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Abstract 1 

Quantification of the magnitude of covariation plays a major role in the studies of phenotypic 2 

integration, for which statistics based on dispersion of eigenvalues of a covariance or 3 

correlation matrix—eigenvalue dispersion indices—are commonly used. However, their use 4 

has been hindered by a lack of clear understandings on their statistical meaning and sampling 5 

properties such as the magnitude of sampling bias and error. This study remedies these issues 6 

by investigating properties of these statistics with both analytic and simulation-based 7 

approaches. The relative eigenvalue variance of a covariance matrix is known in the 8 

statistical literature as a test statistic for sphericity, thus is an appropriate measure of 9 

eccentricity of variation. The same of a correlation matrix is exactly equal to the average 10 

squared correlation, thus is a clear measure of overall integration. Exact and approximate 11 

expressions for the mean and variance of these statistics are analytically derived for the null 12 

and arbitrary conditions under multivariate normality, clarifying the effects of sample size N, 13 

number of variables p, and parameters on the sampling bias and error. Accuracy of the 14 

approximate expressions are evaluated with simulations, confirming that most of them work 15 

reasonably well with a moderate sample size (N ≥ 16–64). Importantly, sampling properties 16 

of these indices are not adversely affected by high p:N ratio, promising their utility in high-17 

dimensional phenotypic analyses. These statistics can potentially be applied to shape 18 

variables and phylogenetically structured data, for which necessary assumptions and 19 

modifications are presented. 20 

Keywords: covariance matrix; evolutionary constraint; morphometrics; phenotypic 21 

integration; quantitative genetics; Wishart distribution. 22 
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Introduction 24 

Analysis of trait covariation plays a central role in investigations into evolution of 25 

quantitative traits. The well-known quantitative genetic theory of correlated traits predicts 26 

that evolutionary response in a population under selection is dictated by the additive genetic 27 

covariance matrix G as well as the selection gradient (Lande, 1979; Lande & Arnold, 1983). 28 

Short-term evolutionary changes of a population are expected to be concentrated in major 29 

axes of the G matrix (Schluter, 1996). Arguably, the structure of the G matrix can be 30 

approximated by that of the phenotypic covariance matrix for certain types of traits 31 

(Cheverud, 1988, 1996; Roff, 1995; Dochtermann, 2011; Sodini et al., 2018), so the latter 32 

could potentially be analyzed when accurate estimation of the G matrix is not feasible. These 33 

theories and conjectures spurred extensive theoretical and empirical explorations on character 34 

covariation as an evolutionary constraint (e.g., Steppan et al., 2002; Chenoweth et al., 2010; 35 

Hansen et al., 2019 and references therein). Partly fueled by these developments, the study of 36 

phenotypic integration has developed as an active field of research, where various aspects of 37 

character covariation are investigated with diverse motivations and scopes (e.g., Olson & 38 

Miller, 1958; Cheverud, 1982; Goswami, 2006; Hallgrímsson et al., 2009; Armbruster et al., 39 

2014; Felice et al., 2018). In the latter context, many different levels of organismal variation 40 

can be subjects of research, such as static, ontogenetic, and evolutionary levels (Klingenberg, 41 

2014). For example, relationships between within-population integration and evolutionary 42 

rate and/or trajectories have attained much attention as potential links between micro- and 43 

macroevolutionary phenomena (e.g., Klingenberg et al., 2012; Renaud & Auffray, 2013; 44 

Goswami et al., 2015; Haber, 2015, 2016). 45 

An obvious target of investigation in these contexts is quantitative analysis of 46 

magnitude of constraint or integration entailed in covariance structures. In particular, this 47 

paper concerns methodology for quantifying the overall magnitude of covariation within a set 48 
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of traits. Quantification of relative (in)dependence between multiple sets of traits—the 49 

modularity–integration spectrum—is another major way of studying integration which has 50 

separate methodological frameworks (e.g., Goswami & Polly, 2010; Adams, 2016; Goswami 51 

& Finarelli, 2016; Adams & Collyer, 2019a). Demonstrating the presence of integration with 52 

a statistically justified measure can be the scope of an empirical analysis, sometimes as a part 53 

of testing combined hypotheses (e.g., Brommer, 2014; Watanabe, 2018). A univariate 54 

summary statistic for magnitude of integration can conveniently be used in comparative 55 

analyses across developmental stages, populations, or phylogeny (e.g., Marroig et al., 2009; 56 

Porto et al., 2009; Haber, 2016). A plethora of statistics have been proposed for such 57 

purposes from various standpoints (e.g., Van Valen, 1974, 2005; Cheverud et al., 1983, 1989; 58 

Wagner, 1984; Cane, 1993; Hansen & Houle, 2008; Agrawal & Stinchcombe, 2009; 59 

Kirkpatrick, 2009; Pavlicev et al., 2009; Armbruster et al., 2009, 2014; Haber, 2011; Pitchers 60 

et al., 2014). One of the most popular class of such statistics is based on the dispersion of 61 

eigenvalues of a covariance or correlation matrix. These statistics have the forms 62 

𝑉𝑉 =
1
𝑝𝑝
��λ𝑖𝑖 −  λ��

2
𝑝𝑝

𝑖𝑖=1

, 70 

𝑉𝑉rel =
∑ �λ𝑖𝑖 −  λ��

2𝑝𝑝
𝑖𝑖=1

𝑝𝑝(𝑝𝑝 − 1) λ�2
, 71 

where 𝑝𝑝 is the number of variables (traits), λ𝑖𝑖 is the 𝑖𝑖th eigenvalue of the covariance or 63 

correlation matrix under analysis, and λ� is the average of the eigenvalues. Here, 𝑉𝑉 is the most 64 

naïve form of eigenvalue dispersion, and 𝑉𝑉rel is a scaled version which ranges between 0 and 65 

1. Formal definitions are given below with distinction between population and sample 66 

quantities. Some authors use square root or a constant multiple of these forms, but such 67 

variants essentially bear identical information when calculated from the same matrix. 68 

Alternative terms for this class of statistics include the tightness (for 𝑉𝑉rel; Van Valen, 1974; 69 
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later used for �𝑉𝑉rel by Van Valen, 2005), integration coefficient of variation (for 72 

�(𝑝𝑝 − 1)𝑉𝑉rel; Shirai & Marroig, 2010), and phenotypic integration index (for 𝑉𝑉; Torices & 73 

Muñoz-Pajares, 2015). In this paper, 𝑉𝑉 and 𝑉𝑉rel.are called the eigenvalue variance and 74 

relative eigenvalue variance, respectively, to take a balance between brevity and 75 

descriptiveness. These quantities are not to be confused with the sampling variance 76 

associated with eigenvalues in a sample (see below). 77 

Since eigenvalues of a covariance or correlation matrix correspond to the variance 78 

along the corresponding eigenvectors (principal components), these statistics are supposed to 79 

represent eccentricity of variation across directions in a trait space (Fig. 1; Wagner, 1984). 80 

Cheverud et al. (1983) and Wagner (1984) were the first to propose using 𝑉𝑉 of a correlation 81 

matrix for quantifying magnitude of integration. Pavlicev et al. (2009) devised 𝑉𝑉rel of a 82 

correlation matrix, and explored its relationships to correlation structures in certain 83 

biologically relevant conditions. Haber (2011) pointed out similarity between these indices 84 

and Van Valen’s (1974) tightness index for a covariance matrix, and proposed that these 85 

indices can be applied to either covariance or correlation matrices with slightly different 86 

interpretations. Eigenvalue dispersion indices are frequently used in empirical analyses of 87 

phenotypic integration at various levels of organismal variation, from phenotypic covariance 88 

at the population level to evolutionary covariance at the interspecific level (e.g., Ordano et 89 

al., 2008; Torices & Mendez, 2014; Haber, 2016; Haber & Dworkin, 2017; Watanabe, 2018; 90 

Arlegi et al., 2020). However, use of these indices has been criticized for a lack of clear 91 

statistical justifications; it has not been known—or not widely appreciated by biologists—92 

exactly what they are designed to measure, beyond the intuitive allusion to eccentricity 93 

mentioned above (Hansen & Houle, 2008; Hansen et al., 2019). 94 

Another fundamental issue over the eigenvalue dispersion indices is a virtual lack of 95 

systematic understanding of their sampling properties. In empirical analyses, eigenvalue 96 
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dispersion indices are calculated from sample covariance or correlation matrices, but interests 97 

will be in making inferences for the underlying populations. For example, interest may be in 98 

detecting the presence of bias in a population, i.e., testing the null hypothesis of sphericity 99 

(no eccentricity). As detailed below, however, sample eigenvalues are always estimated with 100 

error, so that 𝑉𝑉 and 𝑉𝑉rel calculated from them take a positive value, even if the corresponding 101 

population values are 0. In other words, empirical eigenvalue dispersion indices are biased 102 

estimators of the corresponding population values under the null hypothesis. For statistically 103 

justified inferences, it is crucial to capture essential aspects of their sampling distributions, 104 

e.g., expectation and variance. 105 

The presence of estimation or sampling bias in eigenvalue dispersion indices has been 106 

well known in the literature (Wagner, 1984; Cheverud et al., 1989; Grabowski & Porto, 2017; 107 

see also Marroig et al., 2012). Simulation-based approaches have been taken to sketch 108 

sampling distributions of eigenvalue dispersion indices and related statistics (Haber, 2011; 109 

Grabowski & Porto, 2017; Machado et al., 2019; Jung et al. 2020). However, these 110 

approaches hardly give any systematic insight beyond the specific conditions considered. 111 

Analytic results should preferably be sought to comprehend the sampling bias and error. In 112 

this regard, it is notable that Wagner (1984) derived the first two moments of eigenvalues of 113 

sample covariance and correlation matrices under the null conditions, proposing to use the 114 

variance of sample eigenvalues obtained from these moments as an estimate of sampling bias 115 

in these conditions. Strictly speaking, however, the variance of a sample eigenvalue is 116 

fundamentally different from the expectation of the eigenvalue variance 𝑉𝑉. These quantities 117 

are identical for correlation matrices under the null hypothesis, but this is not the case for 118 

covariance matrices where the covariances between sample eigenvalues cannot be ignored 119 

(see below). Furthermore, Wagner’s (1984) results have a few restrictive conditions: 120 

variables to have the means of 0, or equivalently, to be centered at the population mean rather 121 
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than the sample mean as is done in most empirical analyses (although this was probably 122 

appropriate in the strict context of his theoretical model); and the sample size 𝑁𝑁 to be equal to 123 

or larger than the number of variables 𝑝𝑝, so their applicability to 𝑝𝑝 > 𝑁𝑁 conditions has not 124 

been demonstrated. 125 

In addition to the naïve null condition of no integration, moments under arbitrary 126 

conditions are also desired. Such would be useful in testing hypotheses about the magnitude 127 

(rather than the mere presence/absence) of integration (Harder, 2009; Fornoni et al., 2009) 128 

and comparing the magnitudes between different samples (Cheverud et al., 1989). Also, the 129 

assumption of no covariation is intrinsically inappropriate as a null hypothesis for shape 130 

variables where raw data are transformed in such a way that individual “variables” are 131 

necessarily dependent on one another (e.g., Mitteroecker et al., 2012). For this type of data, a 132 

covariance matrix with an appropriate structure needs to be specified as the null model 133 

representing the intrinsic covariation. 134 

This paper addresses the issues over the eigenvalue dispersion indices mentioned 135 

above. It first gives a theoretical overview of these statistics to clarify their statistical 136 

justifications, particularly in connection to the sphericity test in multivariate analysis. Then 137 

exact and approximate expressions are analytically derived for the expectation and variance 138 

of 𝑉𝑉 and 𝑉𝑉rel of sample covariance and correlation matrices under the null and arbitrary 139 

conditions, assuming the multivariate normality of original variables. These expressions are 140 

derived without any assumption on p or N, except for the variance of 𝑉𝑉 and 𝑉𝑉rel of a 141 

correlation matrix under arbitrary conditions, which is based on a strict large-sample 142 

asymptotic theory. Simulations were subsequently conducted to obtain systematic insights 143 

into sampling properties and to evaluate the accuracy of the approximate expressions. 144 

Potential extensions into shape variables and phylogenetically structured data are briefly 145 

discussed. 146 
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 147 

Theory 148 

Preliminaries 149 

For the purpose here, the distinction between population and sample quantities is essential. 150 

Corresponding Greek and Latin letters are used as symbols for the former and latter, 151 

respectively. Let 𝚺𝚺 be the 𝑝𝑝 × 𝑝𝑝 population covariance matrix, whose (𝑖𝑖, 𝑗𝑗)-th component σ𝑖𝑖𝑖𝑖 152 

is the population variance (𝑖𝑖 = 𝑗𝑗) or covariance (𝑖𝑖 ≠ 𝑗𝑗). It is a symmetric, nonnegative 153 

definite matrix with the eigendecomposition 154 

 𝚺𝚺 = 𝚼𝚼𝚼𝚼𝚼𝚼𝑇𝑇, (1) 155 

where the superscript T denotes matrix transposition, 𝚼𝚼 is an orthogonal matrix of 156 

eigenvectors (𝚼𝚼𝚼𝚼𝑇𝑇 = 𝚼𝚼𝑇𝑇𝚼𝚼 = 𝐈𝐈𝑝𝑝 where 𝐈𝐈𝑝𝑝 is the 𝑝𝑝 × 𝑝𝑝 identity matrix), and 𝚼𝚼 is a diagonal 157 

matrix whose diagonal elements are the eigenvalues λ1, λ2, ..., λ𝑝𝑝 of 𝚺𝚺 (population 158 

eigenvalues). For convenience, the eigenvalues are arranged in the non-increasing order: 159 

λ1 ≥ λ2 ≥ ⋯  ≥ λ𝑝𝑝 ≥ 0. Let 𝛍𝛍 be the 𝑝𝑝 × 1 population mean vector. 160 

Let 𝐗𝐗 be an 𝑁𝑁 × 𝑝𝑝 observation matrix consisting of 𝑝𝑝-variate observations, which are 161 

individually denoted as 𝐱𝐱𝑖𝑖 (𝑝𝑝 × 1 vector; transposed in the rows of 𝐗𝐗). (No strict notational 162 

distinction is made between a random variable and its realization.) At this point, N 163 

observations are assumed to be identically and independently distributed (i.i.d.). The sample 164 

covariance matrix 𝐒𝐒 and cross-product matrix 𝐀𝐀 are defined as 165 

 𝐒𝐒 = 1
𝑛𝑛∗
𝐀𝐀 = 1

𝑛𝑛∗
(𝐗𝐗 − 𝟏𝟏𝑁𝑁𝐱𝐱�𝑇𝑇)𝑇𝑇(𝐗𝐗 − 𝟏𝟏𝑁𝑁𝐱𝐱�𝑇𝑇), (2) 166 

where 𝟏𝟏𝑁𝑁 is a 𝑁𝑁 × 1 column vector of 1’s, 𝐱𝐱� = ∑ 𝐱𝐱𝑖𝑖𝑁𝑁
𝑖𝑖=1 /𝑁𝑁 is the sample mean vector, and 𝑛𝑛∗ 167 

denotes an appropriate devisor; e.g., 𝑛𝑛∗ = 𝑁𝑁 − 1 for the ordinary unbiased estimator, and 168 

𝑛𝑛∗ = 𝑁𝑁 for the maximum likelihood estimator under the normal distribution. The (𝑖𝑖, 𝑗𝑗)-th 169 

component of 𝐒𝐒, denoted 𝑠𝑠𝑖𝑖𝑖𝑖, is the sample variance or covariance. The eigendecomposition 170 
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of S is constructed in the same way as above: 171 

 𝐒𝐒 = 𝐔𝐔𝐔𝐔𝐔𝐔𝑇𝑇, (3) 172 

where 𝐔𝐔 is an orthogonal matrix of sample eigenvectors and 𝐔𝐔 is a diagonal matrix whose 173 

elements are the sample eigenvalues 𝑙𝑙1, 𝑙𝑙2, ..., 𝑙𝑙𝑝𝑝. 174 

In what follows, the following identity entailed by the orthogonality of 𝐔𝐔 is frequently 175 

utilized: 176 

 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑟𝑟
𝑝𝑝
𝑖𝑖=1 = tr(𝐒𝐒𝑟𝑟) = tr(𝐔𝐔𝐔𝐔𝐔𝐔𝑇𝑇𝐔𝐔𝐔𝐔𝐔𝐔𝑇𝑇 …𝐔𝐔𝐔𝐔𝐔𝐔𝑇𝑇) = tr(𝐔𝐔𝑟𝑟) = ∑ 𝑙𝑙𝑖𝑖𝑟𝑟

𝑝𝑝
𝑖𝑖=1 , 𝑟𝑟 = 1, 2, …, (4) 177 

where tr(∙) denotes the matrix trace operator, i.e., summation of the diagonal elements; the 178 

parentheses are omitted for visual clarity when little ambiguity exists. The sum of variances 179 

tr 𝐒𝐒 = tr𝐔𝐔 is called total variance. Note that equation 4 holds even when 𝑛𝑛 < 𝑝𝑝, in which 180 

case 𝑙𝑙𝑖𝑖 = 0 for some 𝑖𝑖. In other words, when 𝑛𝑛 < 𝑝𝑝, the sample total variance is in a way 181 

concentrated in a subspace with fewer dimensions than the full space. 182 

The population and sample correlation matrices 𝚸𝚸 and 𝐑𝐑, whose (𝑖𝑖, 𝑗𝑗)-th components 183 

are the population and sample correlation coefficients ρ𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖, respectively, are obtained 184 

by standardizing 𝚺𝚺 and 𝐒𝐒: 185 

 𝚸𝚸 = diag�σ𝑖𝑖𝑖𝑖
−1/2� 𝚺𝚺diag�σ𝑖𝑖𝑖𝑖

−1/2�,  186 

 𝐑𝐑 = diag�𝑠𝑠𝑖𝑖𝑖𝑖
−1/2� 𝐒𝐒diag�𝑠𝑠𝑖𝑖𝑖𝑖

−1/2�, (5) 187 

where diag(∙) stands for the p × p diagonal matrix with the designated 𝑖𝑖th elements. Their 188 

eigendecomposition is defined as for covariance matrices, and the eigenvalues are denoted 189 

with the same symbols here. For any 𝑖𝑖, ρ𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 = 1, and hence, for correlation matrices 190 

 tr𝐏𝐏 = tr𝚼𝚼 = tr𝐑𝐑 = tr𝐔𝐔 = 𝑝𝑝. (6) 191 

In what follows, the notations E(∙), Var(∙), and Cov(∙,∙) are used for the expectation (mean), 192 

variance, and covariance of random variables, respectively. 193 

 194 
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Eigenvalue dispersion 195 

The eigenvalue variance 𝑉𝑉 is defined as: 196 

 𝑉𝑉(𝚺𝚺) = 1
𝑝𝑝
∑ �λ𝑖𝑖 −  λ��

2𝑝𝑝
𝑖𝑖=1 , 197 

 𝑉𝑉(𝐒𝐒) = 1
𝑝𝑝
∑ �𝑙𝑙𝑖𝑖 −  𝑙𝑙�̅

2𝑝𝑝
𝑖𝑖=1 , (7) 198 

where λ� and 𝑙𝑙 ̅are the averages of the population and sample eigenvalues, respectively (λ� =199 

∑ λ𝑖𝑖/𝑝𝑝
𝑝𝑝
𝑖𝑖=1 = tr𝚼𝚼 /𝑝𝑝, 𝑙𝑙 ̅ = ∑ 𝑙𝑙𝑖𝑖/𝑝𝑝

𝑝𝑝
𝑖𝑖=1 = tr𝐔𝐔 /𝑝𝑝). Note that 𝑉𝑉(𝚺𝚺) is a quantity pertaining to the 200 

population, whereas 𝑉𝑉(𝐒𝐒) is a sample statistic. The definition here follows the convention in 201 

the literature that 𝑝𝑝, rather than 𝑝𝑝 − 1, is used as the divisor (e.g., Cheverud et al., 1983; 202 

Pavlicev et al., 2009; Haber, 2011). The latter might be more suitable for 𝑉𝑉(𝐒𝐒) because the 203 

sum of squares is taken around the average sample eigenvalue which is a random variable. 204 

After all, however, the choice of 𝑝𝑝 − 1 is not so useful because 𝑉𝑉(𝐒𝐒) cannot be an unbiased 205 

estimator of 𝑉𝑉(𝚺𝚺) even with that choice (below). 206 

Note that the average and sum of squares are taken across all 𝑝𝑝 eigenvalues, even if 207 

some eigenvalues are zero due to the condition 𝑛𝑛 < 𝑝𝑝. This is reasonable given that sums of 208 

moments across all 𝑝𝑝 sample eigenvalues are comparable in magnitude to those of population 209 

eigenvalues (see below). One could alternatively use eigenvalue standard deviation √𝑉𝑉 210 

(Pavlicev et al., 2009; Haber, 2011), but this study concentrates on 𝑉𝑉 rather than √𝑉𝑉, because 211 

the former is much more tractable for the purposes of characterizing distributions. 212 

It is obvious that 𝑉𝑉(𝚺𝚺) takes a single minimum of 0 at �λ1, λ2, … , λp� = (λ�, λ�, … , λ�). 213 

