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Abstract 25 

Background 26 

Empirically assessing the impact of preselection on subsequent genetic evaluations of 27 

preselected animals requires comparison of scenarios with and without preselection. 28 

However, preselection almost always takes place in animal breeding programs, so it is 29 

difficult, if not impossible, to have a dataset without preselection. Hence most studies on 30 

preselection used simulated datasets, concluding that subsequent genomic estimated breeding 31 

values (GEBV) from single-step genomic best linear unbiased prediction (ssGBLUP) are 32 

unbiased. The aim of this study was to investigate the impact of genomic preselection, using 33 

real data, on accuracy and bias of GEBV of validation animals.  34 

Methods 35 

We used data on four pig production traits from one sire-line and one dam-line, with more 36 

intense original preselection in the dam-line than in the sire-line. The traits are average daily 37 

gain during performance testing, average daily gain throughout life, backfat, and loin depth. 38 

Per line, we ran ssGBLUP with the entire data until validation generation and considered this 39 

scenario as the reference scenario. We then implemented two scenarios with additional layers 40 

of genomic preselection by removing all animals without progeny either i) only in the 41 

validation generation, or ii) in all generations. In computing accuracy and bias, we compared 42 

GEBV against progeny yield deviation of validation animals.  43 

Results 44 

Results showed only a limited loss in accuracy due to the additional layers of genomic 45 

preselection. This is true in both lines, for all traits, and regardless of whether validation 46 

animals had records or not. Bias too was largely absent, and did not differ greatly among 47 

corresponding scenarios with or without additional layers of genomic preselection.  48 

Conclusion 49 

We concluded that impact of recent and/or historical genomic preselection is minimal on 50 

subsequent genetic evaluations of selection candidates, if these subsequent genetic evaluations 51 

are done using ssGBLUP. 52 

 53 
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Background 58 

In animal breeding, parents of the next generation are often selected in multiple stages, and 59 

the initial stages of this selection are called preselection [1–3]. Selection candidates that 60 

survive preselection are called preselected animals [1–3], and those that do not are called 61 

preculled animals [3,4]. Preselection aims to reduce costs and efforts spent on animals that are 62 

not interesting for the breeding program, and achieves this by avoiding phenotyping or further 63 

testing of the preculled animals. As preculled animals have neither progeny nor records for 64 

some or all breeding goal traits, they are generally not included in subsequent genetic 65 

evaluations (i.e. genetic evaluations that come after preselection). Preselection therefore 66 

decreases the amount of information available for subsequent genetic evaluations of 67 

preselected animals. Properly assessing the impact of preselection on subsequent genetic 68 

evaluation of preselected animals requires a scenario without preselection, against which 69 

scenarios with preselection can be compared. Because in animal breeding programmes 70 

preselection almost always takes place, it is difficult, if not impossible, to have a scenario 71 

without preselection. This is why most studies available on preselection used simulated 72 

datasets [e.g. 1–5]. Those studies have shown that when a subsequent genetic evaluation of 73 

preselected animals is done using pedigree-based best linear unbiased prediction (PBLUP), 74 

genomic preselection results in accuracy loss and bias in the estimated breeding values (EBV) 75 

of preselected animals [1,6–9]. Some of these studies [6–9] further showed that the accuracy 76 

loss and bias caused by genomic preselection can be avoided if the information on preculled 77 

animals that was utilized at preselection is included in the subsequent PBLUP evaluation. On 78 

the other hand, our previous works [3,4] have shown that when the subsequent genetic 79 

evaluation is done with single-step genomic BLUP (ssGBLUP), genomic EBV (GEBV) of 80 

preselected animals are estimated without bias. We [4] further showed that to avoid genomic 81 
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preselection bias in subsequent ssGBLUP evaluation of preselected animals, genotypes of 82 

their preculled sibs are only needed if not all of their parents are genotyped. 83 

In our previous works [3,4], being based on simulated datasets, preselection was the only 84 

possible source of bias in ssGBLUP evaluations. However, in real breeding programmes, 85 

other sources of bias in ssGBLUP evaluations may exist and are potentially difficult to 86 

control. Therefore, impact of preselection might be confounded by the impact of these other 87 

factors. These other possible sources of bias include, amongst others, inaccurate or incomplete 88 

pedigree [10], inaccurately estimated additive genetic (co)variances [10], and a reference 89 

population of selected genotyped animals [11,12]. Although some ways of reducing the bias 90 

caused by these factors have been developed, the bias is usually not completely eliminated in 91 

evaluations using real data (e.g. [10–12]). This may explain the observation that in practice 92 

GEBV obtained from ssGBLUP evaluations are sometimes biased. The aim of this study was 93 

to investigate the impact of genomic preselection on subsequent ssGBLUP evaluations, using 94 

real data from an ongoing pig breeding program in which preselection has taken place. To 95 

achieve this aim, we used the full dataset as control and retrospectively implemented 96 

additional layers of genomic preselection, and results from subsequent ssGBLUP evaluations 97 

after these additional layer of genomic preselection were compared against results from 98 

ssGBLUP evaluation of the full available data. 99 

Methods 100 

Data 101 

In our analyses, additional layers of genomic preselection were implemented when the 102 

animals already had phenotypes, by discarding animals that did not have progeny in the data. 103 

