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Microbes can form complex communities that perform critical functions in maintaining the1

integrity of their environment1,2 or the well-being of their hosts3–6. Successfully managing2

these microbial communities requires the ability to predict the community composition based3

on the species assemblage7. However, making such a prediction remains challenging because4

of our limited knowledge of the diverse physical8, biochemical9, and ecological10,11 processes5

governing the microbial dynamics. To overcome this challenge, here we present a deep learn-6

ing framework that automatically learns the map between species assemblages and commu-7

nity compositions from training data. First, we systematically validate our framework using8

synthetic data generated by classical population dynamics models. Then, we apply it to ex-9

perimental data of both in vitro and in vivo communities, including ocean and soil microbial10

communities12,13, Drosophila melanogaster gut microbiota14, and human gut and oral micro-11

biota15. Our results demonstrate how deep learning can enable us to understand better and12

potentially manage complex microbial communities.13

14

Consider the pool ˝ D f1; � � � ; N g of all microbial species that can inhabit an ecological15

habitat of interest, such as the human gut. A microbiome sample obtained from this habitat can16

be considered as a local community assembled from ˝ with a particular species assemblage. The17

species assemblage of a sample is characterized by a binary vector z 2 f0; 1gN , where its i -th entry18

zi satisfies zi D 1 (or zi D 0) if the i -th species is present (or absent) in this sample. Each sample19

is also associated with a composition vector p 2 �N , where pi is the relative abundance of the20

i-th species, and �N D
˚
p 2 RN�0j

P
i pi D 1

	
is the probability simplex. Mathematically, our21

problem is to learn the map22

' W z 2 f0; 1gN 7�! p 2 �N ; (1)

which assigns the composition vector p D '.z/ based on the species assemblage z.23

Knowing the above map would be instrumental in understanding the assembly rules of microbial24

communities16. However, learning this map is a fundamental challenge because the map depends25

on many physical, biochemical, and ecological processes influencing the dynamics of microbial26

communities. These processes include the spatial structure of the ecological habitat8, the chemical27

gradients of available resources9, and inter/intra-species interactions11, to name a few. For large28

microbial communities like the human gut microbiota, our knowledge of all these processes is still29

rudimentary, hindering our ability to predict microbial compositions from species assemblages.30
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Methods31

Here we show it is possible to predict the microbial composition from species assemblage without32

knowing the mechanistic details of the above processes. Our solution is a deep learning framework33

that learns the map ' directly from a dataset D of S samples, each of which is associated with a34

pair .z; p/, see Fig. 1.35

Conditions for predicting compositions from species assemblages.36

To ensure that the problem of learning ' from D is mathematically well-posed, we make the37

following assumptions. First, we assume that the species pool in the habitat has universal dynamics17,38

i.e., different local communities of this habitat can be described by the same population dynamics39

model with the same parameters. This assumption is necessary because, otherwise, the map '40

simply does not exist, implying that predicting community compositions from species assemblages41

has to be done in a sample-specific manner, which is a daunting task. For in vitro communities,42

this assumption is satisfied if samples were collected from the same experiment or from multiple43

experiments but with very similar environmental conditions. For in vivo communities, empirical44

evidence indicates that the human gut and oral microbiota of healthy adults display very strong45

universal dynamics17. Second, we assume that the compositions of those collected samples represent46

steady states. This assumption is natural because for highly fluctuating microbial compositions the47

map ' is simply not well defined. We note that observational studies of host-associated microbial48

communities such as the human gut microbiota indicate that they remain close to stable steady states49

in the absence of drastic dietary change or antibiotic administrations15,18,19. Finally, we assume that50

for each species assemblage z 2 f0; 1gN there is a unique steady-state composition p 2 �N . In51

particular, this assumption requires that the true multi-stability does not exist for the species pool52

(or any subset of it) in this habitat. This assumption is required because, otherwise, the map ' is not53

injective and the prediction of community compositions becomes mathematically ill-defined. In54

practice, we expect that the above three assumptions can not be strictly satisfied. This means that any55

algorithm that predicts microbial compositions from species assemblages needs to be systematically56

tested to ensure its robustness against errors due to the violation of such approximations.57
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Limitations of traditional deep learning frameworks.58

Under the above assumptions, a straightforward approach to learning the map ' from D would59

be using deep neural networks20,21 such as a feedforward Residual Network22 (ResNet). As a60

very popular tool in image processing, ResNet is a cascade of L � 1 hidden layers where the61

state h` 2 RN of the `-th hidden layer satisfies h` D h`�1 C f�.h`�1/, ` D 1; � � � ; L, for62

some parametrized function f� with parameters � . These hidden layers are plugged to the input63

h0 D gin.z/ and the output Op D gout.hL/ layers, where gin and gout are some functions. Crucially,64

for our problem, any architecture must satisfy two restrictions: (1) vector Op must be compositional65

(i.e., Op 2 �N ); and (2) the predicted relative abundance of any absent species must be identically66

zero (i.e., zi D 0 should imply that Opi D 0). Simultaneously satisfying both restrictions requires67

that the output layer is a normalization of the form Opi D zihL;i=
P
j zjhL;j , and that f� is a68

non-negative function (because hL � 0 is required to ensure the normalization is correct). We found69

that it is possible to train such a ResNet for predicting compositions in simple cases like small in70

vitro communities (Supplementary Note S2.1). But for large in vivo communities like the human71

gut microbiota, ResNet does not perform very well (Supplementary Fig. S1). This is likely due to72

the normalization of the output layer, which challenges the training of neural networks because of73

vanishing gradients21. The vanishing gradient problem is often solved by using other normalization74

layers such as the softmax or sparsemax layers23. However, we cannot use these layers in our75

problem because they do not satisfy the second restriction. We also note that ResNet becomes a76

universal approximation only in the limit L!1, which again complicates the training24.77

A new deep learning framework.78

To overcome the limitations of traditional deep learning frameworks based on neural networks (such79

as ResNet) in predicting microbial compositions from species assemblages, we developed cNODE80

