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Summary 

  
Resting-state functional MRI has yielded many, seemingly disparate insights into large-scale 
organization of the human brain. Representations of the brain’s large-scale organization can be 
divided into two broad categories - zero-lag representations of functional connectivity structure 
and time-lag representations of traveling wave or propagation structure. Here we sought to unify 
multiple observed phenomena in these two categories by applying concepts from the study of 
standing (zero-lag) and traveling (time-lag) waves. Using simulated data, we first described the 
behavior of zero-lag and time-lag analyses applied to spatiotemporal patterns with varying 
degrees of standing and traveling wave patterns. We then identified three low-frequency 
spatiotemporal patterns in empirical resting-state fMRI signals, composed of a mixture of 
standing and traveling wave dynamics, that describe both the zero-lag and time-lag structure of 
these signals. We showed that a wide range of previously observed empirical phenomena, 
including functional connectivity gradients, the task-positive/task-negative pattern, the global 
signal, time-lag propagation patterns, the quasiperiodic pattern, and the functional connectome 
network structure are manifestations of these three spatiotemporal patterns. These patterns 
account for much of the global spatial structure that underlies functional connectivity analyses, 
and therefore impact how we interpret everything derived from resting-state fMRI data from 
functional networks to graphs. 
 
 
 
 
 
Keywords: propagation, dynamics, time-lag, global signal, task-positive, task-negative, gradient, 
resting-state fMRI 
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Introduction 

            
         Many of us are familiar with the Indian parable of the blind men and the elephant. A 
group of blind men encounter an elephant for the first time and try to acquire an overall 
description of the elephant by discussing the part of the elephant each blind man is touching 
(trunk, tusk, foot, etc.). Each blind man could access only a piece of the truth, and failed to grasp 
how their individual observations came together in a unified whole. This parable teaches the 
perils of missing the ‘bigger picture’ due to our own limited observations, and may be a suitable 
metaphor for the current state of our theoretical understanding of intrinsic functional brain 
organization as assessed using resting state fMRI. Since the discovery of spontaneous low-
frequency blood-oxygenation-level dependent (BOLD) fluctuations in the 1990s1, increasingly 
complex analytic techniques have been applied to understand the spatial and temporal structure 
of these signals. This has led to a fragmentation of the field into isolated conceptions of 
functional brain organization according to the researcher’s preferred analytic approach2, with 
little attempt to translate findings across different approaches.  
 
 We operationalize ‘intrinsic functional brain organization’ as the spatial correlation 
structure between cortical BOLD signals in the low-frequency range (~0.01 - 0.1 Hz). A notable 
feature of the brain’s spatial correlation structure is its organization into global, cortex-wide 
patterns that span across functional systems for cognition, perception and action 3–6. This current 
study distinguished between two different characterizations of this global structure; zero-lag 
synchrony and time-lag synchrony between brain regions. Zero-lag synchrony is defined as 
instantaneous statistical dependence between two time courses - e.g. the correlation between two 
BOLD signals with no time-lag. Time-lag synchrony is defined as the statistical dependence 
between two time courses, where one time-course is lagged or delayed in time. 
 

Zero-lag synchrony has often been labeled as ‘functional connectivity’ (FC). Starting 
from seed-based correlation methods 1,4 , FC in the brain has been characterized by a wide 
variety of analytic methods 3,6–10, including dimension-reduction techniques 3,11,12 , network or 
graph-theoretical techniques13 , co-activation pattern analysis 9 and latent state space models 14 . 
For convenience, we further distinguish between two types of zero-lag FC methods: topography-
based methods and network-based methods. Topography-based methods represent patterns of 
zero-lag synchrony through low-dimensional latent spaces with weights assigned to brain regions 
(or voxels/vertices). Network-based methods analyze the zero-lag synchrony relationships 
(‘edges’) between brain regions, typically represented in the form of pairwise correlation 
matrices. We refer to these methods collectively as ‘zero-lag analyses.’ The zero-lag analysis 
approach has identified several global patterns spanning across functional networks that have 
generated sustained research interest: the global signal 15,16 , the task-positive/task-negative 
pattern 4 , and more recently, the principal FC gradient 3.  
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More recently, global patterns of time-lag synchrony in spontaneous BOLD fluctuations 
have been investigated. Two prominent global patterns with significant time-lag structure have 
been identified in previous studies. First, Mitra et al. 17,18 have observed global propagation 
patterns at short-time scales in spontaneous BOLD fluctuations (~0 - 2s). Several types of short 
time-scale propagation patterns have been identified17, but of interest in this study is the brain’s 
average ‘lag projection’18, representing the average time-ordering of whole-brain spontaneous 
BOLD fluctuations 18. The latency structure of the average lag projection extends across cortical 
and subcortical brain regions, and varies according to experimental manipulations of task 
demands and sensory inputs, suggesting that at least some of this structure is uncoupled from 
hemodynamic delays 18. The time-ordering of brain regions is identified through the cross-
correlation function between all pairs of brain region time courses. We refer to this analysis as 
the ‘lag projection algorithm’. Second, Majeed et al.19 has described a pseudo-periodic 
spatiotemporal pattern at a longer time-scale (~20s) involving an alteration in BOLD amplitudes 
between the task-positive (TP) and default mode networks (DMN), known as the ‘quasi-periodic 
pattern’ (QPP). The shift in BOLD amplitudes between TP and DMN regions is marked by a 
large-scale propagation of BOLD activity between the two networks. The QPP is thought to 
share a common mechanism with low-frequency local field potentials, according to multi-modal 
neuroimaging studies in rats and humans 20,21. The QPP is generally derived from spontaneous 
BOLD fluctuations using a recursive matching and averaging procedure, what we refer to simply 
as the ‘QPP-algorithm.’ We refer to the QPP-algorithm and lag projection algorithm collectively 
as ‘time-lag analyses’. 

 
We suggest that there may be an underlying unity to these representations that has 

heretofore remained overlooked. We hypothesized that the vast majority of widely-used zero-lag 
and time-lag representations of intrinsic functional brain organization are capturing different 
aspects of a small number of spatiotemporal patterns. As described below, these spatiotemporal 
patterns are large-scale, low-frequency fluctuations of spontaneous BOLD fluctuations that 
exhibit both zero-lag and time-lag structure. Our specific hypotheses were 1) global patterns of 
zero-lag and time-lag synchrony are describing different facets of the same spatiotemporal 
patterns, and 2) a small set of spatiotemporal patterns can explain a surprising number of 
previous findings in the literature describing spontaneous BOLD fluctuations.  

 
Three lines of evidence provide support for the first hypothesis. First, recent studies have 

shown that time-lag representations of traveling waves in the cerebral cortex have a spatial 
distribution that precisely maps to the spatial weights of the principal FC gradient 22–24.  Second, 
the spatial topography of the cortical global signal is not entirely constituted by zero-lag spatial 
structure, but has significant time-lag structure 24,25. Third, removal of time-lag synchronous 
patterns, such as the QPP, from spontaneous BOLD fluctuations substantially alters patterns of 
zero-lag synchrony in FC network representations 26. These findings suggest that there may be a 
common pattern of global BOLD activity that unifies these zero-lag and time-lag representations.  
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To develop intuition on the proposed relationship between zero-lag and time-lag 

synchrony patterns, we translate conceptual insights from the physical study of complex waves 
in arbitrary mediums, and their application to geophysical phenomena 27,28 (e.g., climate 
patterns). Specifically, we utilize the concepts of ‘standing’ and ‘traveling’ waves in geophysical 
fields and dedicated methods for their analysis 29–31. Standing waves refer to stationary 
oscillations (including non-sinusoidal) in a spatial field, exhibiting  no time-lagged statistical 
dependencies across space. Due to the absence of time-lag statistical dependence, standing waves 
are entirely characterized by measures of zero-lag synchrony of the kind captured by FC 
analyses. Traveling waves refer to oscillations in a spatial field with non-zero time-lag statistical 
dependence across space. Traveling waves are characterized by measures of time-lag synchrony 
of the kind captured by the QPP and lag projection algorithm18.  

 
Standing and traveling wave patterns often appear in the study of geophysical 

phenomena, particularly in the study of planetary ocean and atmospheric dynamics 28 . For 
example, low-frequency (multi-decade) regional co-variations in climate anomalies (e.g. sea 
surface temperatures) across large distances, known as teleconnections, are composed of large-
scale standing and traveling wave spatial structure 32,33. Several analytic approaches in the 
climate science community have been devised to decompose the spatial structure of these 
teleconnections into standing and traveling wave components 34,35. One flexible means to model 
the complex standing and traveling wave spatial structure of climate teleconnections is an 
extension of principal component analysis (PCA) into the complex-valued domain, known as 
complex PCA (CPCA) 30 . Importantly, complex-valued dimension-reduction analyses, such as 
CPCA, allow the simultaneous modeling of both standing and traveling wave components in a 
single latent dimension. 

 
Similar to complex climate phenomena, we suggest coherent, large-scale BOLD activity 

can be composed of a mixture of both standing and traveling wave spatial structure. The findings 
of similar spatial structure derived from time-lag and zero-lag analysis of spontaneous BOLD 
fluctuations supports this claim. Furthermore, CPCA offers a means to characterize the standing 
and traveling wave structure of these spatiotemporal patterns in spontaneous BOLD fluctuations. 
In addition, CPCA allows us to quantify the degree of traveling wave behavior in a 
spatiotemporal pattern. Through simulation and empirical study of spontaneous BOLD 
fluctuations, we demonstrated that at relatively low values of this metric, we should expect a 
convergence in results between the spatial patterns produced by zero-lag and time-lag analyses. 
In other words, to the extent that spontaneous BOLD fluctuations are characterized by standing 
waves, zero-lag FC analyses should provide a sufficient description of their  dynamics. To the 
extent that spontaneous BOLD fluctuations are characterized by traveling waves, we should 
expect a divergence between zero-lag and time-lag representations of their dynamics. 
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In support of the second hypothesis, we begin with the observation that the resting-state 
fMRI literature reveals very similar patterns of global BOLD activity across analytic approaches,  
including FC gradients 3,36 , co-activation patterns (CAPs)9 , independent component analysis 
(ICA) 10 , latent brain state methods 14 , and seed-based correlation analyses 4. We propose that 
these similar patterns across analysis methods are driven by the fact that they are descriptions of 
the same underlying spatiotemporal patterns proposed in our first hypothesis. To test the second 
hypothesis, we first conducted a systematic survey of zero-lag FC analyses and their outputs, and 
compared them to a set of spatiotemporal patterns derived from CPCA. We then compared the 
spatiotemporal patterns derived from CPCA to patterns derived from time-lag analyses - the 
average lag projection and the QPP. Finally, we compared the reconstruction of the brain’s 
cortical functional connectome (‘FC matrix’) from the spatiotemporal patterns derived from 
CPCA to the observed functional connectome derived from raw, spontaneous BOLD 
fluctuations. 

 
 Our analyses revealed that three spatiotemporal patterns constitute the dominant spatial 
structure in spontaneous low-frequency BOLD fluctuations. With these three patterns, we can 
unify a range of previous findings in resting-state fMRI, including lag projections 18, the QPP19, 
the topography of the global signal 37, the task-positive/task-negative pattern4, the principal FC 
gradient3, and FC network structure. We demonstrate that all of these previous observations are 
manifestations of three spatiotemporal patterns captured within a unifying framework capable of 
modeling standing and traveling oscillatory BOLD phenomena. This novel framework provides a 
parsimonious description of global functional brain organization that can inspire new hypotheses 
about the mechanisms underlying coordination of activity across the brain.  
 
  

Results 

1. Zero-lag and Time-lag Structure in Simulated Standing and Traveling Oscillations 

  
 A central claim of this study is that the dominant spatial structure of global spontaneous 
BOLD fluctuations is constituted by a small set of spatiotemporal patterns. Further, we suggest 
that the relative mixture of standing and traveling waves in these patterns explains the spatial 
similarity between outputs of zero-lag and time-lag analyses. In addition, we propose that CPCA 
provides the means to effectively capture the spatial and temporal properties of these 
spatiotemporal patterns. To test these claims, we conducted a simulation study of spatiotemporal 
patterns consisting of varying degrees of traveling and standing waves. 
 
 We generated data simulations of standing and traveling wave oscillations (see 
Supplementary Modeling Note 1). These consisted of a back-and-forth sinusoidal oscillation of 
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Gaussian curves on a two-dimensional grid (Figure 1). This synthetic data generation approach 
allowed us to systematically vary the degree of ‘traveling’ wave behavior in each oscillation by 
adjusting the distance between the peak locations of each Gaussian curve, from a distance of zero 
(‘pure standing’ motion), to a large distance (‘pure traveling’ motion) between peak locations. 
Zero-lag dimension-reduction techniques commonly used in the FC literature were applied to the 
time series of this two-dimensional grid to extract oscillation patterns between the two Gaussian 
curves.  

 
As expected, zero-lag dimension-reduction techniques applied to pure standing motion of 

the two Gaussian curves effectively captured the oscillation in one latent factor (Figure 1A; zero 
peak distance). This was confirmed by inspection of the ordered eigenvalue plot (scree plot) of 
the correlation matrix from all time series in the grid. Using a heuristic known as Catell’s scree 
plot test 38–41, we identified the point in the scree plot at which the successive extraction of latent 
components exhibits a flattening (‘diminishing return’) in explained variance as the optimal 
number of components to extract. For pure standing motion, only the first eigenvalue was non-
zero, confirming the presence of one latent factor. Further, correlations between the grid time 
courses and a seed time course extracted from the center of one Gaussian curve exhibited the 
same spatial pattern as the latent factors produced from dimension-reduction analyses.  
 
