not necessarily all) fecal pathogens in aquatic environments. Importantly, the decay 333 rate of the fecal MAGs is greater than or similar to those reported previously for several 334 pathogens, suggesting that the MAGs may be suitable candidates for use as FIB with this respect. 335 Consistent with this conclusion, none of the fecal MAGs were detected in any of the 336 uninoculated lake water negative control metagenomes or matched closely any of the 477 LL 337 MAGs, i.e., they are absent in the nearby natural ecosystem (Figure S11). Caution is needed, 338 however, to extrapolate these results to all habitats, as some aquatic habitats or environmental 339 conditions are known to support long-term survival of both pathogens and FIB (43). 340 Furthermore, there are only a few studies to date reporting decay rates of viral markers and 341 pathogens in the environment (44, 45) for evaluation against the MAG decay kinetics reported 342 here; hence, viral pathogens may deviate from these decay patterns. 343 The human MAGs showed much higher individual host specificity than the cow and pig 344 MAGs, i.e., MAGs assembled from an individual human fecal metagenome were always the 345 most abundant in the mesocosms spiked with the feces from that individual and showed much

346 lower abundances in the other two biological replicates (Figure S7A). In particular, among the 347 hum2 MAGs, none were present in the H3 mesocosms and only two were detected in the H1 348 mesocosms; thus, none of the hum2 MAGs were selected as candidate biomarkers (see below). 349 Therefore, targeting a single biomarker (whether it be a whole genome or qPCR assay) for MST 350 can still be limiting due to the high individual variability observed in the human or animal gut, 351 consistent with previous literature (46, 47), and the whole-community metagenomic approach 352 employed here and/or targeting multiple biomarkers may be advantageous with this respect. 353 Obviously, this limitation is not as important for MST in cases where the fecal input represents 354 the composite excreta of many individuals such as in municipal sewage systems. 355 356 **Best-performing host fecal MAGs:** 357 Based on the decay and host specificity results, we identified five cow, three human, and 358 six pig MAGs that were present in all three biological replicates of the same host type, were 359 highly abundant on D0 (>0.1%) and were not detected in the metagenomes after D4 (Figures S7 360 and S8; Supplementary Data S1). We investigated these MAGs further as candidate biomarkers 361 for MST. Notably, although most of the cow and pig MAGs are Bacteroidia and Clostridia, two 362 of the cow biomarkers (cow4 001 Treponema F and cow8 3 Treponema F) were actually

363 classified in the family *Spirochaetaceae*, while an *Actinobacteria* (pig4_16_Cellulomonas_C)

and the archaeal phylum *Euryarchaeota* (pig4_38_Methanoplasma_F) were among the pig

365 biomarker MAGs (Supplementary Data S1). These results suggest that biomarkers may be found

in novel taxa not previously considered for MST.

367 Phenotype classification using Traitar (41) showed that none of the potential biomarker
368 MAGs were aerobes or facultative anaerobes like the most commonly used FIB such as *E*.

369 faecalis and E. coli, and all had primarily anaerobic phenotypes related to carbohydrate 370 fermentation (Figure S5). Accordingly, the best gene targets for MST assay development at the 371 individual gene level to detect relatively recent pollution events will likely be related to 372 anaerobic functions specific to the different host types rather than the 16S rRNA gene, which has 373 primarily been the target of most MST research to date. There were several functional genes that 374 were significantly enriched in one host compared to the others and thus, could be targets for 375 biomarker development (see also additional discussion in the Supplementary Material). These 376 patterns, and the accompanying high host-specificity of the MAGs recovered, are presumably 377 driven, at least to some extent, by the different selection pressures prevailing in the gut of each 378 animal, as also indicated by the type of fermenters present in the different hosts.

379

380 *Functional annotation for host-specific MAGs and gene functions:*

381 The 14 MAGs identified as potential markers based on their host sensitivity, abundance, 382 and decay kinetics in the mesocosms showed no clear clustering based on the KEGG modules 383 (48) found in their genome and no modules were clearly unique to a single host type (Figure S6). 384 Thus, DESeq2 differential abundance (DA) analysis (49) based on reads mapped to assembled 385 genes was used to identify specific functions that are enriched in the host fecal metagenomic 386 assemblies. Of the 2,080 total KEGG functions identified, 177 were significantly DA with P_{adj} < 387 0.05 and \log_2 fold change (L2FC) > 3 using pairwise comparisons between human, cow, and pig 388 fecal samples (Supplementary Data S2; Figure S13). Most of these gene functions were also 389 recovered in the corresponding MAGs for the host type, further corroborating that the candidate 390 host-specific MAGs are robust biomarkers (see Supplementary Results and Discussion for 391 further details).