On the other hand, for a fixed λ�, it takes a single maximum of (𝑝𝑝 − 1)λ�2 at (𝑝𝑝λ�, 0, … , 0) (e.g., 214 

Van Valen, 1974; Machado et al., 2019). Hence, not only is 𝑉𝑉(𝚺𝚺) scale-variant, but also its 215 

range depends on 𝑝𝑝 − 1. Therefore, it is often useful to standardize 𝑉𝑉 by division with this 216 

maximum to obtain the relative eigenvalue variance 𝑉𝑉rel: 217 
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 𝑉𝑉rel(𝚺𝚺) =
∑ �λ𝑖𝑖− λ��

2𝑝𝑝
𝑖𝑖=1
𝑝𝑝(𝑝𝑝−1) λ�2

,  218 

 𝑉𝑉rel(𝐒𝐒) =
∑ (𝑙𝑙𝑖𝑖− 𝑙𝑙)̅2𝑝𝑝
𝑖𝑖=1
𝑝𝑝(𝑝𝑝−1) 𝑙𝑙2̅

. (8) 219 

Because of the standardization, 𝑉𝑉rel ranges between 0 and 1. This is a heuristic introduction 220 

of 𝑉𝑉rel from 𝑉𝑉, but it will be seen below that 𝑉𝑉rel(𝐒𝐒) has a clearer theoretical justification. 221 

These indices are similarly defined for correlation matrices. By noting λ� = 𝑙𝑙 ̅ = 1 (eq. 222 

6), these are 223 

 𝑉𝑉(𝚸𝚸) = 1
𝑝𝑝
∑ (λ𝑖𝑖 −  1)2𝑝𝑝
𝑖𝑖=1 ,  224 

 𝑉𝑉(𝐑𝐑) = 1
𝑝𝑝
∑ (𝑙𝑙𝑖𝑖 −  1)2𝑝𝑝
𝑖𝑖=1 .  225 

 𝑉𝑉rel(𝚸𝚸) =
∑ (λ𝑖𝑖−1)2𝑝𝑝
𝑖𝑖=1
𝑝𝑝(𝑝𝑝−1) 

,  226 

 𝑉𝑉rel(𝐑𝐑) =
∑ (𝑙𝑙𝑖𝑖− 1)2𝑝𝑝
𝑖𝑖=1
𝑝𝑝(𝑝𝑝−1) 

. (9) 227 

In most of the following discussions, we will concentrate on 𝑉𝑉rel for correlation matrices, 228 

because 𝑉𝑉(𝐑𝐑) and 𝑉𝑉rel(𝐑𝐑) are proportional to each other by the factor 𝑝𝑝 − 1, and hence their 229 

distributions are identical up to this scaling. This is in contrast to those of covariance 230 

matrices, where 𝑙𝑙 ̅in the denominator in 𝑉𝑉rel(𝐒𝐒) is a random variable and affects sampling 231 

properties. 232 

Importantly, a single value of 𝑉𝑉rel in general corresponds to multiple combinations of 233 

eigenvalues even if the average eigenvalue is fixed, except when 𝑝𝑝 = 2 or under the extreme 234 

conditions 𝑉𝑉rel = 0 and 𝑉𝑉rel = 1 (Fig. 1). As such, it is not always straightforward to discern 235 

how intermediate values of 𝑉𝑉rel are translated into actual covariance structures when 𝑝𝑝 > 2. 236 

Nevertheless, it is possible to show that 𝑉𝑉rel > 0.5 cannot happen when multiple leading 237 

eigenvalues are of the same magnitude (Appendix A); in other words, such a large value 238 

indicates dominance of the first principal component. 239 
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As would be obvious from the definition, 𝑉𝑉 and 𝑉𝑉rel of covariance matrices only 240 

describe the (relative) magnitudes of eigenvalues—proportions of the axes of variation—and 241 

do not reflect any information of eigenvectors—directions of the axes. A large eigenvalue of 242 

a covariance matrix can represent, e.g., strong covariation between equally varying traits or 243 

large variation of a single trait uncorrelated with others; either of these cases describes 244 

eccentricity of variation in the multivariate space. By contrast, a large eigenvalue of a 245 

correlation matrix can only happen in the presence of correlation. Therefore, a large 246 

eigenvalue dispersion in a correlation matrix constrains conformation of eigenvectors to a 247 

certain extent. The correlations can nevertheless be realized in various ways depending on 248 

eigenvectors, whose conformation does influence the sampling distribution of 𝑉𝑉rel(𝐑𝐑) (see 249 

below). 250 

For covariance matrices, 𝑉𝑉rel(𝐒𝐒) has a natural relation to the test of sphericity, i.e., test 251 

of the null hypothesis that 𝚺𝚺 = σ2𝐈𝐈𝑝𝑝 for an arbitrary positive constant σ2. Simple 252 

transformations from equation 8 lead to 253 

𝑉𝑉rel(𝐒𝐒) =
1

𝑝𝑝 − 1
�𝑝𝑝

∑ 𝑙𝑙𝑖𝑖2

(∑ 𝑙𝑙𝑖𝑖)2
− 1� . 263 

  (10) 254 

By noting ∑ 𝑙𝑙𝑖𝑖2 (∑ 𝑙𝑙𝑖𝑖)2⁄ = tr(𝐒𝐒2) (tr𝐒𝐒)2⁄ = tr(𝐀𝐀2) (tr𝐀𝐀)2⁄  (see eqs. 2 and 4), 𝑉𝑉rel(𝐒𝐒) in the 255 

form of equation 10 is exactly John’s (1972) T statistic for the test of sphericity (see also 256 

Ledoit & Wolf, 2002). Beyond the intuition that it measures eccentricity of variation along 257 

principal components, this statistic (and its linear functions) can be justified as the most 258 

powerful test statistic in the proximity of the null hypothesis under multivariate normality, 259 

among the class of such statistics that are invariant against translation by a constant vector, 260 

uniform scaling, and orthogonal rotation (John, 1971, 1972; Sugiura, 1972; Nagao, 1973). On 261 

the other hand, 𝑉𝑉(𝐒𝐒) does not seem to have as much theoretical justification, but rather has a 262 
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practical advantage in the tractability of its moments and ease of correcting sampling bias 264 

(see below). 265 

For a correlation matrix, 𝑉𝑉rel is a measure of association between variables. Following 266 

similar transformations, it is straightforward to see 267 

𝑉𝑉rel(𝐑𝐑) =
tr(𝐑𝐑2) − 𝑝𝑝
𝑝𝑝(𝑝𝑝 − 1)  274 

=
2

𝑝𝑝(𝑝𝑝 − 1)�𝑟𝑟𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑖𝑖<𝑖𝑖

, 275 

   (11) 268 

because 𝑟𝑟𝑖𝑖𝑖𝑖2 = 1 for all 𝑖𝑖. This relationship has been known in the statistical literature (e.g., 269 

Gleason & Staelin, 1975; Durand & Le Roux, 2017), and empirically confirmed by Haber 270 

(2011). This statistic is used as a measure of overall association between variables (e.g., 271 

Schott, 2005; Durand & Le Roux, 2017), with the corresponding null hypothesis being 𝚸𝚸 =272 

𝐈𝐈𝑝𝑝. 273 

 276 

Sampling properties of eigenvalues 277 

The distribution of eigenvalues of 𝐒𝐒, or equivalently those of 𝐀𝐀 (which are 𝑛𝑛∗ times those of 278 

𝐒𝐒), has been extensively investigated in the literature of multivariate analysis (see, e.g., 279 

Jolliffe, 2002; Anderson, 2003). Unfortunately, however, most of such results are of limited 280 

value for the present purposes. On the one hand, forms of the exact joint distribution of the 281 

eigenvalues of 𝐀𝐀 are known under certain assumptions on the population eigenvalues (e.g., 282 

Muirhead, 1982: pp. 107, 388), but they do not allow for much intuitive interpretation (let 283 

alone direct evaluation of moments), apart from the following points: 1) sample eigenvalues 284 

are not stochastically independent from one another; and 2) the distribution of sample 285 

eigenvalues are only dependent on the population eigenvalues, but not on the population 286 
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eigenvectors. On the other hand, a substantial body of results is available for large-sample 287 

asymptotic distributions of sample eigenvalues (assuming 𝑛𝑛 → ∞, 𝑝𝑝 being constant; e.g., 288 

Anderson, 1963, 2003), but their accuracy under finite 𝑛𝑛 conditions is questionable. For 289 

example, a well-known result under a certain simple condition states that 𝑙𝑙𝑖𝑖~𝑁𝑁(λ𝑖𝑖,2λ𝑖𝑖2/𝑛𝑛) 290 

and Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖� ≈ 0 for 𝑖𝑖 ≠ 𝑗𝑗, assuming all population eigenvalues to be distinct and 𝑛𝑛∗ = 𝑛𝑛 291 

(Girshick, 1939; Anderson, 1963; Srivastava & Khatri, 1979). However, these expressions 292 

ignore terms of order 𝑂𝑂(𝑛𝑛−1)—that is, all terms with 𝑛𝑛 or its higher power in the 293 

denominator—whose magnitude can be substantial for a finite 𝑛𝑛. Indeed, with further 294 

evaluation of higher-order terms, it becomes evident that sample eigenvalues are biased 295 

estimators of the population equivalents, where large eigenvalues are prone to overestimation 296 

and small ones are prone to underestimation, and that Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖� = 2λ𝑖𝑖λ𝑖𝑖/��λ𝑖𝑖 − λ𝑖𝑖�𝑛𝑛�
2

+297 

𝑂𝑂(𝑛𝑛−3) for 𝑖𝑖 ≠ 𝑗𝑗 (Lawley, 1956; Srivastava & Khatri, 1979). An important insight is that 298 

covariance between sample eigenvalues is nonzero. When all population eigenvalues are 299 

equal, then Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖� = −σ4/𝑛𝑛 (Girshick, 1939). 300 

Much less is known about eigenvalues of a sample correlation matrix 𝐑𝐑 (Jolliffe, 301 

2002). Their distribution seems intractable except under certain special conditions (Anderson, 302 

1963). Asymptotic results indicate that the limiting distribution (𝑛𝑛 → ∞) of an eigenvalue of 303 

𝐑𝐑 is normal with the mean coinciding with the corresponding population eigenvalue, but that 304 

its variance depends on population eigenvectors (Anderson, 1963; Konishi, 1979), unlike that 305 

of a covariance matrix where the distribution does not depend on population eigenvectors 306 

(above). 307 

It is often of practical interest to detect the presence of eccentricity or integration, i.e., 308 

to test the null hypothesis of sphericity 𝚺𝚺 = σ2𝐈𝐈𝑝𝑝 or no correlation 𝚸𝚸 = 𝐈𝐈𝑝𝑝. These hypotheses 309 

are equivalent to 𝑉𝑉(𝚺𝚺) = 𝑉𝑉rel(𝚺𝚺) = 0 and 𝑉𝑉rel(𝚸𝚸) = 0, respectively. Even under these 310 

conditions, nonzero sampling variance in sample eigenvalues renders 𝑉𝑉(𝐒𝐒) > 0, 𝑉𝑉rel(𝐒𝐒) > 0, 311 
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and 𝑉𝑉rel(𝐑𝐑) > 0 with probability 1, because these statistics are calculated from sum of 312 

squares. The primary aim here is to derive explicit expressions for this sampling bias 313 

(expectation), as well as sampling variance. 314 

It should be remembered that the expectation of the eigenvalue variance E[𝑉𝑉(𝐒𝐒)] is 315 

fundamentally different from the variance of eigenvalues Var(𝑙𝑙𝑖𝑖). This point will be clarified 316 

by the following transformation:  317 

E[𝑉𝑉(𝐒𝐒)] =
1
𝑝𝑝

E��𝑙𝑙𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

� −
1
𝑝𝑝2

E ���𝑙𝑙𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2

� 326 

=
𝑝𝑝 − 1
𝑝𝑝2

�E(𝑙𝑙𝑖𝑖2)
𝑝𝑝

𝑖𝑖=1

−
1
𝑝𝑝2
��E(𝑙𝑙𝑖𝑖)E�𝑙𝑙𝑖𝑖� + Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖��
𝑝𝑝

𝑖𝑖≠𝑖𝑖

. 327 

  (12) 318 

Under the null hypothesis, the moments are equal across all 𝑖𝑖, and the above simplifies into 319 

 𝑝𝑝−1
𝑝𝑝
�Var(𝑙𝑙𝑖𝑖) − Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖��, 𝑖𝑖 ≠ 𝑗𝑗. (13) 320 

If Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖� were zero, the expectation would coincide with (𝑝𝑝 − 1)Var(𝑙𝑙𝑖𝑖)/𝑝𝑝, which can be 321 

evaluated from, e.g., Wagner’s (1984) results. As already mentioned, however, this 322 

covariance is nonzero and hence cannot be ignored for covariance matrices. This is unlike the 323 

case for correlation matrices, where E[𝑉𝑉(𝐑𝐑)] = Var(𝑙𝑙𝑖𝑖) holds under the null hypothesis, 324 

because 𝑙𝑙 ̅is a constant and equals E(𝑙𝑙𝑖𝑖) = 1. 325 

In the following discussions on moments of eigenvalue dispersion indices, 328 

observations are assumed to be i.i.d. multivariate normal variables. If the 𝑁𝑁 × 𝑝𝑝 matrix 𝐗𝐗 329 

consists of 𝑁𝑁 i.i.d. 𝑝𝑝-variate normal variables 𝐱𝐱𝑖𝑖~𝑁𝑁𝑝𝑝(𝛍𝛍,𝚺𝚺), then the distribution of the 330 

sample-mean-centered cross product matrix 𝐀𝐀 (eq. 2) is said to be the (central) Wishart 331 

distribution 𝑊𝑊𝑝𝑝(𝚺𝚺,𝑛𝑛), where 𝑛𝑛 = 𝑁𝑁 − 1 is the degree of freedom. It is well known that this is 332 

identical to the distribution of 𝐙𝐙𝑇𝑇𝐙𝐙, where the 𝑛𝑛 × 𝑝𝑝 matrix 𝐙𝐙 consists of 𝑛𝑛 i.i.d. 𝑝𝑝-variate 333 
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normal variables 𝐳𝐳𝑖𝑖~𝑁𝑁𝑝𝑝(𝟎𝟎𝑝𝑝,𝚺𝚺) with 𝟎𝟎𝑝𝑝 being the 𝑝𝑝 × 1 column vector of 0’s (e.g., Anderson, 334 

2003). Therefore, for analyzing statistics associated with sample covariance or correlation 335 

matrices, we can conveniently consider 336 

 𝐒𝐒 = 1
𝑛𝑛∗
𝐙𝐙𝑇𝑇𝐙𝐙. (14) 337 

without loss of generality, by bearing in mind the distinction between the degree of freedom 338 

𝑛𝑛 and sample size 𝑁𝑁. From elementary moments of the normal distribution, the following 339 

general relationships can be easily confirmed 340 

 E�𝑠𝑠𝑖𝑖𝑖𝑖� = 1
𝑛𝑛∗
∑ E�𝑧𝑧𝑘𝑘𝑖𝑖𝑧𝑧𝑘𝑘𝑖𝑖�𝑛𝑛
𝑘𝑘=1 = 𝑛𝑛

𝑛𝑛∗
σ𝑖𝑖𝑖𝑖 , 341 

 E�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘� = 𝑛𝑛2

𝑛𝑛∗2
�σ𝑖𝑖𝑖𝑖σ𝑘𝑘𝑘𝑘 + 1

𝑛𝑛
�σ𝑖𝑖𝑘𝑘σ𝑖𝑖𝑘𝑘 + σ𝑖𝑖𝑘𝑘σ𝑖𝑖𝑘𝑘��. (15) 342 

where 𝑧𝑧𝑖𝑖𝑖𝑖, 𝑠𝑠𝑖𝑖𝑖𝑖, σ𝑖𝑖𝑖𝑖 and the like are the (i, j)-th elements of 𝐙𝐙, 𝐒𝐒, and 𝚺𝚺, respectively. 343 

 344 

Moments under null hypotheses 345 

Covariance matrix 346 

Before proceeding to arbitrary covariance structures, let us consider the null hypothesis of 347 

sphericity: 𝚺𝚺 = σ2𝐈𝐈𝑝𝑝, where σ2 is the population variance of arbitrary magnitude. For the 348 

expectation of 𝑉𝑉(𝐒𝐒), we need Var(𝑙𝑙𝑖𝑖) and Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖�, or equivalently E�∑ 𝑙𝑙𝑖𝑖2
𝑝𝑝
𝑖𝑖=1 � and 349 

E ��∑ 𝑙𝑙𝑖𝑖
𝑝𝑝
𝑖𝑖=1 �

2
� (see eqs. 12 and 13); we will proceed with the latter here. By use of equations 4 350 

and 15, we have 351 

E��𝑙𝑙𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

� = E�� 𝑠𝑠𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑖𝑖,𝑖𝑖=1

� 352 

= E��𝑠𝑠𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

+ �𝑠𝑠𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑖𝑖≠𝑖𝑖

� 353 

= �𝑝𝑝E(𝑠𝑠𝑖𝑖𝑖𝑖2) + 𝑝𝑝(𝑝𝑝 − 1)E�𝑠𝑠𝑖𝑖𝑖𝑖2 �� 354 
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=
𝑝𝑝𝑛𝑛
𝑛𝑛∗2

(𝑝𝑝 + 𝑛𝑛 + 1)σ4, 362 

  (16) 355 

and similarly 356 

E ���𝑙𝑙𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2

� = E ���𝑠𝑠𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2

� 363 

= E ��𝑠𝑠𝑖𝑖𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

+ �𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖

𝑝𝑝

𝑖𝑖≠𝑖𝑖

� 364 

= �𝑝𝑝E(𝑠𝑠𝑖𝑖𝑖𝑖2) + 𝑝𝑝(𝑝𝑝 − 1)E�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖�� 365 

=
𝑝𝑝𝑛𝑛
𝑛𝑛∗2

(𝑝𝑝𝑛𝑛 + 2)σ4. 366 

  (17) 357 

Then, inserting these results into equation 12, 358 

E[𝑉𝑉(𝐒𝐒)] =
𝑛𝑛
𝑝𝑝𝑛𝑛∗2

(𝑝𝑝 − 1)(𝑝𝑝 + 2)σ4. 367 

  (18) 359 

Alternatively, it could be seen that Var(𝑙𝑙𝑖𝑖) = 𝑛𝑛(𝑝𝑝 + 1)σ2/𝑛𝑛∗2 and Cov�𝑙𝑙𝑖𝑖, 𝑙𝑙𝑖𝑖� = −𝑛𝑛σ4/𝑛𝑛∗2 360 

for 𝑖𝑖 ≠ 𝑗𝑗, with which equation 13 yields the identical result. 361 

The variance of 𝑉𝑉(𝐒𝐒) is, by equation 12, 368 

Var[𝑉𝑉(𝐒𝐒)] =
1
𝑝𝑝2

Var ��𝑙𝑙𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

� +
1
𝑝𝑝4

Var ���𝑙𝑙𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2

� − 2
1
𝑝𝑝3

Cov ��𝑙𝑙𝑖𝑖2
𝑝𝑝

𝑖𝑖=1

,��𝑙𝑙𝑖𝑖

𝑝𝑝

𝑖𝑖=1

�

2

� . 373 

  (19) 369 

The relevant moments can most conveniently be found as a special case of general 370 

expressions under arbitrary 𝚺𝚺 (see below and Appendix B), although direct derivation using 371 

normal moments is possible: 372 
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E ���𝑙𝑙𝑖𝑖2�
2
� =

𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(𝑝𝑝3𝑛𝑛 + 𝑝𝑝𝑛𝑛3 + 2𝑝𝑝2𝑛𝑛2 + 2𝑝𝑝2𝑛𝑛 + 2𝑝𝑝𝑛𝑛2 + 8𝑝𝑝2 + 8𝑛𝑛2 + 21𝑝𝑝𝑛𝑛377 

+ 20𝑝𝑝 + 20𝑛𝑛 + 20)σ8; 378 

E ���𝑙𝑙𝑖𝑖�
4
� =

𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(𝑝𝑝𝑛𝑛 + 2)(𝑝𝑝𝑛𝑛 + 4)(𝑝𝑝𝑛𝑛 + 6)σ8; 379 

E ���𝑙𝑙𝑖𝑖2� ∙ ��𝑙𝑙𝑖𝑖�
2
� =

𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(𝑝𝑝𝑛𝑛 + 2)(𝑝𝑝𝑛𝑛 + 4)(𝑝𝑝 + 𝑛𝑛 + 1)σ8; 380 

Var ��𝑙𝑙𝑖𝑖2� =
4𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(2𝑝𝑝2 + 2𝑛𝑛2 + 5𝑝𝑝𝑛𝑛 + 5𝑝𝑝 + 5𝑛𝑛 + 5)σ8; 381 

Var ���𝑙𝑙𝑖𝑖�
2
� =

8𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(𝑝𝑝𝑛𝑛 + 2)(𝑝𝑝𝑛𝑛 + 3)σ8; 382 