(compositional Neural Ordinary Differential Equation), see Fig. 1b. The cNODE framework is81

based on the notion of Neural Ordinary Differential Equations, which can be interpreted as a82

continuous limit of ResNet where the hidden layers h’s are replaced by an ordinary differential83

equation (ODE)25. In cNODE, an input species assemblage z 2 f0; 1gN is first transformed into the84

initial condition h.0/ D z=1ᵀz 2 �N , where 1 D .1; � � � ; 1/ᵀ 2 RN (left in Fig. 1b). This initial85

condition is used to solve the set of nonlinear ODEs86

dh.�/
d�
D h.�/ˇ

�
f�
�
h.�/

�
� 1 h.�/ᵀf�

�
h.�/

��
: (2)
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Here, the independent variable � � 0 represents a virtual “time”. The expression h ˇ v is the87

entry-wise multiplication of the vectors h; v 2 RN . The function f� W �N ! RN can be any88

continuous function parametrized by � . For example, it can be the linear function f�.h/ D �h with89

parameter matrix � 2 RN�N (bottom in Fig. 1b), or a more complicated function represented by a90

feedforward deep neural network. Note that Eq. (2) can be considered as a very general form of the91

replicator equation —a canonical model in evolutionary game theory26— with f� representing the92

fitness function. By choosing a final integration “time” �c > 0, Eq. (2) is numerically integrated to93

obtain the prediction Op D h.�c/ that is the output of cNODE (right in Fig. 1b). We choose �c D 194

without loss of generality, as � in Eq. (2) can be rescaled by multiplying f� by a constant. The95

cNODE thus implements the map96

O'� W z 2 f0; 1g
N
7�! Op 2 �N ; (3)

taking an input species assemblage z to the predicted composition Op (see Supplementary Note S197

for implementation details). Note that Eq. (2) is key to cNODE because its architecture guarantees98

that the two restrictions imposed before are naturally satisfied. Namely, Op 2 �N because the99

conditions h.0/ 2 �N and 1ᵀdh=d� D 0 imply that h.�/ 2 �N for all � � 0. Additionally, zi D 0100

implies Opi D 0 because h.0/ and z have the same zero pattern, and the right-hand side of Eq. (2) is101

entry-wise multiplied by h.102

We train cNODE by adjusting the parameters � to approximate ' with O'� . To do this, we first103

choose a distance or dissimilarity function d.p; q/ to quantify how dissimilar are two compositions104

p; q 2 �N . One can use any Minkowski distance or dissimilarity function. In the rest of this paper,105

we choose the Bray-Curtis27 dissimilarity to present our results. Specifically, for a dataset Di � D,106

we use the loss function107

E.Di/ D
1

jDi j

X
.z;p/2Di

d.p; O'�.z//: (4)

Second, we randomly split the dataset D into training D1 and test D2 datasets. Next, we choose an108

adequate functional form for f� . In our experiments, we found that the linear function f�.h/ D �h,109

� 2 RN�N , provides accurate predictions for the composition of in silico, in vitro, and in vivo110

communities. Note that, despite f� is linear, the map O'� is nonlinear because it is the solution of the111

nonlinear ODE of Eq. (2). Finally, we adjust the parameters � by minimizing Eq. (4) on D1 using a112

gradient-based meta-learning algorithm28. This learning algorithm enhances the generalizability113

of cNODE (Supplementary Note S1.2 and Supplementary Fig. S1). Once trained, we calculate114
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cNODE’s test prediction error E.D2/ that quantifies cNODE’s performance in predicting the115

compositions of never-seen-before species assemblages. Test prediction errors could be due to a116

poor adjustment of the parameters (i.e., inaccurate prediction of the training set), low ability to117

generalize (i.e., inaccurate predictions of the test dataset), or violations of our three assumptions118

(universal dynamics, steady-state samples, no true multi-stability).119

Fig. 1 demonstrates the application of cNODE to the fly gut microbiome samples collected in120

an experimental study14. In this study, germ-free flies (Drosophila melanogaster) were colonized121

with all possible combinations of five core species of fly gut bacteria, i.e., Lactobacillus plantarum122

(species-1), Lactobacillus brevis (species-2), Acetobacter pasteurianus (species-3), Acetobacter123

tropicalis (species-4), and Acetobacter orientalis (species-5). The dataset contains 41 replicates for124

the composition of each of the 2N � 1 D 31 local communities with different species assamblages.125

To apply cNODE, we aggregated all replicates and calculated their average composition, resulting126

in one “representative” sample per species assamblage (Supplementary Note S4). We also excluded127

the trivial samples with a single species, resulting in S D 26 samples. We trained cNODE by128

randomly choosing 21 of those samples (80%) as the training dataset (Fig. 1a). Once trained,129

cNODE accurately predicts microbial compositions in the test dataset of 5 species assemblages (Fig.130

1c). For example, cNODE predicts that in the community with only species 3 and 4 present, species131

3 will become nearly extinct, which agrees well with the experimental result (sample 26 in Fig. 1c).132

Results133

In silico validation of cNODE.134

To systematically evaluate the performance cNODE, we generated in silico data for pools of135

N D 100 species with population dynamics given by the classical Generalized Lotka-Volterra136

(GLV) model29
137

dxi.t/
dt
D xi.t/

24ri C NX
jD1

aij xj .t/

35 ; i D 1; � � � ; N: (5)

Above, xi.t/ denotes the abundance of the i-th species at time t � 0. The GLV model has138

as parameters the interaction matrix A D .aij / 2 R
N�N , and the intrinsic growth-rate vector139

r D .ri/ 2 R
N . Here, aij denotes the inter- (if j ¤ i) or intra- (if j D i) species interaction140

strength of species j to the per-capita growth rate of species i . The parameter ri is the intrinsic141

growth rate of species i . Recall that the interaction matrix A determines the ecological network142
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G.A/ underlying the species pool. Namely, this network has one node per species and edges143