392 Most notably, seven genes for a type IV secretion system (T4SS) were highly abundant 393 and specific to the cow gut metagenomes (Figure S13). Evidence has shown that T4SS proteins 394 are important for shaping community composition in the gut (50), which suggests these proteins 395 could be viable targets as host-specific markers. These results were also consistent with another 396 study using competitive DNA hybridization to survey metagenomes and found host-specific 397 sequences related to secretion and surface-associated proteins (51). Furthermore, some of the DA 398 KEGG functions offered new insight on the fermentation pathways that distinguish cows and 399 pigs. Fumarate reductase subunit D (*frdD*), which is associated with the primitive electron 400 transport chain (ETC) of some fermenters (52), was more abundant in cows. The pig samples 401 were instead enriched for two genes associated with butyrate-producing fermentation (atoA; 402 acetoacetate CoA-transferase beta subunit, bcd; butyryl-CoA dehydrogenase) as well as the gene 403 associated with H₂-producing fermentation (*porD*; pyruvate ferredoxin oxidoreductase delta 404 subunit) (Supplementary Data S2). These results indicated that fermenting microbes inhabiting 405 the cow and pig gut carry out different strategies to sink excess reducing equivalents (the 406 primitive ETC or H₂, respectively). However, these trends were not discernable for the human 407 samples as fewer genes overall tended to be significantly enriched in human inocula, which 408 could be the result of sampling limitation (only 3 human fecal samples were compared against 6 409 cow and 6 pig samples) and the higher inter-person diversity described above.

410

411 Decay of potential biomarker MAGs vs. reference FIB genomes in the mesocosms

The absolute abundances (cells or viral particles/mL) of common FIB and MST
biomarkers over time were also compared to the candidate host-specific biomarker MAGs. The
former biomarkers included reference genomes associated with the qPCR assays used in this

415 study (Table 1) as well as genomes of the common commensal E. coli HS (NC 009800.1) and 416 CrAssphage (JQ995537). E. faecalis and E. coli, despite being "gold standard" FIB, performed 417 worse than the MST markers described here. E. faecalis was not detected in any human feces or 418 mesocosm samples by qPCR or metagenome-based methods and its abundance was too low in 419 the cow and pig feces to be detected upon dilution in the lake water mesocosms (data not 420 shown). Hence, this organism would not be able to indicate fecal contamination for any of the 421 hosts in this study. E. coli was detected in all of the host mesocosms and persisted for ~ 1 week 422 (Figure S16A), longer than the presumed fecal contamination risk of 4 days described above, and 423 maintained higher abundances over time compared to the fecal MAGs (Figure 2). Although it is 424 well known that E. coli and E. faecalis are not host-specific, and thus their usefulness for MST 425 may be limited, these results confirmed our expectations and provided further evidence against 426 the use of these organisms as FIB and highlight the need for improved standard indicators. 427 The *B. dorei* and CrAssphage genomes were not detected in any cow or pig mesocosm 428 metagenomes and they also had similar decay profiles to the human fecal MAGs (Figure 2A & 429 B); except the CrAssphage genome abundance increased from D0 to D1, whereas the B. dorei 430 genome (and fecal MAGs) abundance consistently decreased with time, which could possibly 431 indicate a predatory relationship between these two microbes (CrAssphage is predicted to be a 432 *Bacteroides* bacteriophage). Further, consistent with the qPCR results, neither of these genomes 433 were detected in any of the H2 mesocosm metagenomes. Bacteroides abundance based on the 434 HF183 qPCR assay tended to be lower than the MAGs and *B. dorei* reference genome (see 435 below). The human mitochondrial genome (mtGenome) was detected in all three human 436 mesocosm metagenomes until D7 and showed a steady decay in abundance with time (Figure 2A 437 & B and S16B), consistent with the HUMmt assay, which was detectable by qPCR until D14

(Figure 1C). The cow fecal MAGs were all ND by D7 and decayed faster compared to the *E. coli*reference genome and *Bacteroides* abundance based on the RumBac qPCR assay (Figures 2C, S5
and S6).

