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Abstract 10	

Motor Imagery (MI) is a mental process by which an individual rehearses body 11	

movements without actually performing physical actions. Motor Imagery Brain-12	

Computer Interfaces (MI-BCIs) are AI-driven systems that capture brain activity 13	

patterns associated with this mental process and convert them into commands for 14	

external devices. Traditionally, MI-BCIs operate on Machine Learning (ML) 15	

algorithms, which require extensive signal processing and feature engineering to 16	

extract changes in sensorimotor rhythms (SMR). However, in recent years, Deep 17	

Learning (DL) models have gained popularity for EEG classification as they provide a 18	

solution for automatic extraction of spatio-temporal features in the signals. In this 19	

study, EEG signals from 54 subjects who performed a MI task of left- or right-hand 20	

grasp was employed to compare the performance of two MI-BCI classifiers; a ML 21	

approach vs. a DL approach. In the ML approach, Common Spatial Patterns (CSP) 22	

was used for feature extraction and then Linear Discriminant Analysis (LDA) model 23	

was employed for binary classification of the MI task. In the DL approach, a 24	

Convolutional Neural Network (CNN) model was constructed on the raw EEG 25	
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signals. The mean classification accuracies achieved by the CNN and CSP+LDA 26	

models were 69.42% and 52.56%, respectively. Further analysis showed that the DL 27	

approach improved the classification accuracy for all subjects within the range of 2.37 28	

to 28.28% and that the improvement was significantly stronger for low performers. 29	

Our findings show promise for employment of DL models in future MI-BCI systems, 30	

particularly for BCI inefficient users who are unable to produce desired sensorimotor 31	

patterns for conventional ML approaches.  32	

 33	

Keywords: motor imagery (MI), brain-computer interface (BCI), artificial 34	

intelligence (AI), EEG, machine learning (ML), deep learning (DL), 35	

convolutional neural network (CNN), linear discriminant analysis (LDA), BCI 36	

inefficiency  37	
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1 Introduction 38	

Motor Imagery (MI) is a dynamic experience where the user contemplates mental 39	

imagination of motor movement without activation of any muscle or peripheral nerve. 40	

A Motor Imagery Brain-Computer Interface (MI-BCI) serves as a system that 41	

converts brain signals generated during such imagination into an actionable sequence 42	

(Alimardani et al., 2018; Cho et al., 2018; Millán et al., 2010; Pfurtscheller & Neuper, 43	

2001) 44	

MI-BCI systems mainly utilize electroencephalogram (EEG) for measurement of 45	

brain activity (Lebedev & Nicolelis, 2017). EEG provides high temporal resolution, 46	

can be portable, is relatively low cost and represents synchronous electrical signals 47	

produced by the brain (Lebedev & Nicolelis, 2017). However, the recorded EEG 48	

signals are non-stationary and suffer from a low signal-to-noise ratio (SNR) and poor 49	

spatial resolution. Therefore, in order to employ them in a BCI system, it is necessary 50	

to apply advanced signal processing techniques to clean the data from artefacts and 51	

extract relevant spatial, temporal and frequency information from the signals for the 52	

classification problem (Bharne & Kapgate, 2014).  53	

Traditionally, MI-BCIs operate on machine learning (ML) algorithms in which spatial 54	

features associated with movement imagination are recognized. The imagining of a 55	

left or right body movement is accompanied by a lateralization of event-related 56	

(de)synchronization (ERD/ERS) in the mu (7-13 Hz) and beta (13-30 Hz) frequency 57	

bands of EEG signals (Pfurtscheller et al., 2006; Avanzini et al., 2012; Barros & Neto, 58	

2018; Wang et al., 2019). This brain activity feature serves as an input to the ML 59	

algorithm classifying the imagined body movements. Therefore, the system relies on 60	

the user to consciously modulate their brain activity such that the lateralization can be 61	

detected. It is shown that fifteen to thirty percent of users cannot accomplish 62	
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distinctive brain waves such that the classifier reaches accuracy above 70%. This is 63	

called ‘BCI illiteracy’ (Allison & Neuper, 2010) or ‘BCI inefficiency’ (Thompson, 64	

2019), where a user is considered unable to control a BCI, even after extensive 65	

training. But the issue of BCI inefficiency might be argued more nuanced, as 66	

successful BCI control depends on a synergy between man and machine, and 67	

therefore enhancements on both sides are needed to reach efficient control 68	

(Thompson, 2019). 69	

In almost half of MI-BCI studies (Wierzgala et al., 2018), the mu suppression 70	

lateralization is picked up by the Common Spatial Pattern (CSP) algorithm that 71	

linearly transforms EEG data into a subspace with a lower dimension in which the 72	

variance of one class (the imagined side) is maximized while the variance of the other 73	

class is minimized (Khan et al., 2019; Shen et al., 2017). The output of the CSP filter 74	

is then used as an input for a ML algorithm, such as linear discriminant analysis 75	

(LDA), support vector machine (SVM), or logistic regression (LR) to distinguish 76	

EEG patterns associated with motor imageries (Miao et al., 2020). LDA is a very 77	

popular model for binary classification of the MI task (Yuksel & Olmez, 2015); it 78	

works on the concept of minimizing the ratio of within-class scatter to between-class 79	

scatter while keeping the intrinsic details of the data intact (Shashibala & Gawali, 80	

2016). Hence, LDA creates a hyperplane in the feature space based on evaluation of 81	

the training data to maximize the distance between the two classes and minimize the 82	

variance of the same class (Aydemir & Kayikcioglu, 2013; Hasan et al., 2015).  83	

