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Abstract 

The events of the last year have highlighted the complexity of implementing large -scale molecular 

diagnostic testing for novel pathogens. The purpose of this study was to determine the chemical 

influences of sample collection media and storage on the stability and detection of viral nucleic acids by 

qRT-PCR. We studied the mechanism(s) through which viral transport media (VTM) and number of freeze-

thaw cycles influenced the analytical sensitivity of qRT-PCR detection of SARS-CoV-2. Our goal is to 

reinforce testing capabilities and identify weaknesses that could arise in resource -limited environments 

that do not have well-controlled cold chains. The sensitivity of qRT-PCR analysis was studied in four VTM 

for synthetic single-stranded RNA (ssRNA) and double-stranded DNA (dsDNA) simulants of the SARS-CoV-

2 genome. The sensitivity and reproducibility of qRT-PCR for the synthetic ssRNA and dsDNA were found 

to be highly sensitive to VTM with the best results observed for ssRNA in HBSS and PBS-G. Surprisingly, 

the presence of epithelial cellular material with the ssRNA increased the sensitivity of the qRT-PCR assay. 

Repeated freeze-thaw cycling decreased the sensitivity of the qRT-PCR with two noted exceptions. The 

choice of VTM is critically important to defining the sensitivity of COVID-19 molecular diagnostics assays 

and this study suggests they can impact upon the stability of the SARS-CoV-2 viral genome. This becomes 

increasingly important if the virus structure is destabilised before analysis, which can occur due to poor 

storage conditions. This study suggests that COVID-19 testing performed with glycerol-containing PBS will 

produce a high level of stability and sensitivity. These results are in agreement with clinical studies 

reported for patient-derived samples.   
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Introduction 

The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by a novel strain of severe acute 

respiratory syndrome coronavirus, SARS-CoV-2, has claimed almost 4 million lives worldwide as of June 

2021.1 Efficient management of the pandemic requires rapid and accurate identification and isolation of 

infected symptomatic and asymptomatic individuals at the early stages of infection.  

The current gold standard for COVID-19 diagnosis is quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR)-based detection of viral RNA obtained from patient samples (Figure 

1A).2  The qRT-PCR assay is a highly sensitive method with a limit of detection of  single RNA copy.3 

However, the sensitivity and accuracy of qRT-PCR can be hindered by low viral loads particularly when 

screening patients in the pre-symptomatic phase4, and by contamination.5,6  In this regard, RNA extraction 

kits utilizing lysis buffers and silica-coated magnetic beads can significantly improve qRT-PCR detection 

sensitivity by facilitating an efficient release, capture, and isolation of viral RNA from the infected cells, 

thereby providing purified and concentrated RNA samples suitable for qRT-PCR analysis (Figure 1B).7-9 

Maintaining the stability of patient-derived samples during their collection, storage and transport to 

diagnostic facilities is equally important for sensitive and accurate detection of SARS-CoV-2 as improper 

storage and transport conditions can cause the degradation of labile viral RNA and subsequently lead to 

false negatives with serious implications for the tracking and tracing of virus outbreaks.10,11 

While SARS-CoV-2 has been detected in several (liquid) biopsies such as saliva, blood, tears, urine and 

feces in a range of viral loads and with varying degrees of stability, 12-14 sample collection from the upper 

and lower respiratory tract using nasopharyngeal swabs is the standard practice for diagnostic testing for 

respiratory prathogens.15,16 Immediately after collection, the nasopharyngeal swabs are deposited into 

sterile tubes containing viral transport media (VTM) to preserve the sample until diagnostic tests are 

performed. VTM contain various proteins, amino acids and antimicrobial agents suspended in a buffered 

salt solution. These can be purchased commercially, e.g., universal transport media, UTM®, or prepared 

using recipes provided by the US Centre for Disease Control and Prevention (CDC) 17 and the World Health 

Organization (WHO).18-20 The importance of VTM selection for accurate qRT-PCR-based molecular 

diagnostics has been highlighted in a recent study by Kirkland and Frost (2020). It was shown that the 

composition of commercially available VTM may not always be suitable for the intended purpose, such as 

nucleic acid detection, which is not always obvious to clinicians and medical scientists.21 