 At non-zero distance between the peak location of the Gaussian curves, zero-lag 
dimension reduction techniques separated the non-synchronous motion into two components 
(Figure 1A; peak distance: large and moderate). As reflected in the scree plots, the second 
eigenvalue of the correlation matrix increased with larger distance, indicating the presence of 
two latent components. The spatial patterns of the two components were largely consistent across 
methods. However, methods favoring sparsity in the spatial weights (varimax rotation) separated 
the traveling motion into isolated Gaussian curves. Methods favoring non-sparse, or spatially-
overlapping patterns, such as PCA, temporal independent component analysis, and Laplacian 
eigenmaps, extracted separate phases or ‘snapshots’ of the overall oscillation. 
 
 To accurately characterize traveling wave behavior, we then extended dimension-
reduction techniques into the complex-valued domain by augmenting the real time courses of the 
grid into a complex signal via the Hilbert transform. To demonstrate the utility of complex-
valued dimension-reduction methods in extracting traveling wave oscillations, we applied 
complex-valued PCA (CPCA) to the same empirical data simulations of traveling motion. The 
application of CPCA to spatially-overlapping oscillations and simulated hemodynamic signals is 
detailed in Supplementary Modeling Note 1. Analogous to our diagnostics of the zero-lag 
correlation matrix, we also constructed a scree plot consisting of the ordered eigenvalues from 
the complex-valued correlation matrix constructed from the complex grid time courses.  
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For pure traveling motion, the scree plot from the complex-valued correlation matrix 
revealed that only the first eigenvalue was non-zero, indicating the existence of a single latent 
factor (Figure 1A; large peak distance). We extracted the amplitude and phase-lag of the first 
complex principal component’s spatial weights, reflecting the component’s amplitudes and 
phase-lag between grid time series, respectively. The grid amplitudes of the first component 
reflected the spatial distribution of the two Gaussian curves, indicating that the coherent 
fluctuations of the two Gaussian curves were captured by a single latent component. Importantly, 
the phase-lag values (-π to π) of the first component precisely reflected the back-and-forth 
motion of the Gaussian curves.  
 

In simulations with non-zero distance between peak locations, CPCA and zero-lag 
dimension reduction techniques were found to converge on a similar solution. Further, at smaller 
distances, the scree plots of the zero-lag and complex-valued correlation matrix agreed in terms 
of yielding a one-factor solution. In other words, the degree of agreement in the solutions of 
zero-lag and time-lag analyses depended on the degree of traveling waves in the simulation.  

 
By construction, this simulation had access to the ‘ground truth’ mixture of traveling and 

standing wave components. No such ground truth is available in BOLD signals recorded from 
the brain. Thus, we invoked a ‘traveling index’ metric developed in Feeny 42  that measures the 
presence of traveling waves in an extracted CPCA component, varying from 0 (pure standing 
waves) to 1 (pure traveling waves). In our data simulation, this metric was approximately 
linearly associated with the peak distance between the two Gaussian curves (Figure 1B). Such a 
metric provides a quantitative estimate of the mixture of traveling and standing waves in the 
absence of ground truth simulated data.  

 
From the observation that zero-lag dimension-reduction methods tend to split traveling 

Gaussian waves into separate latent components, we used the percentage of explained variance 
of the first eigenvector as a quality metric. The greater the explained variance, the more 
effectively zero-lag dimension-reduction methods can capture traveling wave motion in a single 
latent component. We plotted the explained variance of the first eigenvector by the traveling 
index generated from separate runs of the Gaussian curve simulation at varying degrees of peak 
distance - from large distances (pure traveling) to zero distance (pure standing). We found that 
the explained variance exhibits a linear decrease moving from values beyond 0.2 to larger values 
of the traveling index (Figure 1B). For small values of the traveling index (less than 0.2), we 
observed that the explained variance remains largely stable (> 95%). Overall, we found that for 
moderate values of the traveling index (< 0.5), the explained variance of the first eigenvector is 
greater than 80%. Thus, zero-lag FC methods can effectively capture a large majority of the 
variance of a spatiotemporal pattern with moderate traveling wave behavior. While the 
spatiotemporal dynamics of intrinsic BOLD signals can be expected to be more complex than 
our empirical simulation, the central insights from this simulation framework are broadly 
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applicable. For systems consisting predominantly of standing waves, or a moderate degree of 
traveling waves, we expect a convergence between the solutions of time-lag and zero-lag FC 
methods. 
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Figure 1. Empirical Data Simulation to Analyze Standing and Traveling Wave Oscillations. A) Visualization of 
simulation and analysis results of traveling two-dimensional Gaussian curves at three peak distances (large, 
moderate and zero distance). For each simulation scenario, the bottom Gaussian curve moves upward (bottom to 
top) towards the top Gaussian curve. In the top left panel of each simulation are four arbitrarily sampled time points. 
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Note, the travel distance between the two Gaussian curves grows smaller at smaller peak distances (moving from the 
top to bottom panel).  The amplitude and phase-lag maps of the first complex principal component from CPCA are 
shown in the bottom left panel of each simulation. For all simulations, the amplitude and phase maps of the first 
complex component accurately describe the spatial distribution and phase-lag between the two Gaussian curves. In 
addition, the scree plot of the zero-lag (blue) and complex-valued (green) correlation matrix is displayed. Results of 
various zero-lag FC analyses are displayed in the right panel. For the dimension-reduction techniques, two 
components were estimated at non-zero peak distances, motivated by the non-zero second eigenvalue of the 
correlation matrix. For zero-peak distance, only a single component was estimated. At non-zero peak distances, 
zero-lag dimension-reduction techniques tend to split the traveling wave oscillation into either 1) separate Gaussian 
curves (varimax), or 2) into separate phases of the oscillation. B) From left to right, plots of the traveling index by 
peak distance, the variance explained by the first eigenvalue (zero-lag correlation matrix) by peak distance, and the 
variance explained by the first eigenvalue by traveling index.  PCA = principal component analysis; CPCA = 
complex PCA; S-ICA = spatial ICA; T-ICA = temporal ICA; LE =  Laplacian eigenmaps 

2. Zero-lag and Time-lag Structure in in Intrinsic BOLD Fluctuations Reveals Three 
Dominant Spatiotemporal Patterns  

 To understand the standing and traveling wave components that underlie empirical 
spontaneous BOLD fluctuations, we applied CPCA to a random subject sample (n=50) of 
resting-state fMRI scans (~15min each; TR = 0.72 sec; n = 1200 time points) collected as part of 
the Human Connectome Project Young Adult (HCP:YA S1200) database. As our interest was in 
global, cortex-wide patterns in spontaneous BOLD fluctuations, we downsampled the surface-
based cortical time series to approximately 5,000 vertices. Subject time series were temporally 
concatenated and reshaped into a 2D matrix of time points (rows) by cortical vertices (columns) 
for group-wise analysis. All analyses in our investigation were successfully replicated in an 
independent sample (n=50) of unrelated HCP subjects (also unrelated to any subject in the 
primary sample) (Supplementary Figure 1 and Supplementary Figure 2). 
  
 To inform the choice of the number of components to extract using CPCA, we utilized 
the same Catell’s scree plot test applied in our simulations (Figure 1A). This widely-used 
criterion for component number selection indicated a clear flattening in explained variance 
beyond three principal components (Supplementary Figure 3). Thus, we committed to 
extracting three components using CPCA. The three leading complex principal components 
represent the top three dimensions of variability across complex-valued cortical BOLD time 
series. Associated with each complex principal component is a phase delay map, reflecting the 
time-delay (in seconds) between cortical vertices (see ‘Methods and Materials’ for construction 
of the phase delay maps). To examine the temporal progression of each complex principal 
component, we sampled the reconstructed BOLD time series from each complex principal 
component at multiple, equally-spaced phases of its cycle (ntimepoints= 30; see ‘Methods and 
Materials’). Movies of the reconstructed BOLD time courses are displayed in Movie 1. Detailed 
descriptions of the spatiotemporal patterns of each complex principal component, and 
comparisons of the similarities and differences in their propagation patterns are provided in 
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Supplementary Figure 4. Phase delay maps of complex principal components beyond the first 
three are presented in Supplementary Figure 5.  
 
 The first complex principal component represents the leading axes of variance. The first 
component explains over 21% (21.4%) of the variance in intrinsic BOLD time series, greater 
than three times the variance explained by the second (6.8%) or third component (5.7 %).  The 
traveling index of the first component was 0.25, indicating that its spatiotemporal pattern is 
largely stationary or standing, with some traveling wave behavior. Visual inspection of the first 
complex principal components suggested that its spatiotemporal pattern can be separated into 
two phases. In the first phase, strong negative BOLD amplitudes were observed in the 
sensorimotor cortex (SM), superior parietal lobule (SP), lateral visual cortex (LV), and superior 
temporal (ST) gyrus (Figure 2A; Movie 1). For brevity, we refer to this complex of brain 
regions as the somato-motor-visual (SMLV) complex, noting that this complex also includes 
some regions outside sensory-motor cortices (e.g. SP and ST). At peak negative amplitudes of 
the SMLV, the entire cerebral cortex also exhibits weak negative BOLD amplitudes in regions 
overlapping the default mode network (DMN) and primary visual cortex (V1). In other words, 
during the first phase of the spatiotemporal pattern, the cortex exhibited globally negative BOLD 
signals, with strong amplitudes in the SMLV regions, and weak amplitudes in the DMN. The 
second phase exhibited a propagation of strong negative BOLD amplitudes in the SMLV toward 
cortical regions overlapping primarily with the frontoparietal network (FPN), but also with the 
default mode network (DMN) and V1. Qualitative inspection suggested that the traveling wave 
behavior of the first component is largely restricted to the second phase of the spatiotemporal 
pattern. This entire spatiotemporal sequence of negative BOLD amplitudes was followed by a 
spatiotemporal sequence with positive BOLD amplitudes with the same dynamics. Because the 
explained variance of the first complex principal component is three times greater than the 
subsequent complex principal component, we also refer to this spatiotemporal pattern as the 
‘dominant spatiotemporal pattern’ in intrinsic BOLD signals, or simply pattern one. 

 
The second most explanatory complex component was the most stationary or standing 

component of the first three complex principal components, with a traveling index of 0.14. The 
overall spatiotemporal pattern can be succinctly described as an anti-correlated oscillation 
between SMLV regions and the DMN. Interestingly, this pattern of anti-correlation or bipolar 
contrast appeared to delineate the unipolar contrast in the first phase of the first complex 
principal component. The only discrepancy between the two patterns is in the SM region. In the 
spatiotemporal pattern of the first component, the SM region was in synchrony with other SMLV 
regions, while in the spatiotemporal pattern of the second component, it was in synchrony with 
the DMN. Visual inspection revealed a minor traveling wave pattern propagating out from the 
SM region to the premotor cortex (anterior direction) and SP (posterior direction) in-between 
peak amplitudes of the anti-correlated oscillation. For further reference, we henceforth refer to 
the spatiotemporal pattern of the second complex principal component as pattern two. 
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The spatiotemporal pattern of the third complex principal component had a traveling 

index of 0.27, similar in magnitude to the pattern of the first component. As with the first 
component, this implied that it is largely stationary or standing, with some traveling wave 
behavior. The spatiotemporal pattern of the third component can be described as an anti-
correlated oscillation between regions consisting of the SM, ST, LV and DMN versus regions 
consisting of the inferior parietal lobule (IP), inferior temporal gyrus (IT), premotor cortex, 
dorsolateral prefrontal cortex (DLPFC) and V1. Visual inspection of the third component 
suggested that its spatiotemporal pattern can be split into two phases. In the first phase, strong 
negative amplitudes are observed in the SM, ST and LV, with weak negative amplitudes in the 
DMN; strong positive amplitudes are observed in the IP, IT, premotor cortex, DLPFC and V1. 
Over the course of the first phase, the strong negative amplitudes of the SM, ST and LV 
decreased in absolute value, approaching a similar magnitude to that of the DMN. The second 
phase was marked by propagation from the IP (anterior direction) and premotor (posterior 
direction) towards the SM, and the IT (posterior direction) towards the LV.  For further 
reference, we henceforth refer to the spatiotemporal pattern of the third complex principal 
component as pattern three.  
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Figure 2. Form and Properties of Three Dominant Spatiotemporal Patterns. Phase delay maps and 
reconstructed time points of the first three complex principal components. Phase delay maps represent the temporal 
ordering (in seconds) of cortical vertex BOLD time series within the spatiotemporal pattern. Phase delay maps 

describe a repeating or cyclical pattern expressed in radians (0 to 2�) around a unit circle, where a phase value of 0 

corresponds to the beginning of the spatiotemporal pattern, and 2� corresponds to the end of the spatiotemporal 
pattern.  For clarity, radians are converted to temporal units (seconds) (see ‘Methods and Materials’). The values in 
the phase delay map correspond to the temporal delay (in seconds) between two cortical vertices, such that smaller 
values occur before larger values. Values are mapped to a cyclical color map to emphasize the cyclical temporal 
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progression of each spatiotemporal pattern. To illustrate the temporal progression of the spatiotemporal patterns, six 
reconstructed time points are displayed for each pattern. The phase delay map and reconstructed time points are 
shown for A)  the first spatiotemporal pattern - ‘pattern one’, B) the second spatiotemporal pattern - ‘pattern two’, 
and  C) the third spatiotemporal pattern - ‘pattern three’.  
 
 
 
Movie 1. Visualization of Spatiotemporal Patterns. Temporal reconstruction of all three spatiotemporal patterns 
displayed as movies in the following order - pattern one, pattern two, and pattern three. The time points are equally-
spaced samples (N=30) of the spatiotemporal patterns. The seconds since the beginning of the spatiotemporal 
pattern are displayed in the top left. In the bottom of the panel, the time points of the spatiotemporal pattern are 
displayed in three-dimensional principal component space (Figure 3). Two-dimensional slices of the three principal 
component space (see Supplementary Figure 4) are displayed as the three 2-dimensional plots. The progression of 
time points in the principal component space is illustrated by a cyclical color map (light to dark to light). The 
movement of the spatiotemporal pattern through this space is illustrated by a moving red dot from time point-to-time 
point in synchronization with the temporal reconstruction in the movie. 
 

