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Flexible seed size enables ultra-fast and
accurate read alignment
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Read alignment to genomes is a fundamental computational
step used in many bioinformatic analyses, and often, it is the
computational bottleneck. Therefore, it is desirable to perform
the alignment step as fast as possible without compromising ac-
curacy. Most alignment algorithms consider a seed-and-extend
approach, where the time-consuming seeding step identifies and
decides on candidate mapping locations. Recently, several ad-
vances have been made on seeding methods for fast sequence
comparison.
We combine two such methods, syncmers and strobemers,
in a novel seeding approach for constructing dynamic-sized
fuzzy seeds and implement the method in a short-read aligner,
strobealign. Firstly, we show that our seeding is fast to construct
and effectively reduces repetitiveness in the seeding step using a
novel metric E-hits. Secondly, we benchmark strobealign to tra-
ditional and recently proposed aligners on simulated and biolog-
ical data and show that strobealign is several times faster than
traditional aligners such as BWA and Bowtie2 at similar and
sometimes higher accuracy while being both faster and more
accurate than more recently proposed aligners. Our aligner can
free up substantial time and computing resources needed for
read alignment in many pipelines.
Availability: https://github.com/ksahlin/strobealign.
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Introduction
Aligning Illumina sequencing reads to a reference genome
is the first step in many analyses pipelines. Due to the
fundamental role of short-read alignment in bioinformatics
there has been considerable work in this area. BWA (1, 2),
Bowtie (3), and Bowtie2 (4), which use the Burrows-Wheeler
transform (5), have received widespread use through their
favourable memory and runtime trade-off. These aligners
have for several years been the dominating genomic short-
read aligners. Several alternative approaches have been pro-
posed, such as random permutations aligner (6), rNA (7),
SNAP (8), and subread (9) that has alternative strengths
showing improved accuracy or decreased runtime in specific
use cases. A comprehensive listing of alignment techniques
is found in (10). There are also several major contribu-
tions in data structures and algorithms in splice alignment of
RNA-seq data (11, 12) or pseudo-alignment methods (13, 14)
that are incredibly fast by not explicitly performing an exact
alignment.
A pioneering approach was the use of minimizers (15, 16) as
seeds in alignment and overlap detection algorithms (17, 18).

Minimap2 was initially described for long-read alignment but
has shown similar alignment accuracy of short reads as popu-
larly used BWA and Bowtie2. Minimap2 uses minimizers as
seeds and then employs collinear chaining to produce candi-
date locations for the alignment step. Along the same trajec-
tory, Mashmap (19) and Winnowmap (20) were designed for
long-reads and made algorithmic contributions to minimizer-
based alignment by considering and adjusting the densities
and probabilities around the sampling of minimizers.
A computational hurdle in sequence alignment is the length
of the seeds, which inform the aligner of candidate mapping
locations. Alignment algorithms often need to use a shorter
seed length than what gives unique matches in a genome to
have good alignment accuracy. Therefore, seeds may pro-
duce many candidate regions that need to be filtered based on
some score before the alignment stage. Therefore, alignment
methods are usually described to employ a seed-filter-extend
approach, where the seeding and filtering are at the heart of
an aligner’s performance. In (21), the authors propose an al-
ternative approach to the filtering step by computing a much
cheaper Hamming distance of an embedded representation
of the read. Interesting candidate sites should have low em-
bedded Hamming distance and are sent for alignment. Their
aligner, Accel-Align, outperforms other aligners in terms of
speed.
While filtering is an important step for candidate selection,
reducing the false matches caused by repetitive seeds is
preferable. To do so, one has to increase seed size. In this
work, we describe a seeding approach for creating seeds with
variable sizes that are fuzzy, i.e., they can match over mu-
tations. Our approach allows us to use much longer seed
lengths than other approaches without loss in accuracy. Fur-
thermore, longer seed lengths reduce the number of candi-
date sites to evaluate, allowing much faster mapping and
alignment. Our contribution is based on two recent advance-
ments in the area of sequence comparison; syncmers (22)
and strobemers (23). Both syncmers and strobemers have
been demonstrated to improve sequence similarity detec-
tion (23, 24). Syncmers were proposed as an alternative to
the minimizer subsampling technique. In contrast, strobe-
mers were proposed to produce gapped seeds as an alterna-
tive to k-mers and spaced k-mers.
Here we show that syncmers and strobemers can be com-
bined in what becomes a high-speed indexing method,
roughly corresponding to the speed of computing minimiz-
ers. Our technique is based on first subsampling k-mers
from the reference sequences by computing canonical open
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Fig. 1. Overview of seeding construction. (A) Open syncmers are constructed from the sequence, and randstrobes are constructed by linking together syncmers. The second
strobe is sampled with a minimum and maximum spread between [wmin,wmax] strobes downstream from the first strobe. While syncmers may occur several times due to
repeats on the genome (red and green boxes), randstrobes are less repetitive. (B) Two reads, r1 and r2, are mapped to the reference. Finding matches using only syncmers
creates several candidate mapping locations, while the randstrobes are unique in this scenario. In the illustration, the syncmers are spread out for visual purposes. Panel C
shows a real sampling of randstrobes on a DNA sequence and their spread using (2,20,4,11) with sampling skew.

syncmers (22), then producing strobemers (23) formed from
linking together syncmers occurring close-by on the refer-
ence using the randstrobe method. A consequence is that
instead of using a single seed (e.g., k=21 as default in min-
imap2 for short-read mapping), we show that we can link to-
gether two syncmers as a strobemer seed and achieve similar
accuracy to using individual minimizers.

Our first contribution in this work is the novel seeding ap-
proach by computing strobemers over syncmers. We demon-
strate that this seeding is fast to compute (less than 5 minutes
to index hg38) and is therefore competitive to, e.g., minimiz-
ers in high-performance sequence mapping scenarios. Our
seeding method constitutes a novel algorithm class according
to the comprehensive aligner classification table in (10), with
our method being hashing of variable-length fuzzy seeds.
We further evaluate the seed-repetitiveness of our seeding
compared to some of the current approaches in read map-
pers (k-mers, minimizers, syncmers) using a novel metric E-
hits, and show that our seeds are effective at reducing seed-
repetitiveness. We believe that E-hits will be a useful met-

ric for further development and comparisons of seeding ap-
proaches.

Our second contribution is implementing our seeding tech-
nique in a short-read alignment tool, strobealign. We use
simulated and biological data to show that strobealign is sev-
eral times faster than traditional aligners such as BWA and
Bowtie2 while being faster and more accurate than more re-
cently proposed aligners. Interestingly, we observe that sub-
sampling methods such as strobealign and minimap2 can also
be more accurate than BWA-MEM on high diversity datasets.
Strobealign reaches peak performance on paired-end reads of
lengths 150-300 nucleotides (nt), which is well suited for ad-
vances in short-read sequencing length and throughput. An
example of such an advance is Illumina’s Chemistry X reads
that are claimed to be two times longer (25). Strobealign’s
speed can remove the alignment bottleneck and free up sub-
stantial computing resources in many pipelines.
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Results
Method overview. We present a seeding method for se-
quence similarity search that is based on a combination
of two previously published techniques syncmers (22) and
strobemers (23). The main idea of the seeding approach is to
create fuzzy seeds by first computing open syncmers from the
reference sequences, then linking the syncmers together us-
ing the randstrobe method (23) with two syncmers (Fig. 1A).
Our fuzzy seeds enable us to use larger seed lengths that are
more likely to be unique (concept illustrated in Fig. 1B) while
still allowing mutations or read errors between the syncmers.
Figure 1C illustrates the seeds extracted from a DNA se-
quence.
Compared to the study introducing strobemers (23), we
present two novel ideas. Firstly, (23) described strobemers as
linking together strobes in ’sequence-space’, i.e., over the set
of all k-mers. Since syncmers represent a subset of k-mers
from the original sequence, computing randstrobes over this
subset of strings is very fast while still having a similar link-
ing range over the original sequence. Secondly, we also in-
troduce a skewed linking approach of the second strobe that
links nearby strobes more often (Suppl. Fig. S1) which is
more effective for shorter read lengths than the original ap-
proach (23) (details in the method section). We implement
our seeding approach as the fundamental technique in a new
short-read aligner strobealign.