Our subsequent genetic evaluations only involved reevaluating preselected animals, either 104 

with or without preculled animals in the reevaluations. We separated the available data in two 105 
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parts, according to a cut-off birth date. Animals born before or on the cut-off birth date were 106 

used as reference population, and animals born after the cut-off birth date were used as 107 

validation population, from which animals were selected to be used for validation (these are 108 

hereafter referred to as “validation animals”). Only animals in the validation population that 109 

met the following two requirements were selected as validation animals: 1) none of their 110 

parents were included in the validation population, and 2) they had progeny associated with 111 

phenotypes. The first requirement ensured that validation animals represented the youngest 112 

generation of selection candidates in a breeding program in practice, and not multiple 113 

generations. The second requirement enabled validation of the GEBV of the validation 114 

animals against their progeny yield deviation (PYD) [13]. Meeting the second requirement 115 

was needed, because own phenotypes of the validation animals were used in our subsequent 116 

evaluations, and could thus not be used to validate their GEBV. 117 

We obtained pig production traits data on one sire-line and one dam-line from Topigs 118 

Norsvin. These data were collected between 1970 and 2020, and the traits were average daily 119 

gain during performance testing, average daily gain throughout the lifetime, backfat, and loin 120 

depth. Topigs Norsvin (pre)selected both lines on these production traits. However, there was 121 

more emphasis on reproduction traits than on production traits in the dam-line. Details on the 122 

amount of data utilized in this study are in Table 1. The data were recorded on originally 123 

preselected animals (i.e. the animals preselected by Topigs Norsvin), with the sire-line being 124 

much more balanced than the dam-line, in terms of proportions males and females with 125 

records per generation (ratio of males with records to females with records is about 50:50 in 126 

the sire-line and about 20:80 in the dam-line). We studied impact of genomic preselection in 127 

the two lines separately, because the traits we studied had different weights in breeding goals 128 

of the two lines. The cut-off date to split the data into reference and validation populations 129 

was 31st January, 2017 for the sire line, and 31st December, 2015 for the dam-line. In the 130 
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pedigree, animals with one or both parents missing were assigned to genetic groups, 131 

according to line and year of birth of each animal. 132 

Genomic data and quality control 133 

Our genomic data included genotypes of animals for about 21,000 SNP segregating in both 134 

lines, and distributed across the 18 autosomes in the pig genome. The SNP were genotyped 135 

using a custom SNP chip. We used Plink [14] for all quality control operations on our 136 

genomic data. Per genomic preselection scenario (as described later) and per line, animals and 137 

SNPs with call rates less than 90% were removed, as well as SNPs that deviated from Hardy-138 

Weinberg equilibrium (Hardy-Weinberg equilibrium exact test p value = 10-15), or had a 139 

minor allele frequency below 0.005. Table 1 contains the summary of the pedigree, genomic 140 

and phenotypic information utilized in the subsequent genetic evaluations following each 141 

genomic preselection scenario, per line. 142 

Computation of pre-corrected phenotypes 143 

In our genetic evaluations, we used pre-corrected phenotypes (rather than raw phenotypes) as 144 

records. Animals of different lines were sometimes raised together, so they shared some fixed 145 

and non-genetic random effects. Because we studied impact of genomic preselection within 146 

lines, it was necessary to correct phenotypes for all non-genetic effects before the data was 147 

divided into lines. Another motivation for using pre-corrected phenotypes was that some 148 

classes of these non-genetic effects could include only one or a few animals per class due to 149 

our implemented additional preselection. We used the following multi-trait pedigree-based 150 

animal model to compute pre-corrected phenotypes for all traits: 151 

� � �� � �� � �	 � 
,  �
�.  ��, 152 

where y was the vector of phenotypes; b was the vector of fixed effects, with incidence matrix 153 

X; p was the vector of non-genetic random effects, with incidence matrix W; u was the vector 154 
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of breeding values, with incidence matrix Z; and e was the vector of residuals. Then for every 155 

animal (i) with phenotype, precorrected phenotype (�ci) was: 156 

�ci � ��� � �̂�  (eq. 2). 157 

The (co)variance components used for this analysis were estimated, before separating the data 158 

into lines, from a multi-trait pedigree-based animal model in ASReml  [15] using eq. 1. All 159 

computations of (G)EBV were performed using MiXBLUP [16]. 160 

Preselection 161 

Per line, we implemented a reference scenario and two scenarios that added layers of genomic 162 

preselection. The reference scenario - against which other scenarios could be compared - only 163 

included the original genomic preselection implemented by Topigs Norsvin. Thus, the 164 

subsequent ssGBLUP evaluations following the reference scenario utilized the entire 165 

available data until the validation generation. The second scenario is called validation 166 

generation preselection (the VGP scenario). In this scenario, we only implemented additional 167 

genomic preselection in the validation generation, by discarding all animals in the validation 168 

generation that had no progeny in the data, but had genotypes and/or phenotypes. This 169 

scenario was implemented to study the impact of extreme genomic preselection in a single 170 

generation. The third scenario is called multi-generation preselection (the MGP scenario), in 171 

which we discarded any animal in the validation and previous generations with no progeny in 172 

the data. This scenario was implemented to study the carry-over impact of extreme genomic 173 

preselection in multiple generations. Animals kept after each of the genomic preselection 174 

scenarios are shown in Figure 1. 175 

Subsequent genetic evaluations 176 

Following every scenario of genomic preselection, we implemented a subsequent ssGBLUP 177 
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evaluation with all animals that survived the genomic preselection. We call this evaluation 178 

subsequent because it came after the initial evaluation that provided the GEBV used in 179 

preselection. The ssGBLUP evaluations were conducted using MiXBLUP [16], with and 180 

without records (i.e. own phenotypes) on the animals in the validation generation (see Table 181 

