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Abstract

Functional magnetic resonance imaging (fMRI) has identified dysfunctional network dynamics underlying a num-
ber of psychopathologies, including post-traumatic stress disorder, depression and schizophrenia. There is tremendous
potential for the development of network-based clinical biomarkers to better characterize these disorders. However,
to realize this potential requires the ability to track brain networks using a more affordable imaging modality, such as
Electroencephalography (EEG). Here we present a novel analysis pipeline capable of tracking brain networks from
EEG alone, after training on supervisory signals derived from data simultaneously recorded in EEG and fMRI, while
people engaged in various cognitive tasks. EEG-based features were then used to classify three cognitively-relevant
brain networks with up to 75% accuracy. These findings could lead to affordable and non-invasive methods to ob-
jectively diagnose brain disorders involving dysfunctional network dynamics, and to track and even predict treatment
responses.

Keywords: Intrinsic Connectivity Networks (ICN), Default Mode Network (DMN), Central Executive Network
(CEN), Salience Network (SN), Simultaneous EEG-fMRI, Machine Learning

1. Introduction

A large body of neuroimaging research over the past
decade indicates that the brain is organized into func-
tional networks of interacting brain regions, called in-
trinsic connectivity networks (ICNs). The study of
large-scale ICNs has provided considerable insight into
the neural basis of human cognition and behaviour in
the healthy and diseased brain [52, 23]. There is im-
mense potential to use features of ICN dynamics as clin-
ical biomarkers in patients with various psychopatholo-
gies [23] and even track their response to treatments.
However, the predominant imaging modality used to
study ICNs, functional magnetic resonance imaging
(fMRI), is expensive, lacks the necessary temporal res-
olution, and is not readily available for performing rou-
tine neurocognitive assessments in patients with brain

disorders. A major breakthrough would be to track
ICNs using a non-invasive and more widely accessible
modality such as electroencephalography (EEG). Here
we present a significant advancement towards this goal.
We apply machine learning methods to simultaneously
recorded EEG and fMRI data, to derive supervisory sig-
nals for learning EEG-based ICN features, permitting
highly accurate classification and tracking of ICNs from
EEG alone.

Three predominant networks have been extensively
studied [23] using fMRI: the central executive network
(CEN) generally involved in exteroceptive processing,
i.e. tasks involving attention to external stimuli; the
default mode network (DMN) involved in interocep-
tive processing tasks, e.g. autobiographical memory re-
trieval, imagining the future, spatial planning and nav-
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igation, and self-reflection; and the salience network
(SN), thought to modulate switching between CEN-
mediated exteroceptive and DMN-mediated interocep-
tive cognitive processes [44]. Appropriate network
switching dynamics between these three core networks
is thought to be critical for healthy cognitive function-
ing. Disruptions in normal inter- and intra-network
connectivity in these ICNs have been observed in nu-
merous neuropsychological conditions affecting emo-
tion and cognition. For instance, those with Major De-
pressive Disorder (MDD) [7] exhibit deficits in down-
regulating activity within the DMN in association with
persistent rumination [29]. Those with Post-Traumatic
Stress Disorder (PTSD) exhibit disruptions in the acti-
vation and functional connectivity of DMN, CEN and
SN [2, 34, 20, 48]. For example, abnormal activation
of the DMN has been observed in PTSD patients while
switching to a working memory task that normally
recruits the CEN [8]. Disrupted ICN dynamics are
also observed in numerous other psychological disor-
ders [23], such as bipolar disorder [56, 51], schizophre-
nia [57] and mild cognitive impairment (MCI) [55].
Therefore, it is extremely promising to track the net-
work dynamics within these ICNs as clinical markers
of brain disorders. The ability to monitor such network
activity will be particularly useful for tracking progress
in the treatment of such neuropathologies, where net-
work dynamics is dysregulated, and may also lead to the
development of novel individualized treatments such as
network-based neurofeedback interventions.

Unfortunately, doing so using fMRI would be pro-
hibitively expensive. Moreover, fMRI lacks the tempo-
ral resolution to track the temporal dynamics of the net-
works on a millisecond timescale. An appealing alter-
native is electroencephalography (EEG), a cheaper and
more widely accessible imaging modality with excellent
temporal resolution.

In previous work some EEG features of these brain
networks have been identified. For instance, working
memory load on the CEN is found to modulate fronto-
parietal EEG power in theta and upper alpha frequency
bands [37], fronto-parietal phase-based functional con-
nectivity graphs [10], and common spatial patterns [5].
Frontal lobe EEG activity in the theta frequency band is
also found to negatively correlate with the DMN [39],
and when combined with delta and alpha band powers,
is capable of discriminating the DMN from the senso-
rimotor network [41]. Furthermore, theta-gamma cou-
pling is a key mechanism driving hippocampal memory
processes required by the DMN during autobiographical
memory retrieval and is found to be dysfunctional in pa-
tients with memory impairments [28]. Hence, a combi-

nation of within-frequency and cross-frequency phase-
based and amplitude-based connectivity measures could
capture various component neural processes inherent to
the CEN, DMN and SN. An open question is whether
unique signatures of each of these networks can be iden-
tified, allowing us to track each of the three networks as
distinct from the other two.

Rather than focusing on such temporal dynamics,
most previous attempts to identify EEG features of
ICNs have relied on spatial filtering analyses such as
beamforming and blind source separation [46]. These
analyses are especially susceptible to signal leakage due
to volume conduction [32], and specific data acquisi-
tion parameters [21], limiting their utility as clinical
tools for tracking ICN dynamics. One alternate ap-
proach is to track EEG microstates [17], which are spa-
tial correlates of ICNs identified by spatial clustering.
However, despite its increasing popularity in probing
dysfunctional ICN dynamics in numerous psychologi-
cal conditions [26], this analysis is riddled with flawed
assumptions that lead to inaccuracies at finer temporal
scales [43, 27].