Overview of read-alignment evaluation.

Tools. We evaluated strobealign (v0.7.1) to six state-of-the-
art and recently published short-read aligners, BWA-MEM
(v0.7.17), BWA-MEM2 (v2.0pre2), Bowtie2 (v2.3.5), min-
imap2 (v2.22), Accel-Align (v1.1), SNAP (26) (v2.0.0)
on simulated and biological Illumina sequencing data
sets. We also attempted to evaluate URMAP (27)
(v1.0.1480_i86linux64) and PuffAligner (28) but were un-
able to run them for our experiment designs (see Suppl. Note
C). We ran all the tools using 16 threads as multithreading
is the standard use case. We also investigated how the tools
scaled with the number of threads by running them with 4, 8,
and 16 threads in one analysis. Since BWA-MEM and BWA-
MEM2 have identical accuracy, we will only refer to BWA-
MEM when discussing accuracy (to imply BWA-MEM and
BWA-MEM2) but evaluate them separately in terms of align-
ment time and memory.

Simulated data. We simulated single-end and paired-end
reads with read lengths of 50, 75, 100, 150, 200, 250, 300,
and 500 nucleotides. We chose these lengths as 50 and 75
are used in applications such as for chromatin profiling or
RNA-seq quantification analyses, while 100 to 250 are within
the range of standard Illumina protocol read lengths. To in-
vestigate performance on future Illumina chemistry X reads,
which are claimed to be two times longer than current pro-
tocols, we simulated read lengths of 300 and 500 to emulate
read lengths of two times the 150 and 250 protocols, respec-
tively. While we include read lengths of 50 and 75nt, we em-
phasize that strobealign is designed for Illumina read lengths

100nt and above typically used, e.g., for genomic alignment
and downstream SNP and indel calling and similar scenarios.
In our first simulated experiment, we simulated ten million
single-end and paired-end reads from human genomes at four
different divergence levels from hg38 denoted SIM1, SIM2,
SIM3, and SIM4, where SIM4 has the highest divergence
from hg38 (details on simulations in Suppl. Note A).
In our second simulated experiment, we simulated ten million
paired-end reads from the genomes of the fruit fly (180Mb),
maize (2.4Gb), human cell line CHM13 (29) (3.2Gb), and
rye (30) (7.3GB), denoted drosophila, maize, CHM13, and
rye, respectively, where reads were simulated at the same di-
versity level as for the SIM3 dataset. For details on this ex-
periment, see Supplementary Note A. These genomes are of
variable sizes, with the latter three more repetitive than hg38.
In our third simulated experiment, we evaluated the aligners
by simulating ten million paired-end reads with high SNP and
indel rate from a simulated repetitive genome (denoted RE-
PEATS). The REPEATS genome consisting of five hundred
100kbp copies at roughly 90% similarity (details on simula-
tions in Suppl. Note A).
In our fourth and final simulated experiment, we simulated
two larger paired-end read datasets with read lengths 150nt
and 250nt denoted SIM150 and SIM250, respectively. The
SIM150 and SIM250 datasets contain 300M and 180M reads,
respectively, each constituting roughly 30x coverage of hg38.
The reads were simulated from a genome with a SIM3 vari-
ation rate to hg38. We used these two datasets to evaluate
downstream SNP and indel calling from the alignments, and
they were chosen to match the lengths of our biological data
(described in the next section).

Biological data. We evaluated downstream SNP and indel
calling results on two biological paired-end Illumina read
datasets of lengths 150nt and 250nt from HG004 in the
Genome-In-a-Bottle consortium (31). We denote these
datasets BIO150 and BIO250. The BIO150 and BIO250
datasets have a rough coverage of 32 and 26, respectively.
Finally, we also used a subset of 4M reads from BIO150 and
BIO250 to evaluate the mapping concordance between the
aligners. Details of the datasets are found in Suppl. Note D
and details of the SNP and indel calling pipeline in Suppl.
Note E.

Evaluation metrics. We will use the following terminology.
With a read mapping, we mean to find the location of a read
on the reference. With read alignment, we mean that the read
is not only assigned a location but has also been pairwise
aligned to the reference at the mapping site. We evaluated
the mapping accuracy of aligners by looking at the overlap
of read alignments with the correct genomic location. For
nucleotide level accuracy (such as aligning in and around in-
dels), we evaluate the downstream SNP and indel calling re-
sults that the alignments produce. We also evaluate the run-
time and memory usage of each aligner. For details on how
the evaluation metrics are computed, see Suppl. Note B. For
the aligners that also support a mapping mode (Accel-Align,
minimap2, and strobealign), we evaluated both the mapping
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and alignment modes (details on running aligners in Suppl.
Note C).

Seeding results. An important factor for fast and accurate
mapping is that the seeds are relatively unique on the refer-
ence genome. We compared two metrics (E-hits and fraction
hard masked seeds) related to seed uniqueness. E-hits in-
dicates how many spurious hits to the reference are found on
average, given that reads are drawn uniformly at random from
the reference genome. A formal definition of E-hits is given
in subsection the E-hits metric in Methods. The fraction of
hard-masked seeds is the fraction of seeds with occurrence
over 1000 times in the reference and are excluded from seed
finding (see section Implementation details).
We compared E-hits and fraction hard masked seeds for
different lengths of k-mers, minimizers with density 1/5
(w=9), open syncmers with density 1/5 (s = k-4, t=20),
and strobealign seeds for the various read lengths (labeled
saX , X ∈ {50,75,100,150,200,250,300,500} (all with 1/5
in density except sa500 that has a density of 1/7). Since
strobealign seeds are flexible in seed size, we use the median
seed size in our analysis. We used jellyfish (32) to obtain the
k-mer counts and a custom script (provided in Data Avail-
ability) to obtain the minimizers and syncmers. All seeds are
canonically represented (smallest seed hash value out of for-
ward and reverse complement is stored) as is standard in read
alignment (details in section Modifications to strobemers).
We first observe that subsampling minimizers and syncmers
will create a more repetitive index than using all k-mers for
seeds of length 20-30, but evens out as seeds become longer
(Fig. 2A-B). This is relevant to read mapping since most
aligners use seeds of around 20-30nt. Secondly, we see that
syncmers produce more repetitive index than minimizers, as
has been proven in (24).
When studying how strobealign’s seeds fare to exact seed
approaches, we observe that strobealign’s seeds, which use
two syncmers of length about 20 (see Implementation de-
tails), reduce the repetitiveness over using only one syncmer
of length 20. For example, when mapping reads of length
150nt (sa150), which pairs two syncmers of length 20nt,
strobealign’s seeds achieve over 15 times lower E-hits than
using only one syncmer of 20. The sa150 seeds are also
more than three times less frequent to be hard masked on
hg38 (Fig. 2B). The sa150 seeds are comparable to syncmers
of size 40 in E-hits and between 40-50 in the fraction of hard-
masked seeds.
When comparing sa150 seeds to k-mers, the sa150 seeds are
as unique as using k-mers of about 45 (Fig. 2A-B). Such long
solid k-mers are not suited for short-read alignment, and pre-
vious studies have typically decided on sizes between 20 and
32 (2, 18, 21, 27). For the 300 and 500nt reads, strobealign’s
seeds have roughly the same statistics as k-mers of length
55. On CHM13, the seeding results show a similar trend,
although not as strong. Here, sa150 only archives the same
E-hits score as using k-mers slightly larger than 20. However,
sa150 has much lower hard masking, comparable to k-mers
of about size 45.