.j ! i/ 2 G.A/ if aij ¤ 0. The connectivity C 2 Œ0; 1� of this network is the proportion of edges144

it has compared to the N 2 edges in a complete network. Despite its simplicity, the GLV model has145

been successfully applied to describe the population dynamics of microbial communities in diverse146

environments, from the soil30 and lakes31 to the human gut32,33. To validate cNODE, we generated147

synthetic microbiome samples as steady-state compositions of GLV models with random parameters148

by choosing aij � Bernoulli.C /Normal.0; �/ if i ¤ j , ai i D �1, and ri � UniformŒ0; 1�, for149

different values of connectivity C and characteristic inter-species interaction strength � > 0150

(Supplementary Note S3).151

Figure 2a shows the prediction error in synthetic training and test datasets, each of which has152

N samples generated by the GLV model of N species, with � D 0:5 and different values of C .153

The prediction error in the training set, E.D1/, keeps decreasing with the increasing number of154

training epochs, especially for high C values (as shown in dashed and dotted cyan lines in Fig.155

2a). Interestingly, the prediction error in the test dataset, E.D2/, reaches a plateau after enough156

number of training epochs regardless of the C values (see solid, dashed and dotted yellows lines in157

Fig. 2a), which is a clear evidence of an adequate training of cNODE with low overfitting. Note158

that the plateau of E.D/ increases with C . We confirm this result in datasets with different sizes159

of the training dataset (Fig. 2b). Moreover, we found that the plateau increases with increasing160

characteristic interaction strength � (Fig. 2c). Fortunately, the increase of E.D2/ (due to increasing161

C or � ) can be compensated by increasing the sample size of the training set D1. Indeed, as shown162

in Fig. 2b,c, E.D2/ decreases with increasing jD1j=N .163

To systematically evaluate the robustness of cNODE against violation of its three key assump-164

tions, we performed three types of validations. In the first validation, we generated datasets that165

violate the assumption of universal dynamics. For this, given a “base” GLV model with parameters166

.A; r/, we consider two forms of universality loss (Supplementary Note S3). First, samples are167

generated using a GLV with the same ecological network but with those non-zero interaction168

strengths aij replaced by aij C Normal.0; �/, where � > 0 characterizes the changes in the typical169

interaction strength. Second, samples are generated using a GLV with slightly different ecological170

networks obtained by randomly rewiring a proportion � 2 Œ0; 1� of their edges. We find that171

cNODE is robust to both forms of universality loss as its asymptotic prediction error changes172

continuously, maintaining a reasonably low prediction error up to � D 0:4 and � D 0:1 (Fig. 2d173

and Supplementary Fig. S2).174

In the second validation, we evaluated the robustness of cNODE against measurement noises in175
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the relative abundance of species. For this, for each sample, we first change the relative abundance of176

the i -th species from pi to maxf0; pi CNormal.0; "/g, where " � 0 characterizes the measurement177

noise intensity. Then, we normalize the vector p to ensure it is still compositional, i.e., p 2 �N .178

Due to the measurement noise, some species that were absent may be measured as present, and179

vice-versa. In this case, we find that cNODE performs adequately up to " D 0:025 (Fig. 2f)180

In the third validation, we generated datasets with true multi-stability by simulating a population181

dynamics model with nonlinear functional responses (Supplementary Notes S3). For each species182

collection, these functional responses generate two interior equilibria in different “regimes”: one183

regime with low biomass, and the other regime with high biomass. We then train cNODE with184

datasets obtained by choosing a fraction .1 � �/ of samples from the first regime, and the rest from185

the second regime. We find that cNODE is robust enough to provide reasonable predictions up to186

� D 0:2 (Fig. 2d).187

Evaluation of cNODE using real data.188

We evaluated cNODE using six microbiome datasets of different habitats (Supplementary Note189

S4). The first dataset consists of S D 275 samples34 of the ocean microbiome at phylum taxonomic190

level, resulting in N D 73 different taxa. The second dataset consists of S D 26 in vivo samples191

of Drosophila melanogaster gut microbiota of N D 5 species14, as described in Fig. 1. The192

third dataset has S D 93 samples of in vitro communities of N D 8 soil bacterial species12. The193

fourth dataset contains S D 113 samples of the Central Park soil microbiome13 at the phylum level194

(N D 36 phyla). The fifth dataset contains S D 150 samples of the human oral microbiome from195

the Human Microbiome Project15 (HMP) at the genus level (N D 73 genera). The final dataset has196

S D 106 samples of the human gut microbiome from HMP at the genus level (N D 58 genera).197

To evaluate cNODE, we performed the leave-one-out cross-validation on each dataset. The198

median test prediction errors were 0.06, 0.066, 0.079, 0.107, 0.211 and 0.242 for the six datasets,199

respectively (Fig. 3a). To understand the meaning of these errors, for each dataset we inspected200

five pairs (p; Op) corresponding to the observed and the predicted compositions of five samples. We201

chose the five samples based on their test prediction error. Specifically, we selected those samples202

with the minimal error, close to the first quartile, closer to the median, closer to the third quartile,203

and with the maximal error (columns in Fig. 3b-g, from left to right ). We found that samples with204

errors below the third quartile provide acceptable predictions (left three columns in Fig. 3b-g), while205

samples with errors close to the third quartile or with the maximal error do demonstrate salient206
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differences between the observed and predicted compositions (right two columns in Fig. 3b-g).207

Note that in the sample with largest error of the human gut dataset (Fig. 3g, rightmost column), the208

observed composition is dominated by Provotella (pink) while the predicted sample is dominated209

by Bacteroides (blue). This drastic difference is likely due to different dietary patterns35.210

Discussion211

cNODE is a deep learning framework to predict microbial compositions from species assemblages.212