To date no one has identified unique signatures that
permit classification and tracking of ICNs using EEG
alone. To accomplish this, we developed a machine
learning model that learns EEG signatures of the ICNs
using supervisory labels derived from simultaneously
recorded fMRI. The simultaneous EEG-fMRI data were
collected from two cohorts of participants that per-
formed two different multi-task paradigms: a dual task-
switching paradigm designed to activate the DMN, CEN
and SN [44]; and a multi-task paradigm that cycles
through a series of seven tasks, a subset of which rely
on the three networks of interest [16]. A large battery
of approximately 40M amplitude and phase-based fea-
tures were computed from the EEG data collected dur-
ing these tasks. Classification labels for the DMN, CEN
and SN were derived from the thresholded activity of
these ICNs, identified using group-wide ICA analysis
of the simultaneously acquired fMRI data. These labels
were used to select the optimal feature set for a mul-
ticlass SVM classifier, using a hierarchical minumum-
redundancy-maximum-relevance (mRMR) [33] feature
selection algorithm. Importantly, having identified these
features from the simultaneous EEG-fMRI data, there
is the potential to track the ICNs using EEG data alone.
The ability of the EEG features alone to classify the pre-
dominantly active network was validated on testing sets
from the above described datasets using 20-fold cross-
validation.
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2. Results

2.1. FMRI Networks as labels

The first step in our analysis pipeline (see Figure 1C)
was to identify the “ground-truth” ICN activity, i.e. the
correct network labels, as identified using fMRI. This
involved a group-wide independent component analysis
(group-ICA) to discover components that overlap with
the ICNs of interest.

The group-ICA analysis identified a total of 20 com-
ponents with distinct spatio-temporal patterns of activ-
ity. Of these, 11 components showed significant spa-
tial overlap (high Dice coefficient) with well known
ICNs [45], while the remaining 9 components repre-
sented unwanted noise and artefacts. We focused on
the 6 components representing CEN, DMN and SN sub-
networks (Figure 1C.iii), and extracted the time-courses
of overall ICN activity by averaging the activity of each
ICNs’ component sub-networks (Figure 1C.v). The
temporal dynamics of these components matched those
expected from the CEN, DMN and SN within the dy-
namic task-switching paradigm used in cohort A, with
the SN causally influencing the CEN and DMN in a
task-linked manner. The fMRI temporal dynamics of
the ICNs lie outside the scope of this paper and are fur-
ther explored in Shaw et al. [44].

The component time courses for the CEN, DMN
and SN were partitioned into overlapping windows of
5 fMRI time points, using a sliding-window approach
and advancing by 1 fMRI time point for each window.
Each time window was labeled with the most active
ICN during the corresponding time period, creating the
class labels for feature selection and classification of the
EEG data to predict the predominantly active ICN dur-
ing each time window.

2.2. Learning EEG features from fMRI-derived labels

The next step in our processing pipeline (see fig-
ure 1C) involved using the fMRI labels identified in sec-
tion 2.1 to select relevant EEG features.

2.2.1. Generalized EEG features
A generalized feature set was identified using mRMR

on the features extracted from the EEG data, using la-
bels derived from the simultaneously acquired fMRI
data. Here mRMR tries to find EEG features that are
maximally relevant to the fMRI-derived class labels
across all participants, while being minimally redun-
dant.

2.2.2. Individualized EEG features
An individualized EEG feature set was also identi-

fied using a similar procedure for each individual par-
ticipant. Here mRMR tries to find separate EEG fea-
tures for each participant that are maximally relevant to
the fMRI-derived class labels for that participant, while
being minimally redundant.

Having obtained these features, they can now be ap-
plied to EEG data from other datasets. We now investi-
gate the ability of these features to predict ICN activity.
Researchers can then utilize the trained classifiers with
the corresponding EEG features dervied from their own
datasets to assess ICN activity using EEG data only.

2.3. ICN activation can be identified using EEG fea-
tures alone

Using the optimal feature sets identified in the pre-
vious section, we trained three versions of the classi-
fier to predict CEN, DMN and SN activation, represent-
ing three scenarios of data availability while using this
pipeline. The first two scenarios (generalized classifier
and semi-supervised individualized classifier) represent
a use case where the researcher has access to only EEG
data from their participants. They can use our models
trained on EEG-fMRI derived features to predict ICN
activity using only EEG data from their participants.
The third scenario (fully-supervised individualized clas-
sifier) represents a use case where the researcher has
access to simultaneous EEG-fMRI data from their own
participants. The observed classification performance
for each of the three scenarios is detailed below.

2.3.1. Generalized classifer
The first classifier was trained on the generalized fea-

ture set from all but one participant. This classifier
was then tested on the left-out participant’s EEG data,
comparing the predicted labels to the “ground-truth” la-
bels derived from their corresponding fMRI data. These
classifiers achieved an average classification accuracy
of 58% ± 6% for cohort A and 61% ± 5% for cohort B,
and performed significantly better than the correspond-
ing surrogate null models (p < 0.001), trained using ran-
domly permuted training labels.

2.3.2. Semi-supervised individualized classifier
We then explored a semi-supervised approach to

boost the classification performance of the generalized
classifier, by training a custom classifier for each par-
ticipant’s EEG data using the predicted class labels
from section 2.3.1. To accomplish this, the time points
with a confidently predicted label (maximum posterior
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Figure 1: The simultaneous EEG-fMRI data used in this study were collected from two cohorts of participants that performed two different multi-
task paradigms, shown in panels A and B. Cohort A used a dual task-switching paradigm (shown in panel A) designed to activate the DMN, CEN
and SN, identical to the paradigm used in Shaw et al. [44]; and Cohort B performed a multi-task paradigm (shown in panel B) that cycled through
a series of seven tasks [16], a subset of which relied on the three networks of interest. Refer to the methods section for a detailed description of the
tasks. Panel C details the analysis pipeline used in this study to analyze the simultaneous EEG-fMRI data collected from Cohorts A and B. The
top row illustrates the analysis steps for fMRI data (sub-panels i., iii., and v.), while that for EEG data is shown in the bottom row (sub-panels ii.,
iv., and vi.). Top row (fMRI data analysis): i. Preprocessing - The fMRI scans were first realigned and unwarped, followed by motion correction,
slice timing correction (STC), ART-based outlier identification and scrubbing, normalization to the MNI152 atlas, spatial smoothing using a 2mm
Gaussian kernel, and band-pass filtering between 0.008Hz−0.09Hz.; iii. The fMRI data was then decomposed into 20 independent components
using ICA, of which 6 components were found to be relevant to the DMN, CEN and SN (shown here). v. Classification labels for the DMN,
CEN and SN were derived from the thresholded activity of these three ICNs. Bottom row(EEG data analysis): ii. The concurrently collected
EEG data was preprocessed by first removing the gradient artefact (GA) using a parallel optimized version of the FASTR gradient artefact removal
toolbox Shaw [42], followed by ballistocardiogram (BCG) filtering using optimal basis set filtering (OBS). The artefact-free EEG data were then
downsampled from 5000Hz to 500Hz, followed by temporal band-pass filtering into six different frequency bands - full (1-50Hz), delta (1-4Hz),
theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and gamma (30-50Hz). Bad channels were then detected and removed based on their spectral
characteristics, followed by an ICA decomposition to identify and remove artefacutal components such as ocular artefacts, eye blinks and muscle
artefacts. Finally, the EEG data were referenced to average EEG channel data, after which the previously removed bad channels were interpolated
using spherical interpolation. iv. A large battery of approximately 40M amplitude and phase-based features were computed from the preprocessed
EEG data. vi. The previously derived classification labels were used to select the optimal feature set for a multiclass SVM classifier, using a
hierarchical minumum-redundancy-maximum-relevance (mRMR) [33] feature selection algorithm. vii. These features were used to classify the
three ICNs. The clear separation of the three classes shown results in high classification accuracy.
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probability > 75%) from the generalized classifier were
picked as the labelled time points, while the rest of the
time points were considered unlabelled. When compar-
ing these EEG-only derived labels were then compared
to the “ground-truth” labels from the participants’ fMRI
data. the confidently labeled time points boosted the av-
erage classification accuracy to 82% ± 6%, while ac-
counting for only 25% of the participant’s time points.
Therefore, this process split each participants’ data into
a small labelled dataset with “expert” labels from the
generalized classifier, and a larger unlabelled dataset.