In addition to VTM composition, the storage and transport temperature of patient-derived samples can 

significantly affect virus stability, and thus the accuracy of diagnostic testing. SARS-CoV-2 is highly stable 

at temperatures up to 4°C, but is sensitive to elevated temperatures.22 The lipid bilayer in the enveloped 

structure of SARS-CoV-2 makes it more susceptible to heat inactivation compared to non-enveloped 

viruses.23 Therefore, it is recommended that samples are kept at 2-8°C and transported to a diagnostic lab 

within 72 h after collection. If this is not possible, samples should be stored at -70°C for periods longer 
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than 72 hr.15 Failure to maintain appropriate cold chains can result in repeated freeze-thawing of samples, 

which could degrade the viral RNA and potentially cause false-negative reporting.11,24,25 

 

 

Figure 1. (A) Schematic illustration of the molecular diagnostics workflow for the detection of SARS-CoV-
2 RNA from patient samples using qRT-PCR. The nasopharyngeal swab obtained from the patient is stored 
in viral transport media (VTM) while in transit to a testing facility. The sample is then processed using an 
RNA extraction procedure to isolate viral RNA prior to qRT-PCR amplification. (B) An illustration of the 
RNA extraction process. (I) Cells containing SARS-CoV-2 viral particles are disrupted in lysis buffer 
containing silica-coated magnetic beads, denaturants and detergents. (II) SARS-CoV-2 RNA released from 
the lysate is captured by silica-coated magnetic beads by adsorption. (III) Magnetic separation of adsorbed 
RNA allows for the elimination of cellular debris and contaminants before the RNA is finally eluted into 
RNase-free water. 

 

Although separate studies have examined the influence of VTM selection21,26 and repeated freeze-thaw 

cycles27, 25 on the stability of SARS-CoV-2 samples, the combined effects of different VTM compositions 

and the repeated freeze-thaw cycles on sample stability have not been shown. The present study aims to 

determine how repeated freeze-thawing affects the stability of samples with varying quantities of nucleic 

acids in different VTM, and to suggest improvements in sample collection, storage, and transport 

conditions to improve SARS-CoV-2 molecular diagnostics. To mimic the viral genome extracted from 

patient samples, we employed synthetic linear SARS-CoV-2 RNA fragments made up of six non-

overlapping 5 kb single-stranded RNA (ssRNA) units that cover 99.9% of the Wuhan-Hu-1 reference 

genome (GeneBank ID: MN908947.3). In parallel, a double-stranded DNA (dsDNA) plasmid (ca. 4 kb in 

size) harbouring the SARS-CoV-2 nucleocapsid (N) gene was tested as a more stable control less 

susceptible to nuclease degradation. Nucleic acid extraction and subsequent qRT-PCR allowed us to 
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investigate how different VTM and the freeze-thaw process differentially affect the two synthetic SARS-

CoV-2 products and, also, in the presence of epithelial cells to achieve a more accurate mimicry of patient-

derived samples. 

Experimental 

Materials 

All reagents and kits were commercially available and used as received without further alterations, unless 

specified otherwise. The viral RNA extraction kit containing silica-coated high magnetisation beads and 

magnetic separator were developed as reported previously.29,30 DNase- and RNase-free hydrophobic 

filtered pipette tips, 96-well plates, sealing covers and microtubes were used throughout. Environmental 

and sample RNase activity levels were monitored throughout the study using the RNaseAlert® QC system 

V2 (ThermoFisher, US). Copan universal transport medium (UTM®) 330 C was obtained from Medical 

Supply Company Ltd., Ireland. Hanks' balanced salt solution (HBSS), glycerol, heat inactivated fetal bovine 

serum (FBS), gentamicin, and amphotericin B were purchased from ThermoFisher, US. Penicillin G sodium 

salt S, streptomycin, polymyxin B, nystatin, moxifloxacin and sulfamethoxazole were from Sigma, UK. All 

sample preparation and handling were carried out in an aseptic manner in a sterile, RNase -free BSL-2 

facility. 

Preparation of viral transport media 

HBSS VTM was prepared by adding gentamicin (50 mg) and amphotericin B (0.25 mg) to sterile HBSS (500 

mL). The solution was thoroughly mixed and stored at 2-8 °C.  CDC VTM was prepared as per CDC 

guidelines.17 In brief, gentamicin (50 mg), amphotericin B (0.25 mg) and FBS (10 mL) were added to sterile 

HBSS (500 mL). The solution was thoroughly mixed and stored at 2-8 °C. WHO VTM was prepared as per 

WHO guidelines.18 Briefly, penicillin G sodium salt (1,000,000 I.U.), streptomycin (100 mg), polymyxin B 

(1,000,000 I.U.), gentamicin (125 mg), nystatin (250,000 I.U.), moxifloxacin (30 mg) and sulfamethoxazole 

(100 mg) were added to a sterile solution of 1:1 PBS: glycerol (500 mL), filtered using 0.45 µm pore -sized 

membranes, thoroughly mixed and stored at -20 °C. 