We validated its performance using in silico, in vitro, and in vivo microbial communities. Several213

methods have been developed for predicting species abundances in microbial communities by214

modeling their population dynamics12,32,36,37, but these methods typically require high-quality time-215

series data of absolute abundances that are difficult to obtain for large in vivo microbial communities.216

cNODE circumvents the need of absolute abundances or time-series data. The price to pay is that217

the trained function f� cannot be directly interpreted because the lack of identifiability inherent to218

compositional data38,39. We also note a recent statistical method to predict coexistence of ecological219

communities40, but this method also requires absolute abundance measurements. cNODE can220

outperform this statistical method despite using only relative abundances (Supplementary Note S6).221

See also Supplementary Note S5 for a discussion of how our framework compares to other related222

works.223

Deep learning techniques are actively applied to microbiome research41–49 such as for classifying224

samples that shifted to a diseased state50, predicting infection complications in immunocompromised225

patients51, or predicting the temporal or spatial evolution of certain species collection52,53. However,226

to the best of our knowledge, the potential of deep learning for predicting the effect of changing227

species collection was not explored nor validated before. Our proposed framework based the notion228

of neural ODE is a baseline which could be improved by incorporating additional information. For229

example, incorporating available environmental information such as pH, temperature, age, BMI230

and diet of the host, could enhance the prediction accuracy. This would help to predict the species231

present in different environments. Adding “hidden variables” such as the unmeasured total biomass232

or unmeasured resources to our ODE will enhance the expressivity of the cNODE54,55, but this233

may result in a more challenging training. Finally, if available, knowledge of the genetic similarity234

between species can be leveraged into the loss function by using the phylogenetic Wasserstein235

distance56 that provides a well-defined gradientt57.236

Our framework does have limitations. For example, it cannot accurately predict the abundance237
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of taxa that have never been observed in the training dataset. Also, a limitation of our current238

architecture is that it assumes that true multistability does not exist —namely, a community with a239

given species assemblage permits only one stable steady-state, where each species in the collection240

has a positive abundance. For complex microbial communities such as the human gut microbiota,241

the highly personalized species collections makes it very difficult to decide if true multistability242

exists or not. Our framework could be extended to handle multi-stability by predicting a probability243

density function for the abundance of each species. In such a case, true multistability would244

correspond to predicting a multimodal density function.245

We anticipate that a useful application of our framework is to predict if by adding some246

species collection to a local community we can bring the abundance of target species below the247

practical extinction threshold. Thus, given a local community containing the target (and potentially248

pathogenic) species, we could use a greedy optimization algorithm to identify a minimal collection249

of species to add such that our architecture predicts that they will decolonize the target species.250
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Figure 1: A deep learning framework to predict microbiome compositions from species assemblages.
We illustrate this framework using experimental data from a pool of N D 5 bacterial species in Drosophila
melangaster gut microbiota14: Lactobacillus plantarum (blue), Lactobacillus brevis (pink), Acetobacter
pasteurianus (yellow), Acetobacter tropicalis (green), and Acetobacter orientalis (purple). a. We randomly
split this dataset into training and test datasets: D1 and D2, which contain 80% and 20% of the samples,
respectively. Each dataset contains pairs .z; p/ of the species assamblage z 2 f0; 1gN (top) and composition
p 2 �N (bottom) from each sample. b. To predict compositions from species assamblages, our cNODE
framework consists of a solver for the ODE shown in Eq. (2), together with a chosen parametrized function
f� . During training, the parameters � are adjusted to learn to predict the composition Op 2 �N of the species
assamblage z 2 f0; 1gN in D1. c. After training, performance is evaluated by predicting the composition of
never-seen-before species assamblages in the test dataset D2.
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Figure 2: In silico validation of cNODE using synthetic datasets. Results are for synthetic
communities of N D 100 species generated by the with Generalized Lotka-Volterra model (panels
a-e) or a population dynamics model with nonlinear functional responses (panel f). a. Training
cNODE with N samples obtained from GLV models with connectivity C D 0:1 (solid), C D 0:15
(dashed), C D 0:2 (dotted). b. Performance of cNODE for GLV datasets with C D 0:5 and
different interaction strengths � . c. Performance of cNODE for GLV datasets with � D 0:5 and
different connectivity C . d. Performance of cNODE for GLV datasets with non-universal dynamics,
quantified by the value of �. For all datasets, � D 0:1 and C D 0:5. e. Performance of cNODE for
GLV datasets with measurement errors quantified by ". For all datasets, � D 0:1 and C D 0:5. f.
Performance of cNODE for synthetic datasets with multiple interior equilibria, quantified by the
probability � 2 Œ0; 1� of finding multiple equilibria. For all datasets, C D 0:5; � D 0:1. In panels
b-f, thin lines represent the prediction errors for ten validations of training cNODE with a different
dataset. Mean errors are shown in thick lines.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2021.06.17.448886doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.17.448886
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

d

minimum 25% median 75% maximum

b

c

oc
ea

n
in

 v
itr

o 
so

il
in

 v
iv

o 
so

il
hu

m
an

 g
ut

hu
m

an
 o

ra
l

true

predicted

dr
os

op
hi

la
gu

t

true

predicted

true

predicted

e

f

g

true

predicted

true

predicted

true

predicted

error= 0.0148016 error= 0.449434error= 0.0388248

relative abundance relative abundance relative abundance relative abundance relative abundance

error= 0.0602783 error= 0.0975791

error= 0.0201773 error= 0.0409994 error= 0.061011 error= 0.103244 error= 0.283499

error= 0.0072379 error= 0.0238238 error= 0.0797251 error= 0.215522 error= 0.705196

error= 0.0389638 error= 0.075961 error= 0.107455 error= 0.132809 error= 0.331902

error= 0.0709961 error= 0.162706 error= 0.211023 error= 0.289642 error= 0.522531

0.0 0.2 0.4 0.6 0.8 1.0

error= 0.0596986

0.0 0.2 0.4 0.6 0.8 1.0

error= 0.157012

0.0 0.2 0.4 0.6 0.8 1.0

error= 0.240394

0.0 0.2 0.4 0.6 0.8 1.0

error= 0.346142

0.0 0.2 0.4 0.6 0.8 1.0

error= 0.674898

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ocean (73 phyla, 275 samples)

drosophila gut (5 species, 26 samples)

in vitro soil (8 species, 93 samples)

in vivo soil (36 phyla, 113 samples)

human oral (73 genera, 150 samples)

human gut (58 genera, 106 samples)

test prediction error

Leave-one-out cross validation

Figure 3: Predicting the composition of real microbiomes. a. Boxplots with the prediction error
obtained from a leave-one-out crossvalidation of each dataset. b-g: For each dataset, we show true
and predicted samples corresponding to the minimal prediction error, closer to the first quartile,
median, closer to the third quartile, maximum prediction error (including outliers). Note all shown
in panels b-g predictions are out-of-sample predictions.
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S1. Implementation of the compositional Neural Ordinary Dif-
ferential Equation

S1.1 Flux implementation of cNODE.