Optimal features were selected using a weighted-
mRMR approach that used labels predicted by the gen-
eralized classifier, and a weighted mutual information
estimate for identifying minimally redundant and max-
imally relevant features. The weighted mutual informa-
tion estimate weighted each time point by the maximum
posterior probability of the predicted label, giving more
importance to the time points with more confident pre-
dictions. A semi-supervised approach was then used
to predict the labels of the unlabelled data, achieving
an average accuracy of 57.9% ± 6% for cohort A and
65.5% ± 6% for cohort B.

2.3.3. Fully-supervised individualized classifier
Lastly, a fully-supervised individual classifier was

trained on a subset of each participants’ data, using
the individualized feature set identified in section 2.2.2
with their fMRI-derived labels. This classifier was
tested using a held-out subset of the same participants’
data, achieving an average classification accuracy of
98% ± 3% for cohort A and 96% ± 4% for cohort B.

Interestingly, the expansion of the EEG signal from
64 channels to an extremely high dimensional feature
space (40M), and its subsequent reduction to a 5000
dimensional space, made the classification task much
easier by transforming the EEG feature space from
an inseparable domain to a readily separable domain,
shown in Figure1C.vii. This allowed a simple clas-
sifier, a multi-class support vector machine (SVM) to
achieve the highest classification accuracy, substantially
outperforming several much more complicated deep
neural network classifiers (see supplementary figure).
These deep neural network methods perform notori-
ously poorly in domains where the number of observa-
tions is not significantly larger than the number of fea-
tures, where they are susceptible to overfitting.

2.4. Characterizing the features of each network

MRMR feature selection identified the top 5000 most
relevant features for discriminating between the CEN,

Figure 2: The test-set classification accuracies for predicting the acti-
vation of CEN, DMN and SN networks using EEG data alone across
cohorts A and B, shown in (a.) and (b.) respectively. The accuracy
of the null model is shown in blue, that of the generalized model is
shown in orange, and that of the fully-supervised model is shown in
yellow. while that of the surrogate null model, trained using random
labels, is shown in red. The average classification accuracy for the
three classifiers is shown in (c.), with cohort A shown in blue and
cohort B shown in orange.

DMN and SN. To gain a more intuitive understanding
of the EEG signatures uniquely representative of each
ICN’s activity, a Shapley additive explanations (SHAP)
analysis [22] was conducted for each feature within the
identified feature space for the generalized classifier.
The SHAP analysis explains the contribution of each
feature to the classification, by identifying the relative
change in log-odds of each ICN label, given an increase
in the corresponding feature value. The SHAP values of
each feature for the correct ICN label, averaged across
all trials, are shown in Figure 3 for the single-frequency
features and in Figure 4 for the cross-frequency features.
These are further discussed in the following sections.

Five connectivity features were included in our fea-
ture set - three single frequency features, and two cross
frequency features. The single frequency features iden-
tified the connectivity between pairs of EEG channels
within the same frequency band, and included phase lag
index (PLI), directed phase lag index (dPLI), and co-
herence (COH). The cross-frequency features describe
the connectivity between pairs of EEG channels across
different frequency bands, and include phase amplitude
coupling (PAC) and synchronization index (SI).

2.5. CEN Features
All five connectivity features contributed towards

the classification of the CEN network, with the PLI
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Pt.
Num-

ber

Cohort A Pt.
Num-
ber

Cohort B

Null
Class.

Gen.
Class.

Semi-sup.
Ind.

Fully-sup.
Ind.

Null
Class.

Gen.
Class.

Semi-sup.
Ind.

Fully-sup.
Ind.

Class. Class. Class. Class.

1 32.9 48.7 61.6 98.9 1 33.8 56.4 62.4 99.7
2 28.5 44.2 58.4 92.6 2 32.3 62.1 71.5 99.4
3 24.0 49.5 64.6 98.2 3 22.6 46.2 50.8 99.4
4 22.0 44.8 50.3 98.1 4 30.8 51.9 68.8 96.9
5 23.7 43.8 57.4 98.8 5 31.7 59.7 63.6 98.8
6 30.4 49.8 62.9 97.3 6 22.7 59.0 63.5 98.9
7 34.7 46.9 50.1 98.9 7 34.2 59.1 62.5 99.8
8 31.0 44.8 47.2 99.0 8 32.9 60.2 64.7 99.6
9 32.3 48.1 58.1 97.8 9 20.8 61.4 70.1 99.2

10 30.0 49.9 69.1 98.1 10 32.0 59.9 66.1 95.6
11 33.6 50.2 57.0 99.1 11 32.7 57.1 75.6 98.7
12 32.4 49.5 61.2 98.3 12 31.4 58.3 66.9 99.2
13 26.3 45.8 50.3 97.3 - - - - -
14 30.1 48.0 63.0 98.5 - - - - -

Table 1: Three-way classification accuracy (test set) for predicting the activation of the CEN, DMN and SN across cohort A and B. The reported val-
ues are the cross-validated (20-fold) mean accuracy of the multiclass-SVM model trained using a 75-25 train-test split of the data. All classification
accuracies of the trained model are significantly higher than that of the surrogate null model, trained using random labels.

and dPLI being the highest contributors (Figure 3a).
Among the single-frequency features, high connectivity
between fronto-temporal, intra-parietal and intra-frontal
electrodes (Figure 3g) across theta, alpha, beta and delta
bands (Figure 3d) were found to be indicative of CEN
activity.