Monitoring RNAse activity 

A fluorometric RNaseAlert® kit was employed to measure RNase activity in all prepared buffers and VTM. 

The duplicate measurements were performed for each sample in 96-well optical plates as per the 

operating instructions. The samples were monitored with a ClarioStar Plus fluorescence plate reader over 

a 35-45 min incubation at 37°C with orbital mixing at 500 RPM (excitation/emission 490/520 nm). A mean 

fluorescence intensity two-fold higher than that of the negative control was defined as positive for RNase 

activity.31  

Preparation of SARS-CoV-2 nasopharyngeal swab mimics 

Commercially available synthetic nucleic acid fragments of SARS-CoV-2 that are routinely used as positive 

controls in qRT-PCR molecular diagnostics for SARS-CoV-2 were used as viral mimics in this study. These 
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consisted of the Twist Biosciences ssRNA control (GenBank ID: MN908947.3, GISAID: WUHAN-HU-1) and 

a dsDNA plasmid control obtained from Integrated DNA Technologies (IDT). Samples were prepared in 

7,000, 70,000 and 700,000 viral copy number (VCN)/mL viral loads by spiking 1 mL of VTM with 

corresponding number of copies of genetic material. To further mimic a standard nasopharyngeal swab 

that also contains cells taken from the nasopharynx, A375 epithelial human mel anoma cells (ATCC® CRL-

1619 ™) counted by hemocytometry were mixed with SARS-CoV-2 ssRNA in a 1:10 cell to RNA ratio 

(70,000, 7,000 and 700 cells/mL). 

Freeze-thaw treatment of SARS-CoV-2 nasopharyngeal swab mimics 

The swab mimics were prepared as 4.5 mL stocks in RNase-free cryotubes as described above. Each stock 

was frozen in a -80 °C freezer for 4 h. To retrieve aliquots for qRT-PCR analysis, the stocks were thawed at 

room temperature for 1 h and the remaining stock was then returned to the -80 °C freezer to begin a new 

freeze-thaw cycle. This process was repeated up to 10 freeze-thaw cycles. 

Preparation of lysis and wash buffers 

Lysis and wash buffers were prepared in-house and tested for RNase contamination prior to use in RNA 

extraction experiments. A basal lysis buffer containing 50 mM Tris, 6 M guanidine thiocyanate, 25 mM 

EDTA was prepared, and pH was adjusted to 6.5 using HCl. To prepare the lysis buffer, the basal lysis buffer 

was supplemented with 3% (w/v) Triton X-100. Wash buffer 1 contained 50 % (v/v) ethanol and basal lysis 

buffer. Wash buffer 2 contained 80 % (v/v) ethanol and nuclease-free water. 

Sample lysis and RNA purification  

RNA extraction was conducted with silica-coated magnetic beads in a 96-well plate using the M96D-400 

magnetic separator (Magnostics Ltd) under aseptic, RNase-free conditions. 1,4-dithiotheritol (DTT, 2% 

w/v) and polyadenylic acid carrier RNA (poly (A), 2 mg/mL) were added to the lysis buffer. 250 µL of sample 

containing 1,750, 17,500, or 175,000 viral copies were treated with lysis buffer at room temperature for 

10 min, which was followed by the addition of the silica-coated magnetic beads and 250 µL of isopropanol. 

The mixture was shaken vigorously for 10 min and washed sequentially with wash buffers 1 and 2 to 

remove impurities. The purified RNA was eluted from the magnetic beads into 50 µL of nuclease free 

water and stored at -80 °C for up to 5 days prior to qRT-PCR analysis. A375 cells were run in parallel with 

all extractions and qRT-PCR analysis of the purified nucleic acid material for the human glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) endogenous control gene was treated as a positive extraction control. 

All extractions were performed in triplicate. 