441

442 *Correlation of MST qPCR markers to their metagenome counterpart:*

443 In order to more precisely evaluate the performance of the metagenome-based results 444 against those of traditional qPCR assays, absolute abundances (expressed as cells/mL) of the 445 RumBac and HF183 Bacteroidetes assays were compared to the abundance of the corresponding 446 reference genome in the mesocosm metagenomes. The correlation between Bacteroides 447 abundances based on qPCR and metagenomes estimates was not consistent between the two 448 assays (Figure 3A & B; R²=0.18 and 0.76 for HF183 and RumBac, respectively). The RumBac 449 qPCR assay tended to give higher abundance estimates (linear regression slope = 0.16) than its 450 metagenome counterpart (Figure 3B). The HF183 qPCR assay consistently gave lower estimates 451 of *Bacteroides* abundance in the human mesocosms (linear regression slope= 10.26), especially 452 in H1, in which the HF183 qPCR assay estimated only about 6 Bacteroides cells/mL in the 453 mesocosms on D0, D1, and D4, well below the theoretical LOD for B. dorei in the metagenomes (~3x10⁴ cells/mL; see Materials and Methods for LOD estimation). However, the *B. dorei* 454 455 reference genome was well above this concentration based on metagenome abundance (Figure 456 3A). Further investigation showed that this was presumably caused by mismatches of the 457 forward HF183 primer to the dominant *Bacteroides* strains present in the host fecal inocula 458 (Figure S15). Specifically, the short reads from the fecal inoculum were searched against the 16S 459 rRNA gene of the reference *B. dorei* strain (which contains a perfect match to the HF183 assay 460 primers and probe) to calculate its 99% identity truncated average sequencing depth (TAD80).

461 For both hum1 and hum3 fecal metagenomes (there was no detection in hum2), the sequencing 462 depths of the probe and reverse primer were similar to the overall average sequencing depth for 463 the entire 16S rRNA gene (at about 42.0 and 247.0 for hum1 and hum3, respectively). However, 464 the sequencing depth of the forward primer region was 0 in hum1 and ~40 (6x less than the 465 average) in hum3. Furthermore, we manually checked the metagenomic reads for perfect 466 matches to the HF183 forward primer and found none in hum1 and only 17 in hum3, suggesting 467 that this region is not present in the dominant *Bacteroides* strain that was assembled from each 468 host.

469 Thus, our evaluation of traditional qPCR assays revealed several of the known limitations 470 of this approach such as mismatches of the PCR primers against the taxa present in the sample 471 (Figure S15), and lower decay rates of short DNA fragments (~120bp) targeted by PCR relative 472 to whole cells or the whole chromosome (see also Supplementary Results and Discussion). It is 473 important to note, however, that the PCR primer limitation is not expected to be as pronounced 474 in cases where the fecal input represents many individuals due to the high inter-individual 475 variability in the microbiome. In such cases, the PCR markers such as the HF183 are expected to 476 perform well for their purposes, as previously noted (40). Furthermore, there was some overlap 477 among the different host fecal MAGs at the genus level (>65% AAI; Figure S4), which, most 478 likely, accounts for the cross-reactivity commonly observed for the various 16S qPCR assays 479 targeting *Bacteroidales* at above the species level. (8, 16, 22).

480

481 Using metagenomic methods for microbial source tracking

482 Collectively, our findings suggest that the use of metagenomic methods to identify host-483 specific MAGs and detect and track these MAGs in an environmental-like system is highly