We implemented cNODE using Flux58, a library for machine learning in the Julia programming
language with support for Neural Ordinary Differential Equations25. A complete implementation of
cNODE is given in the file cNODE.jl.

Our implementation is based on a structure called FitnessLayer that contains cNODE’s
parameter � 2 RN�N . This parameter is initialized using the Xavier’s method59. When evaluated
in a composition p, the FitnessLayer computes first f�.p/ D �p. More complex functions f�
can be easily incorporated in the code. Finally, the structure uses f� to calculate the right-hand side
of the ODE in Eq. (2).

To predict the composition Op 2 �N associated with a species collection z 2 f0; 1gN , cN-
ODE numerically solves such an the ODE in Eq.(2). In Flux, this is automated by the function
neural_ode, which constructs the cNODE by building a NODE with the dynamics specified by
the FitnessLayer.

The dynamics is numerically integrated over the interval � 2 Œ0; �c� using the Tsit5 method60,
which is the default integration method for nonstiff ODEs in Julia. We choose �c D 1 without loss
of generality, as � in Eq. (2) can be rescaled by multiplying f� by a constant. After integration, the
final value at time � D 1:0 is returned as the prediction of cNODE.

The loss function calculates the average Bray-Curtis dissimilarity between there true composition
p 2 �N and the prediction Op 2 �N generated by cNODE.

S1.2 Training cNODE.
To train cNODE, we adjust the parameters � to minimize the loss over the training set. We
experimented with two training algorithms:

1. The ADAM algorithm61. ADAM is a widely used gradient-based stochastic optimization
algorithm that often compares favorably to other gradient optimization algorithms62. We refer
to [61, 62] for additional details.

2 ADAM plus a first-order gradient-based meta-learning algorithm based on Reptile28.
In the meta-learning framework, lets consider a set T of different tasks that the network needs
to perform, such as learning to predict in different datasets. Reptile works by sampling some
task � 2 T , training on it to obtain the weights Q� , and then updating the initial weights �
towards Q� .

To train cNODE, we used ADAM plus Reptile training28. More precisely, we defined each
task as a random partition of the training set in mini-batches. In this way, training enhances
cNODE’s generalizing ability from the predictions regardless of any specific partition or any
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sequence order of mini-batches. The algorithm we used is described below:

Algorithm 1: ADAM + Reptile for cNODE
Initialize � , the vector of initial parameters
for epoch = 1,2... do

Random partition of training set �
Compute Q� D ADAMk

�.�/, denoting k steps
Update �  � C ADAM. Q� � �/

end

Our implementation in the Julia language of the above algorithm is based on the model zoo
of the library Flux63.

S2. Comparison of two deep learning frameworks in predict-
ing microbiome compositions

S2.1 A ResNet architecture for predicting microbiome compositions.

We tested the performance the classical ResNet architecture25 for predicting microbiome composi-
tions. More precisely, we used the input layer

h0 D W0z C b0;

where W0 2 RN�N and b0 2 RN are parameters to adjust. We used L D 3 hidden layers of the
form:

h` D h`�1 C ReLU.W`�1h`�1 C b`�1/; ` D 1; � � � ; L;

where W` 2 RN�N and b` 2 RN are parameters to adjust. Finally, the output layer takes the form

Op D

 
hL;1z1P
j hL;j zj

; � � � ;
hL;N zNP
j hL;N zN

!
:

A Flux implementation of this ResNet can be found in the file ResNet.jl.
We trained this ResNet architecture using the two methods described in S1.2.

S2.2 Performance comparison.

We compared the performance of cNODE and ResNet architecture for predicting the composition of
four out of six real microbiome datasets described in Supplementary Note S4. These datasets contain
a small set of species (between 5 and 58) and samples (between 26 and 113), allowing us to make
computationally expensive leave-one-out cross validation analysis. Here, we also compared the
effect of training both architectures with ADAM, and with ADAM plus the Reptile like metalearning
algorithms.

To perform the comparison we used a leave-one-out cross validation on each of the four datasets
(Supplementary Fig. S1). From these results, some remarks are in order:

1. For both in-vivo datasets, cNODE trained with Reptile outperforms all other algorithms.
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2. The ResNet architecture trained using only ADAM can provide reasonably accurate prediction
for simple small species collections (i.e., for the N D 5 species in Drosophila gut and the
N D 8 species in the soil in-vitro community).

3. For cNODE, training using the Reptile metalearning algorithm decreases the prediction error
in the test dataset. Interestingly, using Reptile does not alway decreases the prediction error
in the train dataset. Therefore, the Reptile metalearning algorithm is performing as desired to
enhance the generalizing ability of cNODE.

4. For ResNet, training with the Reptile metalearning algorithm can increase the prediction
errors in both the training and test datasets when compared to training only with ADAM.

5. The ResNet architecture exhibits a higher variability in the training set when compared to
cNODE. This suggests that the performance of ResNet is significantly influenced by the
initialization parameters. In particular, training a ResNet with Reptile can significantly
increase the variability of prediction errors (see, e.g., the soil in vitro dataset).

Overall, the above remarks indicate that cNODE training with Reptile outperforms the other
architectures when predicting complex microbial communities like human gut microbiota or in vivo
soil communities.
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S3. Population dynamics for the in silico validations.