Quantitative reverse transcription - polymerase chain reaction (qRT-PCR) analysis 

A master-mix was created using the SuperScript™ III Platinum™ One-Step qRT-PCR kit (Invitrogen, US) in 

conjunction with N1 primers/probes from the IDT 2019-nCov CDC EUA Kit (IDT, US) with the following 

composition:  SuperScript™ III RT/Platinum™ Taq mix (16 µL), 2X reaction mix (400 µL), ROX™ reference 

dye (1.6 µL), IDT N1 primers/probes (60 µL; final concentration of 800 nM primers and 100 nM of FAM-

labelled probes) and nuclease free water (122.4 µL). 15 µL aliquots of the maste r mix was used per 5 µL 
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of the extracted samples to detect both the ssRNA and dsDNA plasmid using qRT-PCR. Therefore 175, 

1,750 and 17,500 viral copies were present in the qRT-PCR reaction from the initial 7,000, 70,000 and 

700,000 VCN/mL stocks, respectively. A second master mix for the qRT-PCR analysis of the GAPDH gene 

for both the A375 extraction controls run in tandem with cell -free RNA spiked VTM was created as 

described above using GAPDH-specific primers and probe (40 µL; final concentration of 10 nM primers 

and 17 nM probes of VIC-labelled probe) in place of N1 primers/probe and nuclease free water (142.4 µL). 

The samples were kept on ice immediately prior to qRT-PCR analysis using a QuantStudio™ 7 Flex Real-

Time PCR (Applied Biosystems®, US). The run parameters followed a standard PCR cycle beginning with 

reverse transcription at 50 °C for 15 min, denaturation at 95 °C for 2 min followed by 50 amplification 

cycles consisting of a denaturation step at 95 °C for 15 s and annealing and extension at 60 °C for 1 min 

with fluorescence acquisition in the annealing/extension phase. QuantStudio Software v1.3 was used to 

analyze the data. The cycle threshold (Ct) was set at 0.05 and baseline set to automatic. Two-tailed t-tests 

were performed using GraphPad software in order to make comparisons between samples. These 

comparisons were regarded statistically significant for p < 0.01. 

Results and Discussion 

Influence of VTM on SARS-CoV-2 detection sensitivity using qRT-PCR 

The analytical sensitivity of qRT-PCR detection was studied using a synthetic single-stranded RNA (ssRNA). 

To determine the influence of RNase activity on the detection sensitivity, a synthetic double -stranded 

DNA plasmid was tested in parallel. The ssRNA construct consisted of six non-overlapping 5 kb nucleotide 

sequences that covered 99.9% of the SARS-CoV-2 Wuhan-Hu-1 reference genome in a state that is not 

protected by the viral capsid and thus susceptible to both chemical and physical degradation. The DNA 

construct was a ~4 kb plasmid that includes the SARS-CoV-2 N gene. The impact of the nasal membrane 

cellular materials on the qRT-PCR ssRNA sensitivity was studied by addition of A375 epithelial cells to 

ssRNA in a 1:10 ratio. 

qRT-PCR relies on fluorescent reporters to monitor the amplification of target nucleotide sequences for 

each thermal cycle. An amplification plot with the relative fluorescence intensity (log ΔRn) is plotted as a 

function of thermal cycle number to detect the target sequences. A representative amplification plot is 

shown in Figure 2A for three samples: a positive GAPDH control for A375 human epithelial cells (green), a 

sample with positive amplification comprising 17,500 copies per qRT-PCR reaction after extraction from 

PBS-G VTM with cells, (orange), and an undetected sample below the assay limit of detection comprising 

1,750 copies per qRT-PCR reaction after extraction from CDC VTM with cells (red). The Rn values were 

obtained by dividing the fluorescence of the reporter dyes (either N1 or GAPDH assays) by the 

fluorescence of a passive reference dye (ROXTM). The ΔRn values were determined by subtracting the Rn 

value of the baseline signal from that of the experimental reaction. Wölfel et al reported an average viral 

load per swab in 3 mL of VTM for 19 patients to be 676,000 viral copies. In this study we use a VTM volume 

per sample condition of 1 mL while using 700,000 VCN as our highest copy number. 32 
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Figure 2B presents the qRT-PCR results for the three sample types, i.e., ssRNA (R), ssRNA+cells (R+C), and 

dsDNA (D) extracted from UTM, CDC, HBSS and PBS-G VTM at 17,500 copies per qRT-PCR reaction. After 

multiple thermal cycles the target sequence is amplified to a point whereby the fluorescence signal 

emitted crosses a threshold for detection. The cycle number at which this crossing the threshold occurs is 

defined as the Ct value. In this study the threshold was set at a ΔRn value of 0.05. A lower Ct value indicates 

the presence of a larger quantity of initial target sequence in the sample as fewer thermal cycles are 

required to cross the threshold and vice-versa. A trend that can be seen for the ssRNA results (R) is that 

the Ct values are lower in the HBSS (22.92, σ = 0.25) and PBS-G (25.90, σ = 0.19) VTM compared to the 