Although, ML techniques are commonly used for binary classification of MI-BCIs 84	

systems, they are extremely vulnerable to variability between subjects and drifts in the 85	

brain signals (Millán et al, 2010). ML techniques do not work well under the 86	

influence of noise and outliers, which are difficult to segregate from the primary data 87	
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(Müller et al., 2004). Additionally, the performance of ML classifiers is highly 88	

dependent on the type of feature extraction technique that is used (Hsu, 2010). More 89	

importantly, they suffer from the ‘curse of dimensionality’ and are therefore highly 90	

susceptible to overfitting (AlZoubi et al., 2008). The curse of dimensionality stems 91	

from an imbalance between the number of extracted features and the number of 92	

training EEG patterns (i.e. number of subjects). In order to extract relevant 93	

information from the EEG data, multiple feature extraction techniques are adopted, 94	

which add more and more dimensions to the feature space (AlZoubi et al., 2008; Lotte 95	

et al., 2018). This creates a situation in which the features vastly outnumber the 96	

observations, resulting in overfitting and an erroneous model performance. Therefore, 97	

ML approaches require yet another step of feature selection for reduction of 98	

dimensionality in the training data, which yields additional computational costs in 99	

terms of memory usage and CPU time. 100	

Deep Learning (DL) classifiers are a promising alternative to address the complexity 101	

of EEG signals, as they can work with raw data and directly learn features and capture 102	

structure of a large dataset without any feature engineering or selection processes 103	

(Albawi et al., 2018; Robinson et al., 2019; Wang et al., 2018; Yang et al., 2015). 104	

Thus, the issue of information loss while generating and selecting features is avoided 105	

when DL classifiers are used (Qiao & Bi, 2019). Additionally, they can be used to 106	

stabilize the learning process by overcoming the issue of noise and outliers in the data 107	

(Al-Ani et al., 2010). DL generates high-level abstract features from low-level 108	

features by identifying distributed patterns in the acquired data. Hence, DL models 109	

hold the potential of handling complex and non-linear high dimensional data (Wang et 110	

al., 2019). 111	
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Past research has already established the effectiveness of the DL approach, especially 112	

Convolutional Neural Network (CNN), in classification of MI-EEG (Tang et al., 113	

2017; Gao et al., 2018; Sakhavi et al., 2015; Li et al., 2020; Dai et al., 2019; Tayeb et 114	

al., 2019; Stieger et al., 2020; Zhang et al., 2021; Ko et al., 2020; Mane et al., 2020). 115	

The advantages of CNN model include handling raw data without any feature 116	

engineering process, facilitating end-to-end learning and requiring lesser parameters 117	

than other deep neural networks (Shen et al., 2017; Albawi et al., 2018). CNN works 118	

well with large datasets and can exploit the hierarchical structure in natural signals 119	

(Schirrmeister et al., 2017). Moreover, CNN has good regularization and degree of 120	

translation invariance properties along with the ability to capture spatial and temporal 121	

dependencies of EEG signals (Aggarwal & Chugh, 2019). CNN can be particularly 122	

useful in classification of MI-EEG for low aptitude users. Stieger et al. (2020) showed 123	

a negative correlation between online (ML-based) performance and improvement of 124	

accuracy with CNN, which suggests that BCI inefficient users may benefit from 125	

applying a DL classifier, even more than high aptitude users. They further showed 126	

that the low performing users in the online classification did not necessarily produce 127	

the expected SMR activity during MI process, but instead produced differentiating 128	

activity over brain regions outside the motor cortex such as occipital and frontal 129	

gamma power, which could not be recognized by CSP. Therefore, DL methods might 130	

be beneficial in improving performance for inefficient users and serve as a promising 131	

tool in enhancing overall BCI usability. 132	

This study aims to compare the two approaches of ML and DL in classification of MI 133	

EEG signals in a large group of 54 subjects. In most of previous studies, CNN has 134	

been compared with ML classifiers other than CSP+LDA. However, the use of 135	

CSP+LDA model is widespread in binary MI-BCI classification (Lotte et al., 2018; 136	
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Nicolas-Alonso & Gomez-Gil, 2012; Selim et al., 2018). Hence, in this study, for 137	

every subject, a CNN model (DL approach) was trained and its performance was 138	

compared with the conventional CSP+LDA model (ML approach).  139	

Figure 1 shows sequential steps that were taken in each approach to construct a MI-140	

BCI classifier and obtain classification performances. The ‘Signal Acquisition’ step 141	

was carried out through EEG to monitor the brain signals arising from the mental 142	

image of the movement by the user. The complexity of the ML approach arises with 143	

the steps involved in ‘Pre-processing’ and ‘Feature Extraction,’ whereas in the DL 144	

approach, raw data can directly be fed into the model. Hence, by applying both 145	

approaches to the data from 54 subjects, this study intends to answer the following 146	

research question: “Can a CNN classifier trained with raw EEG signals achieve a 147	

higher performance than a machine learning model that runs on processed EEG 148	

features for classification of a two-class Motor Imagery task?”  149	

 150	

FIGURE 1 | An overview of MI-BCI classification using machine learning vs. deep 151	

learning approaches. In ML approach, EEG signals are first pre-processed and 152	

relevant features are extracted before applying a classifier. In DL approach, raw 153	

signals are directly fed into the model.    154	
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2    Methods 155	

In order to compare conventional ML models with a DL approach in a large group of 156	

novice BCI users, EEG signals were collected from 57 subjects while they performed 157	

the MI task using an existing BCI system. Thereon, the recorded EEG signals were 158	

used to train a CNN and CSP+LDA model to conduct an offline classification of two-159	

class MI task. The following section gives a description of the data collection 160	

procedure and details of the classification models.   161	

 162	

2.1    Experiment 163	

2.1.1 Participants 164	

In this experiment, 57 subjects participated (21 male, 36 female, Mage = 20.71, SDage = 165	

3.52). All of them were right-handed and novice to BCI and the MI task. The 166	

Research Ethics Committee of Tilburg School of Humanities and Digital Sciences 167	

approved the study (REDC #20201003). All subjects received explanation regarding 168	

experiment procedure and signed a consent form before the experiment.  169	

2.1.2 EEG Acquisition 170	

Sixteen electrodes recorded EEG signals from the sensorimotor area according to the 171	

10-20 international system (F3, Fz, F4, FC1, FC5, FC2, FC6, C3, Cz, C4, CP1, CP5, 172	