We generated in-silico species pools using the Generalized Lotka-Volterra (GLV) equations, a
classical population dynamics model successfully applied to diverse microbial communities, from
soils30 and cheese36, to the human body32,33. The GLV model takes the form

dx.t/
dt
D x.t/ˇ ŒAx.t/C r�; x.0/ D x0; (S1)

where x.t/ D .x1.t/; � � � ; xN .t//> 2 R�0 and xi.t/ denotes the absolute abundance of species i at
time t . Above, x ˇ v is the entry-wise multiplication of vectors x; v 2 RN . The GLV model has
two parameters: the interaction matrix of the species pool A D .aij / 2 R

N�N , and the intrinsic
growth-rate of the species r D .ri/ 2 RN . In particular, the j -th species has a positive impact on
the i-th species if aij > 0, a negative impact if aij < 0, and no impact if aij D 0. Recall also that
the interaction matrix determines the underlying ecological network G.A/ of the species pool. This
network has one vertex associated to each species and an edge .j ! i/ 2 G.A/ if aij ¤ 0.

To generate the relative abundance vector p 2 �N corresponding to a local community with
species collection z 2 f0; 1gN , we follow four steps:

1. Set the parameters .A; r/.

2. Set the initial abundance of species x0 2 RN�0 as

x0; i D

�
0 if zi = 0;
UniformŒ0; 1� otherwise,

for i D 1; � � � ; N .

3. Numerically integrate Eq. (S1) with initial condition x0 until the system reaches a steady-state
abundance x� D .x�1 ; � � � ; x

�
N / 2 R

N . For the results presented in our paper, we choose a
final integration time tf D 1000.

4. Compute the relative abundance vector p D .p1; � � � ; pN /T 2 �N as pi D x�i =
P
j x
�
j .

Using the above procedure, we generated a dataset D by randomly sampling species collections
z 2 f0; 1gN and calculating the corresponding Op 2 �N . Below we detail the construction of the
three types of datasets used in the Main Text.

S3.1 Generating datasets with universal dynamics.
To generate a dataset with universal dynamics, we considered that all species collections have the
same parameters .A; r/. These parameters were generated as follows. The interaction matrix A of
the community is obtained as the adjacency matrix of a directed weighted Erdös-Rényi random
network with connectivity C 2 Œ0; 1�. The edge-weights were chosen from a Normal distribution
with zero mean and variance �2, where � > 0 represents the “characteristic” inter-species interaction
strength. The intrinsic growth ri is chosen uniformly at random from the interval Œ0; 1�.

S3.2 Generating datasets with non-universal dynamics.
To generate a dataset with non-universal dynamics, we considered two possible sources for non-
universality. First, the mechanisms of interaction between species may differ across local communi-
ties. In Eq. (S1), this translates as using different parameters aij for each non-zero interaction in
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different local communities. Thus, in this case we replaced each aij ¤ 0 by aij C �Normal.0; 1/,
where � > 0 quantifies the changes in the typical interaction strength, and hence the “loss" of
universality in this case.

Second, we considered that each local community may have a different ecological network. To
model this case, we considered that the ecological network of each local community is obtained by
randomly rewiring a proportion � 2 Œ0; 1� of the edges of a baseline ecological network G.A/, thus
shuffling a proportion of entries of the associated A matrix. Since � D 0 corresponds to universal
dynamics, the magnitude of � quantifies the “loss” of universality in this case.

S3.3 Adding measurement noise to a dataset.
For a pair .z; p/ in a dataset D, we added noise by replacing pi by first adding a small noise
wi D maxf0; pi C "Normal.0; 1/g, and then normalizing to obtain the noisy measurement pi  
wi=

P
j wj . Here, the parameter " > 0 controls the measurement noise intensity.

S3.4 Generating datasets with multi-stability.
To generate a dataset with true multi-stability, we calculated the steady-states from a population
dynamics model with the following non-linear functional response:

dxi.t/
dt
D xi.t/

24ri C NX
jD1

aij
xj .t/

1C h xj .t/2

35 ; i D 1; � � � ; N; (S2)

where h denotes the handling time.
To generate steady-states with multi-stability, we first select a GLV model with a linear functional

response (Eq. S1) and universal dynamics (Supplementary Notes S3), and compute the steady-state
��. Note that the steady-state abundances satisfies the equation

ri D �

NX
jD1

aij �
�
j : (S3)

The steady-states of Eq.(S2) satisfies the equation

NX
jD1

aij
xj

1C h x2j
C ri D 0; (S4)

so that we substitute Eq.S3 in Eq.S4 and solve for xj the following quadratic equation:

h��j x
2
j � xj C �

�
j D 0; (S5)

for all j , and then we compute the relative abundance vector p D .p1; � � � ; pN /
T 2 �N as

pi D x�i =
P
j x
�
j . To ensure that there are two real solutions for xj , we chose h D 1

4��
k

2 > 0 for
some k.

The two steady-state abundances corresponds to a high and low total biomass regimes, respec-
tively. To build the datasets, we chose a fraction (1-�) from the first regime, and the rest from the
second.
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S4. Description of the experimental datasets.

S4.1 In-vivo drosophila core gut microbiome.

The drosophila dataset14 contains the absolute abundance of the five species in each possible local
community with different species collection. See Supplementary Table S1 for species IDs. There is
five replicates for each of those species collections. We averaged those five replicates, discarded
samples with a single species, and obtained the relative abundance of each of the remaining samples.
This yielded 31 samples with different species collection.

ID Genus Species
1 Lactobacillus plantarum
2 Lactobacillus brevis
3 Acetobacter pasteurianus
4 Acetobacter tropicalis
5 Acetobacter orientalis

Supplementary Table S1: Species IDs Drosophila gut microbiota.

S4.2 In-vitro soil community.

This laboratory community of N D 8 heterotrophic soil-dwelling bacterial species12 described in
Table S2. The available dataset contains 98 samples, including all solos, all duos, some trios, one
septet and one octet.