UTM (34.13, σ = 0.8) and CDC (32.13, σ = 0.79) VTM (Figure 2B). A similar trend is observed in the presence 

of A375 epithelial cells (R+C), such that the lowest and highest Ct values are obtained for HBSS (22.16, σ 

= 0.33) and UTM (34.82, σ = 2.22), respectively. Overall, a subtle decrease in Ct values (increased assay 

sensitivity) is noted for all VTM when epithelial cells are present (R+C), with the exception of UTM. Even 

though sample type R with U VTM produced a lower Ct than sample type R+C U, one R U triplicate failed 

to amplify while there were no failed amplifications for R+C U samples.  

 

Figure 2. Impact of viral transport media on detection of synthetic SARS-CoV-2 nucleic acids by qRT-PCR. 
(A) Amplification plot of the qRT-PCR results, depicting the logΔRn plotted against the cycle number. 
Positive extraction control curve from human epithelial A375 cells (green) amplified with GAPDH 
primers/probe, a positive signal derived from 17,500 copies per qRT-PCR reaction of ssRNA+cells extracted 
from PBS-G VTM (orange), and an undetected reaction containing 1,750 copies per qRT-PCR reaction of 
ssRNA+cells extracted from CDC VTM (red) both amplified by N1 primers/probe are shown. The threshold 
set at 0.05 is indicated by the horizontal line (black). (B) Results for ssRNA (R), ssRNA+cells (R+C) and 
dsDNA (D) sample types at 17,500 copies per qRT-PCR reaction extracted from UTM (U), CDC (C), HBSS (H) 
and PBS-G (P) VTM. Measurements were performed in triplicate. The number of failed amplifications per 
triplicate measurement is denoted by a cross (+) per failed run, i.e., one cross indicates one failed run. 
Two-tailed t-tests were used to compare the VTM that produced the best result for each sample type (H 
for sample R, H for sample R+C, and C for sample D) to the other VTM results of that sample type.  Samples 
that produced a statistically significant difference (p < 0.01) are denoted by the presence of an asterisk 
(*). 
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The influence of the VTM on dsDNA qRT-PCR results (D) was less apparent and does not follow the same 

trend seen in the R and R+C data, whereby UTM and CDC VTM produced higher Ct values than HBSS and 

PBS-G. In contrast, sample type D C (22.74, σ=0.14) and D U (25.08, σ=0.6) produced lower Ct values than 

D P (25.62, σ=0.24) and D H (26.85, σ=0.12). However, all D qRT-PCR Cts were significantly higher (p < 

0.01) compared to the best results obtained in CDC VTM. These results highlight the important role that 

the VTM selection has when using different synthetic SARS-CoV-2 nucleic acids and how it can affect the 

qRT-PCR assay sensitivity. 

An RNase activity assay was performed to characterise presence of nucleases in the VTM, and both the 

CDC and UTM VTM tested positive for RNase activity (Figure S1, Supplementary Information). Each 

component of the CDC VTM was tested to identify the source of the RNase activity and FBS was the only 

component which tested positive for the presence of RNases. The FBS sample showed a high fluorescence 

intensity of ~ 10,000 A.U. from the first time point (90 s) and therefore was considered to have a high 

level of RNase activity (Figure S2, Supplementary Information). The positive control supplied with the kit 

was RNase A, which had a fluorescence intensity of ~11,500 A.U. by the end of the incubation period. This 

led us to conclude that FBS was the source of RNase activity in this VTM.  The Copan UTM also tested 

positive for RNase activity with an average fluorescence intensity of 10,000 A.U. at the end of the 

incubation period, with the positive RNase control averaging 11,500 A.U. by the end of the incubation 

period (Figure S1, Supplementary Information). Both HBSS and PBS-G VTM as well as all the reagents used 

in the extraction were found to be RNase free (Figure S1 and S3, Supplementary Information). 

The RNase activity assays results provide insight into why samples containing ssRNA and ssRNA+cells 

produced poor results in CDC and UTM when compared to their HBSS and PBS-G counterparts. HBSS VTM 

preparation is identical to CDC VTM preparation, but excludes the addition of the RNase -containing FBS. 