Cov ��𝑙𝑙𝑖𝑖2 , ��𝑙𝑙𝑖𝑖�
2
� =

8𝑝𝑝𝑛𝑛
𝑛𝑛∗4

(𝑝𝑝 + 𝑛𝑛 + 1)(𝑝𝑝𝑛𝑛 + 3)σ8. 383 

  (20) 374 

Inserting these into equation 19 yields 375 

 Var[𝑉𝑉(𝐒𝐒)] = 4𝑛𝑛
𝑝𝑝3𝑛𝑛∗4

(𝑝𝑝 − 1)(𝑝𝑝 + 2)(2𝑝𝑝2 + 𝑝𝑝𝑛𝑛 + 3𝑝𝑝 − 6)σ8. (21) 376 

Next, consider the first two moments of 𝑉𝑉rel(𝐒𝐒) under the null hypothesis (which have 384 

previously been derived by John [1972]). Recalling the form of equation 10, 385 

 E[𝑉𝑉rel(𝐒𝐒)] = 1
𝑝𝑝−1

�𝑝𝑝E � ∑ 𝑙𝑙𝑖𝑖
2

(∑ 𝑙𝑙𝑖𝑖)2
� − 1�,  386 

and Var[𝑉𝑉rel(𝐒𝐒)] = � 𝑝𝑝
𝑝𝑝−1

�
2

Var � ∑ 𝑙𝑙𝑖𝑖
2

(∑ 𝑙𝑙𝑖𝑖)2
�. (22) 387 

In general, moments of the ratio ∑ 𝑙𝑙𝑖𝑖2 (∑ 𝑙𝑙𝑖𝑖)2⁄  do not coincide with the ratio of the moments 388 

of the numerator and denominator. Specifically under the null hypothesis, however, 389 

 E � ∑ 𝑙𝑙𝑖𝑖
2

(∑ 𝑙𝑙𝑖𝑖)2
� = E�∑ 𝑙𝑙𝑖𝑖

2�
E[(∑ 𝑙𝑙𝑖𝑖)2] 390 

and E ��∑ 𝑙𝑙𝑖𝑖
2�
2

(∑ 𝑙𝑙𝑖𝑖)4
� =

E��∑ 𝑙𝑙𝑖𝑖
2�
2
�

E[(∑ 𝑙𝑙𝑖𝑖)4]  (23) 391 

hold because of the stochastic independence between ∑ 𝑙𝑙𝑖𝑖2 (∑ 𝑙𝑙𝑖𝑖)2⁄  and ∑ 𝑙𝑙𝑖𝑖 in this special 392 
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condition (this point requires inspection of the density; John, 1972). Therefore, by use of 393 

equations 16, 17, and 20, 394 

E[𝑉𝑉rel(𝐒𝐒)] =
1

𝑝𝑝 − 1
�𝑝𝑝

E[∑ 𝑙𝑙𝑖𝑖2]
E[(∑ 𝑙𝑙𝑖𝑖)2]− 1� 400 

=
𝑝𝑝 + 2
𝑝𝑝𝑛𝑛 + 2

, 401 

  (24) 395 

and 396 

Var[𝑉𝑉rel(𝐒𝐒)] = �
𝑝𝑝

𝑝𝑝 − 1
�
2
�

E[(∑ 𝑙𝑙𝑖𝑖2)2]
E[(∑ 𝑙𝑙𝑖𝑖)4] − �

E[∑ 𝑙𝑙𝑖𝑖2]
E[(∑ 𝑙𝑙𝑖𝑖)2]�

2

� 402 

=
4(𝑝𝑝 − 1)(𝑝𝑝 + 2)(𝑛𝑛 − 1)(𝑛𝑛 + 2)

(𝑝𝑝𝑛𝑛 + 2)2(𝑝𝑝𝑛𝑛 + 4)(𝑝𝑝𝑛𝑛 + 6) . 403 

  (25) 397 

These results are non-asymptotic (valid across any 𝑝𝑝 and 𝑛𝑛) and exact under multivariate 398 

normality. 399 

 404 

Correlation matrix 405 

Consider the null hypothesis 𝚸𝚸 = 𝐈𝐈𝑝𝑝 or ρ𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗. The moments can conveniently be 406 

obtained from the form of average squared correlation (eq. 11). It is well known that, under 407 

the assumptions of normality and ρ𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗, 𝑟𝑟𝑖𝑖𝑖𝑖2 is distributed as 408 

Beta(1 2⁄ , (𝑛𝑛 − 1) 2⁄ ), where 𝑛𝑛 is the degree of freedom (e.g., Anderson, 2003). Therefore, 409 

under the null hypothesis, 410 

 E�𝑟𝑟𝑖𝑖𝑖𝑖2� = 1
𝑛𝑛

, 𝑖𝑖 ≠ 𝑗𝑗,  411 

 Var�𝑟𝑟𝑖𝑖𝑖𝑖2� = 2(𝑛𝑛−1)
𝑛𝑛2(𝑛𝑛+2) , 𝑖𝑖 ≠ 𝑗𝑗. (26) 412 

The expectation of 𝑉𝑉rel(𝐑𝐑) is simply the average: 413 
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E[𝑉𝑉rel(𝐑𝐑)] =
1
𝑛𝑛

. 420 

  (27) 414 

This expression is identical to (𝑝𝑝 − 1)−1Var(𝑙𝑙𝑖𝑖) obtainable from Wagner’s (1984) results, 415 

except for having the degree of freedom 𝑛𝑛 rather than the sample size 𝑁𝑁 in the denominator. 416 

This is because Wagner (1984) considered 𝑁𝑁 uncentered observations with mean 0 without 417 

explicitly distinguishing 𝑛𝑛 and 𝑁𝑁. Most practical analyses would concern data centered at the 418 

sample mean, thus should use 𝑛𝑛 rather than 𝑁𝑁. 419 

Derivation of the variance is more complicated than it may seem, because, in 421 

principle, 422 

Var[𝑉𝑉rel(𝐑𝐑)] =
4

𝑝𝑝2(𝑝𝑝 − 1)2

⎣
⎢
⎢
⎢
⎡
�Var�𝑟𝑟𝑖𝑖𝑖𝑖2�
𝑖𝑖<𝑖𝑖

+ � 2Cov�𝑟𝑟𝑖𝑖𝑖𝑖2 , 𝑟𝑟𝑘𝑘𝑙𝑙2 �
𝑖𝑖<𝑖𝑖,𝑘𝑘<𝑙𝑙,

(𝑖𝑖,𝑖𝑖)≠(𝑘𝑘,𝑙𝑙) ⎦
⎥
⎥
⎥
⎤

. 429 

  (28) 423 

However, it is possible to show Cov�𝑟𝑟𝑖𝑖𝑖𝑖2 , 𝑟𝑟𝑘𝑘𝑙𝑙2 � = 0 under the null hypothesis (Appendix C). 424 

Therefore, from equations 26 and 28, 425 

 Var[𝑉𝑉rel(𝐑𝐑)] = 4(𝑛𝑛−1)
𝑝𝑝(𝑝𝑝−1)𝑛𝑛2(𝑛𝑛+2). (29) 426 

These expressions are non-asymptotic and exact for any 𝑝𝑝 and 𝑛𝑛. Schott (2005) proposed a 427 

test for independence between sets of normal variables based on these moments. 428 

 430 

Moments under arbitrary conditions 431 

Covariance matrix 432 

This section considers moments of eigenvalue dispersion indices under arbitrary 433 

covariance/correlation structures and multivariate normality. It is straightforward to obtain 434 

the first two moments of 𝑉𝑉(𝐒𝐒) under arbitrary 𝚺𝚺, provided that the expectations of relevant 435 

terms in equation 12 are available. The results are 436 
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E[𝑉𝑉(𝐒𝐒)] =
𝑛𝑛

𝑝𝑝2𝑛𝑛∗2
[(𝑝𝑝 − 𝑛𝑛)(tr𝚼𝚼)2 + (𝑝𝑝𝑛𝑛 + 𝑝𝑝 − 2) tr(𝚼𝚼2)] 444 

=
𝑛𝑛
𝑝𝑝𝑛𝑛∗2

[(𝑝𝑝𝑛𝑛 + 𝑝𝑝 − 2)𝑉𝑉(𝚺𝚺) + (𝑝𝑝 − 1)(𝑝𝑝 + 2)(tr𝚼𝚼)2 𝑝𝑝2⁄ ], 445 

Var[𝑉𝑉(𝐒𝐒)] =
4𝑛𝑛
𝑝𝑝4𝑛𝑛∗4

{2(𝑝𝑝 − 𝑛𝑛)2 tr(𝚼𝚼2) (tr𝚼𝚼)2 + (𝑝𝑝2𝑛𝑛 + 𝑝𝑝2 − 4𝑝𝑝 + 2𝑛𝑛)[tr(𝚼𝚼2)]2446 

+ 4(𝑝𝑝 − 𝑛𝑛)(𝑝𝑝𝑛𝑛 + 𝑝𝑝 − 2) tr(𝚼𝚼3) tr𝚼𝚼447 

+ (2𝑝𝑝2𝑛𝑛2 + 5𝑝𝑝2𝑛𝑛 + 5𝑝𝑝2 − 12𝑝𝑝𝑛𝑛 − 12𝑝𝑝 + 12) tr(𝚼𝚼4)}. 448 

  (30) 437 

The derivations are given in Appendix B. The second expression for the expectation comes 438 

from the fact 𝑉𝑉(𝚺𝚺) = [𝑝𝑝 tr(𝚼𝚼2) − (tr𝚼𝚼)2]/𝑝𝑝2, and clarifies that the expectation is a linear 439 

function of 𝑉𝑉(𝚺𝚺). These results are exact, and it can be easily verified that they reduce to 440 

equations 18 and 19 under the null hypothesis. Profiles of E[𝑉𝑉(𝐒𝐒)] across a range of 𝑉𝑉(𝚺𝚺) are 441 

shown in Figure 2 (top row), under single large eigenvalue conditions with varying 𝑝𝑝 and 𝑁𝑁 442 

and a fixed tr𝚺𝚺 (details are described under simulation settings below). 443 

Moments of 𝑉𝑉rel(𝐒𝐒) are more difficult to obtain, as moments of the ratio ∑ 𝑙𝑙𝑖𝑖2 (∑ 𝑙𝑙𝑖𝑖)2⁄  449 

do not coincide with the ratio of moments under arbitrary 𝚺𝚺. Here we utilize the following 450 

approximations based on the delta method (e.g., Stuart & Ord, 1994: chapter 10): 451 

 E �𝑋𝑋
𝑌𝑌
� ≈ E(𝑋𝑋)

E(𝑌𝑌) −
Cov(𝑋𝑋,𝑌𝑌)
E(𝑌𝑌)2 + E(𝑋𝑋)Var(𝑌𝑌)

E(𝑌𝑌)3 ,  452 

and Var �𝑋𝑋
𝑌𝑌
� ≈ E(𝑋𝑋)2

E(𝑌𝑌)2 �
Var(𝑋𝑋)
E(𝑋𝑋)2 + Var(𝑌𝑌)

E(𝑌𝑌)2 − 2 Cov(𝑋𝑋,𝑌𝑌)
E(𝑋𝑋)E(𝑌𝑌)�. (32) 453 

The approximate moments are (Appendix B): 454 

E �
∑ 𝑙𝑙𝑖𝑖2

(∑ 𝑙𝑙𝑖𝑖)2
� ≈

(tr𝚼𝚼)2 + (𝑛𝑛 + 1) tr(𝚼𝚼2)
𝑛𝑛(tr𝚼𝚼)2 + 2 tr(𝚼𝚼2) −

8(𝑛𝑛 − 1)(𝑛𝑛 + 2)
𝑛𝑛[𝑛𝑛(tr𝚼𝚼)2 + 2 tr(𝚼𝚼2)]3455 

× {𝑛𝑛(tr𝚼𝚼)3 tr(𝚼𝚼3) − 𝑛𝑛(tr𝚼𝚼)2[tr(𝚼𝚼2)]2 − 2[tr(𝚼𝚼2)]3 − 2 tr𝚼𝚼 tr(𝚼𝚼2) tr(𝚼𝚼3)456 

+ 3(tr𝚼𝚼)2 tr(𝚼𝚼4)} ; 457 
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Var �
∑ 𝑙𝑙𝑖𝑖2

(∑ 𝑙𝑙𝑖𝑖)2
� ≈

4(𝑛𝑛 − 1)(𝑛𝑛 + 2)
𝑛𝑛[𝑛𝑛(tr𝚼𝚼)2 + 2 tr(𝚼𝚼2)]4466 

× {𝑛𝑛(tr𝚼𝚼)4[tr(𝚼𝚼2)]2 + 2𝑛𝑛(𝑛𝑛 + 1)(tr𝚼𝚼)2[tr(𝚼𝚼2)]3 + 2(𝑛𝑛 + 1)[tr(𝚼𝚼2)]4467 

− 4(𝑛𝑛 − 1)(𝑛𝑛 + 2)(tr𝚼𝚼)3 tr(𝚼𝚼2) tr(𝚼𝚼3) + (2𝑛𝑛2 + 3𝑛𝑛 − 6)(tr𝚼𝚼)4 tr(𝚼𝚼4)468 

− 4𝑛𝑛(tr𝚼𝚼)2 tr(𝚼𝚼2) tr(𝚼𝚼4) − 4(tr𝚼𝚼)4[tr(𝚼𝚼2)]2}. 469 

  (33) 458 

Inserting these into equation 22 yields the desired moments. The approximate expectation 459 

reduces to equation 24 under the null hypothesis, as the higher-order terms cancel out, 460 

whereas this is not the case for the approximate variance. Because these expressions are 461 

specified only by the population eigenvalues regardless of eigenvectors, they are invariant 462 

with respect to orthogonal rotations, as expected from theoretical considerations above. Also, 463 

it is easily discerned that these expressions are invariant with respect to uniform scaling of 464 

the variables. The accuracy of these approximations will be examined in simulations below. 465 

Profiles of the approximation of E[𝑉𝑉rel(𝐒𝐒)] across a range of 𝑉𝑉rel(𝚺𝚺) are shown in 470 

Figure 2 (middle row) for the same conditions as explained above. The profiles are nonlinear; 471 

𝑉𝑉rel(𝐒𝐒) tends to overestimate 𝑉𝑉rel(𝚺𝚺) when the latter is small, but tends to slightly 472 

underestimate when the latter is large. The initial decrease of E[𝑉𝑉rel(𝐒𝐒)] observed in some 473 

profiles appears to be an artifact of the approximation. 474 

 475 

Correlation matrix 476 

The expectation of 𝑉𝑉rel(𝐑𝐑) under arbitrary conditions can be obtained from the expression of 477 

equation 11 with 𝑟𝑟𝑖𝑖𝑖𝑖2 replaced by its expectations, which is known to be (e.g., Ghosh, 1966; 478 

Muirhead, 1982) 479 

 E�𝑟𝑟𝑖𝑖𝑖𝑖2� = 1 −
(𝑛𝑛−1)�1−ρ𝑖𝑖𝑖𝑖

2 �

𝑛𝑛
𝐹𝐹12
 �1, 1; 𝑛𝑛+2

2
; ρ𝑖𝑖𝑖𝑖2 � , 𝑖𝑖 ≠ 𝑗𝑗, (34) 480 

where 481 
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 𝐹𝐹12
 (𝑎𝑎, 𝑏𝑏; 𝑐𝑐; 𝑧𝑧) = ∑ (𝑎𝑎)𝑘𝑘(𝑏𝑏)𝑘𝑘

(𝑐𝑐)𝑘𝑘

𝑧𝑧𝑘𝑘

𝑘𝑘!
∞
𝑘𝑘=0  (35) 482 

is the hypergeometric function, with (𝑥𝑥)𝑘𝑘 = 𝑥𝑥(𝑥𝑥 + 1) … (𝑥𝑥 + 𝑘𝑘 − 1) denoting rising factorial 483 

(defined to be 1 when 𝑘𝑘 = 0). Taking the average of equation 34 gives the desired 484 

expectation. This result is non-asymptotic and exact. It is easily seen that equation 34 reduces 485 

to equation 26 under the null hypothesis. 486 

When 𝑝𝑝 = 2, the exact variance of 𝑉𝑉rel(𝐑𝐑) is equal to that of the single squared 487 

correlation coefficient, thus can be obtained from known results (Ghosh, 1966) as follows: 488 

 Var[𝑉𝑉rel(𝐑𝐑)] = Var(𝑟𝑟2) = (𝑛𝑛−1)(𝑛𝑛+1)�1−ρ2�
2𝑛𝑛

�𝐹𝐹 − 𝑛𝑛𝐹𝐹′ − 2(𝑛𝑛−1)�1−ρ2�
𝑛𝑛(𝑛𝑛+1) 𝐹𝐹2 �, (36) 489 

where 𝐹𝐹 = 𝐹𝐹12
 (1, 1; (𝑛𝑛 + 2) 2⁄ ; ρ2) and 𝐹𝐹′ = (𝐹𝐹 − 1) 2ρ2⁄ = 𝐹𝐹12

 (1, 2; (𝑛𝑛 + 4) 2⁄ ; ρ2)/490 

(𝑛𝑛 + 2); this last form is preferred to avoid numerical instability when ρ2 is close to 0. This 491 

expression reduces to equation 26 under the null hypothesis. When 𝑝𝑝 > 2, we cannot ignore 492 

the covariance between squared correlation coefficients (see eq. 28), which appears to be 493 

nonzero. Unfortunately, no exact expression seems available for this in the literature, so we 494 

resort to asymptotic results. The following asymptotic expression based on Konishi’s (1979) 495 

theory may potentially be used (see Appendix D for derivation): 496 

Var[𝑉𝑉rel(𝐑𝐑)] ≈
8

𝑝𝑝2(𝑝𝑝 − 1)2𝑛𝑛
� λα2λβ2 �δαβ − �λα + λβ��υ𝑖𝑖α2 υ𝑖𝑖β2

𝑝𝑝

𝑖𝑖=1

+ � ρ𝑖𝑖𝑖𝑖2 υ𝑖𝑖α2 υ𝑖𝑖β2
𝑝𝑝

𝑖𝑖,𝑖𝑖=1

�
𝑝𝑝

α,β=1

, 504 

  (37) 497 

where δ𝑖𝑖𝑖𝑖 is the Kronecker delta (equals 1 for 𝑖𝑖 = 𝑗𝑗 and 0 otherwise) and υ𝑖𝑖α is the (𝑖𝑖, α)-th 498 

element of the population eigenvector matrix 𝚼𝚼. For 𝑝𝑝 = 2, the accuracy of this expression 499 

can be compared with the exact expression (Fig. 3); visual inspection of the profiles suggest 500 

that the accuracy is satisfactory past 𝑁𝑁 = 32– 64, except around 𝑉𝑉rel(𝚸𝚸) = 0 where the 501 

asymptotic expression diminishes to 0. For 𝑝𝑝 > 2, the accuracy is to be evaluated with 502 

simulations below. 503 
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Importantly, the expectation of 𝑉𝑉rel(𝐑𝐑) is functions of ρ2′s rather than 𝚼𝚼, and cannot 505 

be specified by the latter alone in general. For instance, consider �
1 0.9 0

0.9 1 0
0 0 1

� and 506 

�
1 0.9/√2 0

0.9/√2 1 0.9/√2
0 0.9/√2 1

�, both of which are valid correlation matrices. These matrices 507 

have identical eigenvalues 𝚼𝚼 = diag(1.9, 1.0, 0.1) and hence an identical value of 𝑉𝑉rel(𝚸𝚸) (= 508 

0.27), but E[𝑉𝑉rel(𝐑𝐑)] with 𝑛𝑛 = 10 are 0.3326 and 0.3156, respectively. Although the 509 

difference in the expectations decreases as 𝑛𝑛 increases, this example highlights that the 510 

distribution of 𝑉𝑉rel(𝐑𝐑) is also dependent on population eigenvectors. 511 

Profiles of E[𝑉𝑉rel(𝐑𝐑)] across a range of 𝑉𝑉rel(𝚸𝚸) are shown in Figure 2 (bottom row), 512 

under the same conditions as above. These conditions with single large eigenvalues are 513 

special cases in which E[𝑉𝑉rel(𝐑𝐑)] can be specified by 𝑉𝑉rel(𝚸𝚸) regardless of eigenvectors 514 

(detailed in Appendix A). Indeed, the profiles of the expectations are invariant across 𝑝𝑝 in 515 

these special conditions. In some way similar to 𝑉𝑉rel(𝐒𝐒), 𝑉𝑉rel(𝐑𝐑) tends to overestimate and 516 

underestimate small and large values of 𝑉𝑉rel(𝚸𝚸), respectively. 517 

 518 

Bias correction 519 

Some authors (Cheverud et al., 1989; Torices & Muñoz-Pajares, 2015) have suggested 520 

correcting the sampling bias in eigenvalue dispersion indices by means of subtracting 521 

Wagner’s (1984) null expectation from empirical values (but see also Armbruster et al., 522 

2009). This method could potentially be used for 𝑉𝑉 and 𝑉𝑉rel with the correct null expectations 523 

derived above, to obtain estimators that is unbiased under the null hypothesis. For 𝑉𝑉rel(𝐒𝐒) and 524 