In summary, our study of E-hits and the fraction of hard
masked seeds highlights two points. Firstly, our seeds
can achieve the same uniqueness (E-hits and fraction hard
masked) as k-mers with lengths traditionally unsuitable
for short-read alignment. Secondly, when constructing
strobealign seeds, the linking process (strobemers) is respon-
sible for the major reduction in repetitive seeds, as can be
seen by comparing strobealign’s seed uniqueness to only us-
ing a single minimizer or syncmer of length of about 20 (sim-
ilarly to what is done in minimap2).

Indexing results. We measured the time and memory
to produce our dynamic-sized seeds on five genomes;
drosophila, maize, human (hg38 and CHM13), and rye (Ta-
ble 1). Our seeding is relatively fast. For example, on hg38,
while the total indexing time is 259 and 167 for strobealign
and minimap2, respectively, it takes only 133 seconds to con-
struct strobealign’s seeds, compared to 100 seconds to pro-
duce minimizers in minimap2. The remaining indexing time
is spent on sorting the seeds (standard library sort in C++)
and creating a hash table. These are steps that can be fur-
ther optimized in strobealign by changing algorithms, e.g.,
as using radix sort as in minimap2. Our indexing is also
faster than most of the other aligners (Table 1). Further-
more, the seeding is not a bottleneck in the alignment step,
taking up only a small fraction of the total alignment runtime
across datasets (yellow segment in Fig. 2C). As for the peak
memory, strobealign has a peak indexing memory footprint
of about 31Gb in hg38 and 50Gb on rye, placing it in fourth
place behind BWA-MEM, Bowtie2, and minimap2.

Results on hg38 simulated data. For the paired-end read
experiments, we present the accuracy, runtime, and percent
aligned reads for the SIM3 dataset (Fig. 3), which has a SNP
and small indel rate roughly observed in a human popula-
tion. The remaining three datasets with both lower (SIM1 and
SIM2) and higher (SIM4) variation rates are found in Suppl.
Fig. S2-4. When looking at alignment accuracy for the short-
est read lengths of 50-75nt that are useful in experiments such
as RNA-seq gene expression profiling or chromatin profil-
ing, the traditional aligners BWA-MEM, BWA-MEM2 and
Bowtie2 have the highest accuracy. For these types of anal-
yses and read lengths, BWA-MEM, Bowtie2, or specialized
aligners such as Chromap (33) for chromatin data or pseudo-
alignment methods such as Kallisto (13) or Salmon (14) for
RNA-seq reads should be used. Since strobealign is currently
not designed for this type of data, we, from now on, focus our
evaluation on the common genomic analysis read lengths of
100-250nt, and future chemistry X read lengths of 300 and
500.
For SIM1-SIM3 with read lengths 150nt and above,
strobealign has at most 0.1% lower accuracy than BWA-
MEM (read lengths 300 and 500 on SIM2; Suppl. Fig.
S2), but the accuracy gap is only 0.05% to non-existent on
SIM3 (Fig. 3A). For SIM4, strobealign has higher accu-
racy than BWA-MEM with about 0.1%. Overall, strobealign
and BWA-MEM typically have the highest and second-
highest accuracy on most of the 150-500nt datasets, al-
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Fig. 2. Seed uniqueness and time allocation in strobealign. Panel A shows the expected number of hits from a seed randomly drawn from reference (E-hits) for some
popular seeding approaches (k-mers, minimizers, syncmers) in comparison to strobealign’s seeds. Minimizers and syncmers are both sampled at a sub-sample fraction of
1/5, and minimizers use a random hash function. For strobealign’s seeds which have variable lengths, the median seed length is plotted. Strobealign’s seeds for read lengths
100-500nt (typically two linked syncmers of length 20) reduce the repetitiveness an order of magnitude on hg38 compared to using a single syncmer or minimizer of length
20. Panel B shows the fraction of seeds that would be hard masked in strobealign (occurring over 1000 times). On hg38, strobealign’s seeds for read lengths 100-500nt hard
masks 2.6-6 times fewer seeds over syncmers of length 20. Panel C shows the real time spent at various steps in strobealign using 16 threads for the SIM3 datasets of 10
million paired-end reads of different read lengths and the subsampled BIO150 and BIO250 datasets of 4 million paired-end reads of length 250. Reading refer to reading
the fastq files. The label ’strobemers’ refers to the time to generate strobemer seeds from the reads, ’find_matches’ refers to retrieving and creating merged matches from
all strobemer seeds below the repetitive abundance threshold, ’rescue’ refers to finding merge matches in the rescue mode, ’sort_matches’ sorts the matches with respect to
the candidate map score, and ’aln’ refers to the base level alignment, in which the large majority of runtime constitutes of calling ssw and a small fraction is computing the
hamming distance. Writing the output to SAM was not logged in the experiments but typically takes less time than reading input.

Drosophila Maize hg38 CHM13 Rye
Time (s) Mem (Gb) Time (s) Mem (Gb) Time (s) Mem (Gb) Time (s) Mem (Gb) Time (s) Mem (Gb)

minimap2 9 1.3 125 9.8 167 13.0 191 13.2 421 24.8
Strobealign1 12 3.4 176 15.3 259 31 268 31.5 598 50
Strobealign2 9 2.3 144 15.0 210 22.2 222 22.6 545 44.4
SNAP 63 1.9 1210 38.6 1,744 45.9 1826 48.0 NA3 NA3

BWA-MEM 120 0.2 2,397 3.2 3,684 4.5 3629 4.6 10,245 10.7
BWA-MEM2 99 4.2 1,365 63.9 3,146 90.8 3,000 91.3 7,092 212.2
Bowtie2 228 0.3 5629 4.1 6,008 5.5 7,002 5.8 24,756 20.0
AccelAlign4 10 3.4 101 28 134 38.8 132 40 320 92.5

Table 1. Indexing time and peak memory of indexing for aligners using one thread. Strobealign’s indexing time and memory depends on the syncmer density used. 1 When
using syncmer density 1/5 (50-300nt datasets). 2When using syncmer density 1/7 (500nt datasets). 3 SNAP could not index the rye genome (Suppl Note. C). 4AccelAlign
does not have a singe thread mode for indexing. Multithreaded results are displayed on a node with 20 cores. We observed it used 300-700% CPU during indexing.

A B C

Fig. 3. Accuracy (Panel A), percent aligned reads (Panel B), and runtime (Panel C) of aligning paired-end reads to the SIM3 dataset.

though other aligners achieve good accuracy on individual
datasets. Specifically, minimap2 has the highest accuracy on
SIM4 for read length 150 and 200 (about 0.05% higher than
strobealign), and SNAP and Bowtie2 has high accuracy on
the low diversity datasets SIM1 and SIM2. While SNAP’s
accuracy is high for the low diversity datasets, it quickly be-
comes non-competitive for higher diversity (Fig. 3A, Suppl.

Fig. S2). For read lengths of 100nt, BWA-MEM has
0.15% higher accuracy than strobealign across the SIM1-
SIM4 datasets. Strobealign and BWA-MEM are typically
also able to align the most reads (Fig. 3B, Suppl. Fig. S4).

As for alignment time for read lengths of 100-250nt,
strobealign is about 7 times faster than BWA-MEM and 4.5-
6 times faster than BWA-MEM2 (Fig. 3C, Suppl. Fig. S3).
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Fig. 4. Accuracy (Panel A), percent aligned reads (Panel B), and runtime (Panel C) of aligning paired-end reads to the REPEATS dataset.