Interestingly, the features most strongly influenc-
ing the CEN classification showed two unique later-
alization patterns (Figure 3g). The fronto-temporal
and intra-parietal connectivity features were left-
lateralized, alongside bilateral and cross-hemispheric
fronto-temporal and intra-frontal connectivity features.
These two lateralization patterns are consistent with the
bilateral and left-lateralized sub-networks of the CEN,
seen with the fMRI results in Figure 1C.iii.

A wide range of cross-frequency coupling (CFC)
features were also found to influence CEN classifica-
tion, as shown in Figure 4a. Among these, the con-
nectivity features between theta band and the full fre-
quency band were particularly predictive of CEN activ-
ity (Figure 4d). Furthermore, the channel-pairs commu-
nicating within these frequency bands included inter-
hemispheric frontal-frontal and fronto-temporal chan-
nels pairs, along with intra-hemispheric fronto-parietal
and fronto-occipital channels. The direction of the
fronto-temporal connections followed a theta to full-
band direction, with the phase of the theta frequency

at the frontal electrodes synchronizing with the full fre-
quency band activity at the temporal electrodes. This
pattern is consistent with frontal theta-driven processes
during executive tasks such as working memory [38]
and mental arithmetic [36].

2.6. DMN Features

Similar to the pattern seen in CEN classification, all
five connectivity features were informative in predicting
DMN activity, with dPLI, COH and SI being more in-
formative than PLI and PAC. However, in contrast to the
pattern seen in CEN classification, the most informative
single-frequency features included gamma, theta and al-
pha band activity within parietal-parietal channel pairs.
Furthermore, the intra-parietal connectivity within the
single-frequency features was restricted to ipsi-lateral
channel pairs with minimal inter-hemispheric connec-
tions. Such parietal-driven gamma activity could be in-
dicative of self-related processing occurring within key
parietal DMN nodes such as the posterior cingulate cor-
tex (PCC) and the Precuneus.

Additionally, fronto-parietal theta-gamma coupling
features were found to be the most informative CFC fea-
ture, following a fronto-parietal direction, with the theta
phase of frontal electrode activity synchronizing with
the gamma activity of the parietal electrodes. These in-
cluded bilateral cross-hemispheric fronto-parietal con-
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nections, and a right-lateralized fronto-parietal connec-
tion, with the latter being most informative of DMN ac-
tivity. These data are consistent with a large body of
research implicating theta-gamma coupling in the vari-
ous DMN-linked memory processes [12, 35, 31].

2.7. SN Features

In contrast to the pattern seen for CEN and DMN
classification, the cross-frequency coupling features
(SI and PAC) dominated the prediction of SN activ-
ity. The single-frequency features that contributed
to SN classification included a wide range of fronto-
temporal, temporal-temporal, occipito-frontal, parietal-
parietal and parieto-occipital connections. Furthermore,
these connections were within the beta, alpha, delta and
full frequency band, with no single-frequency features
within the gamma and theta bands.

Among the CFC features, coupling between alpha-
delta, gamma-full band and alpha-full band was found
to be most predictive of SN activity, across a wide com-
bination of channel-pairs. This is consistent with the
integrative role of the SN that involves communication
with numerous brain regions across a wide range of fre-
quency bands.

One notable observation is the concentration of
gamma and delta activity at the right frontal electrodes,
that might be linked to the activity of the right anterior
insula (rAI) node of the SN. This node is particularly
important for task-linked switching between the CEN
and DMN, and is well connected with other frontal,
parietal and temporal brain regions [47, 25, 24].

Taken together, the identified EEG feature set cap-
tures critical spatio-temporal characteristics of the CEN,
DMN and SN, that is consistent with their functional
roles and previously observed dynamics.

3. Discussion

In this study, we used cutting-edge machine learning
methods to classify and track the activity of three ma-
jor ICNs using EEG data, which was previously only
possible using fMRI data. We focused on three core
ICNs within Menon’s tri-network model [23] - the CEN,
DMN and SN, given their relevance in characterizing
a wide range of psychopathologies. FMRI studies in-
dicate that these intrinsic networks are dysregulated in
psychopathologies including PTSD, and can even be
used to predict patients’ PTSD subtype [30]. Moreover,
characterizing ICN dynamics has the potential to track
response to treatments and inform individualized treat-
ment planning decisions. However, despite its potential

as a clinical assessment tool, probing ICN dynamics us-
ing fMRI is prohibitively expensive. Other barriers to
routine clinicial use of fMRI in psychiatric disorders in-
clude the distress caused by the confined enclosure and
loud sounds made by the scanner, both of which can
be triggering for those with PTSD. EEG, by compari-
son, is much more affordable, relatively portable, and
does not carry with it the risk of claustrophobia- and
noise-related distress. Therefore, the potential to moni-
tor brain networks using EEG, as afforded by the present
study, can greatly improve the clinical accessibility of
ICN-based assessment.

To accomplish this, we used fMRI-derived ICN labels
to select relevant features from simultaneously-acquired
EEG data and classified the active ICNs using EEG data
alone. Three distinct classification scenarios were ex-
plored, providing investigators with three levels of per-
formance, depending on the type of data available to
them. The first scenario involves applying the gener-
alized model trained on our dataset to EEG data from
other participants to predict the active ICN. The second
scenario extends this approach by additionally apply-
ing semi-supervised learning to train a custom classi-
fier for each participant, improving classification accu-
racy by 5% to 15%. These two approaches represent
the most significant contribution of this work, allowing
investigators to probe ICN activity using the proposed
methods with EEG data from their participants. Lastly,
the third scenario demonstrates that higher classification
accuracy is achievable by fully-supervised learning, if
the investigator has access to simultaneously acquired
EEG-fMRI data from their participants.

It is important to note that the performance of the
classifiers in the three scenarios was not significantly
different between the two cohorts (p=0.6), demonstrat-
ing that our methods can be used to discriminate be-
tween the activity of the CEN, DMN and SN, across a
wide range of cognitive tasks.

This study also investigated the EEG features con-
tributing to the detection of each ICN, identifying EEG
signatures that uniquely characterize the CEN, DMN
and SN. Interestingly, the data-driven approach used in
this study identified EEG signatures that aligned with
major findings in the literature.