CP2, CP6, T7, T8). The right earlobe was used as a reference electrode and a ground 173	

electrode was set on AFz. Conductive gel was applied to keep the impedance of the 174	

electrodes below 50 kOhm. Subjects were instructed to sit calmly and avoid 175	

movements and excessive blinking. The signals were amplified by a g.Nautilus 176	

amplifier (g.tec Medical Engineering, Austria). The data was sampled at 250 177	

samples/second. The noise during EEG recording was reduced by applying a 48-52 178	

Hz notch filter and 0.5-30 Hz bandpass filter. 179	
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2.1.3 Motor Imagery Task 180	

Participants performed the MI task in four runs, each consisting of 20 right- and 181	

twenty left-hand trials. The first run was a non-feedback run, followed by three runs 182	

in which the subjects received feedback in form of a feedback bar on the computer 183	

screen. The feedback bar presented the classification certainty as computed by the 184	

g.tec BCI classifier, which relies on the CSP+LDA approach. The classifier was 185	

calibrated for each subject based on the data of the latest run while the subject took a 186	

break between the runs. 187	

In total, participants performed 120 MI trials. Each MI trial took eight seconds. The 188	

timeline of each trial is shown in Figure 2. It started with a fixation cross that was 189	

displayed in the center of the screen for three seconds. In the next 1.25 seconds, a red 190	

arrow cued the direction of the trial; the subject had to imagine squeezing their left 191	

hand if the arrow pointed to the left and their right hand if the arrow pointed to the 192	

right, without tensing their muscles. During the last 3.75 seconds, the calibration run 193	

showed the fixation cross again (see Figure 2a), while the feedback runs showed a 194	

blue feedback-bar indicating the direction and certainty of the algorithms’ 195	

classification (see Figure 2b). Participants were instructed to stay focused on the 196	

imagination of the movement even during the feedback and try to not get distracted by 197	

it. The end of the trial was marked by a blank screen. The rest time between trials 198	

varied randomly between 0.5 and 2.5 seconds. 199	
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 200	

FIGURE 2 | The time course of each trial in the BCI task. (a) shows the calibration 201	

run and (b) the feedback runs. In all trials, participants saw a fixation cross and 202	

thereafter an arrow pointing to either left or right, which indicated the corresponding 203	

hand for the MI task in the trial. In feedback runs, the blue bar indicated the direction 204	

and certainty of the classifier’s prediction in order to feedback to the participants. The 205	

grey area indicates the time course of the MI task. 206	

 207	

2.1.4 EEG Dataset 208	

The signals from three participants were not recorded in a satisfactory manner due to 209	

technical issues during the experiment. Hence, only 54 participants were chosen from 210	

the dataset for this study. An epoch of 4 seconds was selected from each trial. This 211	

epoch, targeting the MI period, started at second 4 of the trial (1 second after cue 212	

presentation) and ended at second 8 (5 seconds after cue presentation), which is in 213	

line with the study of Marchesotti et al. (2016). The selected time segment is indicated 214	

with the grey area in Figure 2. 215	

 216	
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2.2    Machine Learning Model  217	

The ML approach consisted of preprocessing the signals, constructing CSP filters for 218	

feature extraction and an LDA model for classification of the left vs. right classes. 219	

CSP is a feature extraction technique that selects spatial filters from multi-channel 220	

signals and then linearly transforms EEG data into a subspace with lower dimension 221	

that maximizes the variance of one class while minimizing the variance of the other 222	

class (Khan et al., 2019; Shen et al., 2017). CSP algorithm is widely used in binary 223	

MI-BCIs due to its computational simplicity and improving signal to noise ratio 224	

(Bashashati et al., 2015; Guan et al., 2019). The output of CSP can be used as input 225	

for the LDA classifier in order to distinguish the classes of MI task.   226	

LDA is a dimensionality reduction model that works on the concept of minimizing the 227	

ratio of within-class scatter to between-class scatter while keeping the intrinsic details 228	

of the data intact (Shashibala & Gawali, 2016). Hence, LDA creates a hyperplane in 229	

the feature space based on evaluation of the training data to maximize the distance 230	

between the two classes and minimize the variance of the same class (Aydemir & 231	

Kayikcioglu, 2013; Hasan et al., 2015). LDA is very popular for binary classification 232	

of the MI task (Yuksel & Olmez, 2015).  233	

2.2.1 Architecture  234	

Before applying the ML model, the EEG signals recorded from the participants were 235	

pre-processed and temporally filtered to remove artifacts. Data containing bad 236	

impedance, error in recording, or excessive movement-related noise were removed (3 237	

subjects, see 2.1.4). Then the EEG signals corresponding to the onset of MI task 238	

(second 4 to 8, see Figure 2) were selected and taken into account (Park & Chung, 239	

2019). Thereon, Filter Bank Common Spatial Pattern (FBCSP) was used to extract 240	
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subject-specific frequency band of 7-30 Hz from the data through the implementation 241	

of fifth order Butterworth (Park & Chung, 2019; Lotte & Guan, 2011). 242	

FBCSP was used because it is instrumental in discriminating the binary classification 243	

of EEG measurements (Ang et al., 2012; Raza et al., 2015; Park & Chung, 2019). It 244	

should be noted that CSP is highly dependent on the selection of frequency bands, 245	

however there is no optimal solution to select the right filter bank (Kumar et al., 246	

2017). Using a filter bank before CSP helps to improve the accuracy level of the 247	

model (Yahya et al., 2019). A wide range of 7-30 Hz is usually adopted for CSP when 248	

used for MI classification (Kumar et al., 2017). Hence, the frequency bandwidth was 249	

kept between 7-30 Hz covering the mu and beta bands that are required to analyze 250	