3. Zero-lag FC Topographies Effectively Capture the Three Spatiotemporal Patterns 

  
 The three spatiotemporal patterns derived from CPCA are predominantly composed of 
standing (stationary) waves. This finding, and the results of the simulation study (Figure 2), 
suggest that zero-lag FC methods should capture the majority of the variance in these 
spatiotemporal patterns. For example, traditional (non-complex) PCA applied to the zero-lag 
correlation matrix derived from the same time courses should yield similar spatial weights and 
time courses to that produced from CPCA. We selected a large number of commonly-used zero-
lag FC methods and applied them to the original (non-complex) time courses from the same 
resting-state fMRI data. Our selection included several latent dimension-reduction methods, as 
well as seed-based correlation and co-activation methods. Latent dimension-reduction methods 
included principal component analysis (PCA), PCA with simple structure rotation (varimax) 43,44,  
Laplacian Eigenmaps (LE)36, the commonly used spatial independent component analysis 
(SICA) 45, and the more recent temporal independent component analysis (TICA)10. Hidden 
Markov models (HMM) are a commonly used latent state space model for estimating brain 
states14, and were also included in our study. Seed-based analysis methods included the 
traditional seed-based correlation/regression analysis4 and co-activation pattern (CAP) analysis 9 
with k-means clustering of suprathreshold time points into two clusters. Seed-based methods 
were run for three key seed locations corresponding to major hubs in the SMLV, default mode, 
and frontoparietal network (FPN) - the somatosensory cortex, precuneus, and dorsolateral 
prefrontal cortex6. Results were found to be identical for alternatively placed seed regions within 
these three networks (Supplementary Figure 6). 
  

To determine a meaningful number of dimensions in our latent dimension-reduction 
analyses (PCA, varimax PCA, LE, SICA, TICA and HMM), we again used the scree plot 
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criterion. As with the scree plot of the complex-valued correlation matrix, the scree plot of the 
zero-lag correlation matrix indicated a clear flattening in explained variance after three principal 
components (Figure 2C). 
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Figure 3. Form and Properties of Three Fundamental Functional Connectivity Topographies.  A) The spatial 
absolute-valued correlation between the first three principal component maps and each FC topography displayed as 
a table. All correlations are rounded to the second decimal place. The color of each cell in the table is shaded from 
light yellow (strong correlation) to dark blue (weak correlation). All FC topographies in our survey exhibited strong 
spatial correlations (Pearson’s correlation) with one (or two) of the first three principal components. B) The first 
three principal component spatial maps. C) The scree plot that displays the explained variance in cortical time series 
for each successive principal component. The scree plot indicates a clear elbow after the third principal component, 
indicating a ‘diminishing return’ in explained variance of extracting more components. (HMM = hidden markov 
model; TICA = temporal ICA; SICA = spatial ICA; P=precuneus; SM= somatosensory; SMG=supramarginal gyrus; 
Clus=cluster; Comp=component; PC = Principal Component). 
  

         Each zero-lag analysis produced one or more FC topographies with weights for each 
cortical vertex, representing the degree to which that topography is expressed at that vertex. To 
compare the spatial similarity between two FC topographies, we used the spatial correlation 
between the cortical vertex weight values of each topography. To summarize the similarities 
among the FC topographies, we compared each topography to the first three principal component 
maps computed from standard (non-complex) PCA. Similar to the first complex principal 
component of CPCA, the first principal component explains 20.4% of the variance in BOLD 
time series. This is greater than three times the variance explained by the second (6.8%) or third 
principal component (6.1%). As can be observed from Figure 3A, each FC topography exhibits 
strong similarities with one or more of the first three principal components (r > 0.6). Statistical 
significance of the spatial correlation between each FC topography and its most strongly 
correlated principal component was computed using spin permutation tests 46 (Nsamples = 1000). 
All correlation pairs were statistically significant (p < 0.001).  
 

However, there was notable variability in the strength of correlations between each FC 
topography and one or more of the principal components. In one case, the first cluster centroid 
from CAP analysis of the precuneus seed (‘P CAP 1’), the spatial similarity is strong (r = 0.57) 
but notably weaker than other FC topographies. Further, for many FC topographies, strong 
similarities are seen for more than one principal component. For topographies with strong 
similarity with both the first and second principal component, this can be explained by the spatial 
similarity between the first and second principal component (r = 0.7). Details of the output of 
seed-based regression/CAP and dimension-reduction analyses are provided in Supplementary 
Figure 7 and Supplementary Figure 8, respectively. Overall, our survey revealed a 
considerable consistency in FC topographies across methods.   
  

Visual comparison of the spatial weights of the three principal components (Figure 3B) 
with the spatiotemporal patterns (patterns one, two and three) of the three complex principal 
components (Figure 2) illustrates that both methods capture similar spatial patterns. The 
correspondence was found to be one-to-one, with the first principal component matching pattern 
one, the second principal component matching pattern two, and the third principal component 
matching pattern three.  
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To provide quantitative support to these observations, we computed the spatial 

correlation between the spatial weights of the three principal components and the reconstructed 
time courses of the three spatiotemporal patterns. We found that the static spatial weights of each 
PC appeared as a ‘snapshot’ within their corresponding spatiotemporal pattern: PC1-pattern one 
(r = 0.998, t = 11.9s),  PC2-pattern two (r = 0.986, t = 12.6s), PC3-pattern three (r = 0.972, t = 
3.7s). Further, the time courses of the three spatiotemporal patterns closely tracked the time 
courses of the first three principal components, respectively: PC1-pattern one (r = 0.98), PC2-
pattern two (r = 0.95), and PC3-pattern three (r = -0.83, at a temporal lag of ~3 TRs). Given the 
similarity in results, we refer to the patterns produced by standard PCA and CPCA, as pattern 
one, two and three, interchangeably. Consistent with our simulation results, zero-lag FC methods 
capture the majority of the dynamics of these spatiotemporal patterns due to the predominance of 
standing waves in these patterns. 
  
  

4. Relationships With Previously Observed Phenomena in Intrinsic BOLD 
Fluctuations 

  A further aim of this study was to understand the relationship between these three 
spatiotemporal patterns and previously observed phenomena in intrinsic BOLD signals. First, we 
consider spatiotemporal patterns discovered by previous approaches. Lag projections18 and the 
QPP19 correspond to time-lagged phenomena at shorter (~2s) and longer (~20s) time scales, 
respectively. Lag projections represent the ‘average’ latency structure of spontaneous BOLD 
fluctuations. They are computed as the column-wise average of the pairwise time-lag matrix. The 
time-lag between a pair of BOLD time courses is the difference in time at which the correlation 
between the BOLD time courses is maximal. The column average of the pairwise time-lag 
matrix, or lag projection, provides the average ‘ordering’ in time of cortical BOLD time courses. 
An analogous column-wise averaging operation can be applied to the complex correlation matrix 
derived from the Hilbert transform of the BOLD time courses. Specifically, we computed the 
column-wise circular mean of the pairwise phase-delay values of the complex correlation matrix. 
The circular mean was computed due to the circular nature of the phase values of a complex 
correlation (i.e. -pi and pi are identical phase differences). We found that the spatial correlation 
between the average latency structures were very similar (r = 0.83), and both exhibit the same 
direction of propagation (Figure 4). Interestingly, both average latency structures exhibited a 
strong spatial similarity with the phase delay map of pattern one (lag projection: r = 0.81; 
circular mean: r = 0.98) (Figure 4). This suggests the average latency structure of spontaneous 
BOLD fluctuations is largely driven by the first spatiotemporal pattern. Note, the lag projection 
we computed only partially resembles the average lag projection in Mitra et al.18 - the differences 
are due to preprocessing differences, which we discuss in Supplementary Figure 9. 
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Figure 4. Similar Propagation Patterns between Average Latency Structure and Pattern One. Comparison 
between the average latency structure of spontaneous BOLD fluctuations and the phase delay map of pattern one. 
The lag projection map (left) represents the average time delay (in seconds) between each vertex of the cortex. The 
circular average map (middle) represents the average phase delay (in radians) between each vertex of the cortex. As 
in Figure 2, the pattern one phase delay map (right) represents the phase delay (in radians) between the vertices 
within the dynamics of pattern one. The two methods for computing average latency structure exhibiting strong 
agreement in their propagation patterns (r = 0.83). The strong similarity between the average latency structure 
(circular average) and pattern one phase delay map (r = 0.98) indicates that the average latency structure is primarily 
driven by the spatiotemporal dynamics of pattern one.  

            
         While lag projections describe short time scale propagation structures, the QPP is a much 
longer temporally-extended pattern (>20s). The QPP is conventionally derived from BOLD time 
courses after the application of global signal regression. As shown by Yousefi et al. 47 , two types 
of QPP can be observed across individuals: one QPP pattern exhibits a global pattern of activity 
with positive correlation across brain regions (‘global’ QPP), and the other QPP exhibits a global 
pattern of anti-correlation between the TP and DMN (‘anticorrelated’ QPP). Global signal 
regression was found to consistently produce the anti-correlated QPP across all individuals.  
 

We hypothesized that the global QPP corresponds to pattern one, and that the anti-
correlated QPP corresponds to pattern two. To derive the global QPP, we applied the QPP 
algorithm without global signal regression. To derive the anti-correlated QPP, we applied the 
QPP algorithm after global signal regression was applied to all BOLD time courses. The QPP 
algorithm was used with a commonly used window size (~21s; 30TRs)47. Consistent with our 
hypotheses, the time course of the global QPP derived from non-global signal regressed time 
courses was strongly correlated with the time course of pattern one (r = 0.71) at a time-lag of 
7TRs (~5s). Further, the time course of the anti-correlated QPP was strongly correlated with 
pattern two (r = 0.80) at a time lag of 16 TRs (~12s). The similarity between the spatiotemporal 
dynamics of the two QPPs, and patterns one and two can also be demonstrated visually. We 
visualized the spatiotemporal template of the global and anti-correlated QPP from the repeated 
template-averaging procedure, and compared it to the time point reconstruction (see above) of 
pattern one and pattern two, respectively. As can be seen in Movie 2, the temporal dynamics of 
the global QPP overlapped significantly with the dynamics of pattern one. Further, the temporal 
dynamics of the anti-correlated QPP overlapped significantly with the dynamics of pattern two 
(Supplementary Figure 10).        
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         At peak amplitudes of pattern one, the distribution of weights is roughly unipolar, 
meaning it is either all positive or all negative (Figure 2A). This suggests that pattern one may 
track the global mean time course of cortical vertices, otherwise known as the ‘global signal’. 
We found that this is indeed the case - the time course of pattern one and the global mean time 
course are statistically indistinguishable (r = 0.97). This would also suggest that the temporal 
dynamics surrounding the time points before and after the peak of the global signal correspond to 
the dynamics of pattern one. We constructed a dynamic visualization of the global signal through 
a peak-averaging procedure. Specifically, all BOLD time courses within a fixed window (15TRs 
on each side) were averaged around randomly-sampled peaks (N=200, > 1 standard deviation 
above the mean) of the global mean time course. Visually comparing the spatiotemporal 
visualization of the global signal to pattern one, we found that the temporal dynamics 
surrounding peaks of the global signal precisely match those of pattern one (Movie 2). 
  
  
Movie 2. Dynamic Visualization of the Quasiperiodic Pattern, Pattern One, and Global Signal. The 30 time 
points (TR=0.72s) of the global QPP, pattern one, and peak-average global signal displayed as a movie (in that 
order). The time index of each sequence is displayed in the top left. The time points of  pattern one are equally-
spaced phase samples (N=30) of the time point reconstruction (see above). The time points of the global QPP are 
derived from the spatiotemporal template computed from the repeated-template-averaging procedure on non-global 
signal regressed data. The global signal visualization concatenates the left and right windows (w=15TRs) of the 
global signal peak-average. The time points of the global signal visualization begin at TR=-15, corresponding to 15 
TRs pre-peak, and proceed to TR=15, corresponding to 15TRs post-peak. 

  
         The temporal dynamics of pattern two largely represents an anti-correlated pattern 
between the SMLV, excluding the SM region, and the DMN - i.e. when regions of the DMN 
exhibit negative BOLD activity, the regions of the SMLV exhibit positive BOLD activity (and 
vice versa). This resembles the “task-positive” vs. “task-negative” anti-correlation pattern 
originally observed by Fox et al.4 and Fransson48. We reproduced these results by correlating 
each cortical vertices’ BOLD time course with a seed time course from the left and right 
precuneus, a key node of the DMN. Note that the same results were observed with a seed placed 
in the left and right inferior parietal cortex. As expected, an anti-correlated pattern was observed 
between the SMLV and DMN (Figure 4). We compared the precuneus-seed correlation map to 
the time points of pattern two using spatial correlation. We found that the pattern of correlations 
in the precuneus-seed map precisely corresponds to the pattern of BOLD activity at peak 
amplitudes of pattern two (CPC1: r = 0.92, t = 1.8s). Thus, this would seem to suggest that the 
task-positive vs. task-negative pattern arises from the anti-correlated dynamics between the 
SMLV (task-positive) and DMN (task-negative) represented by pattern two. 
  