Frontal theta band activity, found to be predictive
of both CEN and DMN activation in this study (Fig-
ure 4), has been implicated in both executive processes
(CEN functioning) and autobiographical memory en-
coding and retrieval processes (DMN functioning). In
the context of executive tasks, frontal theta is thought to
synchronize the pre-frontal cortex with a wide range of
other brain regions [14], signalling the need for cogni-
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Figure 3: The influence of the identified feature set in increasing the log-odds of each network class (CEN, DMN and SN). The contributions of
the five features across different frequency bands and channel pairs are shown in the top, middle and bottom rows respectively.
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Figure 4: The influence of the identified feature set in increasing the log-odds of each network class (CEN, DMN and SN), shown for the cross-
frequency features (SI and PAC).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.18.449078doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449078


tive control processes during periods of high risk and/or
high levels of uncertainty [4]. Doing so in a phase-
linked manner, it acts as an alarm signal for instanti-
ating cognitive control processes to better learn from
the higher error rates encountered during such scenar-
ios. Adaptations in theta band dynamics also assist
with optimizing this process, as observed with the re-
duction in peak theta frequency during higher cognitive
control loads. Simulated models show the slower theta
frequency increases the probability of success in more
difficult scenarios [40], better adapting to the task de-
mands. Given the diverse roles of theta band activity
and phase synchrony in executive tasks, it is not sur-
prising that it is highly predictive of CEN activity across
numerous executive tasks, as seen in Figure 4.

Theta band activity also plays a major role in the re-
trieval of autobiographical memories, increasing in am-
plitude during autobiographical memory recall [18]. It
also provides a mechanism for a vmPFC-linked schema
instantiation model, suggesting that the vmPFC mod-
ulates more posterior long-term memory representa-
tions [15]. Additionally, cross-frequency theta-gamma
coupling between medial temporal lobe (MTL) struc-
tures and cortical regions is critical for the recall of au-
tobiographical memories, and is disrupted in individ-
uals with severely deficient autobiographical memory
(SDAM) [13]. Our findings align broadly with this large
body of literature, with theta-gamma cross-frequency
coupling predicting DMN activity (see Figure 4), fur-
ther asserting that the trained classifiers identified crit-
ical EEG features that represent processes inherent to
each ICN.

Interestingly, cross-frequency coupling between
delta, alpha and gamma bands was found to be predic-
tive of SN activity, with the gamma and delta bands be-
ing concentrated at the right frontal electrodes (see Fig-
ure 4i). Combined with the predominantly right later-
alization of theta-gamma cross-frequency coupling in-
dicative of DMN activity (see Figure 4h), our results
point towards a broadband salience hub anchored close
to the right frontal region, which is also active during
DMN-linked tasks such as autobiographical memory re-
call and spatial navigation. This pattern of activity is
consistent with activation of the right anterior insula
(rAI), a major hub of the salience network [25]. In the
context of the tri-network model, the SN is thought to
control the switch between the CEN and DMN, and is
found to co-activate with the task-appropriate network
during the task used in Cohort A [44]. As such, across
a wider range of tasks, this node might need to synchro-
nize with numerous brain regions across a wide range
of frequencies, as seen in the cross-frequency results of

Figure 4i.
In sum, the data-driven analysis pipeline used in this

study identified EEG features that captured the core os-
cillatory dynamics of critical CEN, DMN and SN func-
tions. Furthermore, the classification results demon-
strate the collective utility of these salient features in
discriminating between CEN, DMN and SN activity.

While this study focused on the three major ICNs
within the tri-network model, the discussed approach
is equally applicable to identifying unique EEG signa-
tures of other fMRI-derived ICNs, such as ventral and
dorsal attention networks (VAN/DAN), somato-sensory
networks and the motor network [52, 45]. This opens
up the possibility of using EEG to detect the ICN dy-
namics of any fMRI-derived ICNs, greatly improving
the accessibility of such measures. To this end, the code
developed for this analysis pipeline, along with a pre-
trained generalized classifier, is available for download
from github.com/saurabhshaw/EEGnet.

The approach used in this study estimated ICN fea-
tures using connectivity measures of electrode-level
activity, rather than the traditionally used, and much
more computationally complex, source-localization
techniques. This permitted the exploration of a mas-
sive (4M-dimensional) feature space to find optimal fea-
tures predictive of ICN activity. Unfortunately, when
working with features in electrode space (rather than
source space), there is the problem of volume conduc-
tion, which distorts the neural signal measured at each
electrode. To mitigate this, phase-based functional con-
nectivity measures such as phase lag index (PLI) and di-
rected phase lag index (dPLI) were included in the fea-
ture space, given their immunity to volume conduction-
based distortions [19].

Furthermore, staying in electrode-space, rather than
transforming the data to source space, also reduced the
computational time required to extract relevant features
and predict the predominantly active ICN of a new EEG
window. Further algorithmic optimizations were made
to parallelize the computation of these features, allow-
ing the use of massively parallel super-computing clus-
ters to accelerate these computations. Future work can
use this ability to make rapid predictions of ICN activ-
ity to develop novel network-based neurofeedback in-
terventions to directly target the network dysfunction
observed in numerous psychopathologies.

In conclusion, this paper takes an important step to-
wards enabling EEG-based investigation of ICN dy-
namics, greatly increasing the accessibility of such mea-
sures in scenarios where fMRI-based ICN assessment
might not be practical or economically feasible. This
is particularly relevant for studying and characterizing
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complex psychopathologies such as PTSD, with various
disease subtypes that require drastically different treat-
ment plans. For example, the DMN is erroneously re-
cruited instead of the CEN during working memory in
PTSD patients [8], and the pattern of resting state ICN
activity can be predictive of the dissociative PTSD sub-
type [30]. Hence, identifying the pattern of disrupted
ICN switching dynamics can greatly help in charac-
terizing the patients’ psychopathology and inform their
treatment plans. This study makes it clinically feasible
to do so by successfully applying cutting-edge machine
learning techniques, such as semi-supervised learning,
to create an analysis pipeline capable of detecting ICN
activation using EEG data alone with high accuracy.

4. Methods

In this study, we developed a purely EEG-based
model capable of classifying and tracking ICNs, tradi-
tionally investigated using fMRI. To accomplish this,
we used simultaneously acquired EEG-fMRI data to
identify an optimal EEG-based feature set that could
predict the fMRI-derived ICN activation. To maximize
the ability of our model to predict ICN activity across
a wide range of cognitive tasks, we collected simulta-
neous EEG-fMRI data from two cohorts of participants
that engaged in two different task-switching paradigms,
as shown in Figure 1A and B.