𝑉𝑉rel(𝐑𝐑), however, the subtraction truncates the upper end of the range, potentially 525 

compromising interpretability. To avoid this, it might be desirable to scale these indices in a 526 

way analogous to the adjusted coefficient of determination in regression analysis (e.g., 527 
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Cramer, 1987): 528 

 𝑉𝑉�rel(𝐒𝐒) = 1 − 1−𝑉𝑉rel(𝐒𝐒)
1−Enull[𝑉𝑉rel(𝐒𝐒)] = 𝑝𝑝𝑛𝑛+2

𝑝𝑝(𝑛𝑛−1)𝑉𝑉rel(𝐒𝐒) − 𝑝𝑝+2
𝑝𝑝(𝑛𝑛−1),  529 

 𝑉𝑉�rel(𝐑𝐑) = 1 − 1−𝑉𝑉rel(𝐑𝐑)
1−Enull[𝑉𝑉rel(𝐑𝐑)] = 𝑛𝑛

𝑛𝑛−1
𝑉𝑉rel(𝐑𝐑) − 1

𝑛𝑛−1
, (38) 530 

where Enull(∙) denotes expectation under the appropriate null hypothesis (eqs. 24 and 27). 531 

This adjustment inflates the variance by the factor of 1/[1 − Enull(𝑉𝑉rel)]2. Furthermore, 532 

these adjusted indices are unbiased only under the null hypothesis (and trivially the case of 533 

complete integration), and uniformly underestimate the corresponding population values 534 

otherwise (Fig. S2). As the population value gets away from 0, the adjusted index is 535 

outperformed by the unadjusted one in both precision and bias (Fig. S3). It should also be 536 

borne in mind that the profiles of expectations are nonlinear and dependent on 𝑁𝑁 (Fig. 2). As 537 

the adjusted indices will be increasingly conservative for small 𝑁𝑁, it is questionable whether 538 

they can be used for comparing samples with different 𝑁𝑁, as originally intended by Cheverud 539 

et al. (1989). For these reasons, use of this adjustment would be restricted to estimation of the 540 

population value near 0 (up to 0.1–0.2, depending on 𝑝𝑝 and 𝑁𝑁). 541 

On the other hand, a global unbiased estimator of 𝑉𝑉(𝚺𝚺) can be derived from above 542 

results: 543 

𝑉𝑉�(𝐒𝐒) =
𝑛𝑛∗2

𝑛𝑛(𝑝𝑝𝑛𝑛 + 𝑝𝑝 − 2)�𝑝𝑝𝑉𝑉
(𝐒𝐒) −

(𝑝𝑝 − 1)(𝑝𝑝 + 2)
𝑝𝑝2(𝑛𝑛 − 1)(𝑛𝑛 + 2)

[(𝑛𝑛 + 1)(tr𝐒𝐒)2 − 2 tr(𝐒𝐒2)]� 547 

=
1

𝑝𝑝2𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 + 2)
[(𝑝𝑝𝑛𝑛 + 2)(tr𝐀𝐀)2 − (𝑝𝑝 + 𝑛𝑛 + 1) tr(𝐀𝐀2)]. 548 

  (39) 544 

The unbiasedness E[𝑉𝑉�(𝐒𝐒)] = 𝑉𝑉(𝚺𝚺) can be easily confirmed. Its variance can be similarly 545 

obtained: 546 
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Var[𝑉𝑉�(𝐒𝐒)] =
4

𝑝𝑝4𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 + 2)
{2(𝑛𝑛 − 1)(𝑛𝑛 + 2) tr(𝚼𝚼2) (tr𝚼𝚼)2556 

+ (𝑝𝑝2𝑛𝑛 + 4𝑝𝑝 + 2𝑛𝑛 + 2)[tr(𝚼𝚼2)]2 − 4𝑝𝑝(𝑛𝑛 − 1)(𝑛𝑛 + 2) tr(𝚼𝚼3) tr𝚼𝚼557 

+ (2𝑝𝑝2𝑛𝑛2 + 3𝑝𝑝2𝑛𝑛 − 6𝑝𝑝2 − 4𝑝𝑝𝑛𝑛 − 4) tr(𝚼𝚼4)}, 558 

  (40) 549 

which reduces to 4(𝑝𝑝 − 1)(𝑝𝑝 + 2)σ8/𝑝𝑝3𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 + 2) under the null hypothesis. 550 

Comparison with equations 21 and 30 suggests that this variance is smaller than that of 𝑉𝑉(𝐒𝐒), 551 

especially under the null hypothesis. Therefore, 𝑉𝑉�(𝐒𝐒) seems superior in both precision and 552 

bias and can be used when estimation of 𝑉𝑉(𝚺𝚺) is desired. It can be used to compare multiple 553 

samples, provided that its sensitivity to overall scaling is not of concern, e.g., comparison 554 

between closely related taxa. 555 

 559 

Simulation 560 

Methods 561 

Simulations were conducted under various conditions in order to understand sampling 562 

properties of the eigenvalue dispersion indices. All simulations were done assuming 563 

multivariate normality, with varying population covariance matrix 𝚺𝚺, number of variables p 564 

(= 2, 4, 8, 16, 32, 64, 128, 256, and 1024), and sample size N (= 4, 8, 16, 32, 64, 128, and 565 

256). 566 

For every p, the following population eigenvalue conformations were considered: 1) 567 

the null condition, 2) 𝑞𝑞-large λ conditions, 3) a linearly decreasing λ condition, and 4) a 568 

quadratically decreasing λ condition (see Fig. 4 for examples). The null condition is where all 569 

population eigenvalues are equal in magnitude (λ1 = λ2 = ⋯ = λ𝑝𝑝 = λ�; 𝑉𝑉rel(𝚺𝚺) = 0), 570 

corresponding to the null hypothesis of sphericity (Fig. 4A). The q-large λ conditions are 571 

where the first 𝑞𝑞 (= 1, 2, and 4, provided 𝑝𝑝 > 𝑞𝑞) population eigenvalues are equally large and 572 
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the remaining 𝑝𝑝 − 𝑞𝑞 ones are equally small (λ1 = ⋯ = λ𝑞𝑞 > λ𝑞𝑞+1 = ⋯ = λ𝑝𝑝), with varying 573 

𝑉𝑉rel(𝚺𝚺) (= 0.1, 0.2, 0.4, 0.6, and 0.8; Fig. 4B–G). The necessary condition λ𝑝𝑝 ≥ 0 constrains 574 

possible combinations of 𝑞𝑞 and 𝑉𝑉rel(𝚺𝚺): the possible choices of 𝑉𝑉rel(𝚺𝚺) are 0.1–0.8, 0.1–0.4, 575 

and 0.1–0.2 for q = 1, 2, and 4, respectively (Appendix A). These conditions are intended to 576 

represent hypothetical situations where only a few components of meaningful signals are 577 

present in the covariance structure. Individual eigenvalues were calculated for each 578 

combination of 𝑝𝑝, 𝑞𝑞, and 𝑉𝑉rel(𝚺𝚺) as described in Appendix A. The linearly and quadratically 579 

decreasing λ conditions are where the population eigenvalues are linearly and quadratically, 580 

respectively, decreasing in magnitude (Fig. 4H; Appendix A), in which cases the value of 581 

𝑉𝑉rel(𝚺𝚺) is fixed for a given 𝑝𝑝. These conditions are intended to represent covariance 582 

structures with gradually decreasing signals. One might claim that some of these situations, 583 

especially 𝑞𝑞-large λ conditions, are too simplistic and biologically unrealistic, but these 584 

simple settings enable us to clarify systematic relationships between parameters and sampling 585 

properties. The primary aim here is to explore sampling properties across a wide range of 586 

parameters, rather than confined to a biologically “realistic” region (which would depend on 587 

specific organismal systems). It should also be recalled that sampling error alone can yield 588 

gradually decreasing patterns of sample eigenvalues typically observed in empirical datasets 589 

(see above and below). 590 

For sake of simplicity, all population covariance matrices were scaled to ensure 591 

𝑉𝑉(𝚺𝚺) = 𝑉𝑉rel(𝚺𝚺); that is, tr𝚺𝚺 = 𝑝𝑝(𝑝𝑝 − 1)−1/2. This scaling also makes the magnitude of 𝑉𝑉(𝚺𝚺) 592 

comparable across varying 𝑝𝑝. In addition, a population covariance matrix 𝚺𝚺 was constructed 593 

from a predefined set of eigenvalues such that its diagonal elements are equal: σ𝑖𝑖𝑖𝑖 = λ� =594 

(𝑝𝑝 − 1)−1/2 for all 𝑖𝑖, thereby enforcing 𝚺𝚺 = (𝑝𝑝 − 1)−1/2𝚸𝚸. This construction allows for 595 

examining both covariance and correlation matrices with the same population 𝑉𝑉rel from a 596 

single simulated dataset, saving computational resources. 𝚺𝚺 was constructed from 𝚼𝚼 by the 597 
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iterative Givens rotation algorithm of Davies & Higham (2000), which is guaranteed to 598 

converge within 𝑝𝑝 − 1 iterations. This algorithm was implemented as coded by Waller 599 

(2020), but with the following modifications for reproducibility: no random orthogonal 600 

rotation was involved in the initial stage, and rotation axes were chosen in a fixed order. It 601 

should be noted that the rotations involved—choice of eigenvectors—would in general 602 

influence distributions of 𝑉𝑉rel(𝐑𝐑), except for certain special cases including the 1-large λ 603 

condition (see Appendix A). It is impractical to exhaustively examine numerous possible 604 

conformations of eigenvectors, so only the single conformation generated by this algorithm 605 

was used for each combination of parameters. 606 

The eigenvalues of a sample covariance matrix were obtained from singular value 607 

decomposition of the data matrix, as the singular values squared and then divided by 𝑛𝑛∗ (see, 608 

e.g., Jolliffe, 2002). When 𝑝𝑝 > 𝑁𝑁 − 1, 0’s were appended to this vector so that 𝑝𝑝 sample 609 

eigenvalues were present. Data were centered at the sample mean before the decomposition, 610 

therefore 𝑛𝑛 = 𝑁𝑁 − 1. It was chosen that 𝑛𝑛∗ = 𝑛𝑛. The eigenvalues for a sample correlation 611 

matrix were obtained similarly from the sample-mean-centered data matrix scaled with the 612 

sample standard deviation for each variable. 613 

To summarize, each set of simulations consists of the following steps: 1) define a 614 

desired set of eigenvalues 𝚼𝚼; 2) construct the population covariance matrix 𝚺𝚺 with the 615 

rotation algorithm explained above; 3) generate 𝑁𝑁 i.i.d. normal observations from 𝑁𝑁𝑝𝑝(𝟎𝟎,𝚺𝚺); 616 

4) eigenvalues of sample covariance and correlation matrices were obtained from singular 617 

value decomposition of the sample-mean-centered data; 5) 𝑉𝑉(𝐒𝐒), 𝑉𝑉rel(𝐒𝐒), and 𝑉𝑉rel(𝐑𝐑) were 618 

calculated from the eigenvalues; 6) the steps 3–5 were iterated for 5,000 times in total with 619 

the same 𝑁𝑁 and 𝚺𝚺. The simulations were conducted on the R environment version 3.5.3 (R 620 

Core Team, 2019). The function “genhypergeo” of the package “hypergeo” was used to 621 
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evaluate the hypergeometric function in the moments of 𝑉𝑉rel(𝐑𝐑). The codes are provided as 622 

Supplementary Material. 623 

 624 

Results 625 

Examined individually, sample eigenvalues were biased estimators of population 626 

eigenvalues, as expected. Examples of eigenvalue distribution of sample covariance and 627 

correlation matrices are shown in Figures 4 and S1, respectively. Typically, the first few 628 

eigenvalues were overestimated, with the rest being underestimated. Note that gradually 629 

decreasing scree-like profiles of sample eigenvalues typical of empirical datasets can arise 630 

even when most population eigenvalues are identical in magnitude. The sampling biases 631 

decreased as 𝑁𝑁 increases. These overall trends were similarly observed for correlation 632 

matrices, although the upper tail of the largest eigenvalue tended to be truncated for 633 

correlation matrices because of the constraint tr𝐑𝐑 = 𝑝𝑝, effectively cancelling the tendency of 634 

overestimation in this eigenvalue (Fig. S1). 635 

Sampling distributions of 𝑉𝑉(𝐒𝐒) are shown in Figures 5 and S4–S6, and their summary 636 

statistics are shown in Tables 1 and S1. Distributions were unimodal but highly skewed with 637 

long upper tails, especially when 𝑁𝑁 or 𝑝𝑝 is small. As expected, sampling dispersion decreases 638 

consistently with increasing 𝑁𝑁, with skewness decreasing at the same time. Interestingly, the 639 

shape of distribution does not visibly change with increasing 𝑝𝑝, at least with moderately large 640 

𝑁𝑁 (≥ 32, say). In all conditions, 𝑉𝑉(𝐒𝐒) tended to overestimate the population value 𝑉𝑉(𝚺𝚺). 641 

Increasing 𝑉𝑉(𝚺𝚺) drastically increased sampling dispersion and skewness, whereas increasing 642 

𝑞𝑞 with a fixed 𝑉𝑉(𝚺𝚺) decreased sampling dispersion without affecting the mean as much. 643 

Sampling distributions of 𝑉𝑉(𝐒𝐒) under linearly and quadratically decreasing λ conditions look 644 

similar to those under 𝑞𝑞-large λ conditions with similar 𝑉𝑉(𝚺𝚺) values for the respective 𝑝𝑝. The 645 

expressions of the expectation and variance of 𝑉𝑉(𝐒𝐒) almost always coincided with the 646 
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sampling mean and variance within a reasonable range of random fluctuations (as expected, 647 

since those results are exact). 648 

Results for 𝑉𝑉rel(𝐒𝐒) are summarized in Figures 6 and S6–S8 and Tables 2 and S2. 649 

Distributions were unimodal within the range (0, 1), except when 𝑁𝑁 = 4 and 𝑝𝑝 = 2 where the 650 

distribution was essentially uniform. As was the case for 𝑉𝑉(𝐒𝐒), the sampling dispersion of 651 

𝑉𝑉rel(𝐒𝐒) decreased drastically with increasing 𝑁𝑁, and to some extent with increasing 𝑝𝑝, and the 652 

shape of distribution does not seem to change drastically with increasing 𝑝𝑝 past certain 𝑁𝑁. 653 

𝑉𝑉rel(𝐒𝐒) tended to overestimate the population value 𝑉𝑉rel(𝚺𝚺), except when the latter is rather 654 

large (= 0.8) where slight underestimation was observed. With increasing 𝑞𝑞 for a fixed 655 

𝑉𝑉rel(𝚺𝚺), the distributions tended to shrink, but the sampling bias remained virtually 656 

unchanged or slightly increased. In the null conditions, the exact expressions of the 657 

expectation and variance performed perfectly (as expected). The approximate expectation for 658 

arbitrary conditions derived above yielded substantially smaller values than the empirical 659 

means when 𝑁𝑁 is small; however, the approximation worked satisfactorily with moderate 𝑁𝑁 660 

(≥ 16–32), with the deviations from empirical means mostly falling within 2 standard error 661 

units. In addition, the approximate expectation worked rather well, even with small 𝑁𝑁, under 662 

either A) the 𝑞𝑞-large λ conditions with 𝑞𝑞 = 2 and 𝑉𝑉rel(𝚺𝚺) = 0.4, B) same with 𝑞𝑞 = 4, or C) 663 

linearly and quadratically decreasing λ conditions with moderately large 𝑝𝑝 (≥ 16). Other 664 

conditions held constant, the accuracy of the approximate expectation in absolute scale 665 

tended to slightly improve with increasing 𝑝𝑝, effectively balancing with the decreasing 666 

sampling dispersion, so that the relative bias in standard error unit remains almost invariant 667 

across varying 𝑝𝑝. The approximate variance for arbitrary conditions derived above yielded 668 

substantially larger values than the empirical variance, except under the 𝑞𝑞-large λ conditions 669 

with 𝑞𝑞 = 1 and 𝑉𝑉rel(𝚺𝚺) = 0.8 where it yielded smaller values. Even with the moderately 670 

large 𝑁𝑁 of 64, the expression yielded values inaccurate by ~5% in the scale of standard 671 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.19.449119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449119
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

deviation (SD scale hereafter), except under the linearly and quadratically decreasing λ 672 

conditions with moderately large 𝑝𝑝 (≥ 16), where it worked largely satisfactorily. 673 

Results for 𝑉𝑉rel(𝐑𝐑) are summarized in Figures 7, S6, S9, and S10 and Tables 3 and 674 

S3. Distributions were unimodal within the range (0, 1), except when 𝑝𝑝 = 2 and 𝑁𝑁 ≤ 8 675 

where an additional peak is usually present near 0. The overall response to varying 𝑝𝑝 and 𝑁𝑁 is 676 

largely similar to that of 𝑉𝑉rel(𝐒𝐒), although the shape of distribution was substantially different 677 

for small 𝑁𝑁. As expected from the theoretical expectations noted above, 𝑉𝑉rel(𝐑𝐑) tends to 678 

overestimate the population value 𝑉𝑉rel(𝚸𝚸) when the latter is small but tends to underestimate 679 

it when 𝑉𝑉rel(𝚸𝚸) = 0.8. The expressions of expectation for the null and arbitrary conditions 680 

and variance for the null condition derived above showed almost perfect match with the 681 

empirical means and variances (as expected). The asymptotic variance for arbitrary 682 

conditions with 𝑝𝑝 > 2 derived above behaved somewhat idiosyncratically. It yielded larger 683 

values than the empirical variances under A) the 𝑞𝑞-large λ conditions with 𝑞𝑞 = 1 and 684 

𝑉𝑉rel(𝚸𝚸) = 0.1– 0.6, B) same with 𝑞𝑞 = 2 and 𝑉𝑉rel(𝚸𝚸) = 0.1– 0.2 except when 𝑝𝑝 = 4, and C) 685 

the quadratically decreasing λ conditions with 𝑝𝑝 = 4; whereas it yielded smaller values under 686 

a) the 𝑞𝑞-large λ conditions with 𝑞𝑞 = 1 and 𝑉𝑉rel(𝚸𝚸) = 0.8, b) same with 𝑞𝑞 = 2 and 𝑉𝑉rel(𝚸𝚸) =687 

0.4, c) same with 𝑞𝑞 = 4, d) same with 𝑞𝑞 = 2 and 𝑝𝑝 = 4, e) the linearly decreasing λ 688 

conditions, and f) the quadratically decreasing λ conditions except when 𝑝𝑝 = 4. This latter 689 

underestimation of sampling dispersion seems to happen when the smallest population 690 

eigenvalue is smaller than ~0.125, although this is not true for the case d. In all cases, the 691 

accuracy of the asymptotic expression tends to improve with increasing 𝑁𝑁. Relative error 692 

decreases to 3–10% in SD scale with large 𝑁𝑁 (≥ 64) under the 𝑞𝑞-large λ conditions with 𝑞𝑞 =693 

1 (all cases), 𝑞𝑞 = 2 and 𝑉𝑉rel(𝚸𝚸) = 0.1– 0.2, or 𝑞𝑞 = 4 and 𝑉𝑉rel(𝚸𝚸) = 0.1. However, in other 694 

conditions, the relative error can be extremely large (10–300% in SD scale with 𝑁𝑁 = 256), 695 

especially when the smallest population eigenvalue is small (<0.1). 696 
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 697 

Discussion 698 

Eigenvalue dispersion indices can be calculated for covariance or correlation matrices in 699 

similar ways, but implications are rather different. On the one hand, the relative eigenvalue 700 

variance of a sample covariance matrix 𝑉𝑉rel(𝐒𝐒) is a test statistic for the sphericity (John, 701 

1972; Sugiura, 1972; Nagao, 1973), and is thus interpreted as a measure of eccentricity of 702 

variation, be it due to large variation of a single trait or covariation between traits. 703 

Interpretation of the unstandardized eigenvalue variance of a sample covariance matrix 𝑉𝑉(𝐒𝐒) 704 

is less straightforward, but it can potentially be useful in comparing eccentricity between 705 

samples when the sensitivity to overall scaling is not of concern, primarily for the presence of 706 

an unbiased estimator of the corresponding population value with a known variance (eq. 39). 707 

On the other hand, the relative eigenvalue variance of a sample correlation matrix 𝑉𝑉rel(𝐑𝐑) is 708 

identical to the average of the squared correlation coefficients across all pairs of traits 709 

(Durand & Le Roux, 2017; see above). The average squared correlation is another commonly 710 

used index of phenotypic integration (e.g., Cheverud et al., 1983), but its equivalence to 711 

𝑉𝑉rel(𝐑𝐑) seems to have been overlooked, apart from an empirical confirmation by Haber’s 712 

(2011) simulations. Obviously, the choice between covariance and correlation should be 713 

made according to the scope of individual analyses (Klingenberg, 1996; Hansen & Houle, 714 