In addition, qRT-PCR detection of A375 epithelial cells in ssRNA+cells samples after extraction from VTM 

helped to assess whether the presence of RNases in the VTM similarly affected the cells in these samples. 

Interestingly, cells at 1,750 copies per qRT-PCR reaction extracted from CDC (22.17, σ=0.26) and UTM 

(23.96, σ=0.18) produced higher Cts than cells extracted from HBSS (18.56, σ=0.18) and PBS-G (18.85, σ = 

0.13). Taking these findings together, it is evident that the VTM which tested positive for RNase activity 

had a largely negative effect on qRT-PCR detection sensitivity for all samples containing ssRNA. These 

results are in line with those of Kirkland and Frost 21, who also showed the adverse effects of the presence 

of FBS in VTM and how the use of such a VTM may impact results in molecular diagnostic and research 

applications. In contrast to these findings, dsDNA samples in CDC and UTM produced better results 

compared to dsDNA in HBSS and PBS-G, suggesting that the presence of FBS positively impacted on the 

dsDNA plasmid. This may be attributable to dsDNA being inherently more stable than ssRNA as the latter 

is more labile and has greater exposure to RNases in the environment. 33 

Surprisingly, lower Ct values were obtained for all VTM tested in the presence of epithelial cells, except 

UTM (R+C, Figure 2b), implicating a better stabilisation and a more efficient extraction of ssRNA when 
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performed with cellular nucleic acids. Indeed, the RNase activity assay performed on the RNase -positive 

VTM with and without cells showed a reduced RNase activity when the cells were present (Figure S4, 

Supplementary Information). A significant decrease in RNase activity (positive control) was observed in 

the presence of cells (Figure S4, Supplementary Information) also confirmed that A375 cells improved the 

ssRNA stability mainly via inhibiting the RNase activity of RNase-positive VTM. In addition, the nucleic acid 

content of A375 cells can act as a “carrier” to enhance the recovery and precipitation of ssRNA on 

magnetic beads, which can account for the lower Ct values observed for RNase-free VTM in the presence 

of cells. 

The effect of freeze-thaw cycles on SARS-CoV-2 qRT-PCR sensitivity 

We studied the effect of multiple freeze-thaw cycles on the qRT-PCR detection sensitivity of ssRNA+cells 

sample (R+C) in HBSS and PBS-G VTM as the other VTM were observed to rapidly degrade the synthetic 

fragments as assessed after a single freeze-thaw cycle (Table 1). Similarly, the sensitivity of dsDNA plasmid 

(D) was studied in CDC and PBS-G VTM to test their cryopreservation properties. Further nucleic acid 

extractions were carried out after 3, 5, 7 and 10 freeze-thaw cycles for ssRNA+cells samples in HBSS and 

PBS-G and dsDNA samples in CDC and PBS-G given the above results.  Each sample was extracted in 

triplicate and tested using qRT-PCR. When analysing qRT-PCR results, a cut-off point of cycle threshold 

(Ct) ≥ 35 was set for a negative sample.34,35,28 

 

Table 1. Ct values obtained in four different VTM after one freeze-thaw cycle for ssRNA+cells (R+C) and 

dsDNA (D) samples at 17,500 copies per qRT-PCR reaction. 

 HBSS PBS-G CDC UTM 

 Ct σ Ct σ Ct σ Ct σ 

R+C 
25.1

1 

0.1

3 

22.4

1 

0.1

0 

28.8

9 

0.2

7 

35.5

1 

1.1

7 

D 
30.0

3 

0.9

7 

26.7

9 

0.1

4 

24.5

7 

0.2

8 

28.0

1 

0.5

0 

 

The results for ssRNA+cells (R+C) and dsDNA (D) samples at 17,500 copies per qRT-PCR reaction extracted 

from the selected VTM are presented in Figure 3A and B, respectively. Two tailed t-tests (significance level 

of p < 0.01) were performed to compare the samples at each freeze-thaw cycle to their unthawed (“thaw 

0”) counterpart. A statistically significant increase (p < 0.01) in Ct values after each freeze-thaw cycle was 

observed for ssRNA+cells in HBSS compared to their zero freeze-thaw counterpart (bars ‘H’ in Figure 3A). 