Event-Related Desynchronization (ERD) and Event-Related Synchronization (ERS) 251	

from the MI brain signals.  252	

After the pre-processing and filtering steps, the 120 MI trials of each participant were 253	

concatenated and randomized. CSP algorithm was performed on each participant’s 254	

data using the ‘scikit’ package in Python (Yuksel & Olmez, 2015). CSP extracted the 255	

spatially distributed information from the output of FBCSP by linearly transforming 256	

the EEG measurements in order to define discriminative ERD/ERS features (Ang et 257	

al., 2012; Park & Chung, 2019; Raza et al., 2015). Once feature extraction was 258	

completed, ‘scikit’ package was again used to implement the LDA classifier in order 259	

to reduce the dimensionality of the sub-bands and to perform binary classification 260	

(Vidaurre et al., 2011). 261	

 262	

2.3    Deep Learning Model  263	

The DL model was constructed by feeding raw EEG signals directly into a CNN 264	

model. 265	
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CNN is a feed-forward Artificial Neural Network (ANN) model and has a sequence 266	

of layers where every layer is the output of an activation using a differential function 267	

(Aggarwal & Chugh, 2019). In a CNN, the inputs are assembled to different layers of 268	

neurons, each representing a linear combination of the inputs (Pérez-Zapata, 2019). 269	

The learning process involves modification of the parameters by adjusting weights 270	

between different layers in order to achieve the desired output (Roy et al., 2019). The 271	

learning continues until the training set reaches a steady state where the weights 272	

become consistent and an optimal output is reached (Roy et al., 2019). During the 273	

training phase of the CNN model, different layers can extract features at a different 274	

level of abstraction (Roy et al., 2019). The initial layers learn local features from the 275	

raw input, and the end layers learn global features (Schirrmeister et al., 2017). 276	

2.3.1 Architecture  277	

A 2D CNN model was constructed using ‘keras’, a high-level neural networks API 278	

written in Python (Keras, 2019). Figure 3 shows the architecture of the proposed CNN 279	

model. 280	

 281	

FIGURE 3 | CNN Architecture. 282	

 283	

The first two components of the architecture are the number of convolution filters 284	

used and the kernel size that specifies the height (columns) and width (rows) of the 285	
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2D convolution window. These were set to 30 and 5×5 respectively. The dimensions 286	

of the input shape applied were (1×4×4). In order to compute a network’s hidden 287	

layers, activation functions should be implemented (Goodfellow et al., 2016). For this 288	

task, Rectified Linear Function (ReLU) was used. ReLU conducts simple 289	

mathematical operations, preserves characteristics that result in good generalization 290	

and is less computationally expensive than other approaches. Moreover, ReLU has the 291	

advantage of the speed and overcoming gradient leakage issue when compared with 292	

other activation functions (Pérez-Zapata, 2019). 293	

Max pooling was added to the model in order to downsample the input and refrain 294	

from losing important data features. The size of 2×2 was used based on the works of 295	

Dharamsi et al. (2017) and Abbas and Khan (2018). The output of max pooling was 296	

flattened into a vector of input data by executing a flatten layer (Goodfellow et al., 297	

2016). Subsequently, three dense layers were added. The first two implemented a 298	

linear function in which all inputs were connected to all outputs by a specific weight 299	

(Ullah et al., 2019). The units of these were set to 256 and 128 and were activated by 300	

ReLU functions. The final dense layer’s units were fixed to 2 as this was the number 301	

of class labels in the data. Finally, Softmax was applied to the last (output) layer as an 302	

activation function, used for class classification tasks (Goodfellow et al., 2016).  303	

2.3.2 CNN Model Compilation  304	

The hyperparameters implemented in the 2D CNN model’s compilation phase are the 305	

loss function, the optimizer and the evaluation metric. Since the dataset has two target 306	

labels (right and left), the loss function categorical cross-entropy was applied. The 307	

optimizer ‘Adam’ was used because it is a widely used gradient-based optimization of 308	

stochastic objective functions (Kingma & Ba, 2014). An essential parameter of 309	

‘Adam’ is the learning rate, which regulates the modification of the model based on 310	
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the error obtained from the updated weights (Kingma & Ba, 2014). For the task at 311	

hand, the learning rate was set to its default value of 0.01. The evaluation metric was 312	

set to accuracy to delineate how well the CNN model could classify left vs. right MI 313	

EEGs. (Goodfellow et al., 2016). 314	

2.3.3 CNN Model Fit  315	

During model fitting, a specified batch size and number of epochs need to be adopted 316	

for backpropagation to take place (Browniee, 2016). The batch size greatly influences 317	

the time to converge and the amount of overfitting (Radiuk, 2018); a big batch takes 318	

into account many samples to calculate a gradient step and therefore might slow down 319	

the model training (Goodfellow et al., 2016). On the other hand, small batch sizes can 320	

supervise variation in the distribution. The batch size for the 2D CNN model was set 321	

to 264. 322	

An epoch in DL means that all the samples in the training set are traversing through 323	

the model once (Browniee, 2016). This helps the network to see previous data for 324	

readjusting the model parameters in order to reduce any biases. The neural network 325	

updates the weights of the neuron during each epoch (Torres, 2018). However, there 326	

is not any prescribed method to calculate how many epochs are required for a 327	

particular model. Sharma (2017) stated that different values of epochs should be tried 328	

until the learning curve of the model moves from underfitting to an optimum level and 329	

until overfitting attributes start showing up, then the subsequent epoch size should be 330	

deemed as the threshold for the model. Thus, as long as both training and test 331	

accuracies are increasing at an equivalent rate, the training of the model should 332	

continue (TensorFlow, 2020). Considering the arguments from Kingma and Ba (2015) 333	

and TensorFlow (2020), 500 epochs per subject was deemed to be the threshold for 334	

the CNN model.  335	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448960
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 CNN	Classification	for	Motor	Imagery	BCIs	
	

	 16	

2.4    Evaluation  336	

For the CNN model, the data was split into 80% training and 20% test data. Tang et 337	

al. (2017) used the same splitting variation for building their CNN model. Accuracy is 338	

defined as the total amount of correct predictions that the model made including both 339	

training and test accuracies (Goodfellow et al., 2016). Hereby, the mean accuracy 340	

over all the subjects in training and test phase was calculated in order to compare the 341	

performance of CSP+LDA and CNN models.  342	

Additionally, we observed how the CNN model and CSP+LDA model performed 343	

subject-wise by computing the difference of the two models’ accuracy for each 344	

subject. This was done to give greater validity to the findings as inter-subject 345	

variability can affect the overall performance of a classifier (Saha & Baumert, 2020).  346	