484 promising and circumvents several of the limitations of traditional methods. Considering the 485 high individual host variability, especially among human hosts, more work is needed to characterize the geographic stability of the putative biomarkers of human or animal hosts 486 487 reported here and the degree of their biogeography. All of the cow and pig fecal samples used 488 here were from the same farm in northern Georgia (USA) for the convenience in obtaining these 489 inocula as well as technical limitations in running the mesocosm incubations with a larger 490 number of samples. Thus, it will be important to determine if these MAGs are present in animals 491 from other herds across broader geographical regions. Many recent studies have made 492 considerable effort to sequence metagenomes and/or assemble MAGs from cow rumen (53-55) 493 as well a pig (56, 57) and chicken guts (58). However, this information has not yet been 494 synthesized together for MST marker development. Future work should leverage these datasets 495 to improve comparative functional gene analysis along with decay information to search for 496 better DNA markers. Furthermore, as high-throughput sequencing becomes more affordable and 497 routine, it may be possible to directly assess MST markers (and even pathogens) in 498 environmental metagenomes. To make regulatory standards based on metagenome data, 499 calculating absolute abundances of indicators (or pathogens) will be necessary. The 500 methodologies proposed here should be helpful in these directions. 501

502 Acknowledgments

The authors would like to thank Dr. Robert Dove from the University of Georgia-Athens for providing the cow and pig fecal samples. This work was supported by the US National Science Foundation, award numbers 1511825 (to J.B and K.T.K) and 1831582 (K.T.K.), and the US National Science Foundation Graduate Research Fellowship under grant number DGE-1650044

507 (to B.S). The funding agencies had no role in the study design, data collection and analysis,

508 decision to publish, or preparation of the manuscript.

509

- 510 **Conflict of interest:** The authors declare no conflict of interest.
- 511

References

- Kildare BJ, Leutenegger CM, McSwain BS, Bambic DG, Rajal VB, Wuertz S. 2007. 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal *Bacteroidales*: A Bayesian approach. Water Research 41:3701–3715.
- Haugland RA, Varma M, Sivaganesan M, Kelty C, Peed L, Shanks OC. 2010. Evaluation of genetic markers from the 16S rRNA gene V2 region for use in quantitative detection of selected *Bacteroidales* species and human fecal waste by qPCR. Syst Appl Microbiol 33:348–57.
- McLellan SL, Eren AM. 2014. Discovering new indicators of fecal pollution. Trends in microbiology 22:697–706.
- Stachler E, Bibby K. 2014. Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environmental Science & Technology Letters 1:405–409.
- García-Aljaro C, Ballesté E, Muniesa M, Jofre J. 2017. Determination of crAssphage in water samples and applicability for tracking human faecal pollution. Microbial Biotechnology 10:1775–1780.
- Cinek O, Mazankova K, Kramna L, Odeh R, Alassaf A, Ibekwe MU, Ahmadov G, Mekki H, Abdullah MA, Elmahi BME, Hyöty H, Rainetova P. 2018. Quantitative CrAssphage real-time PCR assay derived from data of multiple geographically distant populations. Journal of Medical Virology 90:767–771.

- Liang Y, Jin X, Huang Y, Chen S. 2018. Development and application of a real-time polymerase chain reaction assay for detection of a novel gut bacteriophage (crAssphage). Journal of Medical Virology 90:464–468.
- 8. Ahmed W, Hughes B, Harwood VJ. 2016. Current Status of Marker Genes of Bacteroides and Related Taxa for Identifying Sewage Pollution in Environmental Waters. Water 8:231.
- Green HC, Shanks OC, Sivaganesan M, Haugland RA, Field KG. 2011. Differential decay of human faecal *Bacteroides* in marine and freshwater. Environmental microbiology 13:3235–3249.
- Weidhaas J, Mantha S, Hair E, Nayak B, Harwood VJ. 2015. Evidence for Extraintestinal Growth of *Bacteroidales* Originating from Poultry Litter. Applied and Environmental Microbiology 81:196–202.
- Ahmed W, Lobos A, Senkbeil J, Peraud J, Gallard J, Harwood VJ. 2018. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida. Water Research 131:142–150.
- Stachler E, Akyon B, de Carvalho NA, Ference C, Bibby K. 2018. Correlation of crAssphage qPCR Markers with Culturable and Molecular Indicators of Human Fecal Pollution in an Impacted Urban Watershed. Environ Sci Technol 52:7505–7512.
- Ahmed W, Payyappat S, Cassidy M, Besley C, Power K. 2018. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. Water Research https://doi.org/10.1016/j.watres.2018.08.049.