2008; Pavlicev et al., 2009; Goswami & Polly, 2010; see also Machado et al., 2019 for an 715 

interesting discussion). Usual caveats for the choice between covariance and correlation is 716 

also pertinent here (Jolliffe, 2002): covariance between traits have clear interpretability only 717 

if all traits are in the same unit and dimension. These are despite that 𝑉𝑉rel(𝐒𝐒) is dimensionless 718 

and independent of the overall scaling of traits. 719 

Perhaps the most remarkable finding of this study is that the distributions of 𝑉𝑉rel(𝐒𝐒) 720 

and 𝑉𝑉rel(𝐑𝐑) do not seem to vary much with the number of variables 𝑝𝑝 itself. The above 721 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.19.449119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449119
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

expressions for the (approximate) mean and variance can be readily calculated for any 𝑝𝑝, and 722 

simulation results indicate that their accuracy are not compromised by large 𝑝𝑝 (Figs. 5–7 and 723 

S2–S8; Tables 1–3 and S1–S3). This finding highlights potential applicability of these 724 

measures to high-dimensional phenotypic data. Nevertheless, it should be remembered that, 725 

when 𝑝𝑝 exceeds the degree of freedom 𝑛𝑛, 𝑝𝑝 − 𝑛𝑛 of the sample eigenvalues are 0 and hence 726 

the corresponding population eigenvalues are not estimable. In addition, the first sample 727 

eigenvector tends to be consistently diverged from the first population eigenvector in high-728 

dimensional settings (Johnstone & Paul, 2018). 729 

 730 

Applications and limitations 731 

The present analytic results assume simple independent sampling from a multivariate normal 732 

population and the Wishart-ness of the cross-product matrix. For some biological datasets, 733 

certain modifications would be required. A simple example is data consisting of multiple 734 

groups with potentially heterogeneous means, e.g., intraspecific variation calculated from 735 

multiple geographic populations or sexes. If uniform 𝚺𝚺 across groups can be assumed, cross-736 

product matrices from the data centered at the respective group’s sample mean can be 737 

summed across groups to obtain a pooled cross-product matrix, which is, by the additivity of 738 

Wishart variables, distributed as 𝑊𝑊𝑝𝑝(𝚺𝚺,𝑁𝑁 − 𝑔𝑔), where 𝑁𝑁 is the total sample size and 𝑔𝑔 is the 739 

number of groups. That is, all above expressions can be applied by simply using the degree of 740 

freedom 𝑁𝑁 − 𝑔𝑔. A similar correction is required when eigenvalue dispersion indices are 741 

applied to partial correlation matrices (Torices & Méndez, 2014; Torices & Muñoz-Pajares, 742 

2015). The distribution of sample partial correlation coefficients in 𝑝𝑝1 variables 743 

conditionalized on 𝑝𝑝2 other variables based on 𝑁𝑁 observations is the same as that of ordinary 744 

correlation coefficients based on 𝑁𝑁 − 𝑝𝑝2 observations with the same corresponding 745 

parameters (e.g., Anderson, 2003: p. 143), so the appropriate degree of freedom is 𝑛𝑛 − 𝑝𝑝2. 746 
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These procedures are essentially to examine the covariance/correlation matrix of residuals 747 

after conditionalizing on covariates. 748 

Present analytical results may not be applicable to those empirical covariance or 749 

correlation matrices that are not based on a Wishart matrix. Primary examples are the 750 

empirical G matrices estimated from variance components in MANOVA designs or as 751 

(restricted) maximum likelihood estimators in mixed models (e.g., Lynch & Walsh, 1998). 752 

Mean-standardization, a method recommended for analyzing G matrices (e.g., Houle, 1992; 753 

Hereford et al., 2004; Hansen & Houle, 2008; Haber, 2016), can also violate the 754 

distributional assumption if sample means are used in the standardization. If eigenvalue 755 

dispersion indices are to be used with any of these methods, their sampling properties need to 756 

be critically assessed. 757 

The assumption of multivariate normality may be intrinsically inappropriate for some 758 

types of data. Examples include meristic (count) data, compositional or proportional data, 759 

angles, and directional data. Application of eigenvalue dispersion indices (or indeed 760 

covariance/correlation itself) to such data types would require special treatments, which are 761 

beyond the scope of this paper. Needless to say, the appropriateness of multivariate normality 762 

should be critically assessed in every empirical dataset when the present analytic results are 763 

to be applied, even if the data type is conformable with normality. Robustness of the above 764 

results against non-normality may deserve some investigations. 765 

 766 

Shape variables 767 

The application to traditional morphometric datasets, in which all variables are typically 768 

measured in the same unit, is rather straightforward, as covariance/correlation in such 769 

variables has full interpretability in the Euclidean trait space. Quite often, component(s) of 770 

little interest, e.g., size, are removed by transforming raw data, inducing covariation in 771 
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resultant variables that needs to be taken into account in hypothesis tests. The most typical 772 

transformation is the division by an isometric or allometric size variable (Jolicoeur, 1963; 773 

Mosimann, 1970; Mosimann & James, 1979; Darroch & Mosimann, 1985; Klingenberg, 774 

1996, 2016), which can conveniently be done by orthogonal projection in the space of log-775 

transformed variables. The projection of objects onto the hyperplane orthogonal to a 776 

subspace, say, the column space of 𝚮𝚮 (𝑝𝑝 × 𝑘𝑘 full-column-rank matrix; for the isometric size 777 

vector, 𝚮𝚮 = 𝑝𝑝−1/𝟐𝟐𝟏𝟏𝑝𝑝), can be done by right-multiplying the data by the projection matrix 778 

(e.g., Burnaby, 1966): 779 

𝐈𝐈𝑝𝑝 − 𝚮𝚮(𝚮𝚮𝑇𝑇𝚮𝚮)−1𝚮𝚮𝑇𝑇 . 793 

Therefore, the covariance matrix in the resultant space can be obtained from that in the 780 

original space 𝚺𝚺 as 781 

�𝐈𝐈𝑝𝑝 − 𝚮𝚮(𝚮𝚮𝑇𝑇𝚮𝚮)−1𝚮𝚮𝑇𝑇�𝚺𝚺�𝐈𝐈𝑝𝑝 − 𝚮𝚮(𝚮𝚮𝑇𝑇𝚮𝚮)−1𝚮𝚮𝑇𝑇�. 794 

Under the null condition (𝚺𝚺 = σ𝟐𝟐𝐈𝐈𝑝𝑝) specifically, this becomes 782 

σ𝟐𝟐�𝐈𝐈𝑝𝑝 − 𝚮𝚮(𝚮𝚮𝑇𝑇𝚮𝚮)−1𝚮𝚮𝑇𝑇�, 795 

because the projection matrix is symmetric and idempotent. This transformation renders 𝑘𝑘 783 

eigenvalues to be 0 by construction. When the focus is on covariance rather than correlation, 784 

these null eigenvalues can optionally be dropped from calculation of eigenvalue mean and 785 

dispersion, so that the resultant dispersion index quantifies eccentricity of variation in the 786 

subspace of interest. Theories derived above can be applied with minimal modifications, 787 

although the asymptotic variance of 𝑉𝑉rel(𝐑𝐑) may not work well due to the singularity. These 788 

discussions assume that independence between the raw variables can at least hypothetically 789 

be conceived, e.g., when measurements are taken from non-overlapping parts of an organism. 790 

If measurements are taken from overlapping parts of an organism, then there will be 791 

dependence between variables due to the geometric configuration, which needs to be taken 792 
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into consideration on case-by-case basis (Mitteroecker et al., 2012). It may even be 796 

inappropriate to assume multivariate normality for this last type of data. 797 

Application to landmark-based geometric morphometric data is more complicated, 798 

primarily because the shape space of Procrustes-aligned landmark configurations is (typically 799 

a restricted region of) the surface of a hyper(hemi)sphere. In practice, however, empirical 800 

analyses are usually conducted on a Euclidean tangent space instead of the shape space itself, 801 

assuming that the former gives a satisfactory metric approximation of the latter (e.g., Rohlf, 802 

1999; Marcus et al., 2000; Klingenberg, 2020). It will in principle be possible to obtain an 803 

approximate population covariance matrix of landmark coordinates in this tangent space from 804 

that of raw landmark coordinates before alignment, by using the orthogonal projection 805 

method mentioned above with such an 𝚮𝚮 whose columns represent the non-shape 806 

components. Such a set of vectors can be obtained either as a basis of the complement of the 807 

tangent space (see Rohlf & Bookstein, 2003) or directly from the consensus configuration 808 

(Klingenberg, 2020). The stereographic projection might potentially be preferred over the 809 

orthogonal projection in projecting aligned empirical configurations in the shape space to the 810 

tangent space—not to be confused with the projection from the raw space to the tangent 811 

space—for purposes of analysing eccentricity of variation. This is because the stereographic 812 

projection tends to approximately preserve multivariate normality of the raw coordinates into 813 

the resultant tangent space, provided that the variation in the raw coordinates is sufficiently 814 

small and that the mean configuration is taken as the point of tangency (Rohlf, 1999). It 815 

should be noted that Procrustes superimposition changes perceived patterns of variation in 816 

landmark coordinates, often rather drastically (Rohlf & Slice, 1990; Walker, 2000). Such 817 

phenomena are probably to be seen as properties of shape variables, rather than necessarily 818 

nuisance artefacts (Klingenberg, 2021). Whether these can be of concern or not would 819 

depend on the scope of individual analyses (see also Machado et al., 2019). 820 
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 821 

Phylogenetic data 822 

So far data were assumed to be i.i.d. multivariate normal variables. Important applications in 823 

evolutionary biology involve non-i.i.d. observations, most notably phylogenetically 824 

structured data in which 𝑁𝑁 observations (typically species) have covariance due to shared 825 

evolutionary histories. Trait covariation at the interspecific level may have interpretations 826 

under certain microevolutionary models (Felsenstein, 1988; Hansen & Martins, 1996; Revell 827 

& Harmon, 2008; Uyeda & Harmon, 2014; Caetano & Harmon, 2019). Under the assumption 828 

that trait evolution along phylogeny can be described by (potentially a mixture of) linear 829 

invariant Gaussian models, such as the Brownian motion (BM), accelerating–decelerating 830 

(ACDC; or early burst), and Ornstein–Uhlenbeck (OU) processes, the joint distribution of the 831 

observations is known to be multivariate normal (Hansen & Martins, 1996; Manceau et al., 832 

2017; Mitov et al., 2020). A brief overview is given below for potential applications of the 833 

present analytic results to phylogenetically structured data. 834 

For BM and its modifications, including BM with a trend, Pagel’s λ, and ACDC 835 

models, the covariance matrix of the 𝑁𝑁 × 𝑝𝑝 dimensional data 𝐗𝐗 can be factorized into the 836 

intertrait and interspecific components in the form of Kronecker product: 𝚺𝚺⊗𝚿𝚿, where 𝚿𝚿  is 837 

the 𝑁𝑁 × 𝑁𝑁 interspecific covariance matrix specified by the underlying phylogeny and 838 

parameter(s) specific to the evolutionary model (see Hansen & Martins, 1996; Freckleton et 839 

al., 2002; Blomberg et al., 2003; Clavel et al., 2015; Mitov et al., 2020). In this case the data 840 

can conveniently be considered as a matrix-variate normal variable (see Gupta & Nagar, 841 

1999): 𝐗𝐗 ~ 𝑁𝑁𝑁𝑁,𝑝𝑝(𝚳𝚳,𝚺𝚺⊗𝚿𝚿), where 𝚳𝚳 is a 𝑁𝑁 × 𝑝𝑝 matrix of means. If 𝚿𝚿 is known a priori—842 

that is, we have an accurate phylogenetic hypothesis and parameters— the change of 843 

variables 𝐘𝐘 = 𝚿𝚿−1/2𝐗𝐗 leads to 𝐘𝐘 ~ 𝑁𝑁𝑁𝑁,𝑝𝑝(𝚿𝚿−1 2⁄ 𝚳𝚳,𝚺𝚺⊗ 𝐈𝐈𝑁𝑁), thereby essentially avoiding the 844 

complication of dependence between observations. This procedure is widely recognized as 845 
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the (phylogenetic) generalized least squares (GLS; e.g., Grafen, 1989; Martins & Hansen, 846 

1997; Rohlf, 2001; Symonds & Blomberg, 2014). If we know the population mean 𝚳𝚳 in 847 

addition, then the cross product matrix centered at it, 848 

�𝐘𝐘 − 𝚿𝚿−1 2⁄ 𝚳𝚳�
𝑇𝑇
�𝐘𝐘 −𝚿𝚿−1 2⁄ 𝚳𝚳� = (𝐗𝐗 −𝚳𝚳)𝑇𝑇𝚿𝚿−1(𝐗𝐗 −𝚳𝚳), 869 

is distributed as 𝑊𝑊𝑝𝑝(𝚺𝚺,𝑁𝑁). If we don’t exactly know 𝚳𝚳 yet still assume 𝚳𝚳 = 𝟏𝟏𝑁𝑁𝛍𝛍𝑇𝑇 with the 849 

unknown but uniform 𝑝𝑝 × 1 mean vector 𝛍𝛍, then the GLS estimate of the mean 𝛍𝛍� =850 

(𝟏𝟏𝑁𝑁𝑇𝑇𝚿𝚿−1𝟏𝟏𝑁𝑁)−1𝟏𝟏𝑁𝑁𝑇𝑇𝚿𝚿−1𝐗𝐗 (e.g., Martins & Hansen, 1997) can be used to obtain a sample-851 

mean-centered cross-product matrix 852 

�𝐘𝐘 − 𝚿𝚿−1 2⁄ 𝟏𝟏𝑁𝑁𝛍𝛍�𝑇𝑇�
𝑇𝑇
�𝐘𝐘 − 𝚿𝚿−1 2⁄ 𝟏𝟏𝑁𝑁𝛍𝛍�𝑇𝑇� = (𝐗𝐗 − 𝟏𝟏𝑁𝑁𝛍𝛍�𝑇𝑇)𝑇𝑇𝚿𝚿−1(𝐗𝐗 − 𝟏𝟏𝑁𝑁𝛍𝛍�𝑇𝑇), 870 

which can be shown to be distributed as 𝑊𝑊𝑝𝑝(𝚺𝚺,𝑁𝑁 − 1). If there are multiple blocks of species 853 

with different means (regimes), then cross-product matrices calculated separately for each of 854 

these can be summed to obtained a Wishart matrix with a modified degree of freedom as 855 

mentioned above, although it would naturally be asked first whether those regimes share the 856 

same 𝚺𝚺 (Revell & Collar, 2009; Caetano & Harmon, 2019). Above analytic results can 857 

directly be applied to these Wishart matrices. Estimation of 𝚺𝚺 based on this transformation 858 

has previously been devised (Revell & Harmon, 2008; see also Huelsenbeck & Rannala, 859 

2003, Revell & Harrison, 2008; Adams & Felice, 2014), and has been shown to have superior 860 

accuracy in estimating eigenvalues and eigenvectors over estimation ignoring phylogenetic 861 

structure under model conditions (Revell, 2009). Variants of this method have already been 862 

applied to analyze eccentricity of interspecific covariation (Haber, 2016; Watanabe, 2018). In 863 

practice, however, 𝚿𝚿 is virtually never known accurately because phylogeny and parameters 864 

of evolutionary models are generally estimated with error, so empirical cross-product 865 

matrices may not be strictly Wishart. This source of error is inherent to any phylogenetic 866 

comparative analysis. Unlike the GLS estimate of the mean, which remains unbiased even 867 

when 𝚿𝚿 is misspecified, the GLS estimate of trait (co)variance is in general biased in this 868 
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case (see Rohlf, 2006). Although there are certain ways to incorporate phylogenetic 871 

uncertainty into statistical inferences (e.g., Huelsenbeck & Rannala, 2003; Garamszegi & 872 

Mundry, 2014; Nakagawa & de Villemereuil, 2019), potential consequences of the 873 

uncertainty over the distributions of derived statistics require further investigation (see also 874 

Revell et al., 2018). Nevertheless, the GLS estimation with slightly inaccurate 𝚿𝚿 is supposed 875 

to yield a better estimate of trait (co)variance than the estimation ignoring phylogenetic 876 

covariation altogether (Rohlf, 2006). It should be noted that uniform scaling of 𝚿𝚿 translates 877 

to the reciprocal scaling of the cross-product matrix; 𝑉𝑉(𝐒𝐒) is sensitive to this scaling, whereas 878 

𝑉𝑉rel(𝐒𝐒) and 𝑉𝑉rel(𝐑𝐑) are not. Therefore, specifically under the BM model, the only major 879 

concern for the latter two indices would be the phylogenetic uncertainty. 880 

Unfortunately, the GLS estimation of trait covariance does not seem feasible for 881 

multivariate OU models, where the joint covariance matrix cannot in general be factorized 882 

into intertrait and interspecific components (Bartoszek et al., 2012; Mitov et al., 2020). This 883 

is notably except when the selection strength matrix is spherical and the tree is ultrametric, in 884 

which case a factorization of the form 𝚺𝚺⊗𝚿𝚿 is possible (the scalar OU model; Bastide et al., 885 

2018) and hence the GLS cross-product matrix can in principle be calculated, assuming that 886 

the relevant parameters are known. Otherwise, the random drift/diffusion matrix of the OU 887 

model estimated in one or other criteria can potentially be analyzed, although little is known 888 

about its sampling properties under various implementations, other than that accurate 889 

estimation is notoriously difficult (e.g., Ho & Ané, 2014; Clavel et al., 2015). Further studies 890 

are required on technical aspects of quantifying trait covariation in phylogenetically 891 

structured data under such complex models, as well as its biological implications (e.g., 892 

Adams & Collyer, 2018, 2019b; Mitov et al., 2019, 2020; Clavel et al., 2019; Clavel & 893 

Morlon, 2020). 894 

 895 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.19.449119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449119
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Concluding remarks 896 

Eigenvalue dispersion indices of covariance or correlation matrices are commonly used as 897 

measures of trait covariation, but their statistical implications have not been well appreciated, 898 

against which criticism has reasonably been directed (e.g., Hansen & Houle, 2008; Hansen et 899 

al., 2019). As discussed above, 𝑉𝑉rel(𝐒𝐒) and 𝑉𝑉rel(𝐑𝐑) have clear statistical justifications as test 900 

statistics for sphericity and no correlation, respectively. However, sample eigenvalue 901 

dispersion indices are biased estimators of the corresponding population values. This paper 902 

derived (or restated) exact and approximate expressions for the expectation and variance of 903 

𝑉𝑉(𝐒𝐒), 𝑉𝑉rel(𝐒𝐒), and 𝑉𝑉rel(𝐑𝐑) under the respective null and arbitrary conditions, with which 904 

empirical values can be compared. All null moments derived are exact, as well as both 905 

moments of 𝑉𝑉(𝐒𝐒) and the expectation of 𝑉𝑉rel(𝐑𝐑) under arbitrary conditions. Moments of 906 

𝑉𝑉rel(𝐒𝐒) under arbitrary conditions are approximations based on the delta method; the 907 

approximate expectation was shown to work reasonably well with a moderate sample size 908 

(𝑁𝑁 ≥ 16– 32), whereas the approximate variance requires a larger sample size (e.g., 𝑁𝑁 ≥ 64, 909 

depending on other conditions). The variance of 𝑉𝑉rel(𝐑𝐑) under arbitrary conditions is 910 

asymptotic, and was seen to work well with a relatively large sample size (𝑁𝑁 ≥ 64) in some 911 

conditions, but not so well in others even with an extremely large sample size. Under such 912 

conditions where these expressions work, they can be used for (approximate) statistical 913 

inferences and tests for arbitrary covariance/correlation structures, as well as for 914 

determination of appropriate sample size in empirical analyses, essentially replacing 915 

qualitative thresholds proposed earlier (e.g., Haber, 2011; Jung et al., 2020). 916 

There are several conceivable ways for statistical inferences and hypothesis testing for 917 

eigenvalue dispersion indices. When sample size is so large that distributions of the indices 918 

are virtually symmetric (𝑁𝑁 ≥ 16– 128, depending on other conditions), the moments derived 919 

above may potentially be used to construct approximate confidence intervals. If multivariate 920 
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normality (or any other explicit distribution) can be assumed, then it is straightforward to 921 

obtain empirical distributions under appropriate null or alternative conditions with Monte 922 

Carlo simulations. Critical points of the null distributions and empirical power at α = 0.05 923 

and 0.01 based on the present simulations are presented in Table S1–S3 as a quick guide for 924 

sampling design. Several limiting and approximate distributions have been proposed for 925 

related statistics (e.g., John, 1972; Nagao, 1973; Ledoit & Wolf, 2002; Schott, 2005), which 926 

could be used for simple null hypothesis testing with large 𝑁𝑁. Resampling-based tests are 927 

another potential avenue of development. Applicability and performance of these alternative 928 

methods would deserve further investigations. 929 
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 1293 

Appendix A 1294 

In this part, relationships between eigenvalue dispersion indices and individual eigenvalues 1295 

are derived under certain restrictive conditions, in order to facilitate interpretation and to 1296 

clarify algorithms used in simulations. For simplicity, it is assumed λ� = 1 in the following 1297 

discussions; general cases easily follow by scaling. 1298 

Let us first consider the simple conditions where the first 𝑞𝑞 (< 𝑝𝑝) population 1299 

eigenvalues are equally large and the rest 𝑝𝑝 − 𝑞𝑞 eigenvalues are equally small: λ1 = ⋯ =1300 
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λ𝑞𝑞 ≥ λ𝑞𝑞+1 = ⋯ =  λ𝑝𝑝 (“𝑞𝑞-large λ conditions” in simulations). By noting ∑λ𝑖𝑖 = 𝑞𝑞λ1 +1301 