While accuracy is the overall evaluation measure of a model, it does not fully exhibit 347	

its prediction capacity. Therefore, in addition to the overall prediction accuracy, we 348	

extracted F-score metric for each class of ‘left’ or ‘right’ MI. F-score is the harmonic 349	

mean of the precision and recall metrics and demonstrates the discriminant power of 350	

the model for each existing class in the data. Previous research has shown that the 351	

BCI user handedness plays a role in lateralization of ERD/ERS during the MI task 352	

(Zapala et al., 2020). In our study, all subjects were right-handed, therefore it was 353	

expected that the errors made by the model would be more for one MI class than the 354	

other.  355	

 356	

3    Results 357	

The average score of the training and test accuracies across 54 subjects were taken 358	

into consideration to report the performance level of the CNN and CSP+LDA models. 359	

The CNN model reached an average training accuracy of 80.58% (SD = 5.01) and an 360	
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average test accuracy of 69.42% (SD = 4.97), whereas the average training and test 361	

accuracies for the CSP+LDA model were 52.54% (SD = 5.12) and 52.56% (SD = 362	

2.08), respectively. Table 1 gives a summary of these results.  363	

TABLE 1 | Comparison between training and test accuracies of CNN and CSP+LDA 364	

models. 365	

Model 

Training Accuracy 

(N=54) 

Test Accuracy 

(N=54) 

Mean SD Mean SD 

CNN 80.58 5.01 69.42 4.97 

CSP+LDA 52.54 5.12 52.56 2.08 

 366	

The obtained accuracies for both CNN and CSP+LDA models were normally 367	

distributed as evaluated with Shapiro-Wilk test (CNN: W = 0.98, p = .66; CSP+LDA: 368	

W = 0.97, p = .12). Therefore, a pairwise t-test was employed to compare the test 369	

accuracies obtained from the DL classification method to those of the ML approach 370	

(t(53) = 22.12, p < .001). This indicated that the CNN classifier significantly 371	

outperformed the CSP+LDA approach by 15.32 to 18.38% within the 95% confidence 372	

interval.  373	

Table 2 contains the top ten accuracy rates observed in the subjects using the CNN 374	

and the CSP+LDA model. As it can be seen in this table, the highest accuracy 375	

achieved by the CNN model for a subject was 81.80%, whereas the CSP+LDA model 376	

could only reach a highest accuracy rate of 57.17%. Also, although not included in 377	

this	table, it was observed that the lowest accuracy level obtained from the CNN 378	
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model across all the subjects was 58.60%, which is still higher than the highest 379	

accuracy rate obtained by the CSP+LDA model across all the subjects.  380	

TABLE 2 | Top ten highest classification accuracies achieved by the CNN model and 381	

the CSP+LDA model. 382	

CNN Model CSP + LDA Model 

Participant ID	 Accuracy %	 Participant ID Accuracy % 

Subject 31	 81.80	 Subject 29 57.17 

Subject 48	 77.36	 Subject 7 56.70 

Subject 16	 76.94	 Subject 55 56.41 

Subject 25	 76.32	 Subject 54 56.23 

Subject 55	 75.81	 Subject 34 56.16 

Subject 9	 75.72	 Subject 8 55.90 

Subject 60	 75.64	 Subject 30 55.67 

Subject 12	 75.58	 Subject 32 55.65 

Subject 42	 75.52	 Subject 60 55.32 

Subject 23	 75.08	 Subject 66 54.50 

 383	

To obtain an estimation of the subject-wise performance difference between the two 384	

models, the difference of the obtained accuracy from the CNN model and the 385	

CSP+LDA model for each subject (AccuCNN – AccuCSP+LDA) was computed. This 386	

subject-wise comparison revealed that the DL approach achieved a higher accuracy 387	

level for all subjects with a minimal difference of 2.37% and maximal difference of 388	

28.28%. Figure 4 illustrates the number of subjects for whom the CNN model showed 389	

accuracy improvement in 6 bins of 1-5%, 6-10%, 11-15%, 16-20%, 21-25% and 26-390	
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30%. From this	figure, it can be inferred that the CNN model outperformed the 391	

CSP+LDA model by more than 11% accuracy for 92.59% of the participants. 392	

Therefore, it can be concluded that CNN was able to extract intrinsic features from 393	

the EEG signals and thereon, performed classification with higher accuracy level. 394	

 395	

FIGURE 4 | Improvement in the accuracy rate of the subjects using CNN model 396	

against CSP+LDA in percent points (i.e., absolute difference between the two 397	

accuracies; AccuCNN – AccuCSP+LDA). 398	

 399	

Further exploration was done to investigate whether the improvement achieved by the 400	

CNN model was different across BCI users based on their initial MI skill. 401	

Traditionally, users that cannot produce desired ERD/ERS patterns to be recognized 402	

by a MI-BCI classifier are defined as low aptitude users or BCI inefficients 403	

(Thompson, 2019). Therefore, based on classification accuracy rates obtained from 404	

the CSP+LDA model, subjects were divided into two groups of Low Performers and 405	

High Performers. The split was made based on the accuracy median (Med = 52.14%), 406	

resulting in 27 subjects per group. For each group, the improvement of classification 407	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448960
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 CNN	Classification	for	Motor	Imagery	BCIs	
	

	 20	

performance from the CSP+LDA model to the CNN model was obtained per subject 408	

by subtracting the model accuracies (ΔAccu=AccuCNN – AccuCSP+LDA).  409	

Figure 5 shows the mean accuracy improvement (ΔAccu) for each group. On average, 410	

the CNN model increased the accuracy rate of the Low Performers by 18.46% (SD = 411	