In contrast, freeze-thawing had no significant impact on the Ct values when PBS-G was used (bars ‘P’ in 

Figure 3A). For ssRNA+cells samples in HBSS, the Ct value increased by an average of 1.02 (σ = 1.23) (4.32%, 

σ = 5.50) for each subsequent freeze-thaw cycle condition tested. On the other hand, the average increase 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.448982doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.448982
http://creativecommons.org/licenses/by-nc/4.0/


was 0.07 (σ = 0.19) (0.28%, σ = 0.75) per freeze-thaw cycle condition tested for the same sample type 

extracted from PBS-G, which suggests that the PBS-G could protect the ssRNA from degradation during 

freeze-thaw cycles better than HBSS. The findings suggest that the glycerol component of PBS-G VTM acts 

as a cryoprotectant and preserves the viral nucleic acid by preventing destructive ice crystals from forming 

during the freezing process.36 These crystals can damage the nucleic acid strands through a mechanical 

process known as shearing, in which one end of the strand is locked in an ice crystal whilst the other end 

is in the liquid phase that has not yet frozen, putting stress on the nucleic acid strand.37 Glycerol is thought 

to interfere with the solid structure of such crystals, preventing the formation of large ice crystals that 

may result in the physical stress and ultimately lead to shearing.38 

 

 

Figure 3. Impact of repeated freeze-thaw cycles on qRT-PCR measurements. (A) qRT-PCR results (Ct) 
plotted against ssRNA +Cell (R+C) samples extracted from HBSS (H) and PBS-G (P) VTM at 17,500 copies 
per qRT-PCR reaction after 0, 1, 3, 5, 7 and 10 freeze-thaw cycles. (B) qRT-PCR results (Ct) plotted against 
dsDNA (D) samples extracted from CDC (C) and PBS-G (P) VTM at 17,500 copies per qRT-PCR reaction after 
0, 1, 3, 5, 7 and 10 freeze-thaw cycles. 

 

 

Interestingly, the cryoprotective role of PBS-G was not evident for dsDNA samples, such that a signif icant 

increase in Ct values was observed (an average increase of 0.88 (σ = 0.97) (3.23%, σ = 3.51) for each 

subsequent freeze-thaw cycle condition tested) when the dsDNA plasmid underwent multiple freeze-

thaw cycles in PBS-G (bars ‘P’ in Figure 3B). In CDC VTM, results changed significantly only after 3 (p= 

0.0031) and 5 (p= 0.0057) freeze-thaw cycles (bars ‘C’ in Figure 3B), with an average decrease of 0.01 Ct 

(σ = 1.34) (0.07%, σ = 5.37) for each subsequent freeze-thaw cycle condition tested. Our observations 

suggest that the FBS component of CDC VTM protects the dsDNA plasmid during repeated freeze -thawing 
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better than the glycerol component of PBS-G. Although not suitable for ssRNA samples due to RNase 

activity detected in its FBS component, we identified the CDC as a suitable VTM for the transport and 

storage of dsDNA. 

Next, we studied the qRT-PCR detection sensitivity for varying viral copy numbers in repeated freeze-thaw 

experiments (Figure 4). We selected PBS-G and CDC VTM for ssRNA+cells and dsDNA plasmid samples, 

respectively. The tested viral copy numbers were 175, 1,750, and 17,500 per qRT-PCR reaction. As shown 

in Figure 4(a), the change in Ct values was not significant at different freeze-thaw cycles for all ssRNA+cells 

samples except for cycle 10 at 1,750 copies per qRT-PCR reaction. Similarly, Ct values for dsDNA plasmid 

in CDC VTM remained largely unaffected for all copy numbers except for freeze -thaw cycles 3 and 5 at 

17,500 copies per qRT-PCR reaction (Figure 4B). 

 

Figure 4. Impact of repeated freeze-thaw cycles on qRT-PCR measurements on synthetic SARS-CoV-2 

controls over multiple concentrations. (A) ssRNA + Cell samples extracted from PBS-G VTM at 17,500, 

1,750, 175 copies per qRT-PCR reaction after 0, 1, 3, 5, 7 and 10 freeze-thaw cycles. (B) dsDNA samples 

extracted from CDC VTM at 17,500, 1,750, 175 copies per qRT-PCR reaction after 0, 1, 3, 5, 7 and 10 freeze-

thaw cycles. The number of triplicates per sample that failed to amplify is denoted by a cross (+) per failed 

triplicate in each sample bar i.e., one cross indicates one failed run and two crosses indicate two failed 

runs. Two tailed t-tests were used to compare each freeze-thaw cycle tested to their 0 freeze-thaw 

counterpart. Samples that produced a statistically significant difference (p < 0.01) are denoted by the 

presence of an asterisk (*). 