(𝑝𝑝 − 𝑞𝑞)λ𝑝𝑝 = 𝑝𝑝, it is seen that 1302 

 𝑉𝑉rel(𝚺𝚺) =
∑ (λ𝑖𝑖− 1)2𝑝𝑝
𝑖𝑖=1
𝑝𝑝(𝑝𝑝−1) = (𝑝𝑝−𝑞𝑞)

𝑞𝑞(𝑝𝑝−1) �1 − λ𝑝𝑝�
2
, (A1) 1303 

and hence 1304 

λ1 = 1 + �
(𝑝𝑝 − 1)(𝑝𝑝 − 𝑞𝑞)

𝑞𝑞
𝑉𝑉rel, 1311 

λ𝑝𝑝 = 1 −�
𝑞𝑞(𝑝𝑝 − 1)
𝑝𝑝 − 𝑞𝑞

𝑉𝑉rel. 1312 

  (A2) 1305 

By noting the constraint 0 ≤ λ𝑝𝑝 ≤ 1, an upper limit of 𝑉𝑉rel can be seen from equation A1: 1306 

 𝑉𝑉rel(𝚺𝚺) ≤ (𝑝𝑝−𝑞𝑞)
𝑞𝑞(𝑝𝑝−1) = 1

𝑞𝑞
− 𝑞𝑞−1

𝑞𝑞(𝑝𝑝−1). (A3) 1307 

It is then obvious that, under these constraints, a value of 𝑉𝑉rel greater than 0.5 cannot happen 1308 

when 𝑞𝑞 > 1; that is, such a large value implies the dominance of a single component of 1309 

variance. The same arguments equally apply to correlation matrices. 1310 

When 𝑞𝑞 = 1 for the correlation matrix, 𝑉𝑉rel(𝚸𝚸) completely specifies the magnitude of 1313 

correlation in every pair of variables. This point can be seen from the definition of 1314 

eigendecomposition: 1315 

ρ𝑖𝑖𝑖𝑖 = �λ𝑘𝑘υ𝑖𝑖𝑘𝑘υ𝑖𝑖𝑘𝑘

𝑝𝑝

𝑘𝑘=1

 1319 

= �λ1 − λ𝑝𝑝�υ𝑖𝑖1υ𝑖𝑖1 + λ𝑝𝑝�υ𝑖𝑖𝑘𝑘υ𝑖𝑖𝑘𝑘

𝑝𝑝

𝑘𝑘=1

, 1320 

  (A4) 1316 

where the (𝑖𝑖, 𝑗𝑗)-th element of the eigenvector matrix denoted as υ𝑖𝑖𝑖𝑖. Remember that 1317 

∑ υ𝑖𝑖𝑘𝑘υ𝑖𝑖𝑘𝑘
𝑝𝑝
𝑘𝑘=1 = δ𝑖𝑖𝑖𝑖, the Kronecker delta. Then, by noting equation A2 with 𝑞𝑞 = 1, 1318 
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 1 = ρ𝑖𝑖𝑖𝑖 = �λ1 − λ𝑝𝑝�υ𝑖𝑖12 + λ𝑝𝑝 = (𝑝𝑝υ𝑖𝑖12 − 1)�𝑉𝑉rel + 1, (A5) 1321 

therefore υ𝑖𝑖12 = 𝑝𝑝−1/2  for any 𝑖𝑖 (that is, the coefficients of the first eigenvector are equal in 1322 

magnitude). Finally, we have 1323 

 ρ𝑖𝑖𝑖𝑖2 = �λ1 − λ𝑝𝑝�
2
υ𝑖𝑖12 υ𝑖𝑖12 = 𝑉𝑉rel (A6) 1324 

for any combination of 𝑖𝑖 and 𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗); the magnitude of correlation is identical across all 1325 

pairs. Taken differently, λ2 = ⋯ = λ𝑝𝑝 = |ρ|. These relationships have previously been noted 1326 

by Anderson (1963) and Pavlicev et al. (2009). 1327 

The population eigenvalues of the linearly and quadratically decreasing λ conditions 1328 

used in simulations are defined as λ𝑖𝑖 = (𝑝𝑝 − 𝑖𝑖 + 1)λ𝑝𝑝 and λ𝑖𝑖 = (𝑝𝑝 − 𝑖𝑖 + 1)2λ𝑝𝑝 (𝑖𝑖 =1329 

1, 2, . . . ,𝑝𝑝) for linearly and quadratically decreasing conditions, respectively. Under the 1330 

assumption of a constant average eigenvalue, it is a simple matter of algebra to obtain the 1331 

actual values of λ𝑝𝑝 and 𝑉𝑉rel(𝚺𝚺), which are simple functions of 𝑝𝑝. The latter equals 1332 

1/3(𝑝𝑝 + 1) and (8𝑝𝑝 + 11)/5(𝑝𝑝 + 1)(2𝑝𝑝 + 1) for the linearly and quadratically decreasing λ 1333 

conditions, respectively. 1334 

 1335 

Appendix B 1336 

In this part, the first two moments of 𝑉𝑉(𝐒𝐒) and 𝑉𝑉rel(𝐒𝐒) under the arbitrary 𝚺𝚺 are derived, 1337 

assuming multivariate normality. Derivation of the moments of the latter requires evaluation 1338 

of moments of the ratio ∑ 𝑙𝑙𝑖𝑖2 (∑ 𝑙𝑙𝑖𝑖)2⁄ = tr(𝐀𝐀2) (tr𝐀𝐀)2⁄ , which are not guaranteed to coincide 1339 

with the ratio of moments except under the null hypothesis. Here we utilize the 1340 

approximation based on the Taylor series expansion given in equation 32. In turn, we need 1341 

E[tr(𝐀𝐀2)], E[(tr𝐀𝐀)2],Var[tr(𝐀𝐀2)], Var[(tr𝐀𝐀)2], and Cov[tr(𝐀𝐀2) , (tr𝐀𝐀)2]. 1342 

We will follow Srivastava & Yanagihara’s (2010) approach to obtain these moments. 1343 

As in the text, let the 𝑛𝑛 × 𝑝𝑝 matrix 𝐙𝐙 be (𝐳𝐳1, 𝐳𝐳2, … , 𝐳𝐳𝑛𝑛)𝑇𝑇, where 𝐳𝐳𝑖𝑖~𝑁𝑁𝑝𝑝(𝟎𝟎𝑝𝑝,𝚺𝚺) for 𝑖𝑖 =1344 
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1, 2, … ,𝑛𝑛. Consider the cross-product matrix 1345 

 𝐀𝐀 = 𝐙𝐙𝑇𝑇𝐙𝐙, (B1) 1346 

such that 𝐀𝐀 ~ 𝑊𝑊𝑝𝑝(𝚺𝚺,𝑛𝑛). Let the spectral decomposition of 𝚺𝚺: 1347 

 𝚺𝚺 = 𝚼𝚼𝚼𝚼𝚼𝚼𝑇𝑇, (B2) 1348 

with the orthogonal matrix of eigenvectors 𝚼𝚼 and the diagonal matrix of eigenvalues 𝚼𝚼. Let 1349 

the 𝑛𝑛 × 𝑝𝑝 matrix 𝐉𝐉 be (𝐣𝐣1, 𝐣𝐣2, … , 𝐣𝐣𝑛𝑛)𝑇𝑇, where 𝐣𝐣𝑖𝑖 are i.i.d. 𝑁𝑁𝑝𝑝(𝟎𝟎, 𝐈𝐈𝑝𝑝), such that 𝐙𝐙 = 𝐉𝐉𝚺𝚺1/2 with 1350 

𝚺𝚺1/2 = 𝚼𝚼𝚼𝚼1 2⁄ 𝚼𝚼𝑇𝑇. Then, it is possible to write 1351 

 𝐀𝐀 = 𝚺𝚺1 2⁄ 𝐉𝐉𝑇𝑇𝐉𝐉𝚺𝚺1 2⁄ = 𝚼𝚼𝚼𝚼1 2⁄ 𝚼𝚼𝑇𝑇𝐉𝐉𝑇𝑇𝐉𝐉𝚼𝚼𝚼𝚼1 2⁄ 𝚼𝚼𝑇𝑇 = 𝚼𝚼𝚼𝚼1 2⁄ 𝐕𝐕𝑇𝑇𝐕𝐕𝚼𝚼1 2⁄ 𝚼𝚼𝑇𝑇, (B3) 1352 

where 𝐕𝐕 = 𝐉𝐉𝚼𝚼 = �𝐯𝐯1, 𝐯𝐯2, … , 𝐯𝐯𝑝𝑝� with 𝐯𝐯𝑖𝑖 being i.i.d. 𝑁𝑁𝑛𝑛(𝟎𝟎, 𝐈𝐈𝑛𝑛). Furthermore, let 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝐯𝐯𝑖𝑖𝑇𝑇𝐯𝐯𝑖𝑖, 1353 

such that 𝑤𝑤𝑖𝑖𝑖𝑖 are i.i.d. chi-square variables with 𝑛𝑛 degrees of freedom χ𝑛𝑛2 . Obviously 𝑤𝑤𝑖𝑖𝑖𝑖 =1354 

𝑤𝑤𝑖𝑖𝑖𝑖. Note that  1355 

 tr𝐀𝐀 = tr�𝚼𝚼𝚼𝚼1 2⁄ 𝐕𝐕𝑇𝑇𝐕𝐕𝚼𝚼1 2⁄ 𝚼𝚼𝑇𝑇� = tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕) = ∑ λ𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 . (B4) 1356 

From well-known results on normal and chi-square moments, we have the following: 1357 

E(𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟) = 𝑛𝑛(𝑛𝑛 + 2) … (𝑛𝑛 + 2𝑟𝑟 − 2), 𝑟𝑟 = 1, 2, … , 1358 

E�𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟𝑤𝑤𝑖𝑖𝑖𝑖

2 � = E�tr�𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇�� 1359 

= tr�E(𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇) E�𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇�� 1360 

= tr[E(𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇) 𝐈𝐈𝑛𝑛] 1361 

= E(𝑤𝑤𝑖𝑖𝑖𝑖
𝑟𝑟+1) 1362 

= 𝑛𝑛(𝑛𝑛 + 2) … (𝑛𝑛 + 2𝑟𝑟), 𝑖𝑖 ≠ 𝑗𝑗, 𝑟𝑟 = 0, 1, … , 1363 

E�𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖
2 � = E�tr�𝑤𝑤𝑖𝑖𝑖𝑖𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇𝑤𝑤𝑖𝑖𝑖𝑖𝐯𝐯𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇�� 1364 

= � E�𝑣𝑣𝑖𝑖α2 𝑣𝑣𝑖𝑖γ𝑣𝑣𝑖𝑖δ�E�𝑣𝑣𝑖𝑖β2 𝑣𝑣𝑖𝑖δ𝑣𝑣𝑖𝑖γ�
𝑛𝑛

α,β,γ,δ

 1365 

= 9𝑛𝑛 + 6𝑛𝑛(𝑛𝑛 − 1) + 𝑛𝑛(𝑛𝑛 − 1)2 1366 

= 𝑛𝑛(𝑛𝑛 + 2)2, 𝑖𝑖 ≠ 𝑗𝑗, 1367 
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E�𝑤𝑤𝑖𝑖𝑖𝑖
2𝑤𝑤𝑖𝑖𝑘𝑘

2 � = �E�𝑣𝑣𝑖𝑖α2 𝑣𝑣𝑖𝑖β2 �E�𝑣𝑣𝑖𝑖α2 �E�𝑣𝑣𝑘𝑘β2 �
𝑛𝑛

α,β

 1370 

= 3𝑛𝑛 + 𝑛𝑛(𝑛𝑛 − 1) 1371 

= 𝑛𝑛(𝑛𝑛 + 2), 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘, 1372 

E�𝑤𝑤𝑖𝑖𝑖𝑖
4 � = � E�𝑣𝑣𝑖𝑖α𝑣𝑣𝑖𝑖β𝑣𝑣𝑖𝑖γ𝑣𝑣𝑖𝑖δ�E�𝑣𝑣𝑖𝑖α𝑣𝑣𝑖𝑖β𝑣𝑣𝑖𝑖δ𝑣𝑣𝑖𝑖γ�

𝑛𝑛

α,β,γ,δ

 1373 

= 9𝑛𝑛 + 3𝑛𝑛(𝑛𝑛 − 1) 1374 

= 3𝑛𝑛(𝑛𝑛 + 2), 𝑖𝑖 ≠ 𝑗𝑗, 1375 

  (B5) 1368 

where some intervening equations result from direct enumeration of the nonzero moments. 1369 

From the above expectations, one can evaluate the desired moments as follows: 1376 

E[tr(𝐀𝐀2)] = E[tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕)] 1377 

= E��λ𝑖𝑖λ𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖
2

𝑛𝑛

𝑖𝑖,𝑖𝑖

� 1378 

= �λ𝑖𝑖2 E(𝑤𝑤𝑖𝑖𝑖𝑖
2)

𝑛𝑛

𝑖𝑖

+ �λ𝑖𝑖λ𝑖𝑖 E�𝑤𝑤𝑖𝑖𝑖𝑖
2 �

𝑛𝑛

𝑖𝑖≠𝑖𝑖

 1379 

= 𝑛𝑛(𝑛𝑛 + 2)�λ𝑖𝑖2
𝑛𝑛

𝑖𝑖

+ 𝑛𝑛�λ𝑖𝑖λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

, 1380 

E[(tr𝐀𝐀)2] = E[[tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕)]2] 1381 

= E��λ𝑖𝑖λ𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖,𝑖𝑖

� 1382 

= �λ𝑖𝑖2 E(𝑤𝑤𝑖𝑖𝑖𝑖
2)

𝑛𝑛

𝑖𝑖

+ �λ𝑖𝑖λ𝑖𝑖 E(𝑤𝑤𝑖𝑖𝑖𝑖) E�𝑤𝑤𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖≠𝑖𝑖

 1383 

= 𝑛𝑛(𝑛𝑛 + 2)�λ𝑖𝑖2
𝑛𝑛

𝑖𝑖

+ 𝑛𝑛2�λ𝑖𝑖λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

, 1384 
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E[[tr(𝐀𝐀2)]2] = E[[tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕)]2] 1385 

= E�� λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙𝑤𝑤𝑖𝑖𝑖𝑖
2𝑤𝑤𝑘𝑘𝑙𝑙

2
𝑛𝑛

𝑖𝑖,𝑖𝑖,𝑘𝑘,𝑙𝑙

� 1386 

= �λ𝑖𝑖4 E(𝑤𝑤𝑖𝑖𝑖𝑖
4)

𝑛𝑛

𝑖𝑖

+ 4�λ𝑖𝑖3λ𝑖𝑖 E�𝑤𝑤𝑖𝑖𝑖𝑖
2𝑤𝑤𝑖𝑖𝑖𝑖

2 �
𝑛𝑛

𝑖𝑖≠𝑖𝑖

1387 

+ �λ𝑖𝑖2λ𝑖𝑖2�E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑖𝑖2 � + 2 E�𝑤𝑤𝑖𝑖𝑖𝑖

4 ��
𝑛𝑛

𝑖𝑖≠𝑖𝑖

1388 

+ � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘�2 E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑘𝑘2 � + 4 E�𝑤𝑤𝑖𝑖𝑖𝑖

2𝑤𝑤𝑖𝑖𝑘𝑘
2 ��

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1389 

+ � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙 E�𝑤𝑤𝑖𝑖𝑖𝑖
2 �E(𝑤𝑤𝑘𝑘𝑙𝑙

2 )
𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

 1390 

= 𝑛𝑛(𝑛𝑛 + 2)(𝑛𝑛 + 4)(𝑛𝑛 + 6)�λ𝑖𝑖4
𝑛𝑛

𝑖𝑖

+ 4𝑛𝑛(𝑛𝑛 + 2)(𝑛𝑛 + 4)�λ𝑖𝑖3λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

1391 

+ 𝑛𝑛(𝑛𝑛 + 2)(𝑛𝑛2 + 2𝑛𝑛 + 6)�λ𝑖𝑖2λ𝑖𝑖2
𝑛𝑛

𝑖𝑖≠𝑖𝑖

+ 2𝑛𝑛(𝑛𝑛 + 2) � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1392 

+ 𝑛𝑛2 � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

, 1393 

E[(tr𝐀𝐀)4] = E[[tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕)]4] 1394 

= E�� λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑘𝑘𝑘𝑘𝑤𝑤𝑙𝑙𝑙𝑙

𝑛𝑛

𝑖𝑖,𝑖𝑖,𝑘𝑘,𝑙𝑙

� 1395 
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= �λ𝑖𝑖4 E(𝑤𝑤𝑖𝑖𝑖𝑖
4)

𝑛𝑛

𝑖𝑖

+ 4�λ𝑖𝑖3λ𝑖𝑖 E(𝑤𝑤𝑖𝑖𝑖𝑖
3) E�𝑤𝑤𝑖𝑖𝑖𝑖�

𝑛𝑛

𝑖𝑖≠𝑖𝑖

+ 3�λ𝑖𝑖2λ𝑖𝑖2 E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑖𝑖2 �

𝑛𝑛

𝑖𝑖≠𝑖𝑖

1396 

+ 6 � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘 E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑖𝑖�E(𝑤𝑤𝑘𝑘𝑘𝑘)

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1397 

+ � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙 E(𝑤𝑤𝑖𝑖𝑖𝑖) E�𝑤𝑤𝑖𝑖𝑖𝑖�E(𝑤𝑤𝑘𝑘𝑘𝑘) E(𝑤𝑤𝑙𝑙𝑙𝑙)
𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

 1398 

= 𝑛𝑛(𝑛𝑛 + 2)(𝑛𝑛 + 4)(𝑛𝑛 + 6)�λ𝑖𝑖4
𝑛𝑛

𝑖𝑖

+ 4𝑛𝑛2(𝑛𝑛 + 2)(𝑛𝑛 + 4)�λ𝑖𝑖3λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

1399 

+ 3𝑛𝑛2(𝑛𝑛 + 2)2�λ𝑖𝑖2λ𝑖𝑖2
𝑛𝑛

𝑖𝑖≠𝑖𝑖

+ 6𝑛𝑛3(𝑛𝑛 + 2) � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1400 

+ 𝑛𝑛4 � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

, 1401 

E[tr(𝐀𝐀2) ∙ (tr𝐀𝐀)2] = E[tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕) ∙ [tr(𝚼𝚼𝐕𝐕𝑇𝑇𝐕𝐕)]2] 1402 

= E�� λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙𝑤𝑤𝑖𝑖𝑖𝑖
2𝑤𝑤𝑘𝑘𝑘𝑘𝑤𝑤𝑙𝑙𝑙𝑙

𝑛𝑛

𝑖𝑖,𝑖𝑖,𝑘𝑘,𝑙𝑙

� 1403 

= �λ𝑖𝑖4 E(𝑤𝑤𝑖𝑖𝑖𝑖
4)

𝑛𝑛

𝑖𝑖

+ �λ𝑖𝑖3λ𝑖𝑖�2 E(𝑤𝑤𝑖𝑖𝑖𝑖
3) E�𝑤𝑤𝑖𝑖𝑖𝑖� + 2 E�𝑤𝑤𝑖𝑖𝑖𝑖

2𝑤𝑤𝑖𝑖𝑖𝑖
2 ��

𝑛𝑛

𝑖𝑖≠𝑖𝑖

1404 

+ �λ𝑖𝑖2λ𝑖𝑖2�E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑖𝑖2 � + 2 E�𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

2 ��
𝑛𝑛

𝑖𝑖≠𝑖𝑖

1405 

+ � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘�E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑖𝑖�E(𝑤𝑤𝑘𝑘𝑘𝑘) + 4 E�𝑤𝑤𝑖𝑖𝑖𝑖𝑤𝑤𝑖𝑖𝑖𝑖

2 �E(𝑤𝑤𝑘𝑘𝑘𝑘)
𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1406 

+ E(𝑤𝑤𝑖𝑖𝑖𝑖
2) E�𝑤𝑤𝑖𝑖𝑘𝑘2 �� + � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙 E�𝑤𝑤𝑖𝑖𝑖𝑖

2 �E(𝑤𝑤𝑘𝑘𝑘𝑘) E(𝑤𝑤𝑙𝑙𝑙𝑙)
𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

 1407 
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= 𝑛𝑛(𝑛𝑛 + 2)(𝑛𝑛 + 4)(𝑛𝑛 + 6)�λ𝑖𝑖4
𝑛𝑛

𝑖𝑖

+ 2𝑛𝑛(𝑛𝑛 + 1)(𝑛𝑛 + 2)(𝑛𝑛 + 4)�λ𝑖𝑖3λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

1411 

+ 𝑛𝑛(𝑛𝑛 + 2)3�λ𝑖𝑖2λ𝑖𝑖2
𝑛𝑛

𝑖𝑖≠𝑖𝑖

+ 𝑛𝑛2(𝑛𝑛 + 2)(𝑛𝑛 + 5) � λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

1412 

+ 𝑛𝑛3 � λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

, 1413 

  (B6) 1408 

where notations of the form 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 ≠ 𝑙𝑙 represent inequality of every pairwise combination 1409 

of the subscripts concerned. 1410 

Although equations B6 can be evaluated for any 𝚺𝚺, calculating the product of all 1414 

possible combinations of eigenvalues is rather cumbersome especially when 𝑝𝑝 is large. For 1415 

this practical reason, it would be preferable to simplify these expressions by noting  1416 