4.1. Cohort A Task

The first cohort consisted of 14 participants that dy-
namically switched between a 2-back working memory
(WM) task and an autobiographical memory (ABM) re-
trieval task, designed to activate the CEN, DMN respec-
tively, and at task-switching points,to activate the SN.

Prior to scanning, each participant recorded up to 10
positive or neutral autobiographical memories in vivid
detail, as well as descriptive words corresponding to
each memory, that would serve as retrieval cues during
the ABM task. Following this, they completed a 1 hour
20 min long memory assessment in the MRI scanner,
comprised of randomly ordered 30-second blocks of ei-
ther cued autobiographical memory retrieval or a 2-back
working memory task. Each ABM block included 10
cues pertaining to one of the previously recorded mem-
ories, while each WM block included a sequence of
10 to-be-remembered, commonly used English words,
each shown for 2 seconds. The participants were in-
structed to recall the cued memory shown during the
ABM blocks, and to remember the word shown two
words ago during WM blocks. To assess whether the

participant was staying on task, at random points within
each block, they were asked to perform a 4-alternative
forced choice (4-AFC) trial. During ABM blocks, the
4-AFC trial required the participant to select, from four
displayed words, the one representing the memory they
were currently recalling from a selection of four words.
During WM blocks, the 4-AFC trial required the par-
ticipant to choose, from four displayed words, the one
they saw two words ago. Each pending task switch was
cued with 2-second trial showing either Word Memory
or Autobiographical Memory, representing an upcom-
ing WM block or ABM block respectively. Each run
of sixteen blocks was followed by a 60 second rest pe-
riod. Participants completed as many 16-block runs as
possible within 80 minutes, up to a maximum of 4 runs
(64 blocks - 32 ABM, 32 WM). The two distinct block
types (ABM and WM) were predicted to activate the
DMN and CEN respectively, while the cue to a pend-
ing task switch between blocks was expected to activate
the SN. Shaw et al. [44] reports the activation dynamics
of the DMN, CEN and SN observed during this study,
using fMRI data alone.

4.2. Cohort B Task

The second cohort consisted of 12 participants that
dynamically switched between 7 different tasks. Each
participant performed a total of 18 trials of each of the
following 7 tasks. This was split into three runs of 6
trials of each of the 7 different task types (42 trials/run),
ensuring that trials of the same task type were not re-
peated more than twice in a row. Each trial began with
a pre-recorded, single-word auditory cue indicating the
type of the upcoming trial to the participant, followed by
a 16-second imagery period. The participant was shown
a fixation cross at the center of the screen during this im-
agery period to avoid any eye movements.

1. Sport-related motor imagery Participants were
asked to imagine intensely performing a sport or
full-body activity (e.g., dancing, jumping jacks) of
their choice. Additionally, they were instructed to
focus on the kinesthetic and somatosensory aspects
of that activity rather than on visual aspects.

2. Navigation imagery Participants were asked to
imagine navigating around their home from room
to room, paying attention to all aspects of the
room (e.g., placement of furniture, decor, objects
in room).

3. Music imagery Participants were asked to imagine
listening to a familiar song of their choice through
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headphones, while concentrating on all aspects of
the song (e.g. the melody, instrumentation).

4. Mental arithmetic Participants were asked to
count backwards by threes from a random 3-digit
number of their choice. They were instructed to
choose a different 3-digit number for each trial.

5. Finger tapping imagery Participants were asked
to imagine pushing a button with each of the fin-
gers of the right hand in succession, repeatedly, fo-
cusing on the somatosensory and kinesthetic rather
than visual aspects of the imagery.

6. Running imagery Similar to the sport imagery
condition, the participants were instructed to imag-
ine only running, while attending to the kinesthetic
and somatosensory aspects of the imagery.

7. Rest Participants were asked to clear their mind
and think of nothing in particular.

Of these seven tasks, only two tasks were expected to
maximally activate the DMN, i.e. navigation imagery
and rest. The rest of the tasks were expected to activate
a combination of attention and somatosensory ICNs that
would work in tandem to successfully perform the rel-
evant imagery. Other results exploring the strength of
mental imagery in this dataset have been previously re-
ported in Harrison et al. [16].

4.3. Data acquisition

Data acquisition for both cohorts was performed at
the same site, using the same EEG system and MRI ma-
chine.

All EEG data were acquired using a BrainProducts
(Brain Products GmbH, Gilching, Germany) 64 channel
MR compatible EEG cap, at a sampling rate of 5000Hz.
The electrode locations followed the extended interna-
tional 10-20 system of electrode placement, with the
reference at FCz and the ground at AFz. The impedance
of each electrode was kept below 10kΩ. The physi-
cal setup used for this acquisition is further described
in Shaw [42].

All MRI data were acquired using a GE Discovery
MR750 3T MRI scanner and an 8 channel RF coil (Gen-
eral Electric Healthcare, Milwaukee, WI). A high reso-
lution anatomical scan was acquired for each participant
using an IR prepped axial 3D FSPGR sequence (Cohort
A: TI/TR/TE=450/7.7/2.2ms, 12◦ flip angle, 240mm
FOV, 2mm-thick slices of size 320 x 192, interpolated to
512 x 512; Cohort B: TI/TR/TE=900/10.312/3.22ms, 9◦

flip angle, 240 x 180mm FOV, 1mm-thick slices of size

512 x 248, interpolated to 512 x 512). These individual-
ized anatomical scans were used to prescribe the fMRI
scans, acquired using a 2D GRE EPI sequence (Cohort
A: TR/TE=2000/35ms, 90◦ flip angle, 240mm FOV,
3.8mm-thick slices of size 64 x 64, 39 slices/volume
interleaved, 300 volumes per functional run; Cohort B:
TR/TE=3200/35ms, 90◦ flip angle, 240mm FOV, 4mm-
thick slices of size 64 x 64, 40 slices/volume inter-
leaved, 214 volumes per functional run).