4.98%) and the High Performers by 15.25% (SD = 5.81%). The obtained ΔAccu 412	

values for both Low Performer and High Performer groups were normally distributed 413	

as evaluated with Shapiro-Wilk test (Low Performers: W = 0.96, p = .47; High 414	

Performers: W = 0.98, p = .84). Therefore, an independent t-test was employed to 415	

compare them, revealing a significantly higher improvement of classification 416	

performance by the CNN model for Low Performers (t(26) = 2.18, p < .05). This 417	

result supports the notion that the CNN model can better capture intrinsic oscillation 418	

patterns associated with the MI task in inefficient BCI users, whose modulation of 419	

SMR cannot be successfully recognized by the CSP+LDA model.  420	

 421	

FIGURE 5 | Mean difference between accuracies of CNN and CSP+LDA models 422	

(AccuCNN – AccuCSP+LDA) for Low Performer and High Performer groups. Low 423	

Performers showed significantly higher improvement in MI-BCI accuracy after using 424	

a CNN classifier.      425	
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Finally, F-Score was calculated for each class in order to measure the predictive 426	

power of the classifiers with respect to the ‘left’ or ‘right’ MI movements. Table 3 427	

summarizes the average and SD of F-Scores across all subjects obtained by the CNN 428	

and CSP+LDA models in regard to each MI class. As can be seen in this table, the 429	

CNN model achieved higher F-Score values for both ‘left’ and ‘right’ hand prediction 430	

compared to the CSP+LDA model. A pairwise t-test comparing the F-Scores of the 431	

two models found a significant difference for both ‘left’ MI movements (t(53) = 432	

18.28, p < .05) as well as ‘right’ MI movements (t(53) = 19.47, p < .05) favoring 433	

CNN as a classifier beyond CSP+LDA approach. 434	

TABLE 3 | Average F-score obtained by the CNN and CSP+LDA models for each 435	

MI class. 436	

Evaluation 

Metric 

CNN Model CSP + LDA Model 

Left Hand 

(N=54) 

Right Hand 

(N=54) 

Left Hand 

(N=54) 

Right Hand 

(N=54) 

Mean  SD Mean  SD Mean  SD Mean  SD 

F-Score (%) 69.07 5.35 68.59 5.23 52.93 3.67 51.83 3.56 

 437	

 438	

4    Discussion 439	

In order for a BCI system to operate optimally for all users, it is crucial to devise a 440	

classification model that can learn from each individual’s brain signals and recognize 441	

task-related patterns with high accuracy. In this research, a CNN model was 442	

developed on a large EEG dataset from 54 subjects who conducted MI task during a 443	

BCI interaction. The main goal of this study was to validate that a DL approach 444	

employing raw EEG signals could outperform the state-of-the-art MI-BCIs, which 445	
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often employ ML approach including CSP algorithm for feature extraction and LDA 446	

model for classification. Our results supported this hypothesis; the CNN model 447	

displayed significantly higher classification accuracy for the MI task as compared to 448	

the CSP+LDA approach for all users, but especially benefited low aptitude users by 449	

increasing their BCI performance significantly more than high aptitude users. Our 450	

results put forward the design of future BCI classifiers that facilitate better interaction 451	

between the user and the BCI system. 452	

Until now, an in-depth analysis of a CNN model in which a large and novel dataset of 453	

raw EEG signals were directly fed to the model for classification of the MI task was 454	

still missing. Previous studies mainly focused on comparing different ML and DL 455	

models on already existing datasets. For instance, Sakhavi et al. (2015) employed the 456	

BCI competition IV (Dataset 2b) for multi-class classification of MI task. Their CNN 457	

model achieved accuracy level of 69.56%, whereas their Support Vector Machine 458	

(SVM) model, Multi Layer Perceptron (MLP) model and CNN+MLP model achieved 459	

accuracy level of 67.01%, 65.78% and 70.60%, respectively. Likewise, Li et al. 460	

(2020) used BCI competition IV (Dataset 2b) but the authors combined different 461	

feature extraction techniques with their ML and DL models to conduct comparison 462	

between these models. Li et al. (2020) showed that a combination of Continuous 463	

Wavelet Transform (CWT) with Simplified Convolutional Neural Network (SCNN) 464	

model achieved an average accuracy of 83%, which was 7.22%, 9.62%, 10.93%, 465	

7.49%, 6.94%, 5.58% and 5.05 % higher than CNN+Stacked AutoEncoders (SAE), 466	

CSP, Adaptive Common Spatial Pattern (ACSP), Deep Belief Network (DBN), 467	

CSP+SCNN, Fourier Transform (FFT)+SCNN and Short Time Fourier transform 468	

(STFT)+SCNN, respectively. In another study by Gao et al. (2018), CSP was used for 469	

feature extraction and the CNN model was combined with Sparse Representation-470	
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based Classification (SRC) algorithm for binary classification of the MI task. The 471	

dataset adopted by Gao et al. (2018) was BCI competition III (Dataset IVa). Here the 472	

authors showed that their SRC+CNN model achieved mean accuracy of 80% (Gao et 473	

al., 2018). 474	

Although previous studies provided promising results with a DL approach, the 475	

employed dataset by Sakhavi et al. (2015) and Li et al. (2020) only included nine 476	

subjects and the dataset used by Gao et al. (2018) only had five subjects. These 477	

datasets do not sufficiently represent the large inter-subject variability that exist 478	

among users (Leeuwis & Alimardani, 2020), which could affect the performance of 479	

the classifier. Different BCI users have a different state of mind, and hence different 480	

spatial, spectral and temporal patterns in their EEG signals (Ahn & Jun, 2015). Such 481	

variations can be due to the difference in the concentration levels of the participants 482	

while performing the MI task or baseline cognitive and psychological abilities 483	

(Leeuwis et al., 2021). Thus, it is necessary to perform BCI studies over a diverse and 484	

large pool of subjects in order to establish the broad generalizability of the findings. 485	