�λ𝑖𝑖𝑟𝑟
𝑛𝑛

𝑖𝑖

= tr(𝚼𝚼𝒓𝒓) , 𝑟𝑟 = 1, 2, … , 1418 

�λ𝑖𝑖λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

= ��λ𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
2

−�λ𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= (tr𝚼𝚼)2 − tr(𝚼𝚼2) , 1419 

�λ𝑖𝑖3λ𝑖𝑖

𝑛𝑛

𝑖𝑖≠𝑖𝑖

= tr𝚼𝚼 tr(𝚼𝚼3) − tr(𝚼𝚼𝟒𝟒) , 1420 

�λ𝑖𝑖2λ𝑖𝑖2
𝑛𝑛

𝑖𝑖≠𝑖𝑖

= 3[tr(𝚼𝚼2)]2 − tr(𝚼𝚼𝟒𝟒) , 1421 

� λ𝑖𝑖2λ𝑖𝑖λ𝑘𝑘

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘

= (tr𝚼𝚼)2 tr(𝚼𝚼2) − 2 tr𝚼𝚼 tr(𝚼𝚼3) − [tr(𝚼𝚼2)]2 + 2 tr(𝚼𝚼𝟒𝟒) , 1422 

� λ𝑖𝑖λ𝑖𝑖λ𝑘𝑘λ𝑙𝑙

𝑛𝑛

𝑖𝑖≠𝑖𝑖≠𝑘𝑘≠𝑙𝑙

= (tr𝚼𝚼)4 − 6(tr𝚼𝚼)2 tr(𝚼𝚼2) + 8 tr𝚼𝚼 tr(𝚼𝚼3) + 3[tr(𝚼𝚼2)]2 − 6 tr(𝚼𝚼𝟒𝟒) . 1423 

  (B7) 1417 
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Then, equations B6 can be written as follows: 1424 

E[tr(𝐀𝐀2)] = 𝑛𝑛(tr𝚼𝚼)2 + 𝑛𝑛(𝑛𝑛 + 1) tr(𝚼𝚼2) , 1429 

E[(tr𝐀𝐀)2] = 𝑛𝑛2(tr𝚼𝚼)2 + 2𝑛𝑛 tr(𝚼𝚼2) , 1430 

E[[tr(𝐀𝐀2)]2] = 𝑛𝑛2(tr𝚼𝚼)4 + 2𝑛𝑛(𝑛𝑛2 + 𝑛𝑛 + 4)(tr𝚼𝚼)2 tr(𝚼𝚼2) + 16𝑛𝑛(𝑛𝑛 + 1) tr𝚼𝚼 tr(𝚼𝚼3)1431 

+ 𝑛𝑛(𝑛𝑛3 + 2𝑛𝑛2 + 5𝑛𝑛 + 4)[tr(𝚼𝚼2)]2 + 4𝑛𝑛(2𝑛𝑛2 + 5𝑛𝑛 + 5) tr(𝚼𝚼𝟒𝟒) , 1432 

E[(tr𝐀𝐀)4] = 𝑛𝑛4(tr𝚼𝚼)4 + 12𝑛𝑛3(tr𝚼𝚼)2 tr(𝚼𝚼2) + 12𝑛𝑛2 tr𝚼𝚼 tr(𝚼𝚼3)1433 

+ 32𝑛𝑛2[tr(𝚼𝚼2)]2 + 48𝑛𝑛 tr(𝚼𝚼𝟒𝟒) . 1434 

E[tr(𝐀𝐀2) ∙ (tr𝐀𝐀)2] = 𝑛𝑛3(tr𝚼𝚼)4 + 𝑛𝑛2(𝑛𝑛2 + 𝑛𝑛 + 10)(tr𝚼𝚼)2 tr(𝚼𝚼2)1435 

+ 8𝑛𝑛(𝑛𝑛2 + 𝑛𝑛 + 2) tr𝚼𝚼 tr(𝚼𝚼3) + 2𝑛𝑛(𝑛𝑛2 + 𝑛𝑛 + 4)[tr(𝚼𝚼2)]21436 

+ 24𝑛𝑛(𝑛𝑛 + 1) tr(𝚼𝚼𝟒𝟒) , 1437 

  (B8) 1425 

Finally, 1426 

Var[tr(𝐀𝐀2)] = E[[tr(𝐀𝐀2)]2]− E[tr(𝐀𝐀2)]2 1438 

= 8𝑛𝑛(tr𝚼𝚼)2 tr(𝚼𝚼2) + 16𝑛𝑛(𝑛𝑛 + 1) tr𝚼𝚼 tr(𝚼𝚼3)1439 

+ 4𝑛𝑛(𝑛𝑛 + 1)[tr(𝚼𝚼2)]2 + 4𝑛𝑛(2𝑛𝑛2 + 5𝑛𝑛 + 5) tr(𝚼𝚼𝟒𝟒) , 1440 

Var[(tr𝐀𝐀)2] = E[(tr𝐀𝐀)4] − E[(tr𝐀𝐀)2]2 1441 

= 8𝑛𝑛3(tr𝚼𝚼)2 tr(𝚼𝚼2) + 32𝑛𝑛2 tr𝚼𝚼 tr(𝚼𝚼3) + 8𝑛𝑛2[tr(𝚼𝚼2)]21442 

+ 48𝑛𝑛 tr(𝚼𝚼𝟒𝟒) , 1443 

Cov[tr(𝐀𝐀2) , (tr𝐀𝐀)2] = E[tr(𝐀𝐀2) ∙ (tr𝐀𝐀)2]− E[tr(𝐀𝐀2)] E[(tr𝐀𝐀)2] 1444 

= 8𝑛𝑛2(tr𝚼𝚼)2 tr(𝚼𝚼2) + 8𝑛𝑛(𝑛𝑛2 + 𝑛𝑛 + 2) tr𝚼𝚼 tr(𝚼𝚼3) + 8𝑛𝑛[tr(𝚼𝚼2)]21445 

+ 24𝑛𝑛(𝑛𝑛 + 1) tr(𝚼𝚼𝟒𝟒) . 1446 

  (B9) 1427 

Inserting equations B8 and B9 into equations 12, 19, and 32 yields the desired results. 1428 

Identical results can be derived from del Waal & Nel’s (1973) results on the 1447 

expectations of elementary symmetric functions of eigenvalues and their products for a 1448 
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Wishart matrix. However, these results appear to have been proved only under the condition 1449 

𝑛𝑛 > 𝑝𝑝 − 1 (see also Constantine, 1963; Muirhead, 1982: chapter 7). The above derivation is 1450 

valid for any combination of 𝑝𝑝 and 𝑛𝑛. 1451 

 1452 

Appendix C 1453 

This part demonstrates that Cov�𝑟𝑟𝑖𝑖𝑖𝑖2 , 𝑟𝑟𝑘𝑘𝑙𝑙2 � = 0 for (𝑖𝑖, 𝑗𝑗) ≠ (𝑘𝑘, 𝑙𝑙) under the condition 𝚸𝚸 = 𝐈𝐈𝑝𝑝, as 1454 

cursorily mentioned by Schott (2005). Under this condition, a sample covariance can be 1455 

written as 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑛𝑛∗−1�σ𝑖𝑖𝑖𝑖σ𝑖𝑖𝑖𝑖�
1/2
𝐯𝐯𝑖𝑖𝑇𝑇𝐯𝐯𝑖𝑖, with 𝐯𝐯𝑖𝑖 and 𝐯𝐯𝑖𝑖 being i.i.d. 𝑁𝑁𝑛𝑛(𝟎𝟎, 𝐈𝐈𝑛𝑛). Therefore, a sample 1456 

correlation coefficient can be written as 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖�
−1/2

= 𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖, where 𝐮𝐮𝑖𝑖 =1457 

(𝐯𝐯𝑖𝑖𝑇𝑇𝐯𝐯𝑖𝑖)−1/2𝐯𝐯𝑖𝑖 are uniformly distributed on the surface of the unit hypersphere in the 𝑛𝑛-1458 

dimensional space. By noting 𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖 = 1, it is possible to see E(𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇) = 𝑛𝑛−1𝐈𝐈𝑛𝑛 for any 𝑖𝑖, 1459 

because the elements of 𝐮𝐮𝑖𝑖 are symmetric and uncorrelated with one another (a formal 1460 

demonstration requires introduction of the density function; see Anderson, 2003: p. 49). With 1461 

these preliminaries, it is easily seen, for 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘, 1462 

E�𝑟𝑟𝑖𝑖𝑖𝑖2𝑟𝑟𝑖𝑖𝑘𝑘2 � = E�𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑘𝑘𝐮𝐮𝑘𝑘𝑇𝑇𝐮𝐮𝑖𝑖� 1468 

= E�𝐮𝐮𝑖𝑖𝑇𝑇E�𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇�𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇E(𝐮𝐮𝑘𝑘𝐮𝐮𝑘𝑘𝑇𝑇)𝐮𝐮𝑖𝑖� 1469 

= 𝑛𝑛−2E[𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖𝐮𝐮𝑖𝑖𝑇𝑇𝐮𝐮𝑖𝑖] 1470 

= 𝑛𝑛−2 = E�𝑟𝑟𝑖𝑖𝑖𝑖2�E(𝑟𝑟𝑖𝑖𝑘𝑘2 ). 1471 

  (C1) 1463 

The second equation is valid because 𝐮𝐮𝑖𝑖, 𝐮𝐮𝑖𝑖, and 𝐮𝐮𝑘𝑘 are stochastically independent from one 1464 

another. Therefore, Cov�𝑟𝑟𝑖𝑖𝑖𝑖2 , 𝑟𝑟𝑖𝑖𝑘𝑘2 � = 0 for partly overlapping subscripts. Similarly, 1465 

Cov�𝑟𝑟𝑖𝑖𝑖𝑖2 , 𝑟𝑟𝑘𝑘𝑙𝑙2 � = 0 for non-overlapping subscripts, although this could also be seen as a direct 1466 

consequence of the independence between 𝑟𝑟𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑘𝑘𝑙𝑙 in this case. 1467 

 1472 
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Appendix D 1473 

In this part, an asymptotic expression for the variance of 𝑉𝑉rel(𝐑𝐑) is derived, somewhat 1474 

heuristically, for arbitrary non-null conditions with 𝑝𝑝 > 2. Konishi (1979) gave an 1475 

asymptotic theory for the distribution of an arbitrary function of eigenvalues of a sample 1476 

correlation matrix 𝑓𝑓�𝑙𝑙1, … , 𝑙𝑙𝑝𝑝� under multivariate normality. In particular, when 𝑛𝑛 → ∞, 1477 

√𝑛𝑛�𝑓𝑓�𝑙𝑙1, … , 𝑙𝑙𝑝𝑝� − 𝑓𝑓�λ1, … , λ𝑝𝑝�� was shown to be normally distributed with mean 0 and 1478 

variance 1479 

τ2 = 2 � λαλβ �δαβ − �λα + λβ��υ𝑖𝑖α2 υ𝑖𝑖β2
𝑝𝑝

𝑖𝑖=1

+ � ρ𝑖𝑖𝑖𝑖2 υ𝑖𝑖α2 υ𝑖𝑖β2
𝑝𝑝

𝑖𝑖,𝑖𝑖=1

� 𝑓𝑓α𝑓𝑓β

𝑝𝑝

α,β=1

, 1492 

  (D1) 1480 

where the summations are over all combinations of subscripts, δαβ is the Kronecker delta, υ𝑖𝑖α 1481 

is the (𝑖𝑖,𝛼𝛼)-th element of the population eigenvector matrix 𝚼𝚼, and 𝑓𝑓α =1482 

𝜕𝜕𝑓𝑓 𝜕𝜕𝑙𝑙α⁄ |�𝑙𝑙1,…,𝑙𝑙𝑝𝑝�=�λ1,…,λ𝑝𝑝� , the partial derivative of 𝑓𝑓 with respect to 𝑙𝑙α evaluated at 1483 

�𝑙𝑙1, … , 𝑙𝑙𝑝𝑝� = �λ1, … , λ𝑝𝑝�. Note that Konishi’s (1979; corollary 2.2) original notation also 1484 

concerned potential multiplicity of population eigenvalues, which is ignored here for 1485 

simplicity; the population eigenvectors corresponding to multiplicated eigenvalues can in 1486 

practice be chosen arbitrarily as a suite of orthogonal vectors in the appropriate subspace, as 1487 

is done in numerical determination of eigenvectors. The derivative of 𝑉𝑉rel(𝐑𝐑) is simply 1488 

𝑓𝑓α =
𝜕𝜕
𝜕𝜕𝑙𝑙α

𝑉𝑉rel(𝐑𝐑)�
�𝑙𝑙1,…,𝑙𝑙𝑝𝑝�=�λ1,…,λ𝑝𝑝�

=
2

𝑝𝑝(𝑝𝑝 − 1) λα. 1493 

  (D2) 1489 

Inserting equation D2 into equation D1, we obtain τ2/𝑛𝑛 as an asymptotic expression of the 1490 

variance of 𝑉𝑉rel(𝐑𝐑) (eq. 37). 1491 
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An empirically equivalent result can be obtained from the alternative expression of 1494 

𝑉𝑉rel(𝐑𝐑) as average squared correlation coefficients (eq. 11), from a similar theory for 1495 

functions of a sample correlation matrix by Konishi (1979: theorem 6.2). However, that 1496 

alternative expression does not seem to bear much practical advantage, for it typically takes 1497 

substantially more computational time to evaluate as 𝑝𝑝 grows. 1498 

 1499 
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Table 1. Summary statistics of selected simulation results for eigenvalue variance of 1500 

covariance matrix 𝑉𝑉(𝐒𝐒). Theoretical expectation (E[𝑉𝑉(𝐒𝐒)]) and standard deviation 1501 

(SD[𝑉𝑉(𝐒𝐒)]), as well as empirical median, mean, standard deviation (ESD), and bias of mean 1502 

in standard error unit (𝑇𝑇 = √5000{Mean − E[𝑉𝑉rel(𝐒𝐒)]}/ESD, which should roughly follow 𝑡𝑡 1503 

distribution with 4999 degrees of freedom if the expectation is exact) from 5000 simulation 1504 

runs are shown for selected conditions. See Table S1 for full results. 1505 

 E[𝑉𝑉(𝐒𝐒)] SD[𝑉𝑉(𝐒𝐒)] Median Mean ESD T 

p = 2, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.2857 0.3582 0.1731 0.2876 0.3464 0.3845 

N = 16 0.1333 0.1501 0.0876 0.1330 0.1466 −0.1703 

N = 32 0.0645 0.0686 0.0438 0.0646 0.0689 0.0489 

N = 64 0.0317 0.0327 0.0221 0.0315 0.0315 −0.6336 

p = 4, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.2143 0.1551 0.1734 0.2131 0.1534 −0.5437 

N = 16 0.1000 0.0602 0.0861 0.0996 0.0603 −0.4826 

N = 32 0.0484 0.0261 0.0429 0.0481 0.0261 −0.8676 

N = 64 0.0238 0.0120 0.0216 0.0239 0.0119 0.5321 

p = 16, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.1518 0.0304 0.1482 0.1510 0.0307 −1.8948 

N = 16 0.0708 0.0102 0.0702 0.0708 0.0102 −0.0003 

N = 32 0.0343 0.0038 0.0341 0.0342 0.0037 −0.4806 

N = 64 0.0169 0.0015 0.0168 0.0169 0.0015 −0.6023 

p = 64, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.1473 0.0203 0.1464 0.1477 0.0204 1.2947 
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 E[𝑉𝑉(𝐒𝐒)] SD[𝑉𝑉(𝐒𝐒)] Median Mean ESD T 

N = 16 0.0688 0.0067 0.0688 0.0689 0.0066 1.7306 

N = 32 0.0333 0.0024 0.0332 0.0333 0.0024 0.6721 

N = 64 0.0164 0.0009 0.0163 0.0164 0.0009 −0.4407 

p = 256, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.1440 0.0097 0.1436 0.1440 0.0099 0.1215 

N = 16 0.0672 0.0031 0.0672 0.0672 0.0031 0.9739 

N = 32 0.0325 0.0011 0.0325 0.0325 0.0011 −0.8132 

N = 64 0.0160 0.0004 0.0160 0.0160 0.0004 0.0842 

p = 1024, 𝑉𝑉(𝚺𝚺) = 0 

N = 8 0.1431 0.0048 0.1430 0.1431 0.0048 −0.6874 

N = 16 0.0668 0.0015 0.0668 0.0668 0.0015 1.7324 

N = 32 0.0323 0.0005 0.0323 0.0323 0.0005 0.3227 

N = 64 0.0159 0.0002 0.0159 0.0159 0.0002 0.3522 

p = 2, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 

N = 8 0.6857 0.8717 0.3967 0.6901 0.8663 0.3572 

N = 16 0.5333 0.4852 0.3972 0.5426 0.4981 1.3183 

N = 32 0.4645 0.3023 0.3936 0.4616 0.3011 −0.6854 

N = 64 0.4317 0.2002 0.4044 0.4337 0.2019 0.6886 

p = 4, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 

N = 8 0.6429 0.7343 0.3949 0.6372 0.7364 −0.5426 

N = 16 0.5133 0.4137 0.3968 0.5132 0.4183 −0.0225 

N = 32 0.4548 0.2598 0.3937 0.4544 0.2661 −0.1087 

N = 64 0.4270 0.1728 0.4025 0.4292 0.1756 0.8791 

p = 16, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 
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 E[𝑉𝑉(𝐒𝐒)] SD[𝑉𝑉(𝐒𝐒)] Median Mean ESD T 

N = 8 0.6107 0.6427 0.4130 0.6165 0.6509 0.6282 

N = 16 0.4983 0.3668 0.4060 0.5036 0.3748 0.9922 

N = 32 0.4476 0.2322 0.4057 0.4492 0.2314 0.5001 

N = 64 0.4234 0.1552 0.4005 0.4227 0.1546 −0.3205 

p = 64, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 

N = 8 0.6027 0.6206 0.4227 0.6052 0.5988 0.2997 

N = 16 0.4946 0.3554 0.4061 0.5021 0.3631 1.4613 

N = 32 0.4458 0.2255 0.4003 0.4445 0.2244 −0.4124 

N = 64 0.4225 0.1509 0.3986 0.4237 0.1546 0.5322 

p = 256, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 

N = 8 0.6007 0.6151 0.4140 0.6076 0.6137 0.7995 

N = 16 0.4936 0.3526 0.4000 0.4873 0.3492 −1.2751 

N = 32 0.4453 0.2239 0.4068 0.4465 0.2213 0.3813 

N = 64 0.4223 0.1499 0.4003 0.4234 0.1505 0.5054 

p = 1024, q = 1, 𝑉𝑉(𝚺𝚺) = 0.4 

N = 8 0.6002 0.6138 0.3961 0.5940 0.6361 −0.6814 

N = 16 0.4934 0.3519 0.4015 0.4977 0.3638 0.8432 

N = 32 0.4452 0.2235 0.4037 0.4489 0.2304 1.1498 

N = 64 0.4222 0.1496 0.4020 0.4240 0.1526 0.8140 

p = 2, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0857 1.2651 0.6587 1.0792 1.3030 −0.3520 

N = 16 0.9333 0.7343 0.7440 0.9364 0.7250 0.3003 

N = 32 0.8645 0.4698 0.7732 0.8675 0.4675 0.4571 

N = 64 0.8317 0.3157 0.7840 0.8333 0.3172 0.3574 
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 E[𝑉𝑉(𝐒𝐒)] SD[𝑉𝑉(𝐒𝐒)] Median Mean ESD T 

p = 4, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0714 1.2182 0.6903 1.0730 1.2081 0.0917 

N = 16 0.9267 0.7096 0.7454 0.9328 0.7139 0.6117 

N = 32 0.8613 0.4549 0.7682 0.8585 0.4565 −0.4368 

N = 64 0.8302 0.3061 0.7903 0.8350 0.3069 1.1137 

p = 16, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0607 1.1840 0.6778 1.0687 1.1804 0.4765 

N = 16 0.9217 0.6917 0.7517 0.9147 0.6842 −0.7221 

N = 32 0.8589 0.4442 0.7847 0.8683 0.4387 1.5248 

N = 64 0.8290 0.2992 0.7925 0.8358 0.3067 1.5855 

p = 64, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0580 1.1756 0.6979 1.0755 1.2081 1.0231 

N = 16 0.9204 0.6873 0.7463 0.9304 0.7024 1.0083 

N = 32 0.8583 0.4415 0.7643 0.8495 0.4352 −1.4315 

N = 64 0.8287 0.2975 0.7873 0.8292 0.2977 0.1296 

p = 256, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0574 1.1735 0.6982 1.0818 1.1935 1.4492 