1). Progeny of validation animals were not included in the subsequent genetic evaluations. We 182 

estimated variance components after every preselection scenario, per line, using a pedigree-183 

based multi-trait animal model in ASReml. We used these scenario-specific variance 184 

components in the subsequent genetic evaluations to ensure that the variance components 185 

used were appropriate for the pre-corrected phenotypes. At the subsequent genetic 186 

evaluations, the model used for the estimations of both variance components and breeding 187 

values was: 188 

� � �� � �	 � 
  (eq. 3), 189 

where y was the vector of pre-corrected phenotypes; x and Z were incidence vector and 190 

matrix linking pre-corrected phenotypes to overall mean and random animal effects, 191 

respectively; b was the overall mean; u was the vector of breeding values; and e was the 192 

vector of residuals. We also repeated all subsequent genetic evaluations using PBLUP, to 193 

verify the impact of using genotypes on the observed results. 194 

Figure 1 here 195 

 196 
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 208 

 209 

Table 1 Data utilized in subsequent ssGBLUPa evaluations following each preselection 210 

scenario, after quality control 211 

Data in the subsequent 
ssGBLUP 
evaluation/Preselection 
scenario 

With records on animals in the 
validation generation 

Without records on animals in 
the validation generation 

Referenceb VGPc MGPd Referenceb VGPc MGPd 

The sire line    
Number of animals in 
the pedigree 

81,875 60,950 12,777 81,875 60,950 12,777 

Number of animals with 
record for at least one 
trait 

75,129 54,217 6,065 52,846 52,846 4,694 

Number of animals with 
genotypes  

33,506 23,315 5,131 33,506 23,315 5,131 

Number of SNP  20,550 20,963 20,926 20,550 20,963 20,926 
The dam line    
Number of animals in 
the pedigree 

160,426 124,031 33,485 160,426 124,031 33,485 

Number of animals with 
record for at least one 
trait 

139,403 103,018 12,514 100.710 100,710 10,206 

Number of animals with 
genotypes  

50,895 36,369 9,072 50,895 36,369 9,072 

Number of SNP  19,199 19,256 20,647 19,199 19,256 20,647 
a  single-step genomic best linear unbiased prediction 212 
b In the reference scenario, the subsequent ssGBLUP evaluation utilized the entire available 213 

data until the validation generation 214 
c Validation generation preselection (VGP) scenario. In this scenario, additional genomic 215 

preselection was only implemented in the validation generation, by discarding all animals in 216 

the validation generation that did not have progeny in the data. 217 
d Multi-generation preselection (MGP) scenario. In this scenario, any animal in the validation 218 

or reference generations with no progeny in the data was discarded. 219 

Implementation of single-step GBLUP 220 

The inverse of the combined pedigree-genomic relationship (���) was obtained as follows 221 

[17,18]: 222 

��� � ��� � �0 0
0 �0.95�� � 0.05������ � ���

���  (eq. 4), 223 

where ��� was the inverse of the pedigree relationship matrix, and ��� was part of the 224 

pedigree relationship matrix referring to genotyped animals. We considered inbreeding in 225 
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setting up both ��� and ��� to avoid bias caused by ignoring inbreeding (Tsuruta et al., 226 

2019). The genomic relationship matrix �� was computed as follows: 227 

�� �   1 � "#
�$�� � 2"#

���	  (eq. 5), 228 

where "#
� was the average pedigree inbreeding coefficient across genotyped animals, �� was 229 

the raw genomic relationship matrix computed following the first method of VanRaden [19], 230 

and ��	 was a matrix of 1s. The scaling of �� to �� was done to make the average genomic 231 

inbreeding equal to the average pedigree inbreeding, i.e. to have � and ��� on the same scale 232 

so that they are compatible. As the animals with genotypes in this study were selectively 233 

genotyped, this transformation made sure that the impact of selective genotyping was taken 234 

care of [11,12]. In computing ��, we computed (current) allele frequencies using all available 235 

genomic data after quality control. We gave the weights of 0.95 to �� and 0.05  to ��� to 236 

ensure that G was invertible [17,18]. 237 

Measures of accuracy and bias in the subsequent genetic evaluations 238 

We used progeny yield deviation (PYD) [13] as a proxy for true breeding value (TBV), 239 

against which GEBV were compared when computing accuracy and bias. To compute PYD, 240 

we ran a multi-trait pedigree-based animal model per line in MiXBLUP, with precorrected 241 

phenotypes as records and an overall mean as the only fixed effect (eq. 3). The (co)variance 242 

components used in this model were also estimated per line in ASReml, from precorrected 243 

phenotypes using a multi-trait pedigree-based animal model that only included a mean fixed 244 

effect (eq. 3). From the output of this analysis, we computed PYD for each trait for all 245 

validation sires and dams as:  246 

  +,-� � ∑ ������
�
���


  (eq. 6), 247 
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where PYDi was the progeny yield deviation of a sire or dam i, ycp was the precorrected 248 

phenotype of a progeny p of the sire or dam i, gm was the genetic contribution of the mate of 249 

sire or dam i to ycp, and n was the number of phenotyped progeny of sire or dam i. Estimation 250 

of PYD was done before discarding progeny of validation animals from the data. Since 251 

progeny of validation animals were not included in subsequent genetic evaluations, 252 

comparing (G)EBV to PYD can be considered as a forward-in-time validation. To account for 253 

differences in number of progeny used in estimating PYD for different validation animals 254 

when estimating accuracy and bias, we approximated the reliability of PYD for each 255 

validation animal for each trait as: 256 

�
�� ��

��� �� ������
  (eq. 7), 257 

where n was the validation animal’s number of half-sib progeny with records, and h2 was the 258 

heritability of the trait [20]. For convenience, we assumed all progeny of a validation animal 259 

were half-sibs, though some of them were full-sibs. 260 

 Validation accuracy was computed as weighted Pearson’s correlation coefficient between 261 