- Savichtcheva O, Okabe S. 2006. Alternative indicators of fecal pollution: relations with pathogens and conventional indicators, current methodologies for direct pathogen monitoring and future application perspectives. Water Res 40:2463–76.
- Ahmed W, Hughes B, Harwood VJ. 2016. Current Status of Marker Genes of *Bacteroides* and Related Taxa for Identifying Sewage Pollution in Environmental Waters. 6. Water 8:231.
- Boehm AB, Van De Werfhorst LC, Griffith JF, Holden PA, Jay JA, Shanks OC, Wang D, Weisberg SB. 2013. Performance of forty-one microbial source tracking methods: a twentyseven lab evaluation study. Water Res 47:6812–28.
- 17. Reischer GH, Ebdon JE, Bauer JM, Schuster N, Ahmed W, Åström J, Blanch AR, Blöschl G, Byamukama D, Coakley T, Ferguson C, Goshu G, Ko G, de Roda Husman AM, Mushi D, Poma R, Pradhan B, Rajal V, Schade MA, Sommer R, Taylor H, Toth EM, Vrajmasu V, Wuertz S, Mach RL, Farnleitner AH. 2013. Performance Characteristics of qPCR Assays Targeting Human- and Ruminant-Associated *Bacteroidetes* for Microbial Source Tracking across Sixteen Countries on Six Continents. Environmental science & technology 47:8548–8556.
- 18. Mayer RE, Reischer GH, Ixenmaier SK, Derx J, Blaschke AP, Ebdon JE, Linke R, Egle L, Ahmed W, Blanch AR, Byamukama D, Savill M, Mushi D, Cristóbal HA, Edge TA, Schade MA, Aslan A, Brooks YM, Sommer R, Masago Y, Sato MI, Taylor HD, Rose JB, Wuertz S, Shanks OC, Piringer H, Mach RL, Savio D, Zessner M, Farnleitner AH. 2018. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents. Environ Sci Technol 52:5076–5084.

- Cloutier DD, McLellan SL. 2017. Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Applied and Environmental Microbiology 83.
- Handelsman J, Tiedje JM, Alvarez-Cohen L, Ashburner M, Cann I, Delong E. 2007. The new science of metagenomics: revealing the secrets of our microbial planet. National Academies Press.
- Unno T, Staley C, Brown CM, Han D, Sadowsky MJ, Hur H-G. 2018. Fecal pollution: new trends and challenges in microbial source tracking using next-generation sequencing. Environmental Microbiology 0.
- 22. Harwood VJ, Staley C, Badgley BD, Borges K, Korajkic A. 2014. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev 38:1–40.
- Sharma M, Sharma NR. 2020. Metagenomic Applications of Wastewater Treatment, p. 157–166. *In* Chopra, RS, Chopra, C, Sharma, NR (eds.), Metagenomics: Techniques, Applications, Challenges and Opportunities. Springer, Singapore.
- 24. Suttner B, Johnston ER, Orellana LH, Rodriguez-R LM, Hatt JK, Carychao D, Carter MQ, Cooley MB, Konstantinidis KT. 2020. Metagenomics as a Public Health Risk Assessment Tool in a Study of Natural Creek Sediments Influenced by Agricultural and Livestock Runoff: Potential and Limitations. Appl Environ Microbiol 86:e02525-19.

- Hong P-Y, Mantilla-Calderon D, Wang C. 2020. Mini Review: Metagenomics as a tool to monitor reclaimed water quality. Applied and Environmental Microbiology https://doi.org/10.1128/AEM.00724-20.
- USEPA. 2012. Method 1611: Enterococci in Water by TaqMan Quantitative Polymerase Chain Reaction (qPCR) Assay.
- USEPA. 2002. Method 1600: enterococci in water by membrane filtration using membraneenterococcus indoxyl-B-D-glucoside agar (mEI), EPA 821-R-02-022. United States Environmental Protection Agency Washington, DC.
- Reischer GH, Kasper DC, Steinborn R, Mach RL, Farnleitner AH. 2006. Quantitative PCR Method for Sensitive Detection of Ruminant Fecal Pollution in Freshwater and Evaluation of This Method in Alpine Karstic Regions. Applied and Environmental Microbiology 72:5610–5614.
- Caldwell JM, Raley ME, Levine JF. 2007. Mitochondrial Multiplex Real-Time PCR as a Source Tracking Method in Fecal-Contaminated Effluents. Environmental Science & Technology 41:3277–3283.
- Santo Domingo JW, Siefring SC, Haugland RA. 2003. Real-time PCR method to detect Enterococcus faecalis in water. Biotechnology Letters 25:261–265.
- Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. 2006. Quantitative PCR Targeting 16S rRNA and Reductive Dehalogenase Genes Simultaneously Monitors Multiple Dehalococcoides Strains. Applied and Environmental Microbiology 72:2765– 2774.

- Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. 2019. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics 20:405.
- Rodriguez-R LM, Tsementzi D, Luo C, Konstantinidis KT. 2020. Iterative subtractive binning of freshwater chronoseries metagenomes identifies over 400 novel species and their ecologic preferences. Environ Microbiol 22:3394–3412.
- 34. Nayfach S, Pollard KS. 2015. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biology 16:51.
- Kopylova E, Noé L, Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217.
- Castro JC, Rodriguez-R LM, Harvey WT, Weigand MR, Hatt JK, Carter MQ, Konstantinidis KT. 2018. imGLAD: accurate detection and quantification of target organisms in metagenomes. PeerJ 6.
- 37. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. 9. Nature Reviews Microbiology 12:635–645.
- Konstantinidis KT, Rosselló-Móra R, Amann R. 2017. Uncultivated microbes in need of their own taxonomy. 11. The ISME Journal 11:2399–2406.

- Crane SR, Moore JA. 1986. Modeling enteric bacterial die-off: A review. Water, Air, & Soil Pollution 27:411–439.
- Boehm AB, Graham KE, Jennings WC. 2018. Can We Swim Yet? Systematic Review, Meta-Analysis, and Risk Assessment of Aging Sewage in Surface Waters. Environmental Science & Technology 52:9634–9645.
- Weimann A, Mooren K, Frank J, Pope PB, Bremges A, McHardy AC. 2016. From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer. mSystems 1.
- 42. USEPA. 2012. Recreational Water Quality Criteria. EPA820-F-12–058.
- Korajkic A, Wanjugi P, Brooks L, Cao Y, Harwood VJ. 2019. Persistence and Decay of Fecal Microbiota in Aquatic Habitats. Microbiology and Molecular Biology Reviews 83.
- 44. Boehm AB, Silverman AI, Schriewer A, Goodwin K. 2019. Systematic review and metaanalysis of decay rates of waterborne mammalian viruses and coliphages in surface waters. Water Research 164:114898.
- Greaves J, Stone D, Wu Z, Bibby K. 2020. Persistence of emerging viral fecal indicators in large-scale freshwater mesocosms. Water Research X 9:100067.
- Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 326:1694– 1697.
- 47. Garud NR, Good BH, Hallatschek O, Pollard KS. 2019. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLOS Biology 17:e3000102.

- Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. 2020. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36:2251–2252.
- Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106.
- 50. Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD, Borenstein E. 2017. The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition. Cell Host Microbe 22:411-419.e4.
- Shanks OC, Domingo JWS, Lu J, Kelty CA, Graham JE. 2007. Identification of bacterial DNA markers for the detection of human fecal pollution in water. Appl Environ Microbiol 73:2416–2422.
- 52. Besten G den, Eunen K van, Groen AK, Venema K, Reijngoud D-J, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340.
- Wilkinson T, Korir D, Ogugo M, Stewart RD, Watson M, Paxton E, Goopy J, Robert C.
 2020. 1200 high-quality metagenome-assembled genomes from the rumen of African cattle and their relevance in the context of sub-optimal feeding. Genome Biology 21:229.
- Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, Pollard KS, Sakharova E, Parks DH, Hugenholtz P, Segata N, Kyrpides NC, Finn RD. 2020. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nature Biotechnology 1–10.