N = 16 0.9201 0.6862 0.7373 0.9122 0.6746 −0.8321 

N = 32 0.8581 0.4409 0.7749 0.8663 0.4540 1.2689 

N = 64 0.8286 0.2971 0.7824 0.8219 0.2873 −1.6582 

p = 1024, q = 1, 𝑉𝑉(𝚺𝚺) = 0.8 

N = 8 1.0572 1.1729 0.6881 1.0573 1.1723 0.0072 

N = 16 0.9200 0.6859 0.7655 0.9344 0.6943 1.4624 

N = 32 0.8581 0.4407 0.7709 0.8531 0.4414 −0.7945 
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 E[𝑉𝑉(𝐒𝐒)] SD[𝑉𝑉(𝐒𝐒)] Median Mean ESD T 

N = 64 0.8286 0.2969 0.7840 0.8292 0.2987 0.1364 
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Table 2. Summary statistics of selected simulation results for relative eigenvalue variance of 1507 

covariance matrix 𝑉𝑉rel(𝐒𝐒). (Approximate) theoretical expectation (E[𝑉𝑉rel(𝐒𝐒)]) and standard 1508 

deviation (SD[𝑉𝑉rel(𝐒𝐒)]), as well as empirical median, mean, standard deviation (ESD), and 1509 

bias of mean in standard error unit (T) from 5000 simulation runs are shown for selected 1510 

conditions. See Table 1 for further information and Table S2 for full results. 1511 

 ≈ E[𝑉𝑉rel(𝐒𝐒)] ≈ SD[𝑉𝑉rel(𝐒𝐒)] Median Mean ESD T 

p = 2, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.2500 0.1936 0.2079 0.2514 0.1924 0.4961 

N = 16 0.1250 0.1102 0.0953 0.1259 0.1098 0.6000 

N = 32 0.0625 0.0587 0.0448 0.0628 0.0597 0.3234 

N = 64 0.0313 0.0303 0.0224 0.0309 0.0289 −0.8301 

p = 4, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.2000 0.0840 0.1856 0.2002 0.0858 0.1644 

N = 16 0.0968 0.0433 0.0907 0.0968 0.0434 0.0620 

N = 32 0.0476 0.0219 0.0438 0.0474 0.0221 −0.6146 

N = 64 0.0236 0.0110 0.0218 0.0237 0.0110 0.6544 

p = 16, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.1579 0.0193 0.1562 0.1580 0.0197 0.3764 

N = 16 0.0744 0.0091 0.0738 0.0746 0.0094 1.4158 

N = 32 0.0361 0.0044 0.0357 0.0361 0.0044 −1.2604 

N = 64 0.0178 0.0022 0.0177 0.0178 0.0022 0.4338 

p = 64, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.1467 0.0047 0.1462 0.1466 0.0046 −0.6909 

N = 16 0.0686 0.0022 0.0685 0.0686 0.0022 0.5618 
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 ≈ E[𝑉𝑉rel(𝐒𝐒)] ≈ SD[𝑉𝑉rel(𝐒𝐒)] Median Mean ESD T 

N = 32 0.0332 0.0010 0.0332 0.0332 0.0011 0.0446 

N = 64 0.0164 0.0005 0.0163 0.0164 0.0005 −0.5869 

p = 256, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.1438 0.0012 0.1437 0.1438 0.0012 −0.0173 

N = 16 0.0672 0.0005 0.0671 0.0672 0.0005 1.4545 

N = 32 0.0325 0.0003 0.0325 0.0325 0.0003 −0.7481 

N = 64 0.0160 0.0001 0.0160 0.0160 0.0001 0.3608 

p = 1024, 𝑉𝑉rel(𝚺𝚺) = 0 

N = 8 0.1431 0.0003 0.1431 0.1431 0.0003 −0.5105 

N = 16 0.0668 0.0001 0.0668 0.0668 0.0001 0.0231 

N = 32 0.0323 0.0001 0.0323 0.0323 0.0001 −1.3055 

N = 64 0.0159 0.0000 0.0159 0.0159 0.0000 −0.0022 

p = 2, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4377 0.2825 0.4939 0.4804 0.2334 12.9356 

N = 16 0.4232 0.1982 0.4457 0.4384 0.1764 6.0670 

N = 32 0.4132 0.1378 0.4169 0.4152 0.1297 1.1224 

N = 64 0.4070 0.0963 0.4108 0.4083 0.0945 0.9214 

p = 4, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4319 0.2065 0.4730 0.4675 0.1658 15.1734 

N = 16 0.4200 0.1444 0.4316 0.4288 0.1272 4.8902 

N = 32 0.4113 0.1001 0.4147 0.4125 0.0944 0.9058 

N = 64 0.4060 0.0699 0.4073 0.4067 0.0682 0.7503 

p = 16, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4275 0.1691 0.4657 0.4626 0.1346 18.4219 
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 ≈ E[𝑉𝑉rel(𝐒𝐒)] ≈ SD[𝑉𝑉rel(𝐒𝐒)] Median Mean ESD T 

N = 16 0.4174 0.1175 0.4302 0.4270 0.1049 6.4710 

N = 32 0.4098 0.0813 0.4161 0.4129 0.0762 2.8682 

N = 64 0.4052 0.0566 0.4070 0.4058 0.0548 0.7118 

p = 64, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4264 0.1613 0.4670 0.4599 0.1273 18.6017 

N = 16 0.4168 0.1119 0.4286 0.4266 0.0996 6.9651 

N = 32 0.4095 0.0773 0.4125 0.4109 0.0726 1.3497 

N = 64 0.4050 0.0538 0.4063 0.4056 0.0532 0.7287 

p = 256, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4261 0.1594 0.4637 0.4606 0.1249 19.5222 

N = 16 0.4166 0.1105 0.4262 0.4228 0.0977 4.4222 

N = 32 0.4094 0.0763 0.4148 0.4120 0.0718 2.5791 

N = 64 0.4050 0.0531 0.4066 0.4058 0.0520 1.1405 

p = 1024, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.4 

N = 8 0.4261 0.1590 0.4566 0.4548 0.1261 16.1041 

N = 16 0.4166 0.1102 0.4272 0.4246 0.0990 5.7314 

N = 32 0.4094 0.0761 0.4140 0.4123 0.0718 2.8690 

N = 64 0.4050 0.0530 0.4068 0.4058 0.0521 1.1494 

p = 2, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 

N = 8 0.7847 0.1153 0.8314 0.7947 0.1473 4.8016 

N = 16 0.7929 0.0866 0.8164 0.7963 0.1004 2.4327 

N = 32 0.7969 0.0625 0.8090 0.7990 0.0672 2.2207 

N = 64 0.7986 0.0445 0.8030 0.7983 0.0470 −0.3966 

p = 4, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 
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 ≈ E[𝑉𝑉rel(𝐒𝐒)] ≈ SD[𝑉𝑉rel(𝐒𝐒)] Median Mean ESD T 

N = 8 0.7841 0.0920 0.8207 0.7927 0.1170 5.1526 

N = 16 0.7927 0.0692 0.8086 0.7945 0.0793 1.6175 

N = 32 0.7968 0.0498 0.8039 0.7967 0.0537 −0.1966 

N = 64 0.7985 0.0354 0.8026 0.7993 0.0368 1.5352 

p = 16, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 

N = 8 0.7838 0.0810 0.8153 0.7913 0.1049 5.0688 

N = 16 0.7926 0.0609 0.8067 0.7943 0.0696 1.7415 

N = 32 0.7968 0.0437 0.8044 0.7989 0.0452 3.3474 

N = 64 0.7985 0.0310 0.8019 0.7990 0.0323 1.0675 

p = 64, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 

N = 8 0.7837 0.0787 0.8157 0.7915 0.1022 5.4258 

N = 16 0.7926 0.0592 0.8072 0.7956 0.0669 3.2349 

N = 32 0.7967 0.0425 0.8021 0.7967 0.0447 −0.0106 

N = 64 0.7985 0.0301 0.8018 0.7989 0.0308 0.8231 

p = 256, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 

N = 8 0.7836 0.0781 0.8150 0.7930 0.0994 6.6508 

N = 16 0.7926 0.0588 0.8058 0.7944 0.0663 1.9392 

N = 32 0.7967 0.0422 0.8033 0.7976 0.0455 1.3138 

N = 64 0.7985 0.0299 0.8010 0.7983 0.0303 −0.5863 

p = 1024, q = 1, 𝑉𝑉rel(𝚺𝚺) = 0.8 

N = 8 0.7836 0.0780 0.8140 0.7904 0.1011 4.7652 

N = 16 0.7926 0.0587 0.8081 0.7959 0.0665 3.5530 

N = 32 0.7967 0.0421 0.8026 0.7967 0.0448 −0.0218 

N = 64 0.7985 0.0299 0.8012 0.7987 0.0307 0.4338 
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Table 3. Summary statistics of selected simulation results for relative eigenvalue variance of 1513 

correlation matrix 𝑉𝑉rel(𝐑𝐑). Theoretical expectation (E[𝑉𝑉rel(𝐑𝐑)]) and (approximate) standard 1514 

deviation (SD[𝑉𝑉rel(𝐑𝐑)]), as well as empirical median, mean, standard deviation (ESD), and 1515 

bias of mean in standard error unit (T) from 5000 simulation runs are shown for selected 1516 

conditions. See Table 1 for further information and Table S3 for full results. 1517 

 E[𝑉𝑉rel(𝐑𝐑)] ≈ SD[𝑉𝑉rel(𝐑𝐑)] Median Mean ESD T 

p = 2, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.1650 0.0792 0.1429 0.1635 0.0363 

N = 16 0.0667 0.0856 0.0336 0.0679 0.0862 1.0235 

N = 32 0.0323 0.0435 0.0163 0.0326 0.0427 0.6113 

N = 64 0.0159 0.0219 0.0075 0.0156 0.0205 −1.0380 

p = 4, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.0673 0.1332 0.1432 0.0673 0.3148 

N = 16 0.0667 0.0349 0.0608 0.0661 0.0344 −1.0696 

N = 32 0.0323 0.0178 0.0292 0.0321 0.0175 −0.6906 

N = 64 0.0159 0.0090 0.0142 0.0157 0.0087 −1.0749 

p = 16, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.0151 0.1411 0.1428 0.0151 −0.0917 

N = 16 0.0667 0.0078 0.0663 0.0669 0.0080 1.7743 

N = 32 0.0323 0.0040 0.0319 0.0322 0.0039 −1.7517 

N = 64 0.0159 0.0020 0.0158 0.0159 0.0020 0.7127 

p = 64, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.0037 0.1425 0.1428 0.0036 −0.4617 

N = 16 0.0667 0.0019 0.0666 0.0667 0.0019 0.4407 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 19, 2021. ; https://doi.org/10.1101/2021.06.19.449119doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.19.449119
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

75 
 

 E[𝑉𝑉rel(𝐑𝐑)] ≈ SD[𝑉𝑉rel(𝐑𝐑)] Median Mean ESD T 

N = 32 0.0323 0.0010 0.0322 0.0323 0.0010 −0.0725 

N = 64 0.0159 0.0005 0.0159 0.0159 0.0005 −0.6525 

p = 256, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.0009 0.1428 0.1429 0.0009 0.0105 

N = 16 0.0667 0.0005 0.0667 0.0667 0.0005 1.8676 

N = 32 0.0323 0.0002 0.0323 0.0323 0.0002 −0.9701 

N = 64 0.0159 0.0001 0.0159 0.0159 0.0001 0.3244 

p = 1024, 𝑉𝑉rel(𝚸𝚸) = 0 

N = 8 0.1429 0.0002 0.1428 0.1429 0.0002 −0.9639 

N = 16 0.0667 0.0001 0.0667 0.0667 0.0001 0.5220 

N = 32 0.0323 0.0001 0.0323 0.0323 0.0001 −1.8393 

N = 64 0.0159 0.0000 0.0159 0.0159 0.0000 −0.0357 

p = 2, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.2495 0.4362 0.4294 0.2516 −0.6571 

N = 16 0.4111 0.1844 0.4230 0.4147 0.1832 1.3640 

N = 32 0.4046 0.1326 0.4056 0.4041 0.1322 −0.2806 

N = 64 0.4021 0.0944 0.4058 0.4025 0.0954 0.3294 

p = 4, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.2078 0.4314 0.4287 0.1750 −1.2271 

N = 16 0.4111 0.1420 0.4141 0.4093 0.1317 −0.9769 

N = 32 0.4046 0.0988 0.4054 0.4034 0.0960 −0.8743 

N = 64 0.4021 0.0693 0.4033 0.4022 0.0687 0.1270 

p = 16, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.1682 0.4321 0.4329 0.1391 0.5780 
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 E[𝑉𝑉rel(𝐑𝐑)] ≈ SD[𝑉𝑉rel(𝐑𝐑)] Median Mean ESD T 

N = 16 0.4111 0.1149 0.4149 0.4120 0.1073 0.5980 

N = 32 0.4046 0.0799 0.4084 0.4055 0.0773 0.7996 

N = 64 0.4021 0.0561 0.4030 0.4021 0.0552 −0.0283 

p = 64, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.1598 0.4366 0.4332 0.1304 0.7802 

N = 16 0.4111 0.1092 0.4144 0.4129 0.1015 1.2079 

N = 32 0.4046 0.0760 0.4052 0.4039 0.0733 −0.6457 

N = 64 0.4021 0.0533 0.4029 0.4021 0.0535 0.0493 

p = 256, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.1578 0.4348 0.4343 0.1278 1.3865 

N = 16 0.4111 0.1078 0.4118 0.4091 0.0995 −1.4526 

N = 32 0.4046 0.0750 0.4078 0.4052 0.0726 0.5664 

N = 64 0.4021 0.0526 0.4033 0.4024 0.0522 0.4500 

p = 1024, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.4 

N = 8 0.4318 0.1573 0.4266 0.4286 0.1287 −1.7550 

N = 16 0.4111 0.1075 0.4127 0.4111 0.1008 −0.0454 

N = 32 0.4046 0.0748 0.4072 0.4055 0.0726 0.8769 

N = 64 0.4021 0.0524 0.4035 0.4024 0.0524 0.4578 

p = 2, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 

N = 8 0.7831 0.1596 0.8250 0.7853 0.1571 0.9790 

N = 16 0.7918 0.1015 0.8141 0.7928 0.1033 0.6253 

N = 32 0.7961 0.0674 0.8076 0.7976 0.0680 1.5536 

N = 64 0.7981 0.0462 0.8024 0.7976 0.0473 −0.6617 

p = 4, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 
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77 
 

 E[𝑉𝑉rel(𝐑𝐑)] ≈ SD[𝑉𝑉rel(𝐑𝐑)] Median Mean ESD T 

N = 8 0.7831 0.1073 0.8149 0.7840 0.1249 0.4605 

N = 16 0.7918 0.0733 0.8059 0.7913 0.0815 −0.4682 

N = 32 0.7961 0.0510 0.8027 0.7953 0.0543 −1.0173 

N = 64 0.7981 0.0358 0.8019 0.7987 0.0370 1.2077 

p = 16, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 

N = 8 0.7831 0.0939 0.8102 0.7835 0.1116 0.2370 

N = 16 0.7918 0.0642 0.8045 0.7913 0.0716 −0.5326 

N = 32 0.7961 0.0446 0.8035 0.7976 0.0457 2.4043 

N = 64 0.7981 0.0313 0.8013 0.7984 0.0325 0.7108 

p = 64, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 

N = 8 0.7831 0.0912 0.8098 0.7841 0.1083 0.6205 

N = 16 0.7918 0.0623 0.8046 0.7928 0.0687 0.9579 

N = 32 0.7961 0.0433 0.8009 0.7955 0.0452 −0.9741 

N = 64 0.7981 0.0304 0.8012 0.7983 0.0309 0.4419 

p = 256, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 

N = 8 0.7831 0.0905 0.8098 0.7857 0.1056 1.7052 

N = 16 0.7918 0.0618 0.8031 0.7915 0.0681 −0.3408 

N = 32 0.7961 0.0430 0.8022 0.7963 0.0460 0.3738 

N = 64 0.7981 0.0302 0.8004 0.7977 0.0305 −0.9565 

p = 1024, q = 1, 𝑉𝑉rel(𝚸𝚸) = 0.8 

N = 8 0.7831 0.0903 0.8088 0.7830 0.1074 −0.0831 

N = 16 0.7918 0.0617 0.8057 0.7930 0.0683 1.2443 

N = 32 0.7961 0.0429 0.8014 0.7954 0.0454 −0.9758 

N = 64 0.7981 0.0301 0.8006 0.7981 0.0308 0.0710 
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Figure 1. Schematic illustration of eigenvalue dispersion indices in bivariate cases. Ellipses representing 
equiprobability contours are shown on the Cartesian space of two hypothetical variables for four 
conditions, as well as the relative eigenvalue variance of the corresponding covariance and correlation 
matrices (Vrel(Σ) and Vrel(Ρ), respectively). The scale is arbitrary but identical for the two axes. The axes 
of each ellipse are proportional to square roots of the two eigenvalues of the respective covariance matrix. 
Vrel(Σ) represents eccentricity of variation and is sensitive to differing scale changes between axes but not 
to rotation (change of eigenvectors), whereas Vrel(Ρ) represents magnitude of correlation and is insensitive 
to scale changes. Arrows schematically represent variation along major axes (whose directions are 
arbitrary when Vrel(Σ) = 0).

Vrel (Σ)= 0
Vrel (Ρ)= 0

Vrel (Σ)= 1
Vrel (Ρ)= 1

Vrel (Σ)= 0.25
Vrel (Ρ)= 0

Vrel (Σ)= 0.25
Vrel (Ρ)= 0.25
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Figure 2. Profiles of the expectations of eigenvalue dispersion measures in selected conditions. The 
expectations of V(S) (top row), Vrel(S) (approximate; middle row), and Vrel(R) (bottom row) are drawn 
with solid lines, for p = 2, 8, 32, and 1024 (from left to right) and for N = 4, 8, 16, 32, and 256 (from 
top to bottom on the left end of each box). In all cases, n = N − 1. The breadth of one standard deviation 
at N = 16 is also shown around the mean profiles with pink fills; these are approximations for Vrel(S) 
and for Vrel(R) with p > 2 (exact for Vrel(R) with p = 2). Note that actual distributions might be skewed 
unlike these fills. There are generally many suites of eigenvalues corresponding to a single value of Vrel, 
and E[Vrel(R)] can also depend on eigenvector configurations; the profiles shown here are from such 
eigenvalue configurations that there is one large eigenvalue, with the rest being equally small, in which 
case E[Vrel(R)] does not depend on eigenvector configurations. The population covariance matrix Σ is 
scaled so that tr(Σ) = p(p − 1)−1/2. The initial decrease of the E[Vrel(S)] profiles in some cases seems to be 
an artifact of approximation. See text for further technical details.
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Figure 3. Comparison of exact and asymptotic standard deviations of Vrel(R). Profiles of the exact (cyan 
lines) and asymptotic (black lines) standard deviations for p = 2 are shown across the entire range of the 
population value Vrel(Ρ), for N = 4, 8, 16, 32, 64, 128, and 256 (from top to bottom as labeled; shown with 
different line styles). Note that the asymptotic profiles converge to 0 when Vrel(Ρ) = 0.
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Figure 4. Selected population eigenvalue structures used in simulations and distributions of sample 
eigenvalues, examples for p = 8. The eigenvalues of population covariance matrix are shown as 
scree plots, and distributions of sample eigenvalues with N = 16 are shown as violin plots. A, null 
condition; B–G, q-large λ conditions, q = 1 (B–F) or 2 (G), with Vrel(Σ) = 0.1, 0.2, 0.4, 0.6, 0.8, and 
0.2, respectively; H, quadratically decreasing λ condition. Red dots denote empirical means of sample 
eigenvalues, whereas white bars (mostly overlapping with red dots) denote medians. Thick black bars 
within violins denote interquartile ranges. Note different scales of vertical axes.
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Figure 5. Selected results of simulation for the eigenvalue variance of covariance matrix V(S). Empirical 
distributions of simulated V(S) values are shown as violin plots, whose tails extend to the extreme values. 
Red dots denote empirical means, whereas yellow triangles denote expectations (which are exact). Thick 
black bars within violins denote interquartile ranges, with white bars near the center (in most cases 
overlapping with red dots) denote medians. Rows of panels correspond to varying population values of 
V(Σ) (under 1-large λ conditions), whereas columns correspond to varying sample size N. Columns within 
each panel correspond to varying number of variables p. Note that extreme values in some panels are 
cropped for visual clarity. See Figure S2–S4 for full results.
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Figure 6. Selected results of simulation for the relative eigenvalue variance of covariance matrix Vrel(S). 
Empirical distributions of simulated Vrel(S) values are shown as violin plots. Yellow triangles denote 
expectations (which are approximate except under the null condition). Rows of panels correspond to 
varying population values of Vrel(Σ) (under 1-large λ conditions). Other legends are as in Fig. 5. See 
Figure S4–S6 for full results.
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Figure 7. Selected results of simulation for the relative eigenvalue variance of correlation matrix Vrel(R). 
Empirical distributions of simulated Vrel(R) values are shown as violin plots. Yellow triangles denote 
expectations (which are exact). Rows of panels correspond to varying population values of Vrel(Ρ) (under 
1-large λ conditions). Other legends are as in Fig. 5. See Figure S4, S7, and S8 for full results.
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