PYD and GEBV of all validation animals, with reliability of PYD used as the weight. We 262 

computed two types of bias. The first type is absolute bias, which is a measure of whether 263 

estimated genetic gain is equal to true genetic gain. Absolute bias was computed as the 264 

weighted mean difference between PYD and half of the (G)EBV of all validation animals, 265 

expressed in additive genetic standard deviation (SD) units of the trait. A negative difference 266 

means that GEBV are on average overestimated, and therefore genetic gain is overestimated, 267 

and vice versa. Before computing differences between PYD and half of the (G)EBV of 268 

validation animals, we made sure that PYD and (G)EBV were on the same scale. We did this 269 

in the following steps: from the model used in computing PYD, we computed average EBV 270 
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across all animals in the first three reference generations. We then subtracted half of this 271 

average EBV from PYD of each validation animal. Then from each subsequent genetic 272 

evaluation, we computed the average (G)EBV of all animals in the first three reference 273 

generations. We then subtracted this average (G)EBV from (G)EBV of each validation 274 

animal. The second type of bias we computed is dispersion bias. Dispersion bias was 275 

measured by the weighted regression coefficient of PYD on (G)EBV of all validation 276 

animals. If the regression coefficient is equal to the expected value, then there is no 277 

dispersion bias. Note that the expected value is 0.5, because PYD only includes half of the 278 

breeding value of a parent. A regression coefficient less than the expected value means that 279 

variance of (G)EBV is inflated, and vice versa. 280 

Results 281 

Results of the subsequent genetic evaluations conducted with ssGBLUP are presented in 282 

Tables 2 and 3 for the sire-line and the dam-line, respectively. Results in Tables 4 and 5 are 283 

from subsequent genetic evaluations done with PBLUP, respectively for the sire-line and the 284 

dam-line. In addition to validation accuracy and bias, we also showed the estimated 285 

heritability for every subsequent genetic evaluation scenario, and number of validation 286 

animals.  287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 
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 303 

 304 

 305 

 306 

 307 

 308 

 309 

Table 2 Performance of ssGBLUPa in the subsequent genetic evaluations in the sire-line 310 

Measure/Preselection 
scenario 

With records on animals in the 
validation generation 

Without records on animals in 
the validation generation 

Referenceb VGPc MGPd Referenceb VGPc MGPd 
Average daily gain during performance testing, number of validation animals = 1382 
Estimated heritability 0.24 0.25 0.33 0.24 0.24 0.35 
Validation accuracy 0.51 0.51 0.50 0.47 0.47 0.44 
Absolute bias -0.09 -0.15 -0.01 -0.11 -0.11 -0.02 
Dispersion bias 0.48 0.49 0.48 0.48 0.48 0.46 
Average daily gain throughout life, number of validation animals = 1383 
Estimated heritability 0.26 0.28 0.33 0.27 0.27 0.35 
Validation accuracy 0.57 0.56 0.55 0.52 0.52 0.48 
Absolute bias -0.10 -0.17 -0.06 -0.14 -0.14 -0.08 
Dispersion bias 0.48 0.49 0.50 0.47 0.47 0.49 

Backfat, number of validation animals = 1383 
Estimated heritability 0.58 0.58 0.58 0.58 0.58 0.60 
Validation accuracy 0.69 0.68 0.67 0.63 0.63 0.56 
Absolute bias -0.02 -0.03 -0.03 -0.05 -0.05 -0.09 
Dispersion bias 0.48 0.47 0.47 0.44 0.44 0.42 

Loin depth, number of validation animals = 1383 
Estimated heritability 0.55 0.55 0.55 0.55 0.55 0.57 
Validation accuracy 0.68 0.67 0.65 0.62 0.62 0.54 
Absolute bias 0.01 0.00 0.00 0.00 0.00 -0.01 
Dispersion bias 0.50  0.50 0.48 0.48 0.48 0.45 

SEs were in the range 0.01-0.03 for estimated heritability and dispersion bias, and 0.01-0.02 311 

for validation accuracy and absolute bias. 312 
a  single-step genomic best linear unbiased prediction 313 
b In the reference scenario, the subsequent ssGBLUP evaluation utilized the entire available 314 

data until the validation generation 315 
c Validation generation preselection (VGP) scenario. In this scenario, additional genomic 316 

preselection was only implemented in the validation generation, by discarding all animals in 317 

the validation generation that did not have progeny in the data. 318 
d Multi-generation preselection (MGP) scenario. In this scenario, any animal in the validation 319 

or reference generations with no progeny in the data was discarded. 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 
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Table 3 Performance of ssGBLUPa in the subsequent genetic evaluations in the dam-line 337 

Measure/Preselection 
scenario 

With records on animals in the 
validation generation 

Without records on animals in the 
validation generation 

Referenceb VGPc MGPd Referenceb VGPc MGPd 
Average daily gain during performance testing, number of validation animals = 2323 
Estimated 
heritability 

0.31 0.32 0.40 0.30 0.30 0.38 

Validation accuracy 0.35 0.31 0.29 0.28 0.28 0.23 
Absolute bias -0.05 -0.14 0.04 0.03 0.03 0.14 
Dispersion bias 0.46 0.43 0.41 0.44 0.44 0.43 
Average daily gain throughout life, number of validation animals = 2405 
Estimated 
heritability 