A B C
A B C

Fig. 5. Alignment concordance results for a subset of of 4 million paired-end reads of the BIO150 and BIO250 datasets. Panel A shows the percentage of aligned reads.
Panel B shows for strobealign, minimap2, Accel-Align, SNAP, the number of reads that were aligned to the same location (overlapping alignment coordinates) out of the reads
that Bowtie2 and BWA-MEM/BWA-MEM2 aligned to the same location (i.e., three-way concordance). Panel C shows the runtime.

Category Tool %-correct ↑ %-aligned ↑ Speed ↑ Mem ↓ Comment on overall results
Traditional BWA-MEM High High Low Low Works well in all benchmarked scenarios.

High accuracy, but slow.
Bowtie2 High Medium Low Low Works well in most benchmarked scena-

rios but is slow. Skips to align many
reads for high diversity datasets.

Recent Strobealign High High High High A very fast aligner with high accuracy.
Peak performance for 150-500nt reads.
Not recommended for 50-75nt reads.

BWA-MEM2 High High Low to High Identical output to BWA-MEM at
medium 1.2-2x speedup for paired-end

alignment (our experiments), but
very high memory usage.

minimap2 Medium Medium Medium Medium Relatively high accuracy on human genome,
but not on repetitive genomes (rye and
maize). Lower accuracy and slower than
strobealign on most datasets but uses less memory.

SNAP v2.0 Medium Low Medium High Good accuracy and speed for low diversity
to high datasets. Poor accuracy, speed, and

percent aligned reads for high diversity
and on the biological datasets.

Accel-Align Low Medium High High A very fast aligner but with lowest accuracy
overall out of the benchmarked aligners.

Table 2. Overview of aligner characteristics based on results from our experiments. Brief comments on the characteristics of the aligners are included.
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SNAP also shows competitive runtime on the low diversity
datasets SIM1 and SIM2 (Suppl. Fig. S3). For the simulated
chemistry X read lengths of 300nt and 500nt, strobealign is
6.4-9 times faster than BWA-MEM and 4.5-7 times faster
than BWA-MEM2 (Fig. 3C, Suppl. Fig. S3).
In addition to being several times faster than BWA-MEM2,
strobealign also uses 1.5-2.1x lower peak memory than
BWA-MEM2 (Suppl. Fig. S5). BWT-based aligners such
as BWA-MEM and Bowtie2 use much lower peak memory
than all other aligners (Suppl. Fig. S5), where Bowtie2 has
the lowest peak memory across all experiments in this analy-
sis.
We also ran the alignment tools with 4, 8, and 16 threads
on the different datasets from the SIM3 dataset. Alignment
time nearly halves for the tools when doubling the number of
threads suggesting that the tools utilized the resources well
(Suppl. Fig. S7). Relative alignment times between the tools
for 4 and 8 threads stay similar to our benchmarks using 16
threads.
For our single-end data experiments (Suppl. Fig. S8-11), we
largely observe the same results reported for the paired-end
evaluation. Strobealign is the fastest tool for all read lengths
of 150nt and above. Although strobealign has slightly worse
performance on high diversity datasets in single-end mode
(panels SIM3 and SIM4 in Suppl. Fig. S8), it has substan-
tially higher accuracy and percentage of aligned reads to the
tools with similar speed (Accel-Align and SNAP). Minimap2
performs well for the single-end reads of the highest diversity
(SIM4). The analysis is reported in detail in Suppl. Note F.
Finally, as expected, the mapping modes of minimap2 and
strobealign have lower accuracy than their respective align-
ment modes. However, strobealign’s mapping mode has a
more substantial accuracy reduction to its alignment mode
than minimap2. This indicates that there might be room to
develop a better strobemer-based scoring function that more
frequently assigns the true mapping location with the highest
score. However, the primary purpose of short read alignment
is that alignment and mapping mode is not implemented in
many aligners.
In summary, for the hg38 paired-end read analysis,
strobealign has the best tradeoff between accuracy, runtime,
and percent aligned reads to any of the other benchmarked
aligners on most of the datasets. Strobealign and BWA-MEM
have the highest accuracies across diversity levels for reads of
lengths 150nt and above and are usually within a difference
of 0.1% to each other. On the high diversity dataset SIM4 for
read lengths of 150nt and longer, there is no tradeoff between
accuracy and runtime between the two tools, as strobealign
is several times faster and more accurate than BWA-MEM
and BWA-MEM2, as well as uses lower memory than BWA-
MEM2. A notable aligner is SNAP, which has high accuracy
and is very fast on SIM1. However, its performance across
accuracy, speed, and percentage of aligned reads deteriorates
substantially with increased diversity (Fig. 3, Suppl. Fig. S2).

Results on other genomes. Our benchmarks on the four
additional genomes drosophila, maize, CHM13, and rye
broadly show similar results to our experiments on hg38.

That is, on most datasets with read lengths 150nt or longer,
strobealign and BWA-MEM have substantially higher accu-
racy than the other aligners (Suppl. Fig. S12). For exam-
ple, strobealign is slightly more accurate than BWA-MEM
(about 0.05%) on drosophila and slightly less accurate (at
most 0.11%) than BWA-MEM on the new human genome
CHM13 (Suppl. Fig. S12C). In addition, Strobealign is
consistently 7-9 times faster than BWA-MEM on the maize,
CHM13, and rye genomes (Suppl. Fig. S13) and 4-5 times
faster than BWA-MEM2 and uses 2-3 times less peak mem-
ory than BWA-MEM2 (Suppl. Fig. S14).
On maize and rye, strobealign does not reach comparable
accuracy with BWA-MEM for read lengths of 150 and 200
(Suppl. Fig. S12). All aligners, including strobealign, have
been run using default parameters which may not be opti-
mal for particular read lengths or genomes. To study if we
could reduce this gap, we specified the parameter -M 40 to
strobealign to consider more alignment locations (default is
20). With this setting, we observed that the gap in accuracy
nearly disappeared on maize and was reduced on rye (Suppl.
Fig. S16), while alignment time was still about 5-7.5 times
faster than BWA-MEM and about 3-3.5 times faster than
BWA-MEM2 (Suppl. Fig. S17). With -M 40, strobealign’s
accuracy also remains close to identical to BWA-MEM on
drosophila and CHM13 while being, e.g., around 7 times
faster than BWA-MEM and 4-4.5 times faster than BWA-
MEM2 on CHM13 (Suppl. Fig. S16-17).
As for general memory usage (Suppl. Fig. S14),
strobealign’s indexing scales with the number of unique
seeds. For example, Strobealign uses only 1.5 times more
memory for a genome that is 2.3 times as large (rye). This
scaling is not observed in BWA-MEM2. As for the number
of aligned reads, BWA-MEM and strobealign align the most
reads in general (Suppl. Fig. S15).
Finally, we observe that many tools face complications when
aligning to rye. Minimap2’s percentage of aligned reads and
accuracy drop to less than 50% accuracy on most instances
and does not show in the figures. Also, SNAP and Accel-
Align could not run on this dataset (Suppl. Note C).

Results on the REPEATS dataset. We ran the aligners in
paired-end mode on the REPEATS dataset, which constitutes
a particularly challenging repetitive dataset with high diver-
sity (described in Suppl. Note A). On this dataset, strobealign
and minimap2 have the highest accuracy (Fig. 4A). How-
ever, minimap2’s accuracy comes at the cost of runtime on
this dataset, where it is as slow as BWA-MEM or slower.
Strobealign has the highest accuracy, most aligned reads,
and the fastest runtime for all the read lengths of 150nt and
longer ((Fig. 4A-C), being 5-10 times faster than minimap2,
4-6 times faster than BWA-MEM, and about 3.5 times faster
than BWA-MEM2. Accel-Align also has a relatively compet-
itive accuracy-runtime tradeoff on the 150nt and 200nt read
lengths in this experiment.