In comparison to previous studies that only employed datasets with limited number of 486	

participants and trials, this study collected MI EEG signals from 54 participants in 487	

three runs (120 trials) and built a 2D CNN model on our dataset. The large number of 488	

subjects in this dataset enabled us to statistically compare the subject-wise 489	

performance achieved by the CNN model as compared to the conventional ML 490	

approach. The results showed that the CNN model achieved an average of 69.42% 491	

accuracy across all subjects, which is similar to the CNN accuracy rate achieved by 492	

Sakhavi et al. (2015) who used feature engineering techniques to enhance the 493	

performance of their CNN model. The accuracy level achieved by this study might 494	

initially seem insufficient when compared to Gao et al. (2018) and Li et al. (2020), 495	
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however, this difference can be explained by various pre-processing and feature 496	

engineering techniques that were employed by these two studies. Unlike past 497	

research, this study focused on evaluating the performance of CNN model without 498	

implementing any fine-tuning techniques and by directly feeding raw data into the 499	

model. The motive for this approach was to show the efficacy of deep learning 500	

models in exploiting information from raw data without any need for feature 501	

extraction. This makes deep learning models computationally more effective by 502	

eliminating the costly steps of pre-processing and feature extraction. Additionally, 503	

such neural networks can handle noise in EEG signals better than ML models and 504	

thus can provide a more robust performance in real-time BCI applications.  505	

The low performance obtained in the ML approach has to be compared to the online 506	

classification accuracies presented in Leeuwis et al. (2021), where the average 507	

classification accuracy was 74.17%. This could be explained by different 508	

architectures: The online classification of Leeuwis et al. (2021) was conducted by 509	

g.BSanalyze	software	(g.tec Medical Engineering, Austria)	.	In	this	model,	baseline 510	

non-feedback data is provided to the model to calibrate the classifier for each subject 511	

before the actual classification runs. In addition, the lack of removal of bad trials in 512	

our ML approach may explain a difference in the acquired classification accuracies. 513	

Also, in Leeuwis et al. (2021) subjects were trained upon online classification, 514	

optimizing performance for that specific processing pipeline. Therefore, to make a 515	

fair comparison with our DL model, we employed a ML approach using offline 516	

classification with no prior training and calibration of the system.	517	

With recent release of large scale EEG datasets (e.g. Cho et al., 2017; Lee et al. 2019), 518	

there have been more attempts on employing DL models on signals from large 519	

number of participants (e.g., Stieger et al., 2020; Zhang et al., 2021; Ko et al., 2020; 520	
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Mane et al., 2020), showing the relevance and timeliness of this study in the BCI 521	

field. Although these studies report the same conclusion for superiority of the DL 522	

approach in MI-BCI classification, their methodology and approach in building the 523	

DL model is different from our study. For instance, Stieger et al. (2020) trained a 524	

CNN model with high density EEG (64 channel) to classify a 4-class MI task. Mane 525	

et al. (2020) and Ko et al. (2020) focused on feature representations in the model; 526	

Mane et al. (2020) employed Filter-Bank CNN to decompose data into multiple 527	

frequency bands and extract spatially discriminative patterns in each band, and Ko et 528	

al. (2020) applied a Multi-Scale Neural Network to exploit spatio-spectral-temporal 529	

features for all BCI paradigms. Zhang et al. (2021) focused on transfer learning and 530	

employed a CNN model to develop a subject-independent classifier. Therefore, while 531	

our study pursues a similar goal, it dissociates itself from past research by conducting 532	

a statistically supported subject-wise comparison between the DL and ML approaches 533	

and also providing evidence for suitability of the DL approach for inefficient BCI 534	

users.  535	

As mentioned before, difference between our study and for example Sakhavi et al. 536	

(2015), Gao et al. (2018) and Li et al. (2020) is the employment of pre-processing and 537	

feature extraction techniques before applying a DL approach. The only previous study 538	

that concentrated on building a CNN model for classification of binary class MI task 539	

without implementing any feature engineering technique was conducted by Tang et al. 540	

(2017), who achieved 86% mean accuracy for their CNN model. However, they 541	

recorded EEG signals from 28 electrodes (as compared to 16 electrodes in this study) 542	

and their subject size was only two, which does not provide a suitable representation 543	

of the general MI-BCI users. Additionally, Tang et al. (2017) applied 8–30 Hz 544	

bandpass filter on the raw data before passing them to the model and the subjects in 545	
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their study did not receive any feedback during the MI task, which is an important 546	

factor in MI learning and online operation of the BCI systems (Alimardani et al., 547	

2016). This makes it difficult to interpret the outcome of Tang et al. (2017) and can 548	

perhaps explain the higher accuracy that was achieved by them. In this study, we 549	

recruited 54 participants including MI-BCI inefficients (Leeuwis & Alimardani, 2020) 550	

and ensured that the participants were learning during the experiment through practice 551	

trials and feedback provided by the BCI system.  552	

An important finding of this study was that the CNN model outperformed the 553	

CSP+LDA model for all of the subjects, achieving 11-30% accuracy improvement for 554	

92.59% of the subjects. Hence, deducing from the better performance of the DL 555	

model compared to ML approach and also from previous studies (Sakhavi et al., 556	

2015; Gao et al., 2018; Li et al., 2020; Tang et al., 2017; Stieger et al., 2020; Zhang et 557	

al., 2021; Ko et al., 2020; Mane et al., 2020), it can be concluded that regardless of the 558	

users’ ability to generate MI-specific sensorimotor oscillations, CNN models are more 559	

effective in extracting intrinsic features from EEG signals and thereon, can perform 560	

MI classification with higher accuracy level. This study also revealed that the CNN 561	

model was able to capture better understanding of the MI brain patterns in inefficient 562	

users than the CSP+LDA model. CNN significantly improved the classification 563	

accuracy for those users whose performance was lower when the conventional 564	

CSP+LDA model was adopted.  565	

BCI inefficiency has long been seen as a human factor problem in the literature. Only 566	

recently, Stieger et al. (2020) suggested that DL approaches might increase accuracies 567	

for low aptitude performers, thereby enabling some of them to reach performance 568	

above the threshold of 70% accuracy. Our study supports their finding by showing 569	

that indeed; the DL approach could significantly improve the classification 570	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448960
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 CNN	Classification	for	Motor	Imagery	BCIs	
	