0.31 0.33 0.43 0.31 0.31 0.44 

Validation accuracy 0.46 0.42 0.42 0.38 0.38 0.35 
Absolute bias -0.06 -0.16 -0.01 0.00 0.00 0.08 
Dispersion bias 0.45 0.42 0.42 0.43 0.43 0.43 

Backfat, number of validation animals = 2312 
Estimated 
heritability 

0.51 0.51 0.51 0.51 0.51 0.53 

Validation accuracy 0.52 0.50 0.50 0.45 0.45 0.42 
Absolute bias 0.02 -0.01 -0.03 0.02 0.02 -0.01 
Dispersion bias 0.43 0.41 0.41 0.42 0.42 0.41 

Loin depth, number of validation animals = 1164 
Estimated 
heritability 

0.50 0.50 0.55 0.49 0.49 0.53 

Validation accuracy 0.62 0.60 0.59 0.55 0.56 0.49 
Absolute bias -0.02 -0.03 0.02 -0.04 -0.04 0.03 
Dispersion bias 0.54 0.54 0.52 0.53 0.53 0.51 

SEs were in the range 0.01-0.02 for estimated heritability, validation accuracy and absolute 338 

bias, and 0.01-0.04 for dispersion bias. 339 
a  single-step genomic best linear unbiased prediction 340 
b In the reference scenario, the subsequent ssGBLUP evaluation utilized the entire available 341 

data until the validation generation 342 
c Validation generation preselection (VGP) scenario. In this scenario, additional genomic 343 

preselection was only implemented in the validation generation, by discarding all animals in 344 

the validation generation that did not have progeny in the data. 345 
d Multi-generation preselection (MGP) scenario. In this scenario, any animal in the validation 346 

or reference generations with no progeny in the data was discarded. 347 

 348 

 349 
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 356 

 357 

Table 4 Performance of PBLUPa in the subsequent genetic evaluations in the sire-line 358 

Measure/Preselection 
scenario 

With records on animals in the 
validation generation 

Without records on animals in the 
validation generation 

Referenceb VGPc MGPd Referenceb VGPc MGPd 
Average daily gain during performance testing, number of validation animals = 1382 
Estimated 
heritability 

0.24 0.25 0.33 0.24 0.24 0.35 

Validation accuracy 0.51 0.50 0.49 0.41 0.41 0.40 
Absolute bias -0.04 -0.11 0.01 -0.01 -0.01 0.01 
Dispersion bias 0.53 0.54  0.48 0.55 0.55 0.49 
Average daily gain throughout life, number of validation animals = 1383 
Estimated 
heritability 

0.26 0.28 0.33 0.27 0.27 0.35 

Validation accuracy 0.58 0.56 0.54 0.47 0.47 0.44 
Absolute bias -0.06 -0.14 -0.04 -0.05 -0.05 -0.05 
Dispersion bias 0.55 0.55 0.51 0.56 0.56 0.54 

Backfat, number of validation animals = 1383 
Estimated 
heritability 

0.58 0.58 0.58 0.58 0.58 0.60 

Validation accuracy 0.67 0.66 0.66 0.48 0.48 0.46 
Absolute bias -0.03 -0.03 -0.03 -0.09 -0.09 -0.10 
Dispersion bias 0.50 0.50 0.50 0.46 0.46 0.43 

Loin depth, number of validation animals = 1383 
Estimated 
heritability 

0.55 0.55 0.55 0.55 0.55 0.57 

Validation accuracy 0.66 0.65 0.64 0.49 0.49 0.46 
Absolute bias 0.00 0.00 0.00  0.01 0.01 0.00 
Dispersion bias 0.50 0.49 0.49 0.48 0.48 0.46 

SEs were in the range 0.01-0.03 for estimated heritability and dispersion bias, and 0.01-0.02 359 

for validation accuracy and absolute bias. 360 
a Pedigree-based best linear unbiased prediction 361 
b In the reference scenario, the subsequent PBLUP evaluation utilized the entire available data 362 

until the validation generation 363 
c Validation generation preselection (VGP) scenario. In this scenario, additional genomic 364 

preselection was only implemented in the validation generation, by discarding all animals in 365 

the validation generation that did not have progeny in the data. 366 
d Multi-generation preselection (MGP) scenario. In this scenario, any animal in the validation 367 

or reference generations with no progeny in the data was discarded. 368 

 369 

 370 
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 378 

Table 5 Performance of PBLUPa in the subsequent genetic evaluations in the dam-line 379 

Measure/Preselection 
scenario 

With records on animals in the 
validation generation 

Without records on animals in 
the validation generation 

Referenceb VGPc MGPd Referenceb VGPc MGPd 
Average daily gain during performance testing, number of validation animals = 2323 
Estimated 
heritability 

0.31 0.32 0.40 0.30 0.30 0.38 

Validation accuracy 0.35 0.30 0.30 0.24 0.24 0.21 
Absolute bias -0.04 -0.16 0.01 0.08 0.08 0.13 
Dispersion bias 0.52 0.45 0.42 0.50 0.50 0.45 
Average daily gain throughout life, number of validation animals = 2405 
Estimated 
heritability 

0.31 0.33 0.43 0.31 0.31 0.44 

Validation accuracy 0.48 0.43 0.43 0.34 0.34 0.31 
Absolute bias -0.05 -0.18 -0.03 0.05 0.05 0.07 
Dispersion bias 0.51 0.47 0.44 0.51 0.51 0.44 