Mapping concordance on biological data. As we do not
have the ground truth genomic location of the biological
reads, we used a subset of the BIO150 and BIO250 datasets
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(details in Suppl. Note D) to investigate read mapping con-
cordance. We used the slower but tried-and-tested tools
BWA-MEM (BWA-MEM2) and Bowtie2 as gold standard as
we observed that they aligned the most reads (Fig. 5A). We
then scored the rest of the aligners based on mapping concor-
dance with the two tried-and-tested aligners. Specifically, we
measured the concordance in alignment coordinates between
three tools; BWA-MEM, Bowtie2, and each of the remaining
aligners (Fig. 5B). We assume in this analysis that a high con-
cordance with BWA-MEM and Bowtie2 is a proxy of high
accuracy. We also measured runtime and the percentage of
aligned reads.
We observe that strobealign is the fastest tool, has the most
aligned reads, and is most consistent with BWA-MEM and
Bowtie2 (Fig. 5) for both datasets. The second best per-
forming aligner in this analysis is minimap2. We further
looked at the detailed concordance Venn diagrams between
BWA-MEM, Bowtie2, strobealign, and minimap2 (Suppl
Fig. F12). Minimap2 shares a substantial fraction of align-
ments with BWA-MEM and relatively few with Bowtie2,
while strobealign has a more evenly distributed concordance
diagram between Bowtie2 and BWA-MEM. Some of the
overlaps we see uniquely shared by two aligners may be
on the implementation level by choosing the same random
mapping location in case of ties, as aligners have different
methodologies to select locations in ambiguous scenarios.

SNP and indel calling analysis. A common application
downstream of read alignment is SNP and indel prediction.
While a high mapping accuracy (correct read location) is de-
sired, an aligner also needs accurate base-level alignments
when calling SNPs and, in particular, indels. While such an
analysis supplements a mapping accuracy analysis, a caveat
is that variant callers use MAPQ scores for SNV and indel
prediction (34), therefore some callers may be developed or
tuned based on popular aligners’ MAPQ scores. Specifically,
it has been shown that bcftools call was the SNP caller that
produced the best result with BWA-MEM alignments out
of seven variant calling tools (35). Nevertheless, we used
bcftools call to benchmark recall, precision, and F-score of
SNP and indel calling from the aligners’ output on SIM150,
SIM250, BIO150, and BIO250 datasets. Details on the data
and analysis pipeline are found in Suppl. Note D and E, re-
spectively.
As for SNP calling, strobealign has 1% and 1.9% lower re-
call than BWA-MEM on the BIO150 and BIO250 datasets
(Fig. 6A; left panel) but has the highest precision out of all
aligners, with a 5.4% and 5.3% higher precision than BWA-
MEM (Fig. 6A; center panel). When combined, strobealign
has the highest SNP calling F-score on both the biological
datasets among all aligners with 2.7% and 2.5% higher F-
score than BWA-MEM (Fig. 6B; right panel). On the sim-
ulated datasets, the recall and precision are similar for all
aligners except Accel-Align. Strobealign has the second-
highest F-scores after BWA-MEM with an average of 0.45%
lower recall at the same precision, resulting in a 0.25% lower
F-score than BWA-MEM.
As for indel calling, which for the biological datasets was

computed against all gold-standard variants found by the
GIAB consortium, all the aligners have a low (and similar)
recall and precision. BWA-MEM has a 0.1% higher recall
but a 0.1% lower precision over strobealign on BIO150 and
BIO150. However, for the indel calling on simulated data,
strobealign has both the highest recall and precision across
aligners, with a substantial increase in recall on the SIM150
dataset (3.3%, Fig. 6B), giving the highest F-scores on both
the datasets.
As for runtime, strobealign is the fastest aligner across the
four datasets, with a 5-8.5 times speedup over BWA-MEM
and 3.3-5.3 times speedup over BWA-MEM2.

Discussion
We have presented a novel approach to compute seeds used
for sequence mapping. We showed that our seeding method
is fast to construct (Table 1) and that our seeds can achieve
the same uniqueness as k-mers with lengths traditionally un-
suitable for short-read alignment (Fig. 2A-B).
We implemented our seeding method in a short read aligner,
strobealign. We demonstrate that strobealign achieves com-
parable accuracy and percentage of aligned reads to the estab-
lished aligner BWA-MEM when aligning paired-end reads of
several different lengths from several genomes (Figs. 3A, 4A,
Suppl. Fig. S2, S12, and S16) while being 6-9 times faster
on most benchmarked genomes for read lengths 150nt and
longer (Figs. 3C, 4C, Suppl. Fig. S3 and S13). Strobealign
is also typically 3.5-7 times faster and has 2-2.5 times lower
memory usage than BWA-MEM2 (Suppl. Fig. S14). No-
tably, we also observe that strobealign is both more accurate
and several times faster than BWA-MEM and BWA-MEM2
on some genomes (SIM4, drosophila, REPEATS) for read
lengths of 150nt and longer. While other aligners fare well on
individual experiments, they do not generally achieve state-
of-the-art accuracy on several datasets caused by e.g., se-
quence diversity, repetitive genomes, or longer read lengths.
Our conclusions from our simulated experiments also trans-
late to the biological datasets. Strobealign has the most
aligned reads (Fig. 5A), the largest concordance with state-
of-the-art BWA-MEM and Bowtie2 (Fig. 5B), and the fastest
runtime (Fig. 5C, Fig. 6C). In addition, strobealign’s align-
ments achieve the highest F-scores among all aligners when
calling SNPs on the biological data sets and indels on the
simulated datasets. Our experiments suggest that for Illumina
reads of 150nt and longer, strobealign can remove the align-
ment bottleneck in many analysis pipelines without compro-
mising mapping accuracy and downstream SNP and indel
calling. A caveat with assessing an aligners accuracy based
on downstream variant calls is that a caller may take the
MAPQ score into account when calling variants, resulting in
some variant callers being optimized for the scores of spe-
cific aligners. Therefore, it is important to take both mapping
accuracy and variant calling results into account in assessing
the accuracy of an aligner.
The memory usage of strobealign and other recent align-
ers (Accel-Align and SNAP) are relatively high compared
to memory-efficient tools such as BWA-MEM and Bowie2
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B
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Fig. 6. SNP and indel calling with bcftools on SIM150, SIM250, BIO150, and BIO250 . Panel A and B shows recall, precision and F-score for SNP and indel calling,
respectively. Panel C shows alignment runtime. In panel A, the y-axis was cut at 75% for visibility. Accel-Align has 66.0% and 65.5% for BIO150 and BIO250, respectively.

(Suppl. Fig. S3). However, most large sequencing datasets
are aligned in multi-thread mode on computing resources
with many cores and a RAM higher than 32Gb. Therefore,
the memory constraint should not be of practical concern in
many common bioinformatic pipelines.

Future work. A large part of the runtime for the BIO150
and BIO250 datasets is spent in base level alignments with
ssw (Fig. 2). It may therefore be possible to further opti-
mize runtime by considering a faster Smith-Waterman align-
ment such as the Wavefront Alignment Algorithm (36) as dis-
cussed in (21). Or find a better strategy based on the seeds

to select fewer candidate sites to align to. Memory optimiza-
tions could also be investigated, such as changing hash values
from 64-bit to 32-bit representation (Suppl. Note G). How-
ever, these optimizations may come at the cost of accuracy or
limitations to the maximum index size.