4.4. Pre-processing
4.4.1. fMRI pre-processing

All MRI pre-processing steps were performed using
SPM12 and the CONN toolbox [58]. The fMRI scans
were first realigned and unwarped, followed by motion
correction, performed by adding the participant’s esti-
mated motion (6 DOF) as a first-level covariate in a de-
noising general linear model (GLM). This was followed
by frequency-domain phase shift slice timing correction
(STC), and ART-based identification of outlier scans to
be scrubbed. The functional scans were then normalized
to the MNI152 atlas by aligning them to each partic-
ipant’s MNI-aligned anatomical scan, followed by seg-
mentation of the functional scans to remove skull, white
matter and cerebral spinal fluid (CSF). Spatial smooth-
ing was applied by convolving the BOLD signal with
a 2mm Gaussian kernel. Finally, the BOLD data was
band-pass filtered between 0.008Hz−0.09Hz.

4.4.2. EEG pre-processing
The gradient artefact (GA) in the EEG data, collected

concurrently with the fMRI data, was filtered using a
parallel optimized version of the FASTR gradient arte-
fact removal toolbox Shaw [42], which relies on the
GA template subtraction algorithm [1]. This was fol-
lowed by the detection of the QRS complex using data
from the ECG lead, which was then used to filter the
ballistocardiogram (BCG) using optimal basis set filter-
ing (OBS). The artefact-free EEG data were then down-
sampled from 5000Hz to 500Hz, followed by temporal
band-pass filtering into six different frequency bands -
full (1-50Hz), delta (1-4Hz), theta (4-8Hz), alpha (8-
13Hz), beta (13-30Hz), and gamma (30-50Hz). All
temporal filtering was performed twice, once in the for-
ward, and once in the reverse direction for zero phase
lag using a 12-order Butterworth IIR filter. Bad chan-
nels were then detected and removed based on their
spectral characteristics, followed by an ICA decomposi-
tion using the FAST-ICA algorithm implemented within
EEGLAB [9]. The EEG components representing ocu-
lar artefacts, eye blinks and muscle artefacts were de-
tected and removed using the automated ICLabel tool.
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Finally, the EEG data were referenced to average EEG
channel data, after which the previously removed bad
channels were interpolated using spherical interpola-
tion. The bad channels were only interpolated if the
number of bad channels was less than 5% of the to-
tal number of channels, while also ensuring no two bad
channels were neighbours.

4.5. Feature Extraction
4.5.1. FMRI Independent Component Analysis (ICA)

A group independent component analysis (group-
ICA) [3] was performed on the denoised fMRI voxel-
level data using the iterative FastICA algorithm. This
analysis identified 20 mutually independent spatio-
temporal patterns of activity, known to represent ICNs.
The spatial overlaps (Dice coefficients) of the group-
ICA components with known ICNs[45] were used to
label the ICA components, identifying the components
that corresponded to CEN, DMN or SN sub-networks,
as shown in Figure 1C.iii. These group-level ICA com-
ponents were then back-projected to individual partici-
pants’ data using GICA back-projection [11], to obtain
the activity timeseries of each ICA component. The ac-
tivity of the CEN, DMN and SN networks were identi-
fied by averaging the activity of their constituent sub-
networks. Using a sliding-window method, the time
courses were segmented into overlapping windows of
length 10 seconds (5 TRs) for cohort A and 9.6 sec-
onds (3 TRs) for cohort B. Using a time step of 1 fMRI
time point, the time series were segmented into 1184
windows for each participant in cohort A and 636 win-
dows for each participant in cohort B. Each window was
labeled with the most active ICN by first thresholding
the activity at 70%, followed by comparing the activ-
ity of the CEN, DMN and SN during that time period
to pick the ICN with the highest activity (shown in Fig-
ure 1C.v). These labels were used as the “ground-truth”
labels of the ICN activity for all subsequent analyses.

4.5.2. EEG Feature Extraction
A large battery of functional connectivity features

(>40 million) were extracted from the EEG data corre-
sponding to each fMRI window. These included single-
frequency features representing connectivity between
two channels within the same frequency band: coher-
ence (COH), phase lag index (PLI) and directed phase
lag index (dPLI); and cross-channel cross-frequency
coupling features representing connectivity between
two channels, across two different frequency bands: the
synchronization index (SI) and phase-amplitude cou-
pling (PAC). Each single-frequency feature was com-
puted for each of the 6 frequency bands (full band, delta,

theta, alpha, beta, gamma) described above, and each
cross-frequency feature was computed for all possible
pairs of the 6 frequency bands. Each fMRI window was
further divided into 99 windows of width 200ms, which
were used to estimate the features, described in more
detail below.

Coherence (COH). represents the synchrony between
two channels by comparing their power spectral densi-
ties [59], and is computed as follows

COHxy =
Pxy√

PxxPyy
(1)

where Pxx and Pyy are the power spectral densi-
ties (PSD) of two channels x and y, and Pxy is
the cross-spectral density (Fourier Transform of cross-
correlation) of the signals x and y. COHxy values range
between 0 and 1, with 0 representing no coherence be-
tween the two signals and 1 representing perfect coher-
ence. Since the power spectral densities are heavily de-
pendent on the signals’ amplitudes, COH is sensitive to
volume conduction effects.

Phase Lag Index (PLI). is another measure of func-
tional connectivity that addresses the susceptibility
of COH-based measures to volume conduction ef-
fects. PLI estimates the functional connectivity be-
tween two channels (x and y), by estimating the phase-
synchronization between them. This relies on the as-
sumption that two channels are functionally connected
if there is a consistent phase delay in the signals com-
ing from the two channels. This is defined in terms
of their cross-spectrum, given by Cxy = H(x) · H(y)∗,
where H(·) represents the Hilbert transform and ∗ rep-
resents the complex conjugate. The PLI is then de-
fined as PLIxy = |〈sgn(Im(Cxy))〉|, where Im(Cxy) is the
imaginary part of the cross-spectrum (Cxy), sgn(·) is the
“sign” operator, and 〈·〉 is the expected value operator. It
is important to note that Im(Cxy) is equivalent to ∆φxy-
based definition in Stam et al. [50]. To minimize spu-
rious noise, we used the weighted PLI variant in this
study [54], where the sgn(Im(Cxy)) is weighted by the
imaginary component of the cross-spectrum (|Im(Cxy)|),
as given in Equation 2.

PLIxy =
|〈|Im(Cxy)| · sgn(Im(Cxy))〉|

〈|Im(Cxy)|〉
(2)

PLI values lie between 0 and 1, with 0 representing
no consistent phase synchrony between channels x and
y, and 1 representing perfect phase-locking. To mini-
mize spurious PLI values, every PLI estimate was com-
pared against its surrogate, estimated by the PLI of the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.18.449078doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449078


signals spliced at random time points. Only those PLI
values that were significantly different from their surro-
gates were accepted.