Backfat, number of validation animals = 2312 
Estimated 
heritability 

0.51 0.51 0.51 0.51 0.51 0.53 

Validation accuracy 0.52 0.50 0.50 0.37 0.37 0.36 
Absolute bias 0.02 0.00 -0.03 0.04 0.04 0.00 
Dispersion bias 0.45 0.43 0.42 0.41 0.41 0.39 

Loin depth, number of validation animals = 1164 
Estimated 
heritability 

0.50 0.50 0.55 0.49 0.49 0.53 

Validation accuracy 0.58 0.56 0.56 0.43 0.43 0.41 
Absolute bias 0.00 -0.01 0.04 -0.02 -0.02 0.04 
Dispersion bias 0.55 0.54 0.51 0.57 0.57 0.52 

SEs were in the range 0.01-0.02 for estimated heritability, validation accuracy and absolute 380 

bias, and 0.01-0.04 for dispersion bias. 381 
a Pedigree-based best linear unbiased prediction 382 
b In the reference scenario, the subsequent PBLUP evaluation utilized the entire available data 383 

until the validation generation 384 
c Validation generation preselection (VGP) scenario. In this scenario, additional genomic 385 

preselection was only implemented in the validation generation, by discarding all animals in 386 

the validation generation that did not have progeny in the data. 387 
d Multi-generation preselection (MGP) scenario. In this scenario, any animal in the validation 388 

or reference generations with no progeny in the data was discarded. 389 

Subsequent ssGBLUP evaluations with records on animals in the validation generation 390 
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With records on animals in the validation generation included in the subsequent ssGBLUP 391 

evaluations, estimated heritability for average daily gain traits in the sire-line increased from 392 

the reference to validation generation preselection (VGP) to multi-generation preselection 393 

(MGP) scenarios, with more increase from VGP to MGP than from reference to VGP. For 394 

backfat and loin depth, the heritability remained the same across all scenarios. For the dam-395 

line, estimated heritability increased from reference to VGP to MGP scenarios, except for 396 

backfat, where it remained the same across all scenarios. Observed increases in estimated 397 

heritabilities were generally due to decreases in residual variances across the scenarios, while 398 

additive genetic variances generally remained similar (Tables S1 and S2). For both lines and 399 

for all traits, validation accuracy decreased from reference to VGP to MGP scenarios, albeit 400 

the differences were small. For both lines, absolute bias was largely absent for backfat and 401 

loin depth, and marginal for the average daily gain traits. The highest value of absolute bias 402 

recorded was -0.17 additive genetic SDs, under the VGP scenario for average daily gain 403 

throughout life in the sire-line (Table 2). Generally, the values of absolute bias for average 404 

daily gain traits moved further away from zero from reference to VGP, and then moved 405 

closest to zero with MGP. For the sire-line, regression coefficients of PYD on GEBV - an 406 

indicator of dispersion bias - showed no consistent pattern across preselection scenarios for all 407 

traits. For all traits and for all scenarios, they ranged from 0.47 to 0.50, being close to the 408 

expected value of 0.5. For the dam-line, the regression coefficients decreased or remained the 409 

same from reference to VGP to MGP scenarios. They were less than 0.5 for the two average 410 

daily gain traits and backfat. For loin depth, they were greater than 0.5. 411 

Subsequent ssGBLUP evaluations without records on animals in the validation 412 

generation 413 

Without records on animals in the validation generation in the subsequent ssGBLUP 414 

evaluations, all results for the reference and VGP scenarios were the same. Just like when 415 
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records on animals in the validation generation were included, here too, estimated heritability 416 

increased from reference and VGP to MGP scenarios, and in this case for all traits in both 417 

lines. Validation accuracy also decreased from reference and VGP to MGP scenarios, and in 418 

this case with bigger decreases compared to when records on animals in the validation 419 

generation were included. Absolute bias was also largely absent for backfat and loin depth for 420 

both lines, and showed no particular pattern for average daily gain traits for the two lines. 421 

Even for the average daily gain traits, it was still small, with ±0.14 additive genetic SD being 422 

the highest value (Tables 2 and 3). Regression coefficients of PYD on GEBV were similar to 423 

their corresponding value when records on animals in the validation generation were included. 424 

The only exception were all scenarios for backfat in the sire-line, where the regression 425 

coefficients of PYD on GEBV appeared to be lower than their corresponding values when 426 

records on animals in the validation generation were included. For both lines, the regression 427 

coefficients ranged from 0.41 (for the MGP scenario for backfat in the dam-line) to 0.53 (for 428 

the reference and VGP scenarios for loin depth in the dam-line). 429 

Subsequent genetic evaluations with PBLUP 430 

With records on animals in the validation generation included, validation accuracies from 431 

subsequent PBLUP evaluations were similar in both magnitude and pattern across the 432 

preselection scenarios and lines, to their corresponding values from subsequent ssGBLUP 433 

evaluations. However, without records on animals in the validation generation in the 434 

subsequent genetic evaluations, validation accuracies were lower with PBLUP than with 435 

ssGBLUP for all scenarios in both lines. For both lines and with or without records on 436 

animals in the validation generation, absolute bias with PBLUP was always lower than or 437 

similar to its corresponding value with ssGBLUP. Regression coefficients of PYD on 438 

(G)EBV were also bigger than or similar to their corresponding values with ssGBLUP. 439 
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Discussion 440 