	 27	

performance of low performers, supporting the arguments by Thompson (2019), who 571	

states that poor performance of training should not be always blamed on the user. 572	

Hereby, this study shows that designing an effective classifier using a DL approach 573	

could be more reliable in developing robust MI-BCI applications and this also 574	

overcomes the issues with BCI inefficiency.  575	

Yet another advantage of the DL approach is that it allows automatic discovery of 576	

discriminative features in raw data. Therefore, it is reasonable to consider recording 577	

and inclusion of more EEG signals from other brain regions for the model training. 578	

Stieger et al. (2020) showed that motor imagery processes might be extended beyond 579	

the sensorimotor cortex and mu suppression patterns, indicating that the application of 580	

deep learning might be beneficial in extracting such brain activity patterns for 581	

inefficient users. Future research can extend our findings by employing a full-scalp 582	

recording and showing how this can impact the performance of the CNN model 583	

across subjects and thereby future design of more individual-tailored classifiers for all 584	

users, especially inefficient users.  585	

The BCI performance is a product of the interplay between the BCI system and the 586	

user (Alimardani et al., 2014); therefore, the importance of user training and the 587	

‘human in the loop’ cannot be overlooked. Motivation and feedback play an important 588	

role in user’s learning of the MI task (Roc et al., 2020, Alimardani et al., 2018). 589	

Hence, interaction with a MI-BCI should be established on an engaging platform 590	

where the users feel engaged and enjoy the process during experimentation (Roc et 591	

al., 2020; Femke et al., 2010). Additionally, detailed instructions on how to perform 592	

the mental task of MI should be provided to the users to give them a clear cognitive 593	

strategy during BCI training (Roc et al., 2020). This helps to offset the cognitive load 594	

on participants and results in stable brain signals, which in turn contributes towards 595	
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developing an efficient BCI system (Roc et al., 2020). This study employed a classic 596	

screen-based feedback bar to provide feedback to the user during data collection. Past 597	

studies have shown that embodied feedback in form of virtual or robotic hands can 598	

improve interaction between the user and the BCI system (Skola & Liarokapis, 2018; 599	

Alimardani et al., 2016). Future studies should attempt to replicate the results of this 600	

study with a more engaging and realistic feedback that could lead to generation of 601	

more distinguished brain patterns by the user at the data collection stage.  602	

Although this study presents evidence that a DL approach outperforms a ML model 603	

for subject-specific classification of the MI task, the question remains whether the 604	

proposed CNN model will be able to perform equally well on new subjects who might 605	

have different EEG signals. A general challenge in the development and application 606	

of MI-BCI systems is their long calibration time (Singh et al., 2019). In order to 607	

reduce the calibration time or completely eliminate it, past research has proposed 608	

transfer learning in which common information across subjects or sessions is mined 609	

and used for training of the classifier to improve the prediction for a new target 610	

subject (Azab et al., 2019). However, most transfer learning methodologies focus on 611	

extracting features and adapting them from the source subject(s) to the target subject, 612	

whereas in DL models with an end-to-end decoding, the neural network itself should 613	

be able to do this with little data pre-processing (Zhang et al., 2021). Thus, it becomes 614	

important to expand this research in the future with transfer learning methods and 615	

evaluate the performance of the proposed CNN model on new targets.  616	

In this study, classification was performed offline. This is not suitable for continuous 617	

BCI control where the classifier is constantly updated (Wolpaw & McFarland, 2004), 618	

because fluidly controlling an external device is not equal to outputting one command 619	

at the end of a trial (Edelman et al., 2019). Stieger et al. (2020) simulated continuous 620	
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control by providing feedback based on the estimated class output of their CNN every 621	

40 milliseconds and showed that CNN applied on all 64 electrodes made decisions 622	

earlier with the threshold degree of confidence and could therefore be applied to make 623	

faster decisions in continuous control compared to CNN trained on only motor area 624	

electrodes. Their proposal suggests that CNN is applicable for continuous control. 625	

Therefore, the accuracy of our classifier providing online continuous feedback should 626	

be examined in future research.  627	

In sum, this study aimed to show the potential of DL for MI-EEG classification as 628	

opposed to the state-of-the-art ML classifiers. Our results show that compared to the 629	

conventional CSP+LDA model, the CNN model, which was trained and tested on raw 630	

EEG signals, could achieve significantly higher classification performance for all 631	

users, but especially for inefficient users. Applying DL to BCI applications is a 632	

burgeoning field, which requires large dataset for development and validation. This 633	

study dissociates itself from previous reports by employing a large dataset of 54 634	

subjects and thus sufficiently reflecting the inter-subject variability among BCI users. 635	

One of the main advantages of using DL classifier is to eliminate the pre-processing 636	

and feature extraction stages used to build an ML classifier. Raw data collected from 637	

EEG can directly be fed into a DL classifier. Future studies should be conducted by 638	

deploying the proposed CNN model on new subjects to evaluate the performance of 639	

the model and to examine whether the same model can be employed for subject-640	

independent classifiers.  641	

 642	

5    Conclusion  643	

In this research, we evaluated the benefits of DL in improving the performance of 644	

motor imagery BCIs. We extracted the performance of a CNN model trained on raw 645	
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EEG signals from 54 subjects and statistically compared it to that of CSP+LDA, 646	

which is a popular ML classifier for binary classification of the MI task. The results 647	

revealed that the CNN model significantly outperformed the traditional CSP+LDA 648	

classifier by increasing classification accuracy for all 54 subjects in this study. 649	

Moreover, it was shown that the CNN model benefited the inefficient BCI users 650	

significantly more than high performers. Thus, we conclude that DL classifiers show 651	

promise for future MI-BCI applications for all users as opposed to current state-of-art 652	

ML-based BCI systems, which demand extensive effort in pre-processing and feature 653	

extraction and yet are impractical for some users. Future studies should further 654	

investigate the robustness of the proposed CNN model in real-time MI-BCI 655	

applications 656	
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