- 55. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. 2019. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. 8. Nature Biotechnology 37:953–961.
- 56. Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AØ, Kjeldsen NJ, Liu C, Maguin E, Doré J, Pons N, Le Chatelier E, Prifti E, Li J, Jia H, Liu X, Xu X, Ehrlich SD, Madsen L, Kristiansen K, Rogel-Gaillard C, Wang J. 2016. A reference gene catalogue of the pig gut microbiome. 12. Nature Microbiology 1:1–6.
- 57. Wang C, Li P, Yan Q, Chen L, Li T, Zhang W, Li H, Chen C, Han X, Zhang S, Xu M, Li B, Zhang X, Ni H, Ma Y, Dong B, Li S, Liu S. 2019. Characterization of the Pig Gut Microbiome and Antibiotic Resistome in Industrialized Feedlots in China. mSystems 4.
- Gilroy R, Ravi A, Getino M, Pursley I, Horton D, Alikhan N-F, Baker D, Gharbi K, Hall N, Watson M. 2020. A Genomic Blueprint of the Chicken Gut Microbiome.

Table 1: qPCR markers used in this study and associated reference genomes. Host-specific

MST markers include HF183, RumBac, and HUMmt; general FIB markers are EF16S and EPA1611. The GenBac16S assay was used for absolute quantification and LOD estimation for reference genomes in the metagenomes as described in the Materials and Methods section.

Marker	Target	Reference	Reference genome	Accession
HF183	Human Bacteroides 16S	2	<i>Bacteroides dorei</i> CL03T12C01	NZ_CP011531.1
RumBac	Ruminant Bacteroides 16S	48	n/a	n/a
HUMmt	Human mtDNA NADH dehydrogenase subunit 5	49	Human mitochondrion genome	J01415.2
EF16S	<i>E. faecalis</i> 16S	50	<i>E. faecalis</i> ATCC29212	CP008816.1
EPA1611	Enterococcus 23S	46	<i>E. faecalis</i> ATCC29212	CP008816.1
GenBac16S	Universal 16S rRNA	51	n/a	n/a

Figure 1: Traditional FIB, MST marker, and total bacterial cell abundances during the mesocosm incubations (A) EPA Method 1600 culture-based enumeration of *Enterococcus*. (B) EPA Method 1611 qPCR-based enumeration of *Enterococcus*. Black dotted lines show the EPA's recreational water quality criteria (RWQC) limit for impaired waters for each assay (CFU= colony forming units; CCE= calibrator cell equivalents). (C) Host-specific MST qPCR assays that could be detected in the dialysis bag mesocosms. The HUMmt is reported as #copies/mL and the rest are reported as #cells/mL. (D) Cell density in the mesocosms over time based on a universal 16S qPCR assay (GenBac16S). The average 16S rRNA gene copy number per genome was estimated from the corresponding metagenome for each sample by dividing average 16S gene sequencing depth by the average genome sequencing depth as described in the main text. In all figures, error bars are the standard deviation for averages that had more than three data points.

Figure 2: Compare absolute abundances of putative biomarker MAGs, traditional FIB and MST qPCR markers in (A) H1 mesocosms, (B) H3 mesocosms, and (C) the average of all 3 biological replicates of the cow fecal mesocosms. Absolute abundances (gene copies, cells or viral particles per mL) were determined for all targets except for the human mitochondrial

genome (hum mtGenome), which is expressed as relative abundance (sequencing depth per Gbp metagenome) and is shown on the secondary axis for (A) and (B). MAGs are represented by solid lines with circle markers. Reference genomes are represented by dashed lines with triangle markers and include *Bacteroides dorei*, CrAssphage, *E. coli*, and the human mtGenome. The qPCR assays are represented by dotted lines with X markers and included the human-specific and ruminant specific *Bacteroides* assays (HF183 and RumBac, respectively) and the human mtDNA assay (HUMmt; reported as copies/mL). The human mesocosms are plotted separately because they were more variable among each other compared to the cows and also because neither *B. dorei*, CrAssphage, or HF183 were detected in any of the H2 mesocosms. Thus, H2 is not shown here.

Figure 3: Correlation between qPCR and metagenome-based abundance estimates of MST markers and their reference genome counterparts. (A) Human-specific *Bacteroides* 16S (HF183) versus the absolute abundance of the reference genome *B. dorei* in the human mesocosm metagenomes. (B) Ruminant-specific *Bacteroides* 16S (RumBac) versus the absolute abundance of a contig recovered from the cow fecal inocula metagenomes carrying a perfect match to the RumBac assay in the cow mesocosm metagenomes. Absolute abundances for (A) and (B) are expressed as the number of *Bacteroides* cells/mL.