In this study, we investigated the impact of genomic preselection on subsequent ssGBLUP 441 

evaluations of preselected animals, using real data from an ongoing pig breeding program in 442 

which preselection has taken place, by retrospectively implementing additional layers of 443 

preselection. The data was on production traits of pigs from one sire-line and one dam-line. 444 

Per line, we implemented three genomic preselection scenarios. We used pre-corrected 445 

phenotypes as records in the subsequent genetic evaluations, and progeny yield deviation 446 

(PYD) as the proxy for TBV. We did the subsequent genetic evaluations either with or 447 

without records on animals in the validation generation, and in all cases without progeny of 448 

validation animals. In both lines, for all traits and with or without records on validation 449 

animals, absolute bias was largely absent across the three genomic preselection scenarios, 450 

while with more preselection validation accuracy only showed small decreases and hardly any 451 

dispersion bias was induced. 452 

In the two scenarios with additional genomic preselection (i.e. VGP and MGP scenarios), the 453 

preselected animals in every generation were the animals that in reality were selected and 454 

produced progeny in the next generation, and the preculled animals were those animals that 455 

were in reality culled after performance testing. Thus, these two scenarios represent either i) 456 

situations in which all the selection in a generation is done in only one stage, after selection 457 

candidates have own records, or ii) situations in which an additional selection stage is 458 

implemented after preselected animals have had progeny. While neither of these cases is true 459 

for the data we used, the scenarios we implemented enabled us to investigate the impact of 460 

genomic preselection on subsequent genetic evaluations of preselected animals using real 461 

data, by including different amounts of pedigree, genomic and phenotypic information in the 462 

subsequent genetic evaluations we implemented. The validation accuracy we computed as the 463 
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correlation between (G)EBV and PYD is not numerically the same as the accuracy of 464 

predicting TBV, since variance of PYD has some non-genetic component, in addition to 465 

genetic component [13]. However, the two accuracies are proportional to each other, and this 466 

enabled us to make comparison among subsequent genetic evaluation scenarios [21]. 467 

Comparison of results across preselection scenarios and between ssGBLUP and PBLUP 468 

With both ssGBLUP and PBLUP, validation accuracy decreased with more genomic 469 

preselection (i.e. from reference to VGP to MGP scenarios), and this could be explained by 470 

the fact that the amount of phenotypic information also reduced in that order (Table 1). In our 471 

previous study using simulated datasets [3], we found accuracy in subsequent ssGBLUP 472 

evaluations to be decreasing as amounts of phenotypic information decreased with more 473 

intense preselection. For most of the traits in the current study, estimated heritability increased 474 

with increase in genomic preselection, and this could have influenced, at least partly, the 475 

magnitude of decrease in accuracy with decrease in amount of phenotypic information due to 476 

preselection. This could also contribute to explaining why decrease in validation accuracy 477 

with more genomic preselection was small. We also observed that validation accuracy was 478 

higher with ssGBLUP than with PBLUP, in subsequent genetic evaluations when records on 479 

animals in the validation generation were excluded. However, when records on animals in the 480 

validation generation were included in subsequent genetic evaluations, validation accuracies 481 

were generally similar between corresponding ssGBLUP and PBLUP scenarios. The fact that 482 

heritabilities were all relatively high (ranging from 0.24 to 0.58, Tables 2 to 5) could, at least 483 

partly, explain the absence of significant differences between ssGBLUP and PBLUP 484 

evaluations when records on animals in the validation generation were included in the 485 

subsequent genetic evaluations. It is a common knowledge that the higher the heritability, the 486 

higher the importance of own record and the lesser the importance of genomic information in 487 

genetic evaluations (e.g. [13]). 488 
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In our previous study [3], we observed no absolute bias when ssGBLUP was used in 489 

subsequent genetic evaluations, irrespective preselection type or intensity. However, in [3], 490 

we found absolute bias to be increasing with intensity of preselection when we used PBLUP 491 

in subsequent genetic evaluations. Patry et al [1,6,7] also reported significant absolute bias 492 

when subsequent genetic evaluations of genomically preselected were done with PBLUP, 493 

except when some pseudo-phenotypic information on preculled animals was included in the 494 

subsequent PBLUP evaluations. As we did not include (pseudo) phenotypic information on 495 

preculled animals in our subsequent PBLUP evaluations, we expected to find significant 496 

absolute bias, which would increase from reference to VGP to MGP scenarios. However, in 497 

the current study absolute bias remained largely absent across all the three scenarios of 498 

genomic preselection, irrespective of whether ssGBLUP or PBLUP was used.  499 

In the absence of selection, the expectation of regression coefficient of PYD on (G)EBV - an 500 

indicator of dispersion bias - is 0.5, because PYD only represents half of the breeding value of 501 

the parent. However, when validation animals are not a representative sample of all animals in 502 

their age group, the expectation of the regression coefficient decreases, depending on how 503 

much the validation animals deviate from a random sample of animals in their age group 504 

[22,23]. In the data used in this study, average daily gain traits had heavier weights in the 505 

breeding goals of the two lines than backfat and loin depth, so we expected that our genomic 506 

preselection would have a smaller impact on the regression coefficients for backfat and loin 507 

depth than for the two average daily gain traits. We however did not observe smaller 508 

regression coefficients or regression coefficients further away from 0.5 for average daily gain 509 

traits than for backfat and loin depth, neither with ssGBLUP nor with PBLUP. 510 

Regression coefficient of PYD on (G)EBV generally decreased with more genomic 511 

preselection, but were in most cases only marginally different from the expected value of 0.5. 512 
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The decrease was more pronounced with PBLUP than with ssGBLUP. In many instances, the 513 

regression coefficients of reference scenarios with PBLUP were greater than 0.5, and they 514 