A similar anti-correlation pattern to the task-positive/task-negative pattern has been 
observed in the FC gradient literature 3,36, known as the principal FC gradient (PG).  Further, the 
PG has been referred to as the principal direction of variance in cortical functional connectivity3. 
In our zero-lag FC survey (Figure 3), we computed the PG as the first component derived from 
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the Laplacian Eigenmaps (LE) algorithm, consistent with Vos de Wael et al.36. Visual 
comparison of the PG with pattern two revealed a superficial correspondence between the anti-
correlated patterns, with the exception of somato-motor (SM) cortices. In pattern two, the SM 
region was in synchrony with the DMN, while in the PG the SM region is in synchrony with the 
SMLV, similar to that observed in pattern one. Further, our analysis suggested that the global 
unipolar pattern of BOLD activity exhibited by pattern one is the dominant axis of variance in 
FC, not the anti-correlated pattern observed in the PG. 
  

With no clear correspondence between the PG and patterns one and two, we sought to 
identify the factors that might explain the uniqueness of the PG. We discovered that the spatial 
pattern of the PG is due to the confluence of two factors: 1) time point normalization (i.e., z-
scoring or de-meaning without unit-variance scaling), and 2) thresholding of FC matrices. First, 
as has been previously observed by Liu et al. 15,  regression of the global mean time course, and 
de-meaning of cortex-wide BOLD values within a time point (i.e. time-point centering) have 
very similar effects on cortical time series. Implicit in the computation of LE for functional 
connectivity gradients, as well as other manifold-learning techniques, is a time-point centering 
step 49 (Supplementary Figure 11). This is relevant because the global mean time course 
precisely tracks the time course of pattern one (r = 0.97). This would suggest that removal of the 
global mean time course through global signal regression and/or time-point centering effectively 
removes pattern one from BOLD time courses. What is left over is the second most dimension of 
variance in FC, pattern two. In fact, this would explain the strengthening of the task-positive vs. 
task-negative pattern after global signal signal regression in seed-based correlation analysis4.  
 

We tested this possibility by comparing the output of PCA and CPCA with and without a 
time-point centering preprocessing step (Figure 4B). Consistent with our hypothesis, PCA of 
time-point centered BOLD time courses produces a pattern of spatial weights for the first 
principal component that resembles the pattern of BOLD activity at peak amplitude of pattern 
two (PC2: r = 0.94). Further, the first complex principal component of cPCA on time-point 
centered BOLD time courses exhibits a time-delay map that resembles pattern two (CPC2: = 
0.49 vs CPC1: = 0.10). Note, the correlation between the time-lag maps was computed using a 
circular correlation coefficient due to the circular properties of the phase map of the complex 
principal component (e.g. 0 and 2π are identical angles). Thus, at least one effect of time-point 
centering and/or global signal regression of BOLD time courses is the removal of the first 
principal component and/or pattern one from BOLD time courses. 
  

It is the dual effect of time-point centering and FC matrix thresholding that resolves the 
discrepancy between patterns one and two, and the PG observed in our study. The FC matrix 
represents Pearson’s correlation of BOLD time courses between all pairs of cortical vertices (i.e. 
correlation matrix). It is standard practice in computation of the PG that a threshold is performed 
row or column-wise on the FC matrix (e.g. 90th percentile of correlation values within that row) 
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before the creation of an affinity matrix to input to the manifold learning algorithm 3,36 . This 
preprocessing step is intended to remove noisy or artificial correlation values from the FC 
matrix. In our survey of zero-lag FC (Figure 3), we applied a 90th percentile threshold across 
rows of the FC matrix prior to LE. We found that this preprocessing step obscures the 
relationship between the PG and pattern two. In fact, if no thresholding of the FC matrix is 
performed, the first eigenmap produced from LE precisely resembles the pattern of BOLD 
activity at peak amplitudes of pattern two (PC2: r = 0.83; Figure 5C). As one raises the 
percentile threshold applied to the FC matrix, the spatial weights of vertices within the DMN and 
SMLV become more uniform (Figure 4C). At the higher end of percentile thresholds (e.g. 90th 
percentile) a contrast between the SMLV and DMN begins to appear that is almost equally 
similar to the unipolar contrast of pattern one (PC1: r = 0.83) and the anti-correlation contrast of 
pattern two (PC2: r = 0.82). 
 

 
Figure 5. The Task-Positive/Task-Negative Pattern, Primary Functional Connectivity Gradient, and Pattern 
Two Describe the Same Spatiotemporal Pattern. A) From left to right, pattern two, task-positive/task-negative 
(TP/TN) pattern, and the PG represented by the spatial weights of the second principal component from PCA (sign 
flipped for consistency), seed-based correlation map (precuneus seed), and first Laplacian eigenmap with no 
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thresholding of the affinity matrix, respectively. Similar spatial patterns are produced from all three analyses - 
pattern two: TP/TN (r =0.96) and pattern two:PG (r = 0.83). B) From left to right, the first principal component from 
non-time-centered BOLD time courses (i.e. pattern one), the first principal component of time-centered BOLD time 
courses, and the first complex principal component phase delay map from time-centered BOLD time courses. As 
can be observed visually, time-point centering of BOLD time courses replaces the original unipolar first principal 
component (left; pattern one) with a bipolar (anti-correlated) principal component (middle) that resembles pattern 
two. In the same manner, the first complex principal component of CPCA of time-centered BOLD time courses 
(right) exhibits a time-lag map resembling the time-lag map of pattern two (Figure 2). C) The effect of functional 
connectivity (FC) matrix percentile thresholding on the resulting spatial weights of the PG, computed as the first 
eigenmap of the Laplacian Eigenmap algorithm (only the left hemisphere presented for space). At zero to low-
thresholding of the FC matrix, the first Laplacian Eigenmap resembles pattern two (PC2). As the threshold is raised, 
the spatial weights of vertices within the DMN and SMLV become more uniform. At higher thresholds this results 
in an Eigenmap that resembles pattern one. 
  
  

5. Network-Based Representations of Functional Connectivity 

  
FC topographies are low-dimensional representations of zero-lag synchronous 

relationships among BOLD time courses. In the network or graph-based approach to FC 
analysis, the unit of analysis is pairwise relationships between BOLD time courses. Rather than 
reducing pairwise relationships to lower-dimensional representations, the network-based 
approach analyzes the structure of these relationships. We sought to identify the degree to which 
the structure of pairwise zero-lag synchronous relationships between BOLD time courses arises 
from the shared dynamics of the three distinct spatiotemporal patterns. A network representation 
of FC was constructed by computing the correlations between all pairs of cortical BOLD time 
courses to create a correlation or FC matrix (Figure 5). We compared this FC matrix to a FC 
matrix that was reconstructed from the three spatiotemporal patterns. Reconstructed cortical 
BOLD time courses were created from the spatiotemporal patterns by projecting the time courses 
of each pattern back into the cortical vertex space. A ‘reconstructed’ FC matrix was computed 
from these reconstructed time courses in the same manner as the original BOLD time courses. 
We estimated the similarity between the two FC matrices by computing the correlation 
coefficient between the lower triangles of each matrix. Despite a larger mean correlation value in 
the reconstructed FC matrix, we found that the patterns of correlations between the FC matrices 
were highly similar (r = 0.77). 
  

We also sought to determine whether the community structure of cortical BOLD time 
courses can arise from the shared dynamics of the three spatiotemporal patterns. We estimated 
network communities from the original and reconstructed FC matrix using the Louvain 
modularity-maximization algorithm with a resolution parameter value of 1 (with asymmetric 
treatment of negative weights). To compare the degree of similarity between the community 
structure of the original and reconstructed FC matrix, we computed the normalized mutual 
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information (NMI) between their community assignments from the Louvain algorithm. The NMI 
varies from 0 (completely independent communities) to 1 (completely identical communities). 
The NMI between the community assignments of the original and reconstructed FC matrix was 
0.73, indicating a strong similarity.  In other words, the community structure of the original FC 
matrix is very similar to the community structure of the FC matrix constructed from the shared 
dynamics of the three spatiotemporal patterns. 
 

 
Figure 6. The Network Structure of Functional Connectivity Is Explained by the Three Spatiotemporal 
Patterns. Comparison of the correlation matrix of cortical BOLD time courses (left) with the correlation matrix of 
reconstructed cortical BOLD time courses (right) derived from the three spatiotemporal patterns, and the module 
assignments of each vertex (bottom). The rows and columns of the original and reconstructed correlation matrix are 
sorted and outlined (in black) according to the modular structure estimated from the Louvain modularity algorithm. 
The algorithm identified three primary modules in the SMLV, DMN and FPN. Despite a higher mean value of 
correlations in the reconstructed correlation matrix, the pattern of correlations between the two correlation matrices 
is highly similar (r = 0.77). Further, the modular structure of the original correlation matrix exhibits a high degree of 
similarity with the modular structure of the reconstructed correlation matrix (NMI = 0.73). 
 

Discussion 

 
Approaches for analyzing resting-state functional MRI have yielded many, seemingly 

disparate insights into intrinsic organization of the human brain. Zero-lag representations of 
standing wave functional connectivity structure and time-lag representations of traveling wave 
structure have previously been used in isolation to characterize low-frequency BOLD 
fluctuations. Here we seek to unify multiple observed phenomena from these two categories 
under one analytic framework capable of simultaneously capturing standing and traveling 
oscillatory properties of the BOLD signal. 

 
 The goal of this study was to provide a parsimonious description of dominant global 
spatiotemporal patterns in spontaneous BOLD activity to provide insight into the functional 
architecture of the human brain. Utilizing methods and concepts from the study of geophysical 
phenomenon31, we provide a systematic description of the standing and traveling wave structure 
of these global spatial patterns. Utilizing a complex-valued extension of PCA, we identified three 
dominant spatiotemporal patterns in intrinsic BOLD signals consisting primarily of standing 
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waves with some traveling wave behavior. Consistent with our simulation study, the relative 
predominance of standing over traveling wave structure in these spatiotemporal patterns ensured 
that zero-lag FC methods effectively captured much of their temporal and spatial structure. This 
finding effectively explains previous observations that traveling waves of BOLD activity 
resemble patterns of large-scale FC topographies 22–24, such as that seen in FC gradients3. Rather 
than large-scale FC topographies emerging from the dynamics of traveling waves, our study 
suggests that the results from zero-lag FC and time-lag analyses are different representations of 
the same underlying spatiotemporal pattern. While the results from time-lag analysis, such as 
CPCA, accurately capture the time-lag structure produced by the traveling wave oscillations, the 
predominant standing wave oscillations of these spatiotemporal patterns are effectively captured 
by zero-lag FC analyses. 
 

An important finding from this study was the ubiquitous presence of these three 
spatiotemporal patterns across a wide variety of zero-lag FC techniques. Our survey included 
several different analytic techniques, with markedly different mathematical assumptions, 
including latent dimension-reduction techniques, CAP analysis, seed-based correlation analysis, 
and latent brain state models. Two common features across these methods are worth noting. 
First, several zero-lag FC methods surveyed involved an initial PCA dimension-reduction step 
(varimax, temporal ICA, spatial ICA and HMM). Varimax and ICA dimension-reduction 
methods can be considered a rotation of the original PCA axes towards an orientation that 
maximizes a specific criteria - simple structure for varimax50 and statistical independence in the 
time or spatial domain for ICA51. The similarity of the FC patterns derived from varimax and 
ICA suggest that the optimization of that criteria in our low-dimensional PCA solution (number 
of PCs=3) yielded solutions not ‘far’ from their original orientation. Second, both the Laplacian 
Eigenmap (LE) algorithm and PCA consist of an eigendecomposition of a similarity matrix (for 
PCA, the covariance/correlation matrix, for LE, the graph Laplacian). In fact, LE can be 
considered a variant of kernel PCA49, an extension of PCA to arbitrary kernel/similarity 
matrices. In addition to these methods, HMM estimation of latent brain states was preceded by 
an initial PCA dimension reduction step for computational feasibility and to avoid overfitting. 
Thus, one might suggest that the common patterns resulting from application of zero-lag FC 
methods are due to a common reliance on PCA as a step in their algorithms. However, there are 
an ample number of applications in simulated and empirical data demonstrating that the 
similarity between the output of these methods is not guaranteed, but is dependent on the area of 
application 31,52,53 . Further, zero-lag FC methods that do not rely on PCA - for example CAP 
analysis and seed-based correlation - yielded the same patterns. In addition, time-lag analyses 
with no relation to PCA (QPP-algorithm and lag projection algorithm) yielded the same patterns. 
  
 One property that distinguishes CAP analysis and the QPP-algorithm from other methods 
surveyed is their modeling of local (in time) changes in BOLD amplitude fluctuations; the rest of 
the methods model second- or higher-order statistics of BOLD fluctuations across the entire scan 
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(or a group of scans concatenated across time). CAP analysis detects prominent recurring 
patterns of BOLD activity through a clustering algorithm of suprathreshold time points identified 
from a seed time course. The QPP-algorithm detects a single prominent (temporally-extended) 
window of BOLD activity through a brute force matching and averaging procedure. Importantly, 
both these analyses identify local recurring changes in whole-brain amplitude fluctuations  - 
single time-points for CAP analysis, and multiple consecutive time-points for the QPP algorithm. 
The identification of CAP analysis outputs at multiple seed locations (Figure 3; Supplementary 
Figure 7) with the three spatiotemporal patterns, and the output of the QPP algorithm with 
pattern one and two, suggests that the three spatiotemporal patterns are representations of local 
(in time) events in spontaneous BOLD fluctuations. This is consistent with previous observations 
using CAP analysis that the whole-brain correlation matrix computed across an entire scan can 
be reconstructed from a small number of high-amplitude (supra-threshold) BOLD activity events 
9 .   
 