Directed Phase Lag Index (dPLI). is a variant of PLI
that retains information on phase directionality [49].
This relies on the assumption that lagging signals occur
downstream from leading signals, establishing a direc-
tional link going from the leading channel to the lagging
channel. Equation 3 was used to compute the dPLI for
signals from two channels, x and y, of length N.

dPLIxy =
1
N

N∑
t=1

H(∆φxy(t)) (3)

where ∆φxy(t) = φx(t) − φy(t) is the difference in phases
of the two signals, and H(·) is the Heaviside step func-
tion. The value of dPLIxy represents the direction of
functional connectivity, with 0.5 < dPLIxy ≤ 1 repre-
senting x leading y (x → y), and 0 ≤ dPLIxy < 0.5
representing x lagging y (y → x). Given its similar-
ity, it is not suprising that PLI and dPLI are related:
PLIxy = 2|0.5 − dPLIxy|. Similar to PLI estimates, only
the dPLI estimates significantly different from its surro-
gates were retained.

Phase Amplitude Coupling (PAC). is a measure of
phase-amplitude cross-frequency coupling between two
channels, specifically probing the impact of the phase
of the signal in the lower frequency band on the ampli-
tude of the signal in the higher frequency band. Among
the several methods of estimating PAC, the modulation
index (MI) approach was used due to its superior perfor-
mance [53]. This approach estimates the PAC between
two channels x and y, between two frequency bands fA

and fB ( fA < fB) using the following steps:

1. Filter the x and y channel data into the respective
frequency bands, creating x fA and y fB .

2. Extract the phase time series of the lower fre-
quency signal using: φX fA

= phase(H(x fA )), and
the amplitude time series of the higher frequency
signal using: AY fB

= amplitude(H(y fB )), where
H(·) is the Hilbert transform.

3. Bin the lower frequency phases in φX fA
into N bins:

φX fA , j ∀ j = 1, 2, ...,N, and find the mean higher fre-
quency amplitudes for each phase bin j, denoted
by 〈AY fB , j〉φX fA

, j . This amplitude distribution is nor-
malized by its sum over all bins, as follows

Pxy( j) =
〈AY fB , j〉φX fA

, j∑N
k=1〈AY fB ,k〉φX fA

,k

(4)

In the case of no PAC, the amplitude distribution
Pxy( j) is expected to be flat (uniform distribution)
since the higher frequency amplitudes will not vary
with the lower frequency phase. N = 20 was used
for estimating the amplitude distribution.

4. The phase amplitude coupling is then estimated as
the Kullback-Liebler (KL) divergence (DKL(·)) be-
tween the observed amplitude distribution Pxy( j)
and the uniform distribution U, normalized by the
maximal possible entropy value (occurs for the
uniform distribution).

PACxy =
DKL(Pxy,U)

log(N)
(5)

This procedure was repeated for each channel-
frequency band pair. Each PAC estimate was retained
only if it was significantly different from its surrogate,
estimated in a manner similar to the PLI and dPLI mea-
sures.

Synchronization Index (SI). is another measure of
cross-frequency coupling between two channels, prob-
ing the impact of the phase of the signal in the lower
frequency band on the phase of the power time series of
the signal in the higher frequency band [6]. The follow-
ing steps were followed to estimate the SI between two
channels x and y, between two frequency bands fA and
fB ( fA < fB).

1. Filter the x and y channel data into the higher fre-
quency band, creating y fB .

2. Extract the power time series of the signal in the
higher frequency band using: PY fB

= ‖H(y fB )‖2,
where H(·) is the Hilbert transform. To iden-
tify rhythmic fluctuations in this power time series
at the lower frequency, compute the FFT of PY fB

within the lower frequency band ( fA). The peak
in this FFT ( fAB = peak(F (PY fB

))) is the synchro-
nization frequency within fA, which is then used
to fine tune the bounds of fA. The revised lower
frequency band f̃A is defined by picking a window
around the empirically identified synchronization
frequency ( fAB), using f̃A = [( fAB − 3) ( fAB + 3)].

3. Extract the phase time series of the signal within
this revised lower frequency band ( f̃A) using:
φX fA

= phase(H(x fA )), and the phase time series
of the higher frequency band power time series us-
ing: φY fB

= phase(H(PY fB
)).
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4. The synchronization index is then calculated using
Equation 6

S Ixy =
∣∣∣∣ 1
N
·

N∑
t=1

ei · [φX fA
(t) − φY fB

(t)]
∣∣∣∣ (6)

This procedure was repeated for each channel-
frequency band pair. Each SI estimate was retained only
if it was significantly different from its surrogate, esti-
mated in a manner similar to the PAC, PLI and dPLI
measures.

4.6. Feature selection

The feature set was reduced from > 40million fea-
tures to 5000 features by using a hierarchical version of
the popular minimum redundancy maximum relevance
(mRMR) feature selection algorithm. mRMR mini-
mizes the mutual information between features while
maximizing the mutual information between the fea-
tures and the class labels [33]. The hierarchical mRMR
consisted of repeatedly applying mRMR to identify the
top 1000 features at the channel level, followed by se-
lection of the top 1000 features at the frequency band
level, followed by selection of the top 1000 features
at the window level. This resulted in 1000 top fea-
tures for each of the five feature types described above,
which were then concatenated to create the final 5000-
dimensional feature set used for classification. This pro-
cess is illustrated in Figure 1C.vi.

4.7. Classification

A multi-class support vector machine was trained
on the three-way classification task of predicting the
most active ICN during each fMRI window, using only
the 5000-dimensional EEG feature set identified in sec-
tion 4.6. Three classifiers were trained for each partici-
pant using the identified feature set: a generalized clas-
sifier, a semi-supervised individualized classifier and a
fully-supervised individualized classifier. The general-
ized classifier was trained using data from all partici-
pants, except the participant being tested (leave-one-out
cross validation), followed by prediction of the class la-
bels of the test-participant. The semi-supervised indi-
vidualized classifier used the highly confident label pre-
dictions as “expert” labels, while leaving the rest of the
time windows unlabelled to select a participant-specific
feature set, and use it to classify the unlabelled time
points. Finally, the fully-supervised individualized clas-
sifier was trained on a subset of the data from the same
participant being tested, ensuring that the training set
and test set did not contain overlapping windows. A

75/25 train/test split was used with 20-fold cross valida-
tion for testing the performance of this classifier.
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