As for the seeding method, we created randstrobes from
syncmers. Other subsampling techniques may further im-
prove the accuracy. While developing strobealign, we tested
only minimizers (16) and syncmers (22) and found syncmers
to perform better. Word-based methods such as minimally
overlapping words (37) have demonstrated to have better
conservation than syncmers. However, they are less flexi-
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ble as syncmers do not need to be pre-computed for different
parametrizations. A second direction of exploration is the
skewed sampling. During the development of strobealign,
we observed that our implemented skewed sampling towards
shorter seeds increased accuracy for the shortest reads (≤
150nt) but had little to no effect compared to uniform sam-
pling for longer reads. We believe it is beneficial for the short
reads because more syncmer-pairs will be selected consis-
tently between the read and references near the ends of the
read, where there are few syncmers left to sample. It is pos-
sible that, e.g., a sampling skew towards longer seeds may be
beneficial for longer reads that are not as dependent on single
matches and can instead leverage increased uniqueness from
longer seeds. Further work on seed length sampling distribu-
tions and subsampling densities could be explored.

Our seeding method in other applications. A natural fu-
ture research direction is to adapt our seeding method to
other mapping scenarios. For example, applications such
as long-read alignment (17, 20) or transcriptomic long-read
clustering (38) may be substantially sped up when using
longer, more unique seeds. Our sampling technique may also
improve the computation speed of seeds for transcriptomic
spliced alignment (39) as MEM finding is the current bot-
tleneck. Another interesting direction is to explore using our
seeding approach for overlap detection for genome assembly.
Our seeding method can be thought of as being constructed in
syncmer-space instead of over the entire sequence (sequence
space). In genome assembly and error correction, ideas to
work in minimizer-space instead of in sequence-space have
been proposed through the use of paired minimizers (40, 41)
and k consecutive minimizers (k-min-mers) (42) to represent
overlaps and assembly graphs.

Conclusion
We presented a novel strategy to compute seeds based on
syncmers and strobemers that can be used for candidate
mapping-site detection in sequence mapping applications.
We showed that our seeding is fast and used a novel met-
ric E-hits to demonstrate our seeding method’s effectiveness
at removing the repetitiveness of seeds. We implemented
our seeding strategy in a short-read aligner strobealign. For
read lengths of 150nt and longer, strobealign is several times
faster than traditional aligners with comparable accuracy.
Strobealign can remove the alignment bottleneck in many
bioinformatic analysis pipelines and free up substantial com-
puting resources. Furthermore, our seeding approach can po-
tentially be used in many other applications that require se-
quence mapping.

Data availability
Strobealign is available at
https://github.com/ksahlin/StrobeAlign (v0.4 was
used in the benchmark). Script to evaluate seed-
ing methods, generate simulated data, and to eval-
uate the aligners on all the datasets are available at

https://github.com/ksahlin/alignment_evaluation. Biological
datasets BIO150 (Illumina WGS 2x150bp, HG004) and
BIO250 (Illumina WGS 2x250bp, HG004) analyzed in
this study are found at https://github.com/genome-in-a-
bottle/giab_data_indexes.
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Methods
Definitions. We use i to index the position in a string S and
let S[i,k] denote a k-mer substring at position i in S cov-
ering the k positions i, . . . , i+ k− 1 in s. We will consider
0-indexed strings. We let | · | denote both the length operator
applied to strings and the cardinality operator applied to sets.
We refer to a subsequence of a string as a set of ordered let-
ters that can be derived from a string by deleting some or no
letters without changing the order of the remaining letters. A
substring is a subsequence where all the letters are consecu-
tive. Our fuzzy seeds produced from S are subsequences of
S since they consist of two syncmers k1 and k2 that do not
necessarily overlap on S. The syncmers are concatenated af-
ter their extraction to a string k12

.= k1k2 that constitutes the
strobemer seed.
We use 2-bit encoding to store nucleotides with 00, 01, 10,
and 11 representing A, C, G, and T. With this bit encoding
in mind, each string is associated with a sequence of bits
that can be interpreted as an integer. For example, TCA =
110100 = 52. From now on, we will assume that all strings
are manipulated by manipulating their sequence of bits. We
use h to denote a hash function h : {0,1}∗−→{0,1}∗ mapping
a sequence of bits to another sequence of bits. Finally, we say
that two seeds k12 and k′12 match if h(k12) =h(k′12). We will
denote a match as m and use m.qs,m.qe,m.rs,m.re,m.o to
denote the read start and end positions, the reference start and
end positions, and the orientation of the match, respectively.

Open syncmers. Open syncmers is a k-mer subsampling
method described in (22). They are sampled based on three
parameters (k,s, t). The open-syncmer method compares the
k− s+ 1 consecutive s-mers within a k-mer and selects the
k-mer as a syncmer if the smallest s-mer occurs at position
t ∈ [0,k− s+ 1] within the k-mer. With the smallest s-mer,
we mean the hash value that the s-mer produces. Similar to
what is commonly performed in k-mer applications, we use a
canonical representation of syncmers. A canonical represen-
tation means that the lexicographically smallest syncmer out
of its forward and reverse-complement sequence is stored.

Strobemers. Strobemers are described in (23) and consists
of several shorter k-mers, referred to as strobes. We use the
randstrobe method (23) described below. Four parameters
(n,k,wmin,wmax) are used to define a randstrobe where n
is the number of strobes, k is the length of the strobes, and
wmin and wmax is the lower and upper coordinate offset
to the first strobe k1 for sampling the second strobe k2 on
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a string S. We will here consider randstrobes with n = 2,
i.e., consists of two strobes. Let k1 have coordinate i on
S and W be the set of k-mers from the substring (window)
S[i+wmin : i+wmax+ k− 1]. Then, the randstrobe sam-
ples strobe k2 according to the following sampling function
(23):

k2 = argmin
k′∈W

(h(k1)+h(k′)) & p. (1)

where & is the bitwise AND operator and p is a 64-bit bit-
mask consisting of 1’s at the p leftmost bits and remaining
0’s.

Modifications to strobemers. Strobemers was first de-
scribed as being produced over the set of all k-mers in a
sequence (23). The first modification we make to strobe-
mers as originally described is that we will compute the
strobemers over syncmers. Therefore, from now on k1,k2,
and k′ are used to denote the subsampled set of k-mers that
are open syncmers. We will let [wmin,wmax] refer to the
lower and upper number of syncmers downstream from k1
where we sample k2 from. Assume that k1 has coordinate i,
then we let Ws denote the set of syncmers in the substring
S[i+wmin : i+wmax+k−1].
A second modification to the strobemers (23) is that we use
a skewed sampling function that selects nearby syncmers
more frequently. The sampling skew for sampling the sec-
ond syncmer k2 is produced from

k2 = argmin
k′∈Ws

B( (h(k1)∧h(k′)) & p). (2)

Here, ∧ is the bitwise XOR operator, and B counts the num-
ber of set bits. In other words, B returns the number of set
bits among the p ∈ [1,64] leftmost bits in the 64-bit integer
produced after the XOR operation of the hash values of the
two strings. Function 2 maps the value space down to [0,p-
1] and collisions are resolved by picking the first leftmost
strobe. Therefore, a lower value on p results in more often
picking nearby strobes. An example distribution is shown
in Suppl Fig. S1. We found that function 2 gave signifi-
cantly improved performance on shorter reads (100-150nt)
compared to function 1.
The third modification to strobemers is our stored hash value
for the strobemer. We store for k12 the value h′(k12) .=
h(k1)/2 + h(k2)/2. The hash function h′ is symmetric
(h′(k12) = h′(k21)) and together with canonical syncmers, it
produces the same hash value if the strobemer is created from
forward and reverse complement direction. It is stated in (23)
that symmetrical hash functions are undesirable for mapping
due to unnecessary hash collisions. However, when masking
highly repetitive seeds as commonly performed in aligners
(18), it turns out that a symmetrical hash function helps to
avoid sub-optimal alignments when using strobemers. The
reason is the same as for using canonical k-mers in read
mapping and overlap detection algorithms. Namely, it allows
for consistent masking and treatment of forward and reverse
complement mapping locations. We will now describe why.