 Another important finding of this study is the identification of the brain’s average latency 
structure (Figure 4) with pattern one. Mitra et al.18 first discovered this latency structure by a 
procedure of column-wise averaging pairwise time delays between brain regions. We found that 
an analogous procedure - column-wise (circular) averaging of pairwise phase delays between 
brain regions (derived from a complex correlation matrix) - yielded the same latency structure. 
Importantly, this latency structure was found to map directly to the phase delay pattern of pattern 
one. In other words, the average latency structure of spontaneous BOLD fluctuations simply 
reflects the traveling wave structure of the dominant spatiotemporal pattern (pattern one). 
Further, a repeated peak-averaging procedure demonstrated that this time-lag structure 
corresponds to local (in time) propagation patterns surrounding peaks of the global mean time 
course. This is consistent with previous findings of a global propagating wave event surrounding 
peaks of the global mean time course 24,54 .  
 

While time-varying or dynamic FC was not explicitly examined in this study, it is 
possible that the fluctuations between the spatiotemporal patterns identified in this study explain 
the variability in zero-lag FC structure over time. For example, a recently developed dynamic FC 
analysis, edge time series analysis70, has found patterns of co-fluctuations in zero-lag FC that 
resemble the spatial structure of the three spatiotemporal patterns71. Future studies will be needed 
to determine the correspondence between variance in zero-lag FC over time and these 
spatiotemporal patterns.  
   
         As the primary aim of our study was descriptive, we have avoided any explanatory or 
causal explanation of the neuronal or non-neuronal origins  of these three spatiotemporal 
patterns. However, the identification of pattern one with the global mean time course suggests 
potential candidate causal mechanisms. One promising candidate is a systemic circulatory origin 
55 . Work by Tong et al. 25,56 has established that a significant portion of variance in low-

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2021.06.20.448984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.448984
http://creativecommons.org/licenses/by/4.0/


frequency intrinsic BOLD signals is correlated with systemic oxygenation fluctuations in the 
periphery (hands and toes) measured by concurrent near-infrared spectroscopy. This low-
frequency peripheral oscillation tracks the global mean fMRI time course54 and exhibits 
significant traveling wave behavior induced by differential blood transit time in the cerebral 
vasculature 57. Our observation that the time course of pattern one is virtually identical with the 
global mean time course suggests that this spatiotemporal pattern may originate in part from the 
systemic circulatory system. Potential sources of this systemic circulatory effect observed across 
the body include vasomotion, fluctuations in arterial CO2 and/or Mayer waves 55. However, 
other studies support a neural origin for the global signal58,59. We recently demonstrated that 
individual differences in global signal topography in the human brain are related to life outcomes 
and psychological function 37. This work follows studies using pharmacological intervention59 
and electrophysiological recordings in macaques 58 providing evidence for neural origins of the 
global signal. Momentary fluctuations in arousal and/or vigilance are known to be related to the 
global BOLD signal 1–3, and traveling wave signals 10,13. Some physiological processes strongly 
co-vary with cortical excitability 60,61, making it even more difficult to disentangle the neural vs. 
nonneural sources of the BOLD fluctuations. Taken together, these findings suggest that the 
global signal (and by extension pattern one), while influenced by vascular and other global 
phenomena, is at least partially driven by neuronal sources. The current study does not resolve 
these existing questions about the sources of the BOLD fluctuations, which continue to be 
actively investigated by the neuroimaging community. The current findings underscore the 
importance of understanding vascular components of the global signal in order to effectively 
denoise fMRI data while preserving neuronal signals 62. 
 

Such findings only provide candidate explanations for the origin of pattern one. 
Candidate explanations for the origin of pattern two and three are more difficult to identify from 
previous literature. Our study found that pattern two corresponds precisely to the task-
negative/task-positive pattern originally discovered in resting-state by Fox et al. 1 and Fransson 
48(also see Greicius et al63). A similar anti-correlated pattern is consistently observed in response 
to task stimuli 64. Comparison of pattern two with pattern one revealed that they share similar 
patterns of BOLD activity. Further, the similar time-scales and dynamics of patterns two and 
three with pattern one suggests they may share a similar origin. Our analysis does not allow a 
characterization of the precise nature of this relationship. Some have argued that the task-
positive/task-negative pattern arises from the application of global signal regression to BOLD 
time courses 65 . It has been mathematically proven that global signal regression centers the 
distribution of pairwise correlations between brain regions and produces positive and negative 
correlation values 65. However, the appearance of all three patterns as distinct components across 
a wide variety of analytic methods (in data with no global signal regression) suggests that 
patterns two and three may be independent of pattern one.  Pattern 2 strongly resembles the QPP 
obtained after global signal regression, which has been linked to infraslow electrical activity 
20,21,66, and all patterns give rise to functional connectivity, which has been tied to infraslow and 
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higher frequency electrical activity 67. Patterns of propagating activity have also been observed in 
optical fluorescence imaging 68 and electrophysiological recordings69, which demonstrates that 
time-lagged relationships can arise from neural as well as hemodynamic processes. Future 
research may be directed towards a more complete understanding of the common or distinct 
neuronal or physiological mechanisms that give rise to these spatiotemporal patterns.  
 

Along similar lines, while these three spatiotemporal patterns explain a significant 
portion of variance in spontaneous BOLD fluctuations (~32%), there is a considerable portion of 
variance left unexplained. The exact value of this metric will depend on a variety of factors, 
including preprocessing/de-noising steps, parcellation size, scanner noise and intersubject 
variability. Despite this, it is clear there is much spatiotemporal dynamics in spontaneous BOLD 
fluctuations left unexplained by these three spatiotemporal patterns. Nevertheless, the three 
spatiotemporal patterns account for most (r = 0.77) of the functional connectivity observed. We 
interpret these reports as supporting our finding that functional connectivity is largely dictated by 
a few whole-brain spatiotemporal patterns of activity. The lesser variance explained in the 
individual time courses then suggests that there is an additional component that contributes 
substantially to the low frequency BOLD fluctuations, but is not reliably coordinated across 
areas, and therefore does not contribute as strongly to functional connectivity. The source of this 
signal component remains unclear.  Some portion of it is likely to arise from non-neural noise, 
but there is an intriguing possibility that it also contains small changes in activity related to 
ongoing cognition. To speculate on the residual variance left unexplained by these three 
spatiotemporal patterns, we suggest that it may reflect more spatially focal variance in 
spontaneous BOLD fluctuations. This spatially local structure would be more accurately 
modeled by fine-grained, parcellation-based analysis approaches 1 . In fact, this spatially local 
structure may be more related to neurovascular coupling than the global patterns observed in this 
study. 
  

It is important to qualify the assumptions on which our comparisons were based. First, 
these spatiotemporal patterns are low-dimensional representations that capture global, or cortex-
wide patterns of intrinsic BOLD activity. The primary metric that determined the number of 
latent dimensions to extract from the data was explained variance. Specifically, the number three 
was chosen based on the diminishing explained variance observed from the extraction of 
increasingly higher-dimensional solutions. This approach identified three latent dimensions, 
corresponding to three global, cortex-wide spatiotemporal patterns. Explained variance is not the 
only metric that may be used to judge the adequacy of a low-dimensional solution, nor is it 
desirable in all analysis contexts. However, at the level of a 3-dimensional solution, our survey 
has found remarkable consistency in the outputs of zero-lag FC analyses that yield solutions 
based on the optimization of criteria other than that of explained variance. Thus, while other 
approaches may identify different optimal numbers of latent dimensions, we found the explained 
variance approach highly desirable in terms of robustness. In a related manner, most of the 
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analysis approaches we surveyed can reveal finer-grained spatial insights at higher component or 
cluster numbers. Thus, we do not expect the same consistency in analytic approaches at finer-
grained levels of analysis (e.g. an ICA solution of 50 components vs. a PCA solution of 50 
components). Empirical examination of consistency in zero-lag FC analyses at solutions greater 
than three components confirms this expectation: higher dimensional solutions yield less 
consistency in FC topographies (Supplementary Figure 12). Despite this qualification, the 
consistency of analysis approaches at our low-dimensional level of analysis suggests that these 
three spatiotemporal patterns are robust phenomena in need of explanation. 

 
Our findings underscore the benefits of capturing both zero-lag and time-lagged 

information for studies of the brain’s intrinsic complex functional architecture.  CPCA unites 
both analytical approaches within a single framework, and provides interpretable information 
about the relative contributions of standing and traveling waves of activity. With this approach 
we identified three spatiotemporal patterns that recapitulate the major findings from a wide range 
of analytical techniques while providing a unified and parsimonious description of zero-lag and 
time-lag structure of spontaneous BOLD fluctuations. Further, they account for much of the 
structure that underlies all FC based analysis, and therefore impact how we interpret everything 
from functional networks to graphs. As the study of the brain as a complex system advances, 
these patterns have potential applications in better constraining generative models of brain 
activity, predicting variability in response to external stimuli, informing targeted modulation of 
brain activity to achieve a particular state, and understanding interactions between the state of the 
brain as a whole and localized activity in neuronal circuits. The concise characterization of 
systems-level brain activity in three spatiotemporal patterns will facilitate the cross-scale 
research needed to link fundamental neuroscience studies and human behavior.  
 
  
  
 
 
 
 

Supplementary Materials 

 

Supplementary Modeling Note - CPCA on Simulated Data 

 
 Simulation Approach and Methodology 
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 To understand the behavior of zero-lag FC analyses in the presence of traveling wave 
oscillations, we conducted a simulation of traveling Gaussian waves on a two-dimensional grid. 
The grid was constructed as a 100-by-50 two-dimensional array of pixels. To operationalize the 
notion of standing and traveling waves we use the mathematical formalization of complex 
sinusoidal wave motion developed in Feeny42 . A complex wave motion can represented by the 
following function: 

 x�t� � 2eγt	cos�ωt�c-sin�ωt�d � 

where t is the discrete-sampled time array, � is an exponential decay term, � is the angular 
frequency, and c and d are two vectors representing the two modes of the oscillation. The output 
of the function, x, is a vector formed from the mixture of the two modes, c and d, weighted by a 
cosine and sine term (modulated by time, t). At the peak of the cosine oscillation, the sine 
oscillation is at zero, and the pattern encoded in vector c is the dominant configuration. At the 
peak of the sine oscillation, the cosine oscillation is at zero, and the pattern encoded in vector d is 
the dominant configuration. As a function of time, the output appears visually as cyclical ‘wave’ 
motion between the patterns defined by vectors c and d. These patterns can take any form or 
shape. For our simulation, the vectors represented flattened (i.e. converted to one-dimension) 
two-dimensional Gaussian curves with varying peak location. More specifically,  d is a two-
dimensional Gaussian curve (� � 1� with its peak at one position in the 100-by-50 grid, and c is 
another two-dimensional Gaussian curve  (� � 1� with its peak lower down the 100-by-50 grid 
in the vertical direction. The simulation appears as a single two-dimensional Gaussian wave 
traveling from the Gaussian represented in vector c upwards to the Gaussian represented in 
vector �. The degree of traveling wave behavior of the complex motion is determined by the 
degree of statistical independence between the two Gaussian curve patterns. For example, for 
completely overlapping Gaussian curves (i.e. identical peak locations), the patterns are entirely 
dependent, which will appear as a pure standing oscillation. For completely non-overlapping 
Gaussian curves, the patterns are entirely independent, which will appear as a pure traveling 
wave oscillation.  

To assess the behavior of zero-lag FC methods applied to oscillations with arbitrary 
mixtures of standing and traveling waves, we systematically vary the distance between the two 
Gaussian curves (vectors c and d) by moving the peak location of the starting Gaussian curve 
(vector c) from the bottom of the 100-by-50 grid (no overlap) to the top of the grid (complete 
overlap with vector d). In Figure 1A, we display the output of zero-lag FC analysis and CPCA at 
large (vertical peak distance of 50 pixels), moderate (peak distance of 25 pixels) and zero 
distances between the peaks of the two Gaussian curves. As noted above, large peak distance 
corresponds to approximately statistically independent Gaussian curve patterns (vectors c and d), 
producing a pure traveling Gaussian wave. Zero peak distance corresponds to complete 
statistically dependent Gaussian curve patterns, producing a pure standing Gaussian wave.  A 
simulated oscillation is run for each peak distance with the following parameters (� = 1, � = -1, 
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number of cycles = 40, number of samples = 800). For each simulation, a limited amount of 
Gaussian noise (variance = 0.2) is added to each pixel time course.  

 

 

 I) Simulation of Two-Mode Traveling Wave Oscillations 

 The simulation illustrated in Figure 1 consisted of a single traveling wave oscillation of 
two gaussian curves. To assess the ability of CPCA to separate multiple, overlapping traveling 
wave oscillations, we slightly modify the simulation presented in Figure 1 (see ‘Methods and 
Materials’). In addition to the existing traveling wave oscillation between the two gaussian 
curves on the two-dimensional grid, we embed a higher-frequency (� = 2; see ‘Methods and 
Materials’) traveling wave oscillation of two smaller gaussian curves at identical peak locations. 
For this simulation, the two gaussian curves of each oscillation are completely separated, or 
statistically independent, thereby creating a pure traveling wave between the gaussian curves of 
each simulation. Identical parameters to simulation in the main text were used, excluding the 
angular frequency (�; see ‘Methods and Materials’). This two mode simulation appears as 
overlapping traveling wave oscillations between two lower frequency, large gaussian curves, and 
two higher frequency, small gaussian curves (Supplementary Model Figure 1). We applied 
CPCA to the pixel time courses to assess its ability to separate these oscillations into two latent 
factors. 
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Supplementary Model Figure 1. Simulation and Analysis of Two-Mode Traveling Wave Oscillations. Simulation 
of two spatially overlapping, traveling wave oscillations. The simulation consists of a high frequency oscillation 
between two smaller gaussian curves, and a low frequency oscillation between larger gaussian curves. Four sampled 
time points are displayed in the top panel. The amplitude and phase delay maps of the first two complex principal 
components estimated by CPCA are displayed in the bottom panel. As can be observed from the amplitude and 
phase delay map, CPCA accurately separated the two traveling wave oscillations into separate components. 
 