(the regression coefficients) became closer to 0.5 with more preselection. In our previous 515 

study with a simulated dataset [3], we found that regression coefficients of TBV on (G)EBV 516 

were bigger and closer to the expected value of 1 when ssGBLUP was used in the subsequent 517 

genetic evaluations compared to when PBLUP was used. In [3], we also found that the 518 

regression coefficient became smaller as preselection intensity increased when PBLUP was 519 

used, and remained similar irrespective of preselection intensity when ssGBLUP was used. 520 

The generally similar regression coefficients across the genomic preselection scenarios with 521 

ssGBLUP in this study further confirms that ssGBLUP is indeed able to prevent most of the 522 

impact of preselection on subsequent genetic evaluations, as we previously reported in [3]. 523 

We have no explanation as to why regression coefficients from PBLUP were greater than the 524 

expected value, and also greater than their corresponding values from ssGBLUP. In 525 

conclusion, absolute bias remained largely absent across the three genomic preselection 526 

scenarios, while with more preselection validation accuracy only showed small decreases and 527 

hardly any dispersion bias was induced. 528 

Comparison of results across the two lines 529 

Even in the dam-line where the original genomic preselection was more intense and ratio of 530 

males with records to females with records in any generation was about 20:80, we generally 531 

did not observe significantly greater biases with more genomic preselection. Although in both 532 

lines validation accuracy decreased with more genomic preselection for all traits and with or 533 

without records on animals in the validation generation, generally we did not find bigger 534 

decreases in the dam-line than in the sire-line. However, corresponding validation accuracies 535 

were always higher in the sire-line than in the dam-line, despite the corresponding estimated 536 

heritabilities being higher in the dam-line than in the sire-line for some traits. Corresponding 537 
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regression coefficients of PYD on GEBV were also closer to the expected value of 0.5 in the 538 

sire-line than in the dam-line except for loin depth, where they were closer to 0.5 in the dam-539 

line than in the sire-line. The observed higher accuracies and regression coefficients closer to 540 

the expected value in the sire-line than in the dam-line can most likely be explained by the 541 

higher phenotyping and genotyping rates in the sire-line than the dam-line (Table 1). 542 

 543 

Genotypes of preculled animals did not affect the subsequent ssGBLUP evaluations 544 

In the subsequent ssGBLUP evaluations without records on animals in the validation 545 

generation, results from corresponding reference and VGP scenarios were exactly the same, at 546 

least up to two decimal places (Tables 2 and 3). However, in terms of data content, reference 547 

scenarios contained genotypes of the animals preculled in the corresponding VGP scenarios, 548 

in addition to all the data contained in the corresponding VGP scenarios (Table 1). The fact 549 

that results from these two scenarios were the same means that genotypes of the preculled 550 

animals did not affect the reference scenarios. In this study, most (about 95%) of the 551 

validation animals and their parents had genotypes. This supports the conclusion from our 552 

previous study [4], that genotypes of preculled animals are only useful in subsequent 553 

ssGBLUP evaluations of their preselected sibs when their parents are not genotyped. 554 

Potential additional sources of bias in ssGBLUP from our data 555 

In practical datasets as used in this study, it is difficult to completely rule out some mistakes 556 

in pedigree recording and in genotyping. At our genomic data quality control stage, genotypes 557 

of a few thousand animals were discarded because the animals did not meet the genomic data 558 

quality standard (of being genotyped for at least 90% of the SNP). Genotyping mistakes could 559 

still not be completely ruled out in the genomic data that passed quality control. In Tables 2 to 560 

5, we saw that for some traits, heritabilities were different for different preselection scenarios, 561 
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even though the animals in the base generation were the same. This implies that different 562 

subsets of the same data gave rise to different estimated (co)variance components in the base 563 

generation, and that it is likely that after some of the genomic preselection scenarios were 564 

implemented, the estimated (co)variance components were different from their true values, at 565 

least for some of the traits. While these are all potential additional sources of bias in 566 

ssGBLUP evaluations, they are difficult to avoid in practice [10]. However, in general, we 567 

can say that these potential additional sources of bias did not cause significant bias in our 568 

ssGBLUP evaluations, as both absolute and dispersion biases were in most cases absent, and 569 

even when present they were only marginal. 570 

Conclusions 571 

When subsequent genetic evaluations of preselected animals are done with ssGBLUP, either 572 

with or without records on animals in the validation generation, realized accuracy reduces 573 

with genomic preselection in the validation generation, and even more with genomic 574 

preselection in multiple generations. On the other hand, absolute bias is largely absent, and 575 

dispersion bias only increases marginally with more genomic preselection in the current 576 

generation or in all generations. Impact of recent and/or historical genomic preselection is 577 

minimal on subsequent genetic evaluations of selection candidates, if these subsequent 578 

genetic evaluations are performed using ssGBLUP. 579 
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Figures  656 

Figure 1 Schematic representation of the animals included in the subsequent genetic 657 

evaluations following each genomic preselection scenario 658 

Following the reference scenario, all animals in the figure were included in the subsequent 659 

evaluations. In the VGP scenario, only the culled animals in the validation generation were 660 

excluded from the subsequent evaluations. Finally, in the MGP scenario, all culled animals in 661 

all generations were excluded from the subsequent evaluations. Selection and culling here 662 

refer to those conducted by Topigs Norsvin as part of the company’s routine practices. 663 
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b: Validation generation preselection (VGP) scenario 
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c: Multi-generation preselection (MGP) scenario 
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