Assume we would use an asymmetric hash function, such as
h′′(k12) = h(k1)/2 + h(k2)/3 proposed in (23). Also as-
sume that strobemer seeds k12 and k21 are both found in for-
ward orientation the reference due to, e.g., inversions. In this
case, only k12 may be masked because of its distinct hash
value to k21. Now, consider a read in which we extract k12 in
forward direction and k21 in reverse complement direction. If
the read has an optimal match to forward direction with seed
k12 (masked on reference), we would still find the suboptimal
match of k21 of the read in reverse complement orientation to
the reference. By using a symmetric hash function, we guar-
antee to mask the same strobemers in both directions. We
observed that such cases are common on, e.g., chromosome
X in the human genome.
Another benefit of this symmetrical value which does not
hold for exact seeds, is that we can use false symmetrical
matches to our benefit. A false symmetrical match is when
the forward seed starting with syncmer k1 and reverse com-
plement staring with syncmer k2 become linked as seeds k12
and k21, respectively, hence h′(k12) = h′(k21). This hap-
pens relatively frequently but is not guaranteed. That is, even
if the minimizing syncmer for k1 is k2, k1 does not need
to be minimizing syncmer k2. However, the beneficial sce-
nario happens when we have a false symmetric match and,
for example, the forward orientation seed is destroyed be-
cause of mutations. In this case, it is not guaranteed that
the match in the other orientation is destroyed. Thus, we
get a false symmetrical match that helps us locate the read
location on the genome, which is useful for reads with very
few matches. The event of false symmetrical matches was
realized and implemented in 0.6.1 in strobealign, leading to
slightly improved accuracy.

Indexing. We first construct open syncmers from the refer-
ence sequences and then link two open syncmers together
using the randstrobe method with equation 2 as sampling
function. A beneficial characteristic with open syncmers is
that the the same syncmers will be created from the for-
ward and reverse complement strand if k− s+ 1 is odd and
t = d(k− s+ 1)/2e. Conveniently, it was shown that choos-
ing t= d(k−s+1)/2e is the optimal parameter for sequence
mapping (24). We compute such canonical open syncmers
(using k = 22, s = 18, t = 3 as default values) to produce a
subsampling of roughly 20% of the k-mers sampled, which is
similar to w = 10 in the minimizer sampling method. As for
forming the strobemers, we compute the second strobe from
a window of [wmin,wmax] downstream syncmers to the first
strobe, where we set wmin and wmax dependant on the read
length based on an experimental evaluation. See details in
Section Implementation details.
We store tuples (h′(k12), rs,v) in a flat vector V where
h′(k12) is the 64-bit integer hash value of the strobemer, rs is
the coordinate start of the first strobe (32-bit integer), and v
is a 32-bit integer containing reference id (rightmost 24 bits)
and the offset of the second strobe (leftmost 8 bits). We sort
V by hash values and construct a hash table with hash values
as keys pointing to offset and the number of occurrences of
the hash value in V . By lookup of h′(k12), we know which
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segment in V to iterate over to find query matches. This type
of index representation has been used previously (18, 21),
and was suggested to us by Heng Li (43). Finally, similarly
to minimap2, we mask (ignore) a top fraction of repetitive
strobemers in the reference. This value is a parameter to
strobealign and is by default set to 0.0002, similarly to min-
imap2.

Finding candidate mapping sites. Strobealign computes
canonical open syncmers from the read similarly to what is
described above to index the reference. Since the created
syncmers are canonical, we can compute forward and reverse
complemented strobemers by iterating over the syncmers for-
ward and reverse order, respectively. Computing strobemers
in forward and reverse orientation gives us a vector of tuples
(qs, qe,o) representing start coordinate qs, end coordinate qe,
and orientation o (Boolean value with 0 representing forward
and 1 representing reverse complement), of the strobemer on
the read.
If a strobemer is found in the reference, it will have one
or more coordinate-tuples (rid, rs, re) in the reference. We
call m= (rid, rs, re, qs, qe,o) a match between the query and
the reference. Let d be the difference in length between the
strobemer on the reference and query. If several matches are
found, Strobealign iterates over the matches, stores the low-
est observed d during iteration, and saves only the matches
with the current lowest d. This approach is not the same as
first computing the lowest d and iterating a second pass to
store only matches with the lowest d. We chose the former as
we tried both and observed close to no difference in accuracy
while slightly increasing runtime in the latter case due to the
extra iteration.
From the stored matches, strobealign constructs merged
matchesM which are similar but slightly more stringent to
Non-overlapping Approximate Matches (NAMs) that are de-
fined in (23). Merged matches are produced as follows. We
iterate over all matches in ascending order in the read and
join two matches m and m′ into a merged match if it holds
that

(i) (m.rid ==m′.rid) && (m.o==m′.o)

(ii) m.qs <m′.qs ≤m.qe

(iii) m.rs <m′.rs ≤m.re

(iv) and if one of the following holds; (m.qs < m′.qs <
m.qe < m′.qe)∧ (m.rs < m′.rs < m.re < m′.re) or
(m.qs < m′.qs < m′.qe < m.qe)∧ (m.rs < m′.rs <
m′.re <m.re).

In other words, the matches need to (i) come from the same
reference and have the same direction, (ii-iii) overlap on both
query and reference, and (iv) two strobemer matches need to
have a consistent ordering of the four strobes on the refer-
ence and the query. Specifically, a NAM requires only (i-iii).
There are scenarios due to local repeats where, for example,
(m.qs < m′.qs < m.qe < m′.qe) is the order on the query

but (m.rs <m′.rs <m′.re <m.re) is the order on the ref-
erence invalidating (iv). We consider such cases as separate
matches.
If m is the current considered match in the iteration over
the matches in a query, we refer to all matches m′′ with
m′′.qs <m.qs ≤m′′.qe as open matches and m′′.qe <m.qs
as closed matches. While iterating over the matches in a read,
we keep a vector of currently open merged matches, and fil-
ter out the closed matches in this vector. In a merged match
M we keep information of how many matches were added,
the position of the first and last strobe on query and refer-
ence, and the orientation on the reference genome. After the
final match on the query, we close all merged matches. The
closed matches are the final merged matches that constitute
the candidate mapping locations.

Computing MAPQ score. After merging matches, each
merged matchM consists of a number of matches |M| and
a total span-range of the merged match on both the query
a=M.qe−M.qs and the reference b=M.re−M.rs. We
define the score ofM as SM = (min{a,b}− |a− b|) · |M|,
which acknowledges only the minimum span over the query
and reference and penalizes if there is a difference in the span
lengths. We compute the MAPQ score similarly to minimap2
but substitute minimap2’s chain score (18) to our merged
match score SM. That is, if S1 and S2 are the top two scoring
merged matches for a read, the MAPQ is computed by

MAPQ= 40(1−S2/S1) ·min{1, |M|/10} · logS1.

Single-end Alignment. Merged matches are produced and
scored as described above and constitute the candidate map-
ping regions. For each candidate region sorted order with
respect to the score, we extract segments on the reference de-
fined by coordinates (M.rs−M.qe,M.re+ (|q|−M.qe)),
where |q| is the length of the read. If |M.qe −M.qs| =
|M.re−M.rs|, we compute the Hamming distance between
the read and the extracted reference segment. Otherwise, if
the distance between merged match is different on the refer-
ence and query due to, e.g., indels, we send the sequences
to alignment with ssw (44). We use a match score of 1 and
alignment penalties of 4, 6, and 1 for mismatch, gap open,
and gap extension, respectively. Additionally, if the com-
puted Hamming distance is larger than 0.05|r| where |r| de-
notes the read length, we perform an additional alignment
with ssw as, theoretically, there may be more than one indel
within the mapped location that would lead to the same match
lengths on the read and the reference.