 We extracted two complex principal components from the complex-valued pixel time 
courses. We plotted the amplitude and phase lag of each component, representing the strength of 
‘participation’ and time-lag of the pixels in the complex component, respectively. As indicated 
by the amplitude maps, the spatial outline of the larger and smaller gaussian curves is accurately 
separated into the first and second complex principal components, respectively. Further, the 
phase maps of the two complex principal components accurately distinguish the higher 
frequency oscillations of the smaller gaussian curves from the lower frequency oscillations of the 
larger gaussian curves. 

 

 II) Simulation of Traveling Wave Hemodynamic Signals 

To demonstrate the ability of complex principal component analysis (cPCA) to extract 
spatiotemporal patterns from more complex signals, we applied cPCA to propagating fields of 
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signals convolved with a hemodynamic response function. Impulse time series (1 for activation, 
0 otherwise) convolved with the canonical hemodynamic response are spatially arranged along a 
square grid. The time series are arranged such that the time series in the top part of the square 
grid peaks early, and peaks later and later (time steps of 0.1 secs per row) as one moves down the 
grid. This arrangement provides a simple illustration of a global propagation event, where 
activity in one location travels to all other locations in a spatially continuous fashion. Gaussian 
noise is added to every time point of each time series, and slight phase and amplitude jitter are 
applied to each time series within a row of the square grid drawn from a uniform distribution. 
The global propagation event in the simulation is re-run 1000 times and temporally concatenated. 
It is important to note that this simulation is not intended to be a biologically realistic simulation 
of the mechanisms that produce observed BOLD propagation patterns. While this simulation is 
designed to have superficial similarities to spatial and temporal properties of BOLD propagation, 
it does not intend to simulate its underlying data generating process. Below we display the first 
20 time points of the global BOLD propagation simulation (Supplementary Model Figure 2) 

  

Supplementary Model Figure 2. Global BOLD Propagation Simulation and Analysis. Top panel: Four sampled 
time points of an artificially constructed BOLD propagation simulation. Artificial ‘vertices’ are arranged along a 50-
by-50 spatial grid. Vertex time series are created by convolving simple impulse time series with the canonical 
hemodynamic response function. The time-series of each vertex in the grid are time-lagged such that vertex time 
series in the upper part of the grid peak first, while those in the bottom part peak last. Bottom Panel: The amplitude 
and phase delay weights of the first complex principal component. 
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The sampled time points of the simulation (Supplementary Model Figure 2) illustrate 
the simulated global propagation event: peak BOLD amplitudes are first observed in the top of 
the square grid, followed by a subsequent propagation of peak BOLD amplitudes down the grid. 
Following the globally positive BOLD propagation event, there is a mirrored negative BOLD 
propagation event due to the post-response undershoot of the canonical hemodynamic response 
function. We extracted the first complex principal component from the complex time courses of 
the simulation. As illustrated in Supplementary Model Figure 2, the first complex principal 
component from CPCA accurately recovers the spatiotemporal pattern of the global propagation 
simulation. The phase delay map accurately describes the spatiotemporal pattern as BOLD 
activity that travels at a steady rate down the grid.  

 

Supplementary Figure 1 - Replication of CPCA Phase Delay Maps in Independent Sample 

 

 
Supplementary Figure 1. Phase Delay Maps of Complex Principal Components in an Independent Sample. To 
give a sense of the robustness of our findings in an independent sample, we display the CPCA phase delay maps 
derived from the independent sample. Displayed are the phase delay maps of the first three complex principal 
components in the independent replication sample of 50 subjects. Phase delay values are displayed in radians. 

 

Supplementary Figure 2 - Replication of Zero-lag FC Survey in Independent Sample 

 

First Complex Principal Component Second Complex Principal Component Third Complex Principal Component

Phase Delay Map Phase Delay Map Phase Delay Map
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Supplementary Figure 2. Zero-lag FC Survey in Independent Sample. To give a sense of the robustness of our 
findings in an independent sample, we display zero-lag FC survey results (Figure 3) for the independent sample of 
50 Subjects.  
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Supplementary Figure 3 - Complex Principal Component Scree Plot 

 

Supplementary Figure 3. Scree Plot from Complex Principal Component Analysis. The eigenvalue by component 
number plot (i.e. scree plot) used to determine the number of components to extract. There are clear elbows in the 
plot after one and three components, indicating a preferred solution of one or three principal components (three were 
chosen). 
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Supplementary Figure 4 - Steady States and Propagation Events in Spatiotemporal Patterns  

 

 
Supplementary Figure 4. Spatiotemporal Patterns Consist of Steady States and Propagation Events That 
Repeat Across Patterns. (PC = Principal Component). To visualize the temporal dynamics of the three 
spatiotemporal patterns (patterns one, two and three), we projected their reconstructed time points (see ‘Methods and 
Materials’) into the 3-dimensional space formed by the first three principal components (Panel A)  of the zero-lag 
FC matrix (Panel B). The time points are displayed on two-dimensional slices of each spatiotemporal pattern in the 
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3-dimensional principal component space - PC1-PC2, PC1-PC3, and PC2-PC3 spaces. The time points of patterns 
one, two and three are displayed as blue, green and red points, respectively. Consecutive time points of each 
spatiotemporal pattern are linked by lines. The time points of each spatiotemporal pattern are colored from light to 
darker to visualize the progression of time (N=30). The temporal cycle of each spatiotemporal pattern forms an oval 
in the three-dimensional principal component space (Panel B), corresponding to a full cycle of the spatiotemporal 
pattern. For all three spatiotemporal patterns, most consecutive time points cluster closely together, indicating a 
‘steady state’ of BOLD activity with relative stability of BOLD activity over that period. The steady states of pattern 
one, pattern two and pattern three vary strongest along the first, second and third principal component axes, 
respectively. These steady state periods are interrupted by large movement between consecutive time points that 
correspond to rapid propagation of BOLD activity towards another steady state. C) To examine repeating spatial 
patterns across the three spatiotemporal patterns, we applied a clustering algorithm (K-Means) to the reconstructed 
time points from all three spatiotemporal patterns. To avoid scaling differences in the distance calculations between 
time points, the BOLD values within each time point were z-score normalized. In Panel C, the same two-
dimensional slices of each spatiotemporal pattern in the 3-dimensional principal component space are colored 
according to their cluster assignment by a k-means clustering algorithm. K-means clustering was used to identify 
recurring spatial patterns of BOLD activity across time points of the three spatiotemporal patterns. Six clusters were 
estimated. D) The cluster assignments (color) by time (y-axis) of each spatiotemporal pattern (x-axis). Note, that the 
same cluster assignment can occur across more than one spatiotemporal pattern. E) The cluster centroids from the k-
means clustering algorithm, corresponding to the average spatial pattern of BOLD activity for the time points that 
belong to that cluster. Note, the cluster centroids of the first two clusters are mean-centered versions of the original 
unimodal (all-positive or all-negative) steady-state of pattern one, as z-score normalization of the time-points across 
vertices was performed beforehand. As revealed by the cluster solution, the six clusters correspond to the three pairs 
of mirrored or sign-flipped steady-states of the three spatiotemporal patterns. The first two clusters correspond to the 
steady states of pattern one. Clusters three and four correspond to the steady states of pattern three, and clusters five 
and six correspond to the steady states of pattern two. 

 

Supplementary Figure 5 - Complex Principal Components Beyond Three 
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Supplementary Figure 5. Amplitude and Phase Delay Maps of First Six Complex Principal Components. While 
the application of the scree plot criterion identified three components as an optimal solution, there is still a large 
portion of variance left unexplained in BOLD time courses (~68%). To further explore this remaining variance, we 
present the phase delay and amplitude maps of the first six complex principal components. Phase delay values are 
displayed in radians. 
 

 Supplementary Figure 6 - Location of Seed Regions in Seed-Based Regression and Co-
Activation Pattern Analysis 
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Supplementary Figure 6. Location of Seed Regions in Seed-Based Regression and Co-Activation Pattern 
Analysis. There are various methods for determining the location of seed regions. In our analysis, we chose seed 
regions within the three central networks of the three dominant spatiotemporal patterns - somatomotor (SM) and 
lateral visual (LV) networks, frontoparietal network (FPN) and DMN. The spatial outline of the SMLV, DMN and 
FPN for guiding the selection of seed regions were determined through a k-means clustering analysis of cortical 
vertices based on the similarity in their BOLD time courses. We found that a three-cluster k-means clustering 
solution precisely delineated the spatial outline of the three networks. Six bi-lateral seed locations are displayed for 
the SMLV (black) , FPN (yellow) and DMN (red). For the analyses in this study, we presented the results from 
seeds placed in the somatosensory cortex, precuneus and supramarginal gyrus. To test the robustness of our analyses 
to seed location, we also ran seed-based regression and CAP analyses with seeds placed medial insula (SMLV), 
inferior parietal cortex (DMN) and DLPFC (FPN). Because the results were found to be identical with the 
somatosensory cortex, precuneus and DLPFC, respectively, we do not present results for these seeds. 
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 Supplementary Figure 7 - Seed-Based Analysis and Their Relationship to the Three 
Spatiotemporal Patterns. 

 

Supplementary Figure 7. Seed-Based Regression and CAP Analysis. (SM = somatosensory cortex; P=Precuneus; 
SMG=Supramarginal Gyrus). FC topographies of seed-based regression maps and CAP centroids from 
somatosensory (SM), precuneus and supramarginal gyrus seeds. A) Seed-based regression maps with (left 
hemisphere) and without global signal regression (right hemisphere) for SM, precuneus and supramarginal gyrus 
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seeds. We found that the effect of global signal regression is primarily a centering operation of correlation values, 
with the pattern of correlations largely consistent between the original and global-signal regressed correlation 
patterns - somatosensory (r = 0.96), precuneus (r = 0.89), supramarginal gyrus (r = 0.92). For CAP analysis, we 
chose a threshold equal to the 85th percentile of the seed time course BOLD values, consistent with previous 
applications9. B) CAP cluster centroids (N=2) from k-means clustering of non-normalized (i.e. not z-scored) 
suprathreshold time points from SM, precuneus and supramarginal seeds. C) CAP cluster centroids (N=2) of the 
same suprathreshold time points with normalization (i.e. z-scored) before input to the k-means clustering algorithm. 
Normalization (Panel C) results in two anti-correlated CAPs per seed, as opposed to a globally-positive vs. anti-
correlated CAP per seed (Panel B) in the non-normalized solution. D1) Temporal overlap between binary time 
courses of the two CAPs from each seed using the Jaccard similarity (Jaccard index). The Jaccard similarity between 
two CAP binary time courses varies from 0 to 1, and reflects the ratio of overlapping onset time points (=1) to the 
total number of time points (N=60,000). To account for potential time-lags between CAP binary time courses, we 
took the maximum Jaccard similarity between the CAP binary time courses at a max temporal lag of 30 time points. 
Examination of the temporal overlap between CAP binary time courses revealed that the onsets of globally-positive 
CAP patterns (somatosensory C1, precuneus C1 and supramarginal C2) tended to co-occur at much greater rate than 

the anti-correlated CAPs (global CAPs:  = 0.173 > anti-correlated CAPs:  = 0.073). This is consistent with the 
global synchronization effect associated with the global mean time course.  D2) Temporal overlap between CAP 
binary time courses from the normalized solutions of each seed analysis. The temporal overlap observed between 
globally-positive CAP time points in the non-normalized solution disappears in the normalized solution.  E) 
Temporal correlation between the time course of the three spatiotemporal patterns (patterns one, two and three) and 
the CAP binary time courses for the non-normalized (E1) and normalized (E2) solutions. We found that CAPs with 
globally-positive BOLD activation patterns (E1) somatosensory C1, precuneus C1 and supramarginal C2) were 
most strongly correlated with the time course of pattern one: somatosensory cortex (SM; r = 0.49), precuneus (r = 
0.35), and supramarginal gyrus (r = 0.37). The temporal correlation between the pattern one and normalized CAPs 
across the three seeds is reduced (E2), excluding the somatosensory CAP (C1). 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2021.06.20.448984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.448984
http://creativecommons.org/licenses/by/4.0/


 Supplementary Figure 8 - Dimension Reduction Functional Connectivity Topographies 

 
Supplementary Figure 8. Functional Connectivity Topographies of Dimension Reduction Analyses. 
(SICA=Spatial ICA; TICA = Temporal ICA). The spatial weights of components from PCA (N=3), Laplacian 
Eigenmaps (N=1), varimax rotation of principal components (N=3), spatial ICA (N=3) and temporal ICA (N=3). 
The temporal and spatial correlations (absolute value) between the components of dimension-reduction analyses and 
the first three principal components are shown in the middle of the plot. Note, due to the nature of the Laplacian 
Eigenmap algorithm as a non-linear manifold learning algorithm, time courses cannot be extracted for their 
components. In relation to principal components derived from PCA, spatial and temporal ICA amounts to a rotation 
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(i.e. unmixing matrix) of the whitened temporal or spatial principal component axes such that the statistical 
independence between the axes is maximized, respectively 31,72. In other words, ICA rotates the original PCA 
solution to maximize a different criterion: statistical independence in the temporal or spatial domain. In this 
conception, ICA is one of a larger family of principal component rotation methods that also includes rotations 
towards so-called 'simple structure'. Simple structure rotations rotate the principal component loadings so that the 
parsimony of the loadings are maximized (each vertex loads strongly on only one component). We chose a popular 
simple structure rotation, Varimax rotation - an orthogonal rotation of the principal component loadings that 
maximizes simple structure. It is important to emphasize that the total cumulative variance explained by the 
principal component axes remains the same before and after rotation. As illustrated in the spatial and temporal 
correlations table, the dimension-reduction analyses are largely consistent in their spatial topographies and temporal 
dynamics with the first three principal components. In all cases, the rotation methods (SICA, TICA and Varimax) 
return components more or less similar in spatial and temporal dynamics to the first three principal components. In 
other words, despite the differing mathematical assumptions and objective criteria of these dimension-reduction 
methods, the results produced from each method for low-dimensional solutions are roughly consistent. 