 

 

The extraction of nucleic acids used in qRT-PCR in this study was based on the superparamagnetic beads 

that are larger than those in commercial extraction systems and have a higher speed of separation.29,30 
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The sensitivity of the qRT-PCR process based on this novel extraction system has been determined for 

clinical samples collected in PBS and benchmarked against commercial platforms. 39 The diagnostic 

sensitivity of this novel system exceeded several commercials platforms by 1-2 Cts resulting in lower level 

of false negatives at low viral copy numbers. 

Our data are in line with results obtained from studies on freeze-thaw cycles of COVID-19 samples. Dzung 

et al.27carried out extractions on patient-derived samples after up to 15 freeze-thaw cycles and 

implemented qRT-PCR analysis. It was found that although the Ct increase from 1 to 5 and from 5 to 10 

freeze-thaw cycles was statistically significant, the change was not high enough to prevent the viral 

detection as the virus was still detectable after 15 freeze-thaw cycles. The reported average Ct increase 

was 0.106 to 0.197 per freeze-thaw cycle, which are consistent with our findings. Notably, the VTM used 

in this study was created using a modified version of the VTM protocol from Institute of Medical Virology 

(University of Zurich, Zurich, Switzerland) and contained fetal calf serum.  However, in our study, the 

freeze thaw cycles had less of an influence on the Ct values for ssRNA in PBS-G and dsDNA in CDC. This is 

to be expected as we specifically selected the VTM that we thought would withstand the freeze -thaw 

cycles best with the materials we used, and one of our materials was a dsDNA plasmid which is inherently 

more stable. As well as this, due to the use of synthetic nucleic acids, we were able to select the 

concentration of viral target to test. So, whilst Dzung et al. noted that they only tested samples with a 

moderately high viral load and therefore could not investigate the effects the number of freeze -thaw 

cycles would have on a samples with lower viral loads27, we were able to show that even at a lower 

concentration of 175 viral copies per qRT-PCR reaction there was no significant difference in Ct between 

samples that had not been freeze-thawed compared to those that underwent 10 freeze-thaw cycles. 

 

Conclusions 

The COVID-19 pandemic has presented a worldwide challenge to healthcare systems and particularly to 

analytical laboratories that have had to execute hundreds of millions of new molecular diagnostics tests. 

The results presented in this article highlight the important role that VTM selection has on the sensitivity 

of qRT-PCR detection of RNA viruses. It is apparent that simple buffers are preferable to more complex 

ones that include serum, which have been shown to be contaminated with RNases. Figure 5 illustrates the 

mechanism that we believe leads to the degradation of qRT-PCR signal from VTM containing RNases. 

This article also demonstrated that multiple freeze-thaw cycles do decrease the sensitivity of qRT-PCR 

detection of RNA viruses in some VTM. Specifically, little change in sensitivity was observed for samples 

collected in RNase-free VTM and those containing inexpensive cryopreservatives, such as glycerol. This is 

a particularly important observation for COVID-19 testing in resource-limited environments, where the 

cold chain and logistics can be difficult to maintain and are more easily overextended.  

An unexpected observation made in this study was that cellular material from cultured A375 cells 

enhanced the sensitivity of qRT-PCR detection of RNA viruses.  It appears there is one or more compounds 
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in the nuclear or cytosolic extracts of these epithelial cells that stabilize the viral RNA and thus lead to the 

enhanced performance of the molecular diagnostics assays.   

The results presented in this article also suggest that DNA viruses are likely to be less sensitive to the 

composition of VTM than RNA viruses.  It appears that simple buffers with cryopreservatives allow 

efficient storage and transfer of samples with minimal loss of viral copy numbers. However, sources of 

DNases need to be carefully identified and monitored in these VTM as well.  

 

 

Figure 5.  A graphical illustration of RNA extraction in the presence of a viral transport medium that has 
been contaminated with RNase activity. (I-III) Lysis of cells and viral particles in the presence of 
denaturants and detergents. Residual RNase activity from the VTM remains despite the presence of 
denaturants and DTT. (IV) SARS-CoV-2 RNA that is released from viral particles is degraded by RNases 
rendering it unsuitable for capture, purification and detection by molecular diagnostic assays.  
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