Rescue mode. A read could have few or zero matches if all
the strobemers extracted from the read were masked due to
being too abundant. The abundance cutoff, which we de-
note as A, is controlled with a parameter -f (default value
0.0002), as in minimap2. For example, A is between 30 and
50 for hg38 depending on the values we use for parameters
k, wmin, and wmax, described in Section Implementation
details. If more than 30% or strobemers were masked when
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finding matches, strobealign enters a rescue mode where it
considers a higher threshold. In the rescue mode, strobealign
sorts the seeds according to the abundance on the reference.
Then it selects all the seeds below an abundance of R (R
is a positive integer parameter with default value 2) and, if
this still produces fewer than 5 seeds, it uses 1000 as a hard
abundance threshold. If there are still 0 matches, the read is
treated as unmapped.

Paired-end Alignment. Similar to the single-end mapping
mode, strobealign computes merged matches for both mates
within the read pair and employs an identical rescue mode
if there are too many masked strobemer seeds, as described
for the single-end mapping. There are, however, two addi-
tional components in the paired-end mapping mode. Firstly,
strobealign employs a joint scoring of candidate mapping lo-
cation based on expected insert size (similar to BWA-MEM).
Secondly, based on the mate’s mapping location, strobealign
can enter a rescue mode even for a read with zero matches.
We describe the two components below.
For the joint scoring, strobealign first sorts the candidate map
locations based on the total seed count for the two mates in a
read pair. Then, strobealign finds the best candidate locations
from a combined MAPQ score described below. Let |M1

i |
and |M2

j | be the number of matches in i-th and j-th merged
match for the first and the second mate in the read-pair, re-
spectively. If it holds for some i and j that the two merged
matches are on the same chromosome in the correct relative
orientation with a mapped distance<µ+10σ, the joint map-
location count Cij is simply Cij = |M1

i | + |M2
j |. We also

add the individual candidate map location counts obtained as
Ci−= |M1

i | andC−j = |M2
j | for the two mates individually.

For the scores in order of highest total seed count first,
strobealign performs base-level alignment of each mate (as
described in the Single-end alignment section). The align-
ment score Sij of such aligned pair is then computed as

Sij = SWi+SWj +logN(dij ,µ,σ)

where SW denotes the Smith-Waterman alignment score,
and dij denotes the distance between the mates on the
genome. The individually mapped reads (e.g., if on differ-
ent chromosomes) are given a score

Sij = SWi+SWj−10.

Since -10 corresponds to more than 4 standard deviations
away, this is the score cutoff which prefers the reads to be
mapped individually at their respective locations with the
highest SW score.

Mate rescue mode. If one of the mates does not have any
merged match, we perform base level alignment of the mate
without merged match within a genomic segment of [0,µ+
5σ] nucleotides away in the expected direction from the loca-
tion of the mate with a merged match.

Implementation details. Similar to the default parameters
in minimap2, we consider the top 20 MAPQ (or joint MAPQ)

scoring candidates for alignment, and we implement a drop-
off score threshold of 0.5 (score to the highest score). In ad-
dition to these parameters, we employ two additional opti-
mizations. First, if we encounter a perfect match (no mis-
matches), we stop and report the alignment even if there are
remaining candidates above the drop-off parameter. Second,
suppose we have encountered an alignment with an edit dis-
tance of 1. In that case, we do not call base-level alignment
for remaining candidates since a call to base level alignment
implies that the edit distance is at least 1, as we described
in the single-end alignment section. Strobealign also sup-
ports multithreading using openMP. If more than one thread
is specified, strobealign will parallelize the alignment step by
splitting the reads into batches of 1 million reads to be pro-
cessed in parallel.
The median read length (x̃) is estimated from the first 500
reads in the read input. As for selecting values of k, s, p,
wmin and wmax, we set suitable parameters given x̃ based
on experimental evaluation of accuracy and runtime. We let
wmin = k/(k− s+ 1) + l and wmin = k/(k− s+ 1) + u
where l and u are integers that specify lower and upper
offset. Then we choose the following parameter tuples for
(k,s,p, l,u) given x̃.

(k,s,p, l,u) =



(20,4,8,−4,2), if x̃≤ 75
(20,4,8,−2,2), if 75< x̃≤ 125
(20,4,8,1,7), if 125< x̃≤ 175
(20,4,8,4,13), if 175< x̃≤ 275
(22,4,8,2,12), if 275< x̃≤ 375
(23,6,8,2,12), if 375< x̃

With a read length of length 200nt and the parameters in this
study, roughly (1/5) ∗ 200 = 40 syncmers are produced for
each read, and roughly 30 strobemers are created in each di-
rection. Naturally, these values are reduced for shorter reads
which impacts sensitivity. A read of 100nt will have on aver-
age 20 syncmers and only 10 strobemers. We could consider
lower wmax to produce more strobemers for shorter reads at
the cost of memory.
Although it is exponentially less likely to have open syncmers
sampled further away from the mean sampling density (22),
they do not have a window guarantee and may be sparser
sampled in some regions. Therefore, we have a hard limit
on the maximum seed size as a parameter to strobealign (m),
where it defaults to x̃− 50. This means that, in some cases,
the maximum seed size may be lower than the downstream
nucleotide level distance of the syncmer corresponding to
wmax. With the parameters we use above, this happens in
less than 0.1% of the seeds. Finally, on rare occasions there
is no open syncmer within the downstream window, e.g., due
to regions of N’s in centromeres on hg38. In these cases we
use only the first syncmer as the strobemer seed. This hap-
pens on hg38 for 0.0007% of the x̃= 150 seeds (3,963 out of
544M seeds).

The E-hits metric. Let N be the total number of seeds and
M ≤ N the number of distinct seeds produced over a set of
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reference sequences by any seeding method. Let i ∈ [1,M ]
be an index variable over the set of distinct seeds, and xi de-
note the number of times seed i is produced. Then, pi = xi

N
corresponds to the probability that seed i is picked uniformly
at random over the multiset of seeds produced by the seed-
ing method. We let our set of observations xi ∈ X and our
probability distribution pi ∈ P be the model of the scenario
of sampling uniformly at random a location on the reference
sequences and extracting a seed. Then, the expected number
of occurrences of a randomly sampled seed i on the reference
is

E[X] =
M∑
i=1

xipi =
M∑
i=1

xi
xi
N

= 1
N

M∑
i=1

x2
i

We refer to E[X] as E-hits. The connection to read mapping
is immediate. If reads are sampled uniformly at random over
the reference sequences, E-hits measure the expected num-
ber of matches we obtain for error-free seeds extracted from
the reads. The uniform distribution is a common assumption
for, e.g., Illumina genome sequencing reads, albeit not fully
accurate. The E-hits metric is conceptually similar to the ex-
pected contig size covering a random position in the genome
(E-size) as defined in (45), hence E-hits’ similar denotation.
Note that E-hist is different from the popular E-value used in
BLAST (46). The E-value is a theoretical computation that
measures the expected number hits that could be found by
chance under random nucleotide distribution given a database
size and an exact k-mer seed. E-hits is computed from the ac-
tual reference sequences and any seeding protocol.

Memory usage. Strobealign has a peak memory usage of
about 25-33Gb for hg38 (Suppl. Fig. S5). With the parameter
settings we investigated in this evaluation for read lengths 50-
300nt on hg38 (syncmer subsampling rate of 1/5), strobealign
stores roughly 544 million seeds in memory. Furthermore,
the size of the index scales with the number of unique seeds.
For example, strobealign uses only about 1.5 (50Gb) more
memory when aligning to rye (2.3 times hg38 in size) as rye
is a repetitive genome with a lower fraction of unique seeds.
Similarly, the maize index is only 15Gb (0.5 times the index
of human). A detailed discussion on the memory and imple-
mentation is found in Suppl Note G.
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