 

 Supplementary Figure 9 - Global Signal Regression and Lag Projections 

 

Supplementary Figure 9. Comparison of Lag Projections With and Without Global Signal Regression. The lag 
projection from our study partially resembles the group average lag projection observed in Mitra et al. 18. However, 
our data differs in one important respect: Mitra et al.18 performed global signal regression as a preprocessing step. 
We display lag projections with and without global signal regression as a preprocessing step. Values on each 
cortical map represent the average time-delay between each cortical vertex and all others. Time-delay values are 
colored from light green/blue (earlier in time) to bright yellow/green (later in time). The range between the earliest 
and latest time-delay values are significantly shorter for lag projections on global-signal regressed data. The lag 
projection of the global signal regressed data resembles the spatial distribution time-lags observed in Mitra et al.18: 
BOLD activity beginning in superior medial prefrontal cortex, inferior precuneus, motor cortex, anterior cingulate 
cortex, and temporal gyrus and ending in the DMN and visual cortex. In addition, the length of the lag projection is 
now 1 sec (cut in time by half from non-globally regressed data), closely matching the duration found by Mitra et al. 
This is consistent with the observation by Mitra et al. that global signal regression reduces the range of observed 
latencies between BOLD time courses. 

 

Supplementary Figure 10 - Anti-Correlated QPP and Pattern Two Visualization 
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Supplementary Movie 10. Dynamic Visualization of the Anti-Correlated Quasiperiodic Pattern and Pattern 
Two. The 30 time points (TR=0.72s) of the anti-correlated QPP and pattern two. The time index of each sequence is 
displayed in the top left. The time points of  pattern two are equally-spaced phase samples (N=30) of the time point 
reconstruction (see ‘Methods and Materials’). The time points of the anti-correlated QPP are derived from the 
spatiotemporal template computed from the repeated-template-averaging procedure on global signal regressed data.  

 

Supplementary Figure 11 - PCA and Functional Connectivity Gradients 

  

Supplementary Figure 11. Principal Component and Laplacian Eigenmap Topographies. Displayed are the FC 
topography spatial weights from PCA, PCA on global-signal regressed data, PCA on time-point centered data, and 
Laplacian Eigenmaps (LE). Note, LE analysis with a radial basis function kernel (non-linear kernel) was also tried 
and the results were very similar. Note, we observed that the eigenmaps were highly positively skewed. To make the 
negative values of the eigenmaps more visible the colormap is made non-symmetric.The first eigenmap corresponds 
to the principal functional connectivity gradient (PG)3. However, we note that the exact spatial pattern of the PG 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2021.06.20.448984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.448984
http://creativecommons.org/licenses/by/4.0/


depends on the level of thresholding applied to the FC matrix (Figure 5). In this LE solution, no thresholding was 
applied. The first and second Laplacian Eigenmaps match the second and third principal components from the PCA 
solution, respectively (with an arbitrary sign-flip). The difference between the PCA and LE solution is that the first 
principal component seems to be missing from the LE solution. However, the first three components from the PCA 
on global-signal regressed data and time-point centered do match the three Laplacian Eigenmaps (with an arbitrary 
sign flip). These similarities between the spatial maps produced by PCA and Laplacian Eigenmaps have been 
previously observed by Vos de Waal et al.36. An important question is why the first principal component, the 
variance upon which BOLD time courses vary the greatest, is not returned by LE and PCA applied to global-signal 
regressed and time-point centered data? In all three cases, the difference is due to the same mechanism: mean-
centering along the time domain (i.e. mean centering vertex BOLD values within a time point). As discussed in the 
main text, pattern one is precisely tracked by the global signal. Consistent with previous findings15, time-point 
centering and global signal regression have similar effects - reducing or eliminating the variance of the global signal 
time course. In the Laplacian Eigenmap solution, a time-point centering is not as explicit. Manifold learning of a 
time vertex-by-vertex kernel matrix operates on a mean centering of the feature space, i.e. each time point is 
centered. As illustrated, this has the same practical effect as global signal regression and time-point centering. Thus, 
LE, PCA of global-signal regressed data and PCA of time-point centered data return very similar spatial patterns 
(some with an arbitrary sign difference). 
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Supplementary Figure 12 - Consistency in Zero-lag FC Topographies at Finer-Grained 
Solutions 

 

Supplementary Figure 12. Consistency in FC Topographies by Granularity of Solutions. One of the findings of 
our study is that there is a surprising consistency in FC topographies estimated from ‘three-dimensional’ zero-lag 
analyses. However, it is worth exploring the degree of consistency in FC topographies at higher component 
numbers. We estimated higher number component (cluster) solutions for several latent dimension-reduction and 
clustering methods - including PCA, varimax-rotated PCA, temporal ICA, spatial ICA, HMM, and CAP analysis (all 
three seeds from main text).  We examined the consistency in FC topographies at component numbers varying from 
one to 12. Note, the same number of components (clusters) was estimated across methods at each value. While it is 
difficult to quantify the degree of consistency in outputs from multiple methods with a single number, we used the 
mean absolute-valued correlation between all pairs of FC topographies produced by all methods as a rough estimate. 
We display the mean absolute-valued correlation by component number solution. As illustrated in the plot, the 
consistency of FC topographies drops significantly at higher component (cluster) numbers.  
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Supplementary Figure 13 - Complex PCA on Shuffled BOLD Time Courses 

 

Supplementary Figure 13. Complex PCA On Shuffled Time Courses. One means to illustrate the time-lag 
information captured by CPCA, as opposed to zero-lag analyses, is through the use of a null model. Specifically, we 
can preserve the zero-lag correlation structure of spontaneous BOLD fluctuations and remove time-lag 
(autocorrelation) structure by randomly shuffling their time courses. We randomly shuffled the group-concatenated 
BOLD time courses and estimated three complex principal components from CPCA. We display the phase delay 
maps of the first three complex principal components from the shuffled time courses and original time courses 
(displayed in radians). Random shuffling of BOLD time courses effectively eliminates the time-lag structure present 
in the original phase delay maps of the first three complex principal components. What is preserved is the zero-lag 
structure, i.e. in-phase and anti-phase statistical dependence. Visually, the phase delay maps of the shuffled BOLD 

First Complex Principal Component

Second Complex Principal Component

Third Complex Principal Component

Original Phase Delay Map Shuffled Phase Delay Map

Original Phase Delay Map Shuffled Phase Delay Map

Original Phase Delay Map Shuffled Phase Delay Map
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time courses display a strictly bi-modal phase structure, corresponding to the anti-correlated fluctuations of the 
standing wave components of the complex principal components. The intermediate phase values present in the 
original complex principal components, corresponding to the traveling wave components, are eliminated. 

 

 

Supplementary Figure 14 - Inter-Subject Variability in Principal Components 
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Supplementary Figure 14. Intersubject Variability of Spatiotemporal Patterns. To assess the degree of 
intersubject variability in the three spatiotemporal patterns we randomly selected five subjects from our group 
analysis for further study. As illustrated in Figure 3, PCA effectively captures the zero-lag correlation structure of 
the three spatiotemporal patterns (patterns one, two and three). We conducted PCA on the BOLD time courses of the 
five subject scans separately, and compared the spatial structure of the first five principal components to the first 
three group-level principal components. As the ordering of the subject-level principal components by explained 
variance may not correspond precisely to the ordering of the group-level principal components, we conducted a 
matching procedure to map the subject-level principal components to the first three group-level principal 
components. This matching procedure was guided both by the spatial correlation between the subject-level and 
group-level principal components and by visual comparison. Beside each subject’s header is their corresponding 
HCP ID. For each subject, their matching principal component was displayed in the same column as the group-level 
principal component (PC1: left, PC2: middle, PC3: right). Beside the header of each subject’s principal component 
is the spatial correlation between that principal component and its matched group-level principal component (in the 
same column). Overall, patterns one, two and three were present in all five subjects, with notable intersubject 
variability. Several types of variability were observed: 1) the ordering by explained variance of the subject-level 
principal components was sometimes different than that observed at the group-level, 2) the same spatiotemporal 
patterns exhibited global and anti-correlated types across subjects, and 3) two subject-level principal component 
matched most closely to a single spatiotemporal pattern (for one subject - subject 4).  
 

Methods and Materials 

 
All code for preprocessing and analysis is provided at https://github.com/tsb46/BOLD_WAVES.  
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Resting-State fMRI Data 

Our study utilized resting-state fMRI scans from the Human Connectome Project (HCP) 
S1200 release74. Participants were unrelated, healthy young adults (ages 22–37). Resting-state 
fMRI data was collected over two consecutive days for each subject and two sessions, each 
consisting of two 15 minute runs, amounting to four resting-state scans per subject. Within a 
session, the two runs were acquired with opposite phase encoding directions: L/R encoding and 
R/L encoding. We selected a single 15 min scan from a random sample of participants (n=50; 21 
males) on the first day of scanning. We balanced the number of L/R and R/L phase encoding 
scans across our participants (n=25 for each encoding direction) to ensure results were not biased 
by acquisition from any given phase encoding direction. We chose a single 15 min scan per 
participant to ensure that the phase encoding/decoding parameter and the imaging session (two 
resting-state scans per imaging session) did not differ within the same participant. A second 
independent random sample of participants (n=50, 22 males) was used as a validation sample. 
We selected surface-based CIFTI resting-state fMRI scans (MSMall registered) that had been 
previously preprocessed with the HCP’s ICA-based artifact removal process75 to minimize 
effects of spatially structured noise in our analysis. All brain-imaging data were acquired on a 
customized Siemens 3�T Skyra at Washington University in St. Louis using a multi-band 
sequence. The structural images were 0.7�mm isotropic. The resting-state fMRI data were at 
2�mm isotropic spatial resolution and with TR�=�0.72�s temporal resolution. Further details 
of the data collection and preprocessing pipelines of the HCP can be found elsewhere 74,75. 
Informed consent was obtained from all subjects. All methods were carried out in accordance 
with relevant guidelines and the University of Miami Institutional Review Board approved the 
study. 

 

Resting-State fMRI Preprocessing 

         Resting-state fMRI scans were spatially smoothed with a 5mm FWHM kernel using the 
surface-based smoothing algorithm in Connectome Workbench Version 1.4.2. Resting-state 
fMRI signals from each vertex were then temporally filtered to the conventional low-frequency 
range of resting-state fMRI studies using a Butterworth bandpass zero-phase filter (0.01-0.1Hz). 
Due to 1) the computational complexity of our analytic pipeline, owing to the large number of 
analyses studied, and 2) our interest in global, spatially distributed patterns, resting-state fMRI 
scans were then resampled to the fs4 average space from Freesurfer76. This step down-sampled 
the total number of vertices in the left and right cortex to 4800 vertices. In group analyses, we z-
scored (to zero mean and unit variance) the BOLD time series from all vertices before temporal 
concatenation of individual scans. All analyses were applied to group-level data formed by 
temporal concatenation of subject resting-state scans. 
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Complex Principal Component Analysis 

To extract traveling wave patterns, we apply PCA to complex BOLD signals obtained by 
the Hilbert transform of the original BOLD signals. We refer to this analysis as complex PCA 
(CPCA). This technique has been referred to as complex Hilbert empirical orthogonal functions 
in the Atmospheric and Climate sciences literature30, or complex orthogonal decomposition in 
the engineering/physics literature42. 

CPCA allows the representation of time-lag relationships between BOLD signals through 
the introduction of complex correlations between the Hilbert transformed BOLD signals. The 
original time courses and their Hilbert transforms are complex vectors with real and imaginary 
components, corresponding to the non-zero-lagged time course (t=0) and the time course phase 
shifted by t=pi/2 radians (i.e. 90 degrees), respectively. The correlation between two complex 
signals is itself a complex number (composed of a real and imaginary part), and allows one to 
derive the phase offset (and magnitude) between the original time courses - i.e. the time-lag at 
which the correlation is maximum. CPCA applied to the complex-valued correlation matrix 
produces complex spatial weights for each principal component that can give information 
regarding the time-lags between BOLD time courses. In the same manner that a complex signal 
can be represented in terms of amplitude and phase components (via Euler’s transform), the real 
and imaginary components of the complex principal component can be represented in terms of 
amplitude and phase spatial weights. Of interest in this study is the phase delay spatial map that 
represents the time-lag between pairs of BOLD time courses - i.e. those cortical vertices with a 
low phase value activate earlier than cortical vertices with a high phase value. Importantly, the 
principal components from the CPCA retain the same interpretive relevance as the original PCA 
- the first N principal components represent the top N dimensions of variance in the Hilbert 
transformed BOLD signals.  CPCA was implemented with singular value decomposition of the 
groupwise temporally-concatenated complex-valued time series using the fast randomized SVD 
algorithm developed by Facebook (https://github.com/facebookarchive/fbpca). 
  