ID Genus Species
1 Enterobacter aerogenes
2 Pseudomonas aurantiaca
3 Pseudomonas chlororaphis
4 Pseudomonas citronellolis
5 Pseudomonas fluorescens
6 Pseudomonas putida
7 Pseudomonas veronii
8 Serratia marcescens

Supplementary Table S2: Species IDs the in-vitro soil community.

S4.3 In-vivo soil microbiome.
The soil dataset consists of soil microbiome across Central Park in New York City consist of 1160
samples. This data set is 16S rRNA gene-based with variable region V4. The data is available at
https://qiita.ucsd.edu/ under study ID 2140 and the detailed description of this data set can be found
in Ref. [13]. We used the function summarize_taxa.py QIIME 1 to summarize taxa to different
taxonomic levels with defaults options. Supplementary Table S3 provides the IDs associated to
each phylumm.

S4.4 Human gut microbiome.
A 16S rRNA gene-based data set from variable regions V3 to V5. The data are available at
http://www.hmpdacc.org/HMQCP/. We selected the samples from the stool body site. For multiple
samples from the same subject, we only keep one single sample of that subject. To guarantee the
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ID Kindgom Phylum
1 Archaea Crenarchaeota
2 Archaea Euryarchaeota
3 Archaea Parvarchaeota
4 Bacteria others
5 Bacteria Acidobacteria
6 Bacteria Actinobacteria
7 Bacteria Aquificae
8 Bacteria Armatimonadetes
9 Bacteria BHI80-139
10 Bacteria Bacteroidetes
11 Bacteria Chlorobi
12 Bacteria Chloroflexi
13 Bacteria Cyanobacteria
14 Bacteria Elusimicrobia
15 Bacteria FBP
16 Bacteria Firmicutes
17 Bacteria GN02
18 Bacteria Gemmatimonadetes
19 Bacteria Lentisphaerae
20 Bacteria NC10
21 Bacteria Nitrospirae
22 Bacteria OD1
23 Bacteria OP3
24 Bacteria OP9
25 Bacteria Planctomycetes
26 Bacteria Proteobacteria
27 Bacteria SBR1093
28 Bacteria Spirochaetes
29 Bacteria TM6
30 Bacteria TM7
31 Bacteria TPD-58
32 Bacteria Tenericutes
33 Bacteria Verrucomicrobia
34 Bacteria WPS-2
35 Bacteria WS1
36 Bacteria WS6

Supplementary Table S3: Phylum IDs for soil dataset.
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model can be trained sufficiently, we summarized the taxa into the genus level and removed the
genus with fewer than 50 reads. See also Supplementary Table S4 for genus ID.
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ID Phylum Class Order Family Genus
1 Firmicutes Clostridia Clostridiales Veillonellaceae Veillonella
2 Firmicutes Clostridia Clostridiales Ruminococcaceae Clostridium
3 Firmicutes Clostridia Clostridiales Ruminococcaceae Bacteroides
4 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus
5 Firmicutes Clostridia Clostridiales ClostridialesFamilyXIII.IncertaeSedis
6 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Odoribacter
7 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnobacterium
8 Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae Akkermansia
9 Bacteroidetes
10 Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae Haemophilus
11 Firmicutes Clostridia Clostridiales Veillonellaceae Megasphaera
12 Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus
13 Firmicutes Clostridia Clostridiales Ruminococcaceae Anaerotruncus
14 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides
15 Firmicutes Clostridia Clostridiales Dehalobacteriaceae Dehalobacterium
16 Tenericutes
17 Firmicutes Clostridia Clostridiales Lachnospiraceae Ruminococcus
18 Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea
19 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Catenibacterium
20 Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Desulfovibrio
21 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira
22 Firmicutes Clostridia Clostridiales Lachnospiraceae Clostridium
23 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia
24 Firmicutes Bacilli Turicibacterales Turicibacteraceae
25 Firmicutes Clostridia Clostridiales Ruminococcaceae
26 Actinobacteria Actinobacteria Coriobacteriales Coriobacteriaceae Collinsella
27 Firmicutes Clostridia Clostridiales Veillonellaceae Acidaminococcus
28 Firmicutes Clostridia Clostridiales ClostridialesFamilyXIII.IncertaeSedis Eubacterium
29 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
30 Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia
31 Firmicutes Clostridia Clostridiales Ruminococcaceae Eubacterium
32 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira
33 Bacteroidetes Bacteroidia Bacteroidales
34 Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila
35 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella
36 Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae Alistipes
37 Firmicutes Clostridia Clostridiales Veillonellaceae Dialister
38 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus
39 Proteobacteria Betaproteobacteria Burkholderiales
40 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Holdemania
41 Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium
42 Firmicutes Clostridia Clostridiales Lachnospiraceae Eubacterium
43 Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum
44 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium
45 Tenericutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Clostridium
46 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella
47 Others
48 Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium
49 Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus
50 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia
51 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
52 Firmicutes Clostridia Clostridiales Clostridiaceae
53 Firmicutes Clostridia Clostridiales Lachnospiraceae Bacteroides
54 Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacterium
55 Firmicutes Clostridia Clostridiales
56 Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium
57 Firmicutes Clostridia Clostridiales Veillonellaceae Megamonas
58 Firmicutes Clostridia Clostridiales Lachnospiraceae

Supplementary Table S4: Genus IDs for the human gut microbiota dataset.
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S5. Related work.

Here we describe related methods, emphasizing some key differences with respect to our framework.

1. Abundance prediction based on inferred population dynamics. A classical method to
predict species abundance in microbial ecosystems is modeling their population dynam-
ics12,32,33,36,37. Typically, the model is a set of parametrized ODEs —such as the Generalized
Lotka-Volterra equations— describing the changes over time in the absolute abundances
of a set of species. The model is fitted to available temporal data of absolute abundance
to infer parameters, such as intrinsic growth rates, inter-species interaction strengths, etc.
Then, to predict the abundance of certain species collection, the fitted ODE model is solved
starting from suitable initial condition. However, applying this method for large microbial
communities like the human gut is challenging if not impossible because: 1) the absence of
high-quality temporal data; and 2) typically only relative abundance of species are measured.
Furthermore, because the very broad population dynamics that ecosystems display even at
the scale of two species64, it is always very challenging to choose an adequate parametrized
ODE model for the population dynamics of the community.

2. Predictions based on neural networks methods. Larsen et al.52 employed an artificial
neural network to predict the temporal evolution of the composition of bacterial communities
with a constant species collection. More precisely, they developed a bioclimatic model of
relative microbial abundance that specifically incorporates interactions between biological
units. They modeled the complex interactions between microbial taxa and their environment
as an artificial neural network (ANN). This method is based on two key assumptions: (1)
community patterns share mathematically describable relationships with environmental con-
ditions; and (2) the ecosystem maintains a persistent microbial community. Note that the
second assumption implies that this method can not be used to predict the impact of changing
the species collections. Compared to method based on inferring population dynamics, this
method has the advantage of not requiring to specify any model for the community dynamics.
However, in contrast to our framework, this method cannot predict the effect of changing the
species collection.

Similarly, the recent work of Zhou et al.53 uses a neural network to predict the temporal
and spatial evolution of the composition of microbial communities with a constant species
collection. More precisely, the authors formulated the prediction of microbial communities at
unsampled locations as a multi-label classification task, where each location is considered
as an instance and each label represents a microbe species. Based on a set of heterogeneous
features extracted from the urban environment, they aimed to predict the presence or absence
of a list of microbes species at a nearby location. Note, however, that this method cannot be
immediately used to predict the effect of changing the species collection.

3. Predictions based on statistical methods. Recently, Maynard et al.40 proposed a statistical
method to predict species abundances from species collections. More precisely, based on
measuring the absolute abundance of species at some steady-states of the ecosystem, this
method assumes a linear model to predict all other steady-states. For the method to be
applicable, it requires that the following assumptions are satisfied: (1) each species must
be present in at least n distinct endpoints, not counting replicates; (2) each species must
co-occur with each other species in at least one endpoint (that is, for every pair of species
i and j , there must be some endpoint where i and j co-occur, possibly along with other
species); and (3) for each i there must exist a perfect matching between the n species and
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the endpoints in which they co-occur with i . As explained in the original manuscript40,
conditions (1) and (2) above requires that “coexistence among species must be reasonably
widespread for [these] conditions to hold.” This method may be challenging to apply for
microbial communities because it requires measuring absolute abundances. Furthermore,
because microbial communities tend to have nonlinear behaviors even at the scale of two
species64,65, the implicit assumption of linearity may fail to be satisfied. Finally, we note that
cNODE does not require any of the above three assumptions to be applicable, although its
prediction accuracy may be influenced by them.

Similarly, Tung et al.66 use a linear regression method to predict species compositions from
information of social networks of individuals. More precisely, the authors fit a classical
linear mixed model to predict the relative abundance of species in a sample based on the
following predictors: social group membership, age, sex, and read depth. We note here that
the predictors in this approach are completely different than the predictors used in cNODE
(i.e., it only uses species collections), and thus are not comparable.
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S6. Comparing cNODE with Maynard et al.’s method.

Here we compare the performance of cNODE with the method of Maynard et al. for predicting
endpoints40. This last method is described with details in item 3 of Supplementary Note S5.

To perform the comparison, we generated in silico datasets of N D 5 species with General-
ized Lotka-Volterra dynamics. More precisely, we generated datasets with universal dynamics,
maintaining the connectivity C D 0:5 constant and changing the typical interaction strength as
� 2 f0:1; 0:2; 0:3; 0:4g. For each value of � , we generated 10 datasets containing all S D 25 � 1
samples with different species collections following the simulation method described in Supple-
mentary Note S3. We repeated this simulation method three times, obtaining three repetitions for
the abundance of each species collections that can be used in Maynard’s method. Additionally,
because Maynard’s method requires absolute abundances, we kept in the datasets both the absolute
abundance and relative abundance of each steady-state that is reached. Using these datasets, we
constructed training datasets by randomly choosing 70% of the samples, and the rest of the samples
as test datasets.

To adjust Maynard’s method we used the default parameters that were selected for N D 4

species. After this, we obtained the corresponding absolute abundance predictions of the test dataset.
Finally, to allow a comparison with cNODE that predicts relative abundances, we transformed each
predicted absolute abundance into a predicted relative abundance, and then calculated the prediction
error using the Bray-Curtis dissimilarity.

For cNODE, we used the exact same training dataset as for Maynard’s method, the only
difference being that we trained cNODE with relative abundances. We choose a inner learning rate
of 0.001, an outer learning rate of 0.005, and trained cNODE for 500 epochs using mini batches
of 5 samples. We then calculated the prediction error in the test dataset using the Bray-Curtis
dissimilarity. We emphasize that cNODE uses less information that Maynard’s method, in the sense
that the total biomass of each sample is unknown in this case.

The results of the comparison of Maynard’s method and cNODE are shown in Fig. S3. We
find that, for the above conditions used to construct the datasets, cNODE outperforms Maynard’s
method in both the training and test datasets. Crucially, note that cNODE was trained using only
relative abundance measurements. We do not claim this results holds for all datasets, as there might
be cases where the assumptions required by Maynard’s method are exactly satisfied but none of the
assumptions of cNODE are satisfied.
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Supplementary Figure S1: Performance of the ResNet and cNODE architectures for predicting
compositions in experimental microbiomes. Vertical axis denotes prediction error.
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Supplementary Figure S2: Performance of the ResNet and cNODE architectures for predicting
compositions in experimental microbiomes. Vertical axis denotes prediction error.
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Supplementary Figure S3: Prediction errors of Maynard et al.’s method40 and cNODE. For an
in silico dataset of N D 5 species with universal dynamics and different typical interaction strength.
Circles denote mean error for 10 repetitions, and gray shadows indicate standard deviation of the
mean. a. Train dataset. b. Test dataset.
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