 Estimating The Time-Scale of Complex Principal Components 
 

For simplicity, the phase spatial maps of each complex principal component are 
displayed in seconds (Figure 2), as opposed to radians. However, the conversion of phase values 
(in radians) to time-units (seconds) requires an estimation of the time-scale of each complex 
principal component. The phase spatial maps of the complex principal components have no 
characteristic time scale other than that imposed by our band-pass filtering operation (0.01 - 0.1 
Hz, i.e. 100 to 10s) in the preprocessing stage. To approximate a unique time scale within this 
frequency range for each component, we calculated the average duration for a full oscillation of 
each complex principal component using the temporal phase of the complex component time 
series. This was calculated by fitting a linear curve to the unwrapped temporal phases of the 
complex principal component time series. The slope of the curve was then used as an estimate of 
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the average duration in radians of a TR (0.72s) or time-points. To estimate the average duration 
in TRs of a full oscillation, we divided a full oscillation (2 radians) by the duration in radians of a 
TR. For example, for a TR duration of 0.5 radians, the duration of a full oscillation (2pi radians) 
would be approximately 12.6 TRs. Using this procedure, we found that the average duration of 
the first three complex principal components are ~28s (38.7 TRs), ~27s (37.4 TRs) and ~28s 
(39.1 TRs), respectively. Using this duration as an estimate of the characteristic time scale of 
each complex principal component, allows us to provide an estimate of the time-delay in seconds 
of the spatial phase map. For example, for the first complex principal component, a 360 degree 
(2pi radians) phase difference between two cortical BOLD time series would correspond to a 
~28s time-lag between the time series. A smaller phase difference between two cortical BOLD 
time series, such as 1 radian, would correspond to ~14s time-lag between the time series, and so 
forth.  
 
 Temporal Reconstruction of Complex Principal Components 
 

To examine the temporal progression of each complex principal component, we sampled 
the reconstructed BOLD time courses from each complex principal component at multiple, 
equally-spaced phases of its cycle (N=30; Figure 2). For each complex principal component, the 
reconstruction procedure was as follows: 1) the complex principal component time series was 
projected back into the original vertex-by-time space to produce time courses of the complex 
principal component at each vertex, 2) the temporal phase of the complex principal component 
time course was segmented into equal-width phase bins (N=30) spanning a full oscillation of the 
spatiotemporal pattern (0 to 2pi radians), and 3) the vertex values within each bin were averaged 
to produce a ‘snapshot’ of BOLD activity at each phase bin (N=30) of the spatiotemporal pattern. 
The end result is a spatiotemporal representation of each complex principal component in terms 
of time-varying BOLD activity at equally spaced phases of its cycle. 

 
Traveling Index of Complex Principal Components 
 
The real and imaginary parts of a complex principal component correspond to the spatial 

weights of the component at zero and pi/2 (90 degree) phase shift of the original time courses. In 
a sense, they encode the temporal evolution of the complex principal component from one 
configuration (the real part) to a subsequent configuration (the imaginary part). By definition, a 
pure standing wave would exhibit the same spatial configuration from zero to pi/2 (90 degree) 
phase shifts of its cycle. A pure traveling wave would exhibit a different spatial configuration 
from zero to pi/2 (90 degree) phase shifts of its cycle. This observation suggests a means to 
quantify the degree of ‘traveling’ wave behavior of a complex principal component using the 
statistical dependence between its real and imaginary parts. A coherent traveling wave (i.e. 
propagation) of BOLD amplitudes across the cortex would exhibit one spatial configuration at 
one point in time and a different spatial configuration at another point in time. Thus, a complex 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2021.06.20.448984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.448984
http://creativecommons.org/licenses/by/4.0/


principal component that encodes this traveling wave behavior would exhibit differing spatial 
configurations in its real and imaginary spatial weights. Utilizing a metric developed by Feeny 42, 
we define the ‘traveling’ index of a complex principal component as the reciprocal of the 
condition number of the matrix whose two columns are the real and imaginary parts of the 
complex principal component. This metric simply encodes the statistical dependence between the 
real and imaginary parts of the complex principal component. Pure traveling waves would 
exhibit completely orthogonal real and imaginary parts, and a traveling index of one. Pure 
standing waves would exhibit completely dependent real and imaginary parts, and a traveling 
index of zero.  
 

Zero-Lag Functional Connectivity Analyses 

Description of Zero-lag FC Analyses 

         Following the standard terminology of the functional magnetic resonance imaging 
(fMRI) literature, we refer to zero-lag synchrony among intrinsic BOLD fluctuations as 
‘functional connectivity’ (FC) 77. FC between cortical brain regions organize into global, cortex-
wide patterns, referred to as ‘FC topographies’. All analyses were conducted so as to be 
consistent as possible with previous studies. For some of these analyses, results were compared 
with and without global signal regression. Global signal regression was performed by regression 
of the global mean time series (averaged across all cortical vertices) on all cortical time series. 
Residual time series from each regression were then used for subsequent analysis. All analyses 
were conducted using custom Python scripts, and are publicly-available at 
https://github.com/tsb46/BOLD_WAVES. The following zero-lag FC analyses were conducted: 

●   Principal component analysis (PCA): consists of eigendecomposition of the 
empirical covariance matrix of the vertices’ time series, or alternatively, singular value 
decomposition of the mean-centered group data matrix (time series along rows, vertices 
as columns). The first T principal components represent the top T dimensions of variance 
among cortical BOLD time courses. By construction, the first principal component is the 
latent direction of variation with the largest explained variance across all input variables, 
followed by the second most explanatory component, and so forth. The principal 
component spatial weights on each vertex were used to interpret the spatial patterns of 
each principal component. Principal component scores were obtained from the projection 
of the temporally-concatenated group time series onto the principal component space, and 
represent the time course of each principal component. 
●   Varimax rotation of principal components: consists of an orthogonal rotation of 
the principal component spatial weights, such that the simple structure of the spatial 
weights are maximized. Simple structure is defined such that each vertex loads most 
strongly one component, and weakly on all others. We used the implementation of 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2022. ; https://doi.org/10.1101/2021.06.20.448984doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.448984
http://creativecommons.org/licenses/by/4.0/


varimax rotation in the FactorAnalyzer Python package 
(https://github.com/EducationalTestingService/factor_analyzer). 
●   Laplacian Eigenmaps (spectral embedding): is a nonlinear manifold learning 
algorithm popular in the FC gradient literature36. The input to the Laplacian eigenmaps 
algorithm was the vertex-by-vertex cosine similarity matrix3, representing the similarity 
in the BOLD time series between all cortical vertices. Of note, cosine similarity is 
equivalent to Pearson correlation in mean-centered and unit normalized time series (i.e. z-
score normalization), as was the case with our data. Laplacian Eigenmaps performs an 
eigendecomposition of the transformed similarity matrix, known as the normalized 
Laplacian matrix. We also computed Laplacian Eigenmaps with a Gaussian radial basis 
function (gamma=1), and the results were virtually identical to the cosine similarity 
metric. We used the spectral embedding algorithm implemented in the scikit-learn 
(V0.23) Python package, and details can be found at (https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html). 
●   Spatial and temporal independent component analysis (ICA): estimates linearly 
mixed, statistically independent sources from a set of input variables. In the case of 
spatial ICA, principal component axes derived from PCA of the time point-by-time point 
covariance matrix are rotated to enforce statistical independence in the spatial domain. In 
the case of temporal ICA, principal component axes derived from PCA of the vertex-by-
vertex covariance are rotated to enforce statistical independence in the temporal domain. 
As with varimax rotation, we input a three principal component solution for both 
temporal and spatial ICA. We used the FastICA algorithm implemented in the scikit-
learn (V0.23) Python package. Details can be found at (https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html). 
●   Seed-based correlation analysis: consists of correlations between a seed brain 
region time course and time courses of all cortical vertices. Seed-based correlation 
analysis was performed for three seed locations. There are various methods for 
determining the location of seed regions. In our analysis, we chose seed regions within 
the three most prominent networks in the three dominant spatiotemporal patterns - 
SMLV, FPN and DMN. We chose seeds in the somatosensory cortex (SMLV), precuneus 
(DMN), and supramarginal gyrus (FPN) (Supplementary Figure 6). The spatial outline 
of the SMLV, DMN and FPN for guiding the selection of seed regions were determined 
through a k-means clustering analysis of the temporally-concatenated group time series 
with cortical vertices as observations and BOLD values at each time points as input 
variables (i.e. features). We found that a three-cluster k-means clustering solution 
precisely delineated the spatial outline of the three networks. This spatial outline was 
used to ensure the seeds were placed within their appropriate location of each network. In 
addition, we also tested the robustness of our results for different seed locations in the 
three networks - medial insula (SMLV), inferior parietal cortex (DMN) and dorsolateral 
prefrontal cortex (FPN) - and found that the results were identical. 
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●   Co-activation pattern (CAP) analysis: Three CAP analyses were performed for the 
same three seed regions used in the seed-based regression analysis. CAP analyses first 
identify time points with the highest activation for a seed time course. Consistent with 
previous studies9, we chose the top 15% of time points from the seed time course. The 
BOLD values for all cortical vertices in the top 15% time points are then input to a k-
means clustering algorithm to identify recurring CAPs of BOLD activity. We chose a two 
cluster solution for all CAP analyses. For each seed, the two cluster centroids from the k-
means clustering analysis represent two CAPs associated with the seed time course. 
●   Hidden Markov modeling (HMM): is a probabilistic generative model used to 
infer the sequence and form of discrete hidden states, as well as their transition 
probabilities from an unobserved sequence of latent states. HMM construes the data-
generating process based on multivariate Gaussian distributions conditioned on unknown 
latent ‘brain states’ that are assumed to generate the observed cortical BOLD time series. 
Each brain state represents a recurring pattern of BOLD co-activations/deactivations, 
somewhat similar to CAPs. To avoid overfitting and to reduce noise in the high-
dimensional input data, we conducted a PCA of the cortical BOLD time series. The first 
100 principal component projections of the time series served as input to the HMM 
algorithm. Associated with each brain state is a mean amplitude vector with a value for 
each principal component (N = 100), and a covariance matrix between the 100 principal 
component time courses. The mean amplitude vector represents the pattern of BOLD 
activity amplitudes associated with that brain state. For interpretation, the mean 
amplitude vector is projected back into cortical verex space for interpretation. A variety 
of potential ‘observation models’ are frequently used in HMM models. As cortical time 
series are measured on a continuous scale (as opposed to discrete measurements), the 
probability of a time point conditional on a hidden brain state (i.e. emission probabilities) 
is modeled as a mixture of Gaussian distributions. We used the HMM algorithm with 
Gaussian mixture emission probabilities implemented in the Python package hmmlearn 
(V0.2.5) (https://github.com/hmmlearn/hmmlearn). 

Model Selection: Choice of Number of Dimensions in Dimension-Reduction Algorithms 

The dimension-reduction algorithms used in this study, including PCA, PCA with 
varimax rotation, spatial and temporal ICA, and Laplacian Eigenmaps, as well as HMMs, require 
a choice of the number of latent dimensions/hidden states to estimate. For PCA with varimax 
rotation, spatial and temporal ICA, and HMM, this controls the degree of richness and/or fine-
grained distinctions of the data description - i.e. how many separate unobserved hidden 
phenomena are assumed and quantitatively modeled to underlie each given data point or 
observation. We did not assume or try to derive a single ‘best’ number of latent dimensions to 
represent intrinsic functional brain organization 78,79. As we were interested in large-scale 
cortical patterns of FC, our survey focuses on low-dimensional latent solutions. As an initial 
estimate of the number of latent dimensions for all choices of dimension reduction algorithms, 
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we examined the first T dominant axes of variation (i.e. principal components) of the correlation 
matrix formed between all pairs of cortical BOLD time series. Specifically, we examined the 
flattening (or diminishing return) in explained variance (i.e. eigenvalues) associated with 
neighboring principal components, a procedure known as Catell’s scree plot test39. According to 
this test, the number of components to extract is indicated by an ‘elbow’ in the plot, representing 
a ‘diminishing return’ in extracting more components. Clear elbows in the scree plot were 
observed after a principal component solution of one and three (Figure 3C). We chose the 
higher-dimensional solution of three components. Note, the elbow in explained variance after 
three components was independent of the functional resolution (i.e. vertex size) of the cortex - 
we found the same elbow after three components in a scree plot constructed from high-resolution 
functional scans (~60,000 vertices without downsampling to 4,800 vertices as described above in 
our preprocessing pipeline). Thus, three latent dimensions were estimated for all dimension-
reduction algorithms, and three hidden states were estimated for the HMM. 

 

Quasiperiodic Pattern and Lag Projections 

There are two widely-used algorithms for the study of spatiotemporal patterns in BOLD 
signals: 1) interpolated cross-covariance functions (Mitra et al., 2014, 2015)17,18 for the detection 
of lag/latency projections (~0-2s) and 2) a repeated-template-averaging algorithm of similar 
spatiotemporal segments19 for detection of the QPP (~20s). 

Lag projections represent the average time-lag between a brain region’s time course and 
all other brain regions. It provides an estimate of the average temporal ‘ordering’ of brain region 
time courses, such that a brain region with a greater average time-lag occurs after a brain region 
with a smaller average time-lag. For our study, we applied the lag projection algorithm to all 
cortical vertex time courses. The time-lag between a pair of cortical vertex time courses is 
defined as the peak of their lagged cross-covariance function. Lag projections are derived as the 
column average of the pairwise time-lag matrix between all cortical vertex time courses.  

To estimate the QPP, the template-autoregressive matching algorithm of Majeed et al. 19 
was used. The algorithm operates in the following manner: start with a random window of 
BOLD TRs, compute a sliding window correlation of the window across the temporally 
concatenated group data at each time point, and then average this segment with similar segments 
of BOLD TRs (defined using a correlation threshold). This process is repeated iteratively until a 
level of convergence is reached. The result is a spatiotemporal averaged template of BOLD 
dynamics (that could be displayed in a movie, for example), along with the final sliding window 
correlation time series. The final sliding window time series is the same length as the original 
subject or group concatenated time series and provides a time index of the appearance of the 
QPP in BOLD data. Python code for this analysis was modified from the C-PAC toolbox 
(https://fcp-indi.github.io/). Consistent with previous studies 19,47, the following parameters were 
chosen for the template matching algorithm: the window length was 30 TRs, the maximum 
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correlation threshold for identifying similar segments was r > 0.2, and the algorithm was 
repeated 10 times. The template with the highest average sliding window correlation time series 
across the 10 runs was chosen